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Abstract

Recent years have seen an increasing trend in001
the volume of personal media captured by users,002
thanks to the advent of smartphones and smart003
glasses, resulting in large media collections.004
Despite conversation being an intuitive human-005
computer interface, current efforts focus mostly006
on single-shot natural language based media re-007
trieval to aid users query their media and re-live008
their memories. This severely limits the search009
functionality as users can neither ask follow-010
up queries nor obtain information without first011
formulating a single-turn query.012

In this work, we propose dialogs for connected013
memories as a powerful tool to empower users014
to search their media collection through a multi-015
turn, interactive conversation. Towards this,016
we collect a new task-oriented dialog dataset017
COMET, which contains 11.5k user↔assistant018
dialogs (totalling 103k utterances), grounded019
in simulated personal memory graphs. We em-020
ploy a resource-efficient, two-phase data collec-021
tion pipeline that uses: (1) a novel multimodal022
dialog simulator that generates synthetic dia-023
log flows grounded in memory graphs, and, (2)024
manual paraphrasing to obtain natural language025
utterances. We analyze COMET, formulate four026
main tasks to benchmark meaningful progress,027
and adopt state-of-the-art language models as028
strong baselines, in order to highlight the multi-029
modal challenges captured by our dataset. Our030
code & data will be made publicly available.031

1 Introduction032

The rise of smartphones and smart glasses has con-033

tributed to a surge in the amount of personal media034

(photos, videos, montages, etc.) captured by users035

on a day-to-day basis in the past decade. For in-036

stance, it is estimated that about 1.5 trillion photos037

would be clicked in the year 2022 (Pantic, 2021).038

As a result, personal media collections typically039

grow at an alarming rate, making it cumbersome040

for users to manually search, retrieve, and re-live041

Figure 1: Illustration of COMET: COnnected MEmories
with a Task-oriented Dialog. (a) Each dialog turn is fully
annotated with dialog acts and multimodal coreference
labels, accompanied with photos associated with the re-
quest. (b) These media are from the underlying memory
graph, a structured collection of personal media.

their captured memories1. 042

To alleviate this situation, solutions that perform 043

natural language query-based media retrieval (Tan 044

et al., 2019; Vo et al., 2019; Tellex and Roy, 2009; 045

Barbu et al., 2013; Li et al., 2017; Guo et al., 2018a; 046

Saha et al., 2018) have been proposed. However, 047

such approaches exhibit two drawbacks. First, they 048

are single-shot interactions without any context 049

carry-over, e.g., Show me some photos from the 050

beach last week.. This limits the functionality and 051

does not let users ask any follow-up queries like 052

1Memories and media files are used interchangeably.
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‘Display photos from the first time I was here?’,053

since understanding here requires the query history.054

Second, users cannot seek information without ac-055

tually formulating the query to retrieve the corre-056

sponding memory. For instance, there is no easy057

query to know the first time a user visited the beach058

in the memory they are reviewing.059

In order to overcome these limitations, we pro-060

pose dialogs for connected memories as a powerful061

interface where users can interactively query their062

memory collections. By design, a conversational063

agent can handle multi-turn interactions enabling064

several additional queries that require context car-065

ryover, e.g., ‘When was the first time I was at this066

beach?’. Though prior efforts have explored the067

use of dialogs in media retrieval (Wu et al., 2021;068

Guo et al., 2018b) in other domains (e.g., fashion),069

there is no existing work focusing on interactive070

search and query of personal media collections to071

the best of our knowledge.072

More concretely, we propose COMET, a new073

multimodal task-oriented dialog dataset aimed at074

developing conversational assistants that can en-075

able users to interactively search and query their076

collection of memories. Working with personal me-077

dia collections presents two main obstacles: (a)078

There are no readily available public datasets that079

contain personal media along with associated me-080

dia attributes that we could leverage, and, (b) Per-081

sonal memories constitute sensitive information,082

thus resulting in privacy and safety concerns. To083

circumvent these roadblocks, we devise a novel084

memory graph simulator that can leverage publicly085

available media datasets and help create several086

synthetic memory collections. We represent these087

collections as memory graphs to capture useful088

relationships between the constituent memories,089

e.g., memories taken at the same place. We then090

collect 11.5k user↔assistant task-oriented dialogs091

(totalling 103k utterances), grounded in 1.1k mem-092

ory graphs. An example dialog is shown in Fig. 1.093

094

Our dataset is challenging as it requires rea-095

soning through both the dialog history and mul-096

timodal context (memory graphs) to resolve coref-097

erences, track the dialog state, predict the right098

API, and generate a meaningful natural language099

assistant response. As an example, consider the100

query ‘When was the first time I was here?’. First,101

the model needs to resolve here using the dialog102

history and previously viewed memories. Next, it103

needs to understand that the query is seeking in-104

formation about a connected memory, and predict 105

the right API get_time(resolve(here), first 106

time). Finally, it should produce a response like 107

‘The first time you were here was on August 2, 2019 108

with Jean’, potentially including some chit-chat. 109

To capture these challenges and benchmark 110

progress towards assistants that can interactively 111

handle dialogs for connected memories, we formu- 112

late four main tasks: Assistant API Call Prediction, 113

Multimodal Coreference Resolution (MM-Coref), 114

Multimodel Dialog State Tracking (MM-DST), and 115

Response Generation. We train baseline models for 116

these tasks, and discuss future research directions. 117

2 Related Work 118

Task-oriented Dialogs aim to understand user 119

queries and accomplish a pre-defined set of tasks 120

(e.g. booking hotels), which is a popular setting 121

in consumer-facing virtual assistants. Our work 122

addresses similar challenges often found in other 123

task-oriented dialogs, such as natural language un- 124

derstanding (NLU), dialog state tracking (DST) 125

(Henderson et al., 2014), etc. Compared to the con- 126

ventional task-oriented dialog datasets (e.g. Multi- 127

WoZ (Budzianowski et al., 2018; Eric et al., 2019; 128

Rastogi et al., 2019)), however, our work involves 129

a unique multimodal setting where dialogs are 130

grounded on a memory graph composed of sev- 131

eral media files, introducing novel challenges such 132

as Multimodal DST and Multimodal Coreference 133

Resolution given personal photo collections. 134

The most notable modeling approaches for task- 135

oriented dialog systems include casting the DST 136

task as a joint causal language modeling problem 137

(Hosseini-Asl et al., 2020; Peng et al., 2020; Gao 138

et al., 2019), by fine-tuning a large pre-trained trans- 139

formers such as GPT-2 (Radford et al., 2019). We 140

follow this recent trend and provide baselines by ex- 141

tending it accommodate for the unique multimodal 142

contexts that our dataset brings. 143

Multimodal Dialogs have become increasingly 144

more popular, where the dialog model processes 145

both visual and text input to handle queries. Many 146

existing literature (Hori et al., 2018; Das et al., 147

2017; Kottur et al., 2019; de Vries et al., 2017, 148

2018; Thomason et al., 2019) study multimodal 149

Q&A dialogs grounded on a single image as multi- 150

modal context, extending the conventional Visual 151

Question Answering (Antol et al., 2015) tasks to 152

multi-turn scenarios. We extend this line of work 153

by studying the multimodal agent that operates 154
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Figure 2: Two-stage pipeline to collect dialogs for
COMET. See Sec. 3 for more details.

on a collection of media (memory graph), thus re-155

quiring reasoning abilities over multiple grounding156

contexts. In addition, our focus on task-oriented di-157

alogs extends the previous literature that primarily158

focuses on retrieval tasks (Guo et al., 2018a; Saha159

et al., 2018; Firdaus et al., 2020), and studies un-160

derstanding structured user intents and fine-grained161

attributes annotated for each multimodal query.162

Memory QA: Our work is also similar to the Mem-163

ory QA tasks (Jiang et al., 2018; Moon et al., 2019),164

where the main task is to answer user QA queries165

upon a collection of images, extending the Visual166

QA task (Antol et al., 2015) which operates on a167

single image. However, the existing literature is168

limited to a simple single-turn QA interaction, and169

focuses on the identification of an evidential im-170

age to answer a question. While our dataset does171

include QA queries, we extend the problem do-172

main to the conversational settings which support173

complex scenarios (e.g. searching for related mem-174

ories), allowing for rich multimodal interactions.175

3 The COMET Dataset176

COMET is aimed to enable assistant systems that177

can process interactive queries from users and help178

navigate their collection of memories through a179

natural language conversation. Towards this, we180

collect the COMET dataset using a two-phase ap-181

proach (shown in Fig. 2): (a) Generating synthetic182

dialog flows between a user and an assistant that183

are conditioned on memory graphs, using a novel184

multimodal dialog simulator (Sec. 3.1), and, (b)185

Manually paraphrasing the above flows to obtain186

dialogs with natural language utterances (Sec. 3.2),187

Figure 3: Memory subgraph with constituent memo-
ries and their hierarchical relationships. Each memory
contains activity (orange), people (green), time, and
place (not shown) attributes. Memories are grouped into
events (purple box), then days (green box), and finally
trips (shown subgraph). Each memory graph contains
multiple trips, though only one is shown here for brevity.

thus moving closer to real-world application. This 188

approach is resource-efficient as it reduces the an- 189

notation overheads when compared to collecting 190

human↔human dialogs, both in terms of cost and 191

time. In what follows, we describe these two phases 192

in detail and analyze our COMET dataset. See the 193

supplementary (Fig. 7) for an example dialog. 194

3.1 Multimodal Dialog Self-play 195

We first leverage a multimodal dialog simulator 196

(Sec. 3.1.2) to generate synthetic dialog flows be- 197

tween a user and an assistant. Each of these flows 198

is grounded in a graph connecting the memories of 199

a user from their collection. The memory graphs in 200

our work are simulated by a novel graph simulator 201

(Sec. 3.1.1) and are designed to capture several hi- 202

erarchical relationships between the user memories. 203

204

3.1.1 Memory Graph Simulator 205

Graphs have been ubiquitously used in various 206

fields to effectively represent a set of entities and 207

relationships between them. Following this trend, 208

we use a graph structure to represent a collection 209

of memories (see Fig. 3 for an example). As men- 210

tioned in Sec. 1, to circumvent the lack of read- 211

ily available datasets for personal photo collec- 212

tions and surrounding privacy issues, we construct 213

a novel graph simulator to synthetically generate 214

memories graphs using public datasets. These mem- 215

ory graphs are then used as an input to the multi- 216

modal dialog simulator to generate dialog flows. 217

218
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Memories and Attributes. Memories consti-219

tute the atomic units of the graph simulator, and220

can cover a wide variety of media including pho-221

tographs, videos, and user-created montages. We222

limit the scope of memories to represent static im-223

ages in this work, although most components of our224

proposed framework readily extend to the broader225

definition. As photo collection of individuals is sen-226

sitive information, we use publicly available image227

dataset as a proxy to mitigate the risk. Specifically,228

we use Creative Commons images from MS COCO229

(Lin et al., 2014) that contains objects and people230

in everyday contexts as memories.231

We then assign four attributes to each of the im-232

ages as follows: (a) Activity: Each image in MS233

COCO has 5 associated captions. We use sentence-234

BERT (Reimers and Gurevych, 2019) to find the235

closest activity label from the taxonomy of the Ac-236

tivityNet dataset (Heilbron et al., 2015), using aver-237

age text-similarity to the captions. To ensure a good238

representation, we only keep those with at least 20239

memories resulting in about 138 labels covering240

wide variety of activities. (b) Place: For each activ-241

ity, we first manually map it to a place type, which242

then is randomly mapped to an actual place from243

a manually curated list. For instance, playing fris-244

bee → park → Cal Anderson Park, Seattle, USA.245

(c) People: We use the associated bounding box246

annotations for MS COCO images and map those247

labeled as ‘person’, above a threshold size, to a248

random name from a curated list of 200 names.249

(d) Time attribute is sampled randomly from a con-250

strained time range, depending on the relationship251

shared with other memories in the graph.252

Hierarchical Relationships. To closely emulate253

scenarios in a personal photo collection, we devise254

the following hierarchy of relations amongst the255

memories: memories → events → days → trips.256

Using heuristic rules, we sample and group mem-257

ories into events that are then grouped into days,258

which are finally grouped into trips. These group-259

ings impose constraints on the attributes of the con-260

stituent memories, which can be used to generate261

interesting conversational flows to query connected262

memories. For instance, memories from the same263

event need to happen at the same place type, while264

those in a day need to happen in the same city. Sim-265

ilar restrictions arise for the time attribute as well,266

which would be used to sample reasonable times267

for the corresponding memories, e.g., memories268

from the same event cannot be separated by more269

than few hours. These hierarchical relationships en-270

able connected queries like ‘What did we do after 271

this?’, ‘Show other pictures with Jane on this trip’, 272

or ‘Where did we go the next day?’. 273

Memory Graphs. Putting everything together, we 274

construct a memory graph for each collection: 275

• nodes: memory, event, day, trip, person, activity 276

• edges: memory attributes, hierarchical relations 277

Note that each memory graph can contain multiple 278

trips. Fig. 3 illustrates a memory subgraph, visu- 279

alizing only one trip for brevity. We synthetically 280

generate multiple memory graphs which form the 281

input to the dialog flow simulator. 282

Applications in the Real-World Setting. While 283

we use the publicly available image dataset to gen- 284

erate memory graphs, applying the method above 285

in the existing real-world photo album products 286

at large-scale is straightforward as we do not re- 287

quire any additional information (e.g. captions or 288

annotations) other than meta data that are readily 289

associated with the media (e.g. timestamp, loca- 290

tions). This meta data can be rearranged from ta- 291

bles to graphs without additional annotations, only 292

by specifying the relations of interest (e.g., people, 293

place, time, predicted concepts). Memory graphs 294

are not only practical but also desired to enable 295

connected memory search. 296

3.1.2 Multimodal Dialog Simulator 297

The multimodal dialog simulator takes the gener- 298

ated memory graphs along with the meta informa- 299

tion of each node to create user↔assistant dialog 300

flows, following the agenda-based dialog simulator 301

approach (Schatzmann et al., 2007). 302

Dialog Flow Generation via Self-play. The dia- 303

log simulator comprises three main components: 304

the goal generator, the user simulator, and the 305

assistant simulator. The goal generator randomly 306

samples an agenda for each dialog, which defines 307

a sequence of high-level goals for the scenario 308

(e.g., SEARCH → GET_RELATED_PHOTOS → 309

GET_INFO). Given a goal, the user simulator 310

draws an acceptable dialog action based on a prob- 311

ability distribution, which is defined with NLU in- 312

tents (e.g., REQUEST:GET, CONFIRM:SHARE), 313

slots (e.g., location, time), and memory references. 314

The assistant simulator then takes the output of the 315

user simulator, retrieves the multimodal contexts 316

via the simulation API (e.g. obtaining the informa- 317

tion of a memory node from the graph, retrieving 318

related memories), and generates natural language 319

generation (NLG) intents, slots and new memory 320
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references. The process is repeated until the simu-321

lator exhausts every goal in the agenda.322

Multimodal Dialog Ontology. Following other323

task-oriented dialog datasets (Eric et al., 2019;324

Rastogi et al., 2019; Moon et al., 2020), for325

COMET we provide the standard dialog anno-326

tations such as the intent (NLU & NLG) and327

slot labels. To accommodate for the complex328

multimodal nature of the scenarios, we extend329

the dialog ontology to include memory refer-330

ence annotations as their corresponding node IDs,331

which seamlessly annotates both multimodal con-332

texts and language (e.g. ‘When was our trip to333

Whistler?’ → INFORM:GET_INFO.time, mem-334

ories: [8]). The same notation can be used to re-335

fer the memories that are carried over in the di-336

alog context (e.g. ‘Where did we go after that?’337

→ INFORM:GET_RELATED.location, mem-338

ories: [8]). This proposed fine-grained and unified339

ontology will allow a systematic approach to study340

diverse referring expressions in multimodal dialogs.341

342

3.2 Manual Paraphrase343

Once the memory graph conditioned dialog flows344

have been generated, we paraphrase utterances in345

the dialog flow with the help of human annotators.346

This allows us to draw utterances from the natural347

language distribution, thus moving closer to the ap-348

plication. We build an interactive user interface to349

aid annotators paraphrase utterances from COMET350

dataset. Specifically, the interface shows the im-351

ages corresponding to the memories along with the352

dialog flow and instructs annotators to paraphrase353

without losing key information such as objects and354

attributes. See appendix for an example dialog. As355

paraphrasing utterances is faster, cheaper, and re-356

quires little to no domain knowledge on the anno-357

tator‘s part, our two-phase pipeline is much more358

resource-effective, when compared to collecting359

multimodal human↔human dialogs and collecting360

dialog annotations on top (Moon et al., 2020).361

3.3 COMET Dataset Analysis362

We now analyze the COMET dataset, which con-363

tains 11.4k dialogs totalling 103.4k utterances,364

grounded in 1.1k memory graphs. Tab. 1 presents365

the overall dataset statistics.366

Analyzing Dialogs. Dialogs in COMET use a total367

of 1.1k memory graphs with each containing 100368

memories. For every dialog, there are about 3.5369

Total # dialogs 11.5k
Total # utterances 103.4k
Total # memory graphs 1.1k
Avg # words (user turns) 10.7± 4.4
Avg # words (assistant turns) 15.4± 9.8
Avg # utterances / dialog 8.8
Avg # memories mentioned / dialog 3.5
Avg # memories in graph / dialog 100

Table 1: COMET Dataset Statistics

connected memory mentions with the distribution 370

given in Fig. 4b. User and assistant turns average 371

about 10.7 and 15.4 words respectively (distribu- 372

tion in Fig. 4a). It is interesting to note that the 373

assistant responses are significantly longer than the 374

user. As an example, consider the following user 375

utterance ‘U: Are there any similar photos from 376

2020?’ and the corresponding assistant response ‘A: 377

Here‘s one of Laura and Virginia cooking sausages 378

at home, the afternoon of August 26, 2020. It looks 379

like a fun time!’. This illustrates that the annota- 380

tors paraphrasing the dialog flows included: (a) 381

details about the retrieved memories to give addi- 382

tional context to the user, thus invoking subsequent 383

connected memory queries (e.g., ‘What did we do 384

that evening?’), (b) chitchat about the memories to 385

make the conversational natural sounding. 386

Analyzing Dialog Annotations. Our COMET 387

come with annotations at dialog level for dialog 388

state tracking (NLU intents and slots), necessary 389

API calls for assistant, and multimodal coreference 390

resolution. Following Kottur et al. (2021), our in- 391

tents follow a hierarchy of dialog acts (4: ASK, 392

CONFIRM, INFORM, REQUEST) and activities (4: 393

DISAMBIGUATE, GET, REFINE, SHARE). See 394

Fig. 4d for a breakdown distribution over dialog 395

acts and activities. Due to the retrieval nature of our 396

assistant (either memories or associated attributes), 397

a major chunk of the activities are GET. Similarly, 398

there are 5 APIs in our dataset (Fig. 4c): 399

• SEARCH: Search using input parameters, 400

• REFINE_SEARCH: Build on top of search car- 401

rying over existing parameters, 402

• GET_INFO: Seek information about current or 403

previouly viewed memories, 404

• GET_RELATED: Explore other memories simi- 405

lar to the current/prior memories, and, 406

• SHARE: Share it to friends or family, 407

As expected, SEARCH is the most dominant API 408

call in the dataset. Note that the turns with GET 409

and REFINE_SEARCH API calls elevate the need 410

for conversation in retrieving connected memories, 411

where the user requests for memories similar to 412
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(a) (b) (c)

(d) (e)
Figure 4: Distribution of (a) utterance lengths with dialog turns, (b) number of memory mentions in each dialog, (c)
API calls across the dialogs, (d) dialog acts and activities, and (e) referent candidates (L) and coreference distance
(R) between memory mentions.

Figure 5: Transition of dialogs acts in COMET for the first 4 turns, for dialog flows generated by our novel multimodal
dialog simulator for connected memories. Each block is of the form ACT:ACTIVITY:[A|U][turn], to denote
dialog act, activity, user or assistant turn, and turn number, respectively. See text for more details.

the ones already viewed or with additional speci-413

fications, respectively. Finally, Fig. 4e visualizes414

the distribution of number of candidates and utter-415

ance difference between the current and the one416

with referent memory (coreference distance). For417

turns requiring coreference resolution, the average418

number of candidates is 2.7 at a distance of 2.9419

utterances. Though a majority of referents are natu-420

rally 1 utterance away (previous turn), the long tail421

(even up to 10+ utterances) indicates the presence422

of challenging multimodal coreferences.423

Analyzing Dialog Flows. As mentioned earlier,424

the multimodal dialog simulator generates the dia-425

log flows during the first phase of our data genera-426

tion. We visualize these dialogs flows in Fig. 5 for427

the first four dialog turns, where each block denotes428

an intent at a particular turn and the grey stripes 429

denote NLU intent transitions in subsequent turns. 430

The width of the stripe is proportional to the fre- 431

quency of the transition. For brevity, each block is 432

label as ACT:ACTIVITY:[A|U][turn]. The 433

high branch-off factors for these intents capture the 434

diversity of the dialogs flows in our dataset, which 435

is desirable in building a robust dialog system. 436

4 Task Formulation 437

To benchmark progress of conversational models 438

towards the goal of assisting users in interactively 439

querying connected memories in a meaningful way, 440

we propose four main tasks for COMET. Tab. 2 441

outlines the task formulations along with the corre- 442

sponding evaluation metrics. 443
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Task Name Goal Evaluation

1. Assistant API Call Prediction Given user utterances, predict the right API call necessary to
execute the query.

Classification accuracy

2. Multimodal Coreference
Resolution (MM-Coref)

Given user utterances, resolve referent memories to their
canonical ID(s) as defined by the memory graph.

Coref Precision / Recall / F1

3. Multimodal Dialog State Tracking
(MM-DST)

Given user utterances, track user belief states across multiple
turns.

Slot Precision / Recall / F1

4. Assistant Response Generation Given user utterances, ground-truth APIs and ground-truth
object IDs, generate Assistant responses or retrieve from a
candidate pool.

Generation: BLEU;
Retrieval: Accuracy@k, mean re-
ciprocal rank, mean rank

Table 2: Proposed tasks and descriptions on our COMET dataset. Please see Sec. 4 for more details.

4.1 Assistant API Call Prediction444

The first step in executing any query on connected445

memories successfully is to understand the user ut-446

terance in the context of the dialog history and mul-447

timodal information, and predict the right API call.448

For instance, a query like ‘When was the last time449

I was here?’ should result in a GET_INFO API450

prediction. Note that errors in API call prediction451

cascade through the model pipeline resulting in an452

incorrect or unrelated response from the assistant.453

Thus, this task tests the ability of the conversational454

agent to predict the right API call. Evaluation is455

done per each turn through API call accuracy.456

4.2 Multimodal Coreference Resolution457

Recall that one of our motivations to use conver-458

sations for querying connected memories is the459

ability to support multi-turn queries. In such sce-460

narios, humans often use short-hands or references461

when the underlying referred entity (referent) can462

be usually deduced without any ambiguity. As an463

example, when looking at a particular memory, a464

follow-up ‘When was the last time I was here?’ is465

intuitive and natural, whereas ‘When was the last466

time I was at Waikiki Beach, Hawaii?’ requires the467

user to remember the name and use it in the query,468

making it cumbersome.469

Therefore, the model must be able to handle mul-470

timodal coreferences in order to field such queries471

effectively. The input for this task includes the dia-472

log history, multimodal context, and all the memo-473

ries mentioned so far (as coreference candidates).474

The models needs to thus resolve the reference to475

one or more of the candidates. We use coreference476

precision, recall, and F1 to measure performance.477

4.3 Multimodal Dialog State Tracking478

Due to the multimodal nature of COMET, we adopt479

multimodal dialog state tracking (MM-DST) used480

in (Kottur et al., 2021) as one of our tasks. To elab-481

orate, slots in our dataset can be grounded in the 482

multimodal context information and requires rea- 483

soning through the current or previously viewed 484

memories. For instance, a query like ‘Where did 485

we go from here?’ requires the slot value to be the 486

currently viewing memory. This implies that the 487

dialog states can contain non-textual tokens (e.g., 488

memories), thus making it multimodal. In order to 489

measure the performance in this task, we use slot 490

recall, precision, and F1 scores. Note that unlike 491

(Kottur et al., 2021), we drop evaluating for dia- 492

log act prediction since GET has an overwhelming 493

majority due to the nature of the problem. 494

4.4 Assistant Response Generation 495

This task evaluates the ability of the model to ei- 496

ther generate a response or retrieve from a pool of 497

candidates, given dialog history, ground-truth APIs 498

& results, belief states, and multimodal contexts. 499

Though the model has access to API results, pro- 500

ducing a natural language utterance to describe it 501

within the flow of the dialog is still a difficult task. 502

We evaluate this task in two different ways: 503

(a) Generative, where the model produces the re- 504

sponse similar to a conditional language model. 505

We use n-gram overlap based BLEU-4 (Papineni 506

et al., 2002) and more recent neural evaluation 507

metric BERTScore (Zhang* et al., 2020) to mea- 508

sure performance by comparing the generated re- 509

sponse to the ground truth, and (b) Retrieval, where 510

the model ranks a list of randomly pooled can- 511

didate responses (unique to a turn) along with 512

the ground truth. Retrieval metrics like recall@k 513

(k = {1, 5, 10}), mean rank, and mean reciprocal 514

rank are used. 515

5 Modeling & Empirical Analysis 516

We now perform preliminary empirical evaluation 517

and analysis for the proposed tasks by training base- 518

lines. Detailed modeling work is left as future work. 519
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Model 1. API 2. Coref 3. DST 4. Gen.

Acc↑ Coref F1↑ Slot F1↑ BLEU↑ BERTS.↑

Text 88.4±0.4 76.5±0.7 90.0±0.4 0.332±0.003 0.884±0.001

MM-BUTD 89.0±0.4 84.4±0.6 67.0±0.6 0.391±0.004 0.904±0.001

MM-CLIP 82.9±0.5 37.0±0.8 65.9±0.7 0.385±0.004 0.901±0.001

Table 3: Baseline performances for GPT-2 models: text-
only (text) and multimodal image features (MM). (1)
API Call Prediction (API), via classification accuracy,
(2) Multimodal Coreference Resolution (Coref), via
coref prediction F1, (3) Dialog State Tracking (DST),
via slot F1, (4) Response Generation via BLEU and
BERTScore. ↑: higher is better. Bold denotes best per-
formance with statistical significance.

520

Dataset Split. The dataset is randomly divided521

into: train (70%), val (15%), and test (15%). For522

our experiments, models are trained using train523

split and performance is reported on test, while val524

is used to pick the model hyper-parameters.525

Notations. We follow the notation established526

in (Kottur et al., 2021), where each dialog527

of length Nr rounds is represented as D =528

{(Ui, Ai,Mi, Bi)}Nr
i=1 with:529

• Ui: User utterance at turn i530

• Ai: Assistant utterance at turn i531

• Mi: Multimodal context, i.e., memory graph and532

memories retrieved in the previous turns,533

• Bi: Multimodal belief state, a semantic parse of534

Ui (intent, slot, memory references).535

Therefore, given the current user utterance (Ut), di-536

alog history Ht = (Ui, Ai)
t−1
i=1, and the multimodal537

context (Mt), a COMET agent should predict the538

user belief state Bt and the natural language re-539

sponse At for every dialog turn t.540

Baselines. Causal language models pretrained on541

large datasets have shown a lot of promise in multi-542

modal and text-only task-oriented dialog modeling,543

when finetuned on the downstream task (Hosseini-544

Asl et al., 2020; Peng et al., 2020; Kottur et al.,545

2021; Moon et al., 2020). Following this popular546

approach, we adopt the transformer-based GPT-2547

(Radford et al., 2019) model and jointly train it548

for API prediction, MM-Coref, DST, and response549

generation tasks, as shown in Fig. 6. In particular,550

we use the 12-layer GPT-2 (117M ) model and fine-551

tune it on dialogs from COMET dataset, using early552

stopping based on token perplexity (<3 GPU hrs).553

We use two approaches to capture Mi:554

(a) text-only (GPT2-text), where previously viewed555

memories and their attributes are represented as flat-556

tened strings. Note that this baseline uses ground-557

Figure 6: Baseline GPT-2 models for COMET. (1) Given
the dialog history, multimodal context, and current user
utterance, the model predicts the API call and belief
state at the current turn, (2) The API call is executed and
(3) the results are fed back into the model, (4) Finally,
model produces a natural language response. As shown,
GPT2-text uses attribute strings to represent memories,
while GPT2-MM use image features.

truth activities from the memory graph. 558

(b) multimodal (GPT2-MM), where bottom-up and 559

top-down (BUTD) (Anderson et al., 2018) and CLIP 560

(Radford et al., 2021) image features are extracted 561

for previous viewed memories, and fed as ‘visual 562

tokens’ while finetuning the GPT-2 model. 563

Analysis. A key observation from Tab. 3 is that 564

multimodal model GPT2-MM (BUTD) outperforms 565

text-only in MM-Coref and response generation 566

significantly. This is intuitive as multimodal coref- 567

erence resolution requires understanding the mem- 568

ories beyond the obvious activity label in order to 569

rightly resolve the reference. Consider the query: 570

‘When was the last time I played with my dog here?’. 571

To resolve to the right memory, the system needs to 572

understand which memory is about playing with the 573

dog towards which a mere activity label throwing 574

frisbee might be insufficient. For a similar reason, 575

additional multimodal features improve response 576

generation, especially to include chit-chat. On the 577

other side, GPT-Text does better on capturing the 578

dialog state suggesting complementary benefits. 579

Conclusion. We present a novel dataset for 580

the dialogs for connected memories, COMET, with 581

11.5K user↔assistant dialogs (103K utterances) 582

grounded on the memory graphs. We present a 583

novel multimodal dialog simulator, which gener- 584

ates simulated dialogs grounded on diverse mem- 585

ory graphs that are automatically configured. Our 586

empirical analysis demonstrates many new chal- 587

lenges that our COMET dataset brings, highlighting 588

new directions of research in this area. 589
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6 Supplementary Materials775

6.1 Limitations of the proposed work776

The generalizability of COMET is naturally777

bounded by the underlying graph simulator, es-778

pecially around memory attribute labels of place,779

people, and time. However, we justify this as fol-780

lows: (a) Recall that the focus of our work is to781

enable an assistant that can understand and execute782

user queries about connected memories through an783

interactive dialog. Even with the simulated dialog784

flows, COMET captures several interesting chal-785

lenges related to multimodal dialog, for instance,786

coreference resolution and dialog state tracking (as787

seen in Sec. 3.3 and Sec. 5). This opens the door788

to new research directions in multimodal conversa-789

tion, especially in the absence of a readily available790

large-scale personal photo collection dataset (along791

with attributes and metadata). (b) Due to the two-792

stage data collection pipeline, COMET is amenable793

to data augmentation techniques that can increase794

the robustness of the downstream dialog model. For795

instance, the dataset can be easily augmented by796

replacing named entities in the memory graph and797

utterances, without changing the flow.798

6.2 Ethical Considerations799

All identifiable faces from the COCO images were800

blurred using a CV algorithm, mitigating potential801

privacy risks. The dataset, when released publicly,802

will include those edited images.803

Annotators for our task were employed as full-804

time and contracted via a leading NLP / linguistics805

annotation platform. Annotators were given clear806

instructions and disclaimers detailing the escalation807

path (“Report Dialog") for an (unlikely) case where808

the data may include sensitive topics or images809

(shown in Figure 9).810

6.3 Dataset Example811

Figure 7 illustrates an example dialog from812

COMET, along with the set of images as-813

sociated with each turn (U: User, A: As-814

sistant). API Annotations are formatted as815

follows: INTENT [slot = value, ...]816

(request_slot) <memory: ID>. When817

there is no new image introduced for a given818

turn, it is assumed that the images from previous819

turns (if any) are left visible to the user, therefore820

continuing to serve as the grounding multimodal821

context.822

6.4 Annotation UI 823

Figure 8 illustrates the annotation UI used to col- 824

lect multimodal paraphrases of the dialog. Anno- 825

tators are shown the pre-generated dialog flows 826

(templated utterances), along with the text boxes 827

where the paraphrases can be entered. The top por- 828

tion of the UI displays the images (assumed to be) 829

shown to the user for each given turn, which gets 830

dynamically updated as annotators click on new 831

text boxes for entering paraphrases. A shortened 832

list of meta data associated with each image is also 833

shown for reference. 834
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Figure 7: Dataset Example. Dialog labels include intent, slots, and multimodal coreferences.
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Figure 8: The annotation tool UI. Annotators are shown the templated utterances, and a set of photos that
dynamically get updated for each turn, based on the pre-generated dialog flows.

Figure 9: Disclaimers shown to the annotators, detailing the escalation path.
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