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Abstract

We explore the problem of goal-conditioned reinforcement learning (RL) where
goals are represented using deterministic finite state automata (DFAs). Due to the
sparse and binary nature of automata-based goals, we hypothesize that experience
replay can help an RL agent learn more quickly and consistently in this setting.
To enable the use of experience replay, we introduce a novel end-to-end neural
architecture, including a graph neural network (GNN) to encode the DFA goal
before passing it to a feed-forward policy network. Experimental results in a
gridworld domain demonstrate the efficacy of the model architecture and highlight
the significant role of experience replay in enhancing the learning speed and
reducing the variance of RL agents for DFA tasks.

1 Introduction

We consider the problem of task-conditioned reinforcement learning (RL) where tasks are encoded
as deterministic finite state automata (DFAs). That is, at test time, the agent is given a DFA
description of the task and expected to perform the task with no additional training. The focus
on DFA-conditioned RL is motivated by three observations. First, many tasks (including non-
Markovian ones) can be encoded with finite state automata. For example, many popular formalisms
for specifying reinforcement learning (RL) problems encode regular languages and thus can also be
represented by DFAs [10, 7]. This class of tasks is of particular interest due to them being closed under
Boolean combinations and temporal sequencing while only requiring finite memory to represent.
Second, DFAs enable a mechanism to study learning policies conditioned on regular languages
without introducing too many (artificial) inductive biases. In particular, DFAs constitute a large and
mostly unstructured task representation. This stands in contrast to very structured syntactic task
specifications such as finite linear temporal logic [5]. Academically, less inductive bias is valuable
for comparing different learning algorithms. Practically, less inductive bias forces the resulting policy
to solve the underlying regular language rather than relying on syntactic heuristics. Finally, we are
motivated by eventual applications to the inverse problem - learning finite state automata from expert
demonstrations [11]. In this setting, the forward problem of knowing the rational behavior of an
agent given a DFA is queried hundreds of times on candidate DFAs that are apriori unknown.
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Figure 1: Visualizations of the proposed framework and the environment used in the experiments.

Like many other goal-conditioned RL problems, automata constitute a sparse and binary reward. As
a consequence, off-the-shelf RL algorithms for automata lack a consistent positive reward signal - a
situation made strictly worse by the history-dependent nature of automata. We address this problem
using two techniques. First, we leverage the growing literature of Hindsight Experience Replay [2] to
enable counterfactual reasoning, i.e., the output behavior is incorrect, but would have been correct
for another DFA. Second, we leverage a graph neural network (GNN) to summarise the state of the
DFA before passing to a policy network. The intuitive design motivation is that locally a DFA looks
like a series of reach-avoid problems. Thus, the GNN can identify the active reach-avoid query and
condition the policy accordingly. Empirically we observe a significant improvement in the ability of
the DFA-conditioned policy network to learn in a grid world domain.

Related Work. Prior work has considered leveraging experience replay to policies conditioned on
syntactically defined temporal specifications [10]. By treating finite automata, this work studies a
less structured concept class where compositional heuristics implicit in Boolean algebra are obscured.
Notably, a similar experience replay training strategy has been employed for learning policies for a
single reward machine [6] – an automaton with rewards provided at each state. By contrast, we only
consider sparse binary feedback for the multi-task setting, i.e., the automaton is provided at runtime.

2 Automata Conditioned Reinforcement Learning

The overall architecture of the framework is illustrated in Figure 1a. At step t, given an observation
ot and a task represented by a DFA At, we compute embeddings −→ot and −→At, respectively, and give
their concatenation −→ot ·

−→At to the feed-forward policy network to get a softmax over possible actions.
The embedding −→ot of the observation ot is computed by using a convolutional neural network (CNN)
in the standard way. The embedding −→At of the DFA At is computed in two steps (cf. Figure 1b) – (i)
construct the graph encoding ĜAt

of the DFA At and (ii) pass the graph ĜAt
through a graph neural

network (GNN) to get −→At. After taking the action at at step t, using the next observation ot+1, we
update the initial state of the DFA At based on the transition taken and minimize it by pruning its
unreachable states to get the next DFA At+1 which is then used to get the next action at+1.

DFA Encoding: Given a DFA At, we first construct a directed graph GAt
= (VAt

, EAt
), where

vi ∈ VAt
represents the states of At and evu = (v, u,Fvu) ∈ EAt

represents the transitions of At.
Each edge evu contains a propositional logic formula Fvu denoting the condition to take the transition.
Notice that we use propositional logic formulas for transition conditions rather than individual input
symbols. The correspondence between the two DFA definitions is trivial and therefore omitted.

Using the graph representation GAt
= (VAt

, EAt
) of At, we then construct the DFA encoding

ĜAt
= (V̂At

, ÊAt
, R̂At

), where V̂At
is the set of nodes, ÊAt

is the set of edges, and R̂At
is the set of

edge types. We sketch the iterative the construction of ĜAt below.

Initially, ĜAt
has all the nodes of GAt

. For each evu = (v, u,Fvu) ∈ EAt
, enumerate all models

(satisfying truth value assignments to atomic propositions) of Fvu. For each model, add a new node
to V̂At

and two new edges to ÊAt
– one from v to the new node (edge type 2) and another one from
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the new node to u (edge type 3). Then, add self-loop edges (edge type 1) for each node. Once ĜAt is
constructed this way, we reverse its edges to ensure that the message passing in the GNN transmits
information to the initial state of the DFA (cf. Figure 1b). Each node v ∈ V̂At is associated with an
input node feature h

(0)
v . For v ∈ VAt

, h(0)
v indicates whether v is the initial state and whether it is an

accepting/rejecting state. For v ∈ V̂At
\ VAt

, h(0)
v encodes the model associated with v.

DFA Embedding: Given a DFA encoding ĜAt
= (V̂At

, ÊAt
, R̂At

) and its input node features H =

{h(0)
v | ∀v ∈ V̂At}, we construct an embedding of the DFA using a relational graph convolutional

network (RGCN) [9]. The RGCN performs a sequence of message passing steps to map each node to
a vector. At a message passing step t, the embedding h

(t)
v ∈ Rd(t)

of node v ∈ V̂At
is updated as:

h(t+1)
v = σ

∑
r∈R

∑
u∈N r

G(v)

1

|N r
G(v)|

W (t)
r h(t)

u

 ,

where σ is an activation function and N r
G(v) denotes the set of nodes adjacent to v via an edge of

type r ∈ R. Notice that weights are shared only for edges of the same type. We perform 8 message
passing steps and 32-dimensional node embeddings, i.e., h(t)

v ∈ R32, and the input node features are
represented by 22-dimensional node embeddings, i.e., h(0)

v ∈ R22. We use Tanh as the activation
function. The feature vector of the DFA’s initial state after message passing then represents the latent
space encoding −→At of the DFA task At, and it is concatenated with the observation embedding before
being passed to the feed-forward policy to compute the likelihood over actions.

3 Experience Replay with Automata

Our training was done using an entropy regularized [4] variant of DQN [8] and a replay buffer storing
past experiences. Asynchronously to the automata conditioned RL process described in Section 2, we
also perform experience replay [2]. That is, we sample episodes from the replay buffer and, using a
relabeling strategy, relabel these episodes with a new DFA that is satisfied over the sampled episode.
These relabeled episodes are then placed back into the replay buffer with their relabeled DFA goal.
The relabeling strategy can be a strategy specific to the class of tasks under consideration or a general
approach based on inverse reinforcement learning [1] as suggested by [3]. In this paper, we focus on
two task classes: reach-avoid tasks and reach tasks, and we implement relabeling strategies for them.

In its simplest form, a reach-avoid task specifies an atomic proposition that has to be satisfied and
another one that has to be avoided to accomplish the task, e.g., the DFA in Figure 1b is a reach-avoid
task specifying that the agent needs to go to a blue square while avoiding red squares in Figure 1c.
Such simple reach-avoid tasks can be combined to express a sequence of reach-avoid tasks. Moreover,
a path through an arbitrary DFA task can be considered as a sequence of reach-avoid tasks since,
to realize a given state transition, there is a set of atomic propositions that have to be satisfied and
another set of atomic propositions that have to be avoided. The specific reach-avoid task class we
study specifies a sequence of n atomic propositions that have to be satisfied in the given order to
achieve the goal1 and k atomic propositions that have to be avoided at each state. For example, a
reach-avoid task with n = 2 and k = 1: go to a blue square while avoiding red squares and then go
to a yellow square while avoiding blue squares in Figure 1c. For this class of tasks, we specifically
designed a relabeling strategy. Given an episode, we randomly choose n of the atomic propositions
that the episode happened to satisfy and construct a DFA specifying the sampled sequence, i.e.,
starting from the initial state, the only way to get to the accepting state is to satisfy the sampled
atomic propositions in the correct order. We then add a rejecting sink state, and for every other state
of the DFA, we sample k atomic propositions that are not in the reach set of that state and add a
transition to the rejecting sink state conditioned on the sampled k atomic propositions. Finally, we
relabel the given episode with this new DFA. Reach tasks are simply reach-avoid tasks with k = 0
and their relabeling strategy is identical to reach-avoid, except no rejecting transitions are sampled.

1As n grows, the likelihood that a uniformly random policy will satisfy the task shrinks exponentially.
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Figure 2: Results show that experience replay helps the RL agent learn more quickly (or, in some
cases, learn anything at all), with more gains when the DFA task becomes harder to satisfy. Solid
lines use experience replay, and dashed lines do not. Line colors indicate the length of each task, i.e.,
how many propositions must be seen in sequence to accomplish the task. Reach-avoid tasks need to
avoid two propositions (varying at each state in the DFA). The version without experience replay
makes no progress for reach tasks past length 4 and the reach-avoid tasks past length 3. Lines are
averaged over five samples, and error bars show standard error.

4 Experiments2

We restrict our experiments to reach and reach-avoid tasks. The underlying environment of our
experiments is a 7x7 gridworld depicted in Figure 1c. At each state, the robot occupies a single
square of the environment and can move in any of the four cardinal directions. Some squares in the
gridworld are randomly colored, and each color corresponds to an atomic proposition. Moving into
one of these colored squares satisfies the associated atomic proposition, potentially transitioning the
underlying DFA task. At the beginning of each episode, the squares in the environment are randomly
colored, and a DFA task from the class is sampled. To satisfy the task and receive a positive reward,
the agent must traverse the environment in a way that transitions the DFA into an accepting state
within a horizon of 20 steps; otherwise, the agent does not get a reward, i.e., it receives a reward of 0.

For the entropy regularized DQN, we use an exploration parameter that linearly decreases from 1.0 at
the first step to 0.05 at step one million. During training, approximately 10% of a batch is relabeled
samples. The relabeled and non-relabeled samples are stored in separate buffers of sizes 50,000.

Our experimental results show that experience replay makes a significant difference in how quickly
goal-conditioned RL agents learn for DFA tasks. The more difficult the DFA task, the greater the
impact of experience replay. Figure 2 (left) shows the learning curves for reach tasks and Figure 2
(right) shows the learning curves for reach-avoid tasks in the gridworld environment. All curves
are averaged over 5 random seeds, and the shaded regions represent standard error. Solid lines use
experience replay, and dashed lines do not. With experience replay, our RL agents are able to learn to
satisfy length 7 reach tasks within a couple of million steps. Without experience replay the RL agents
struggle with anything past length 4 tasks. At length 5 tasks, not using experience replay results in
high variance due to the sparse reward signal. By contrast, all our RL agents with experience replay
successfully learn their tasks and exhibit low variance, i.e., learning consistency.

5 Conclusion and Future Work

This work explored the problem of DFA-conditioned RL a class of sparse, binary, history dependent
rewards. To condition the policy on the DFA, we leveraged a graph neural network (GNN) to encode
the DFA goal before passing it to a forward policy network. Our experimental results demonstrated
the efficacy of the model architecture and highlighted the significant role of experience replay in
enhancing the learning speed and reducing the variance of RL agents for DFA tasks. Planned future
work includes expanding the class of DFAs in the experiments, leveraging IRL-informed relabeling
strategies, supporting decompositions of DFAs, and deploying in higher dimensional environments.

2The source code is available at https://github.com/beyazit-yalcinkaya/deep-diss.
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