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Abstract

This paper studies a cooperative multi-agent multi-armed stochastic bandit problem
where agents operate asynchronously – agent pull times and rates are unknown,
irregular, and heterogeneous – and face the same instance of a K-armed bandit
problem. Agents can share reward information to speed up the learning process
at additional communication costs. We propose ODC, an on-demand communi-
cation protocol that tailors the communication of each pair of agents based on
their empirical pull times. ODC is efficient when the pull times of agents are
highly heterogeneous, and its communication complexity depends on the empirical
pull times of agents. ODC is a generic protocol that can be integrated into most
cooperative bandit algorithms without degrading their performance. We then in-
corporate ODC into the natural extensions of UCB and AAE algorithms and propose
two communication-efficient cooperative algorithms. Our analysis shows that both
algorithms are near-optimal in regret.

1 INTRODUCTION

Asynchronous multi-agent multi-armed bandit (MAMAB) settings arise naturally in several appli-
cations. For instance, in online advertising with multiple heterogeneous servers, server processing
capabilities and speeds are often different. Furthermore, the times that servers receive recommenda-
tion requests are often unknown and irregular. Another example is clinical trials with multiple labs
in collaboration, where trial times depend on client visit times, which vary from lab to lab. In other
large-scale distributed learning scenarios, such as IoT devices cooperating to learn an underlying
environment, agents can be asynchronous in nature due to task arrangements or hardware limits.

This paper studies a MAMAB setting where agents with unknown asynchronous decision times
cooperate to improve their learning performance. Concretely, we consider a system where a group
of M agents, A = {1, ...,M}, cooperate to solve the same instance of a K-armed bandit problem.
An agent repeatedly chooses an arm from the arm set to pull and receives a stochastic reward from
it. Agents have different numbers of decision rounds (pull times) at arbitrary unknown times. Each
agent aims to minimize its individual regret – the cumulative difference between the reward received
by the agent and the expected reward of the best arm in the arm set. Agents cooperate by sharing
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reward information with each other, and their goal is to together minimize the group regret – the total
amount of individual regret among the M agents. Cooperation among agents, however, comes with
an additional communication cost, which can be expensive for some applications when agents are
geographically dispersed or have limited power/bandwidth resources for communication.

Prior studies (Yang et al., 2021, 2022) have shown that it is possible to achieve near-optimal group
regret by immediately broadcasting rewards. In an asynchronous setting where agents have different
pull speeds, immediate broadcasts can incur unnecessary communication costs. With immediate
broadcast communication, an agent can receive multiple reward-sharing messages from another
agent between its two decision rounds; these messages could have been accumulated (buffered) by
that agent and sent all at once, incurring lower communication overhead. Hence, for a group of
asynchronous agents, tailoring the message exchange protocol between each pair of agents can yield
better communication efficiency.

This paper aims to reduce communication costs over that of the immediate broadcast communication
protocol (IBC) while achieving the same order of regret. The lack of synchronization between agents,
however, poses a challenge on determining the timing of communication. Specifically, agents are
uncertain of other agents’ learning progress at any time due to the arbitrary asynchronicity of agent
pull times and hence need to trade-off communication costs to learn this information for better
cooperation. One might apply the idea of coordinated cooperative learning, e.g., the leader-follower
framework, which has proven to be efficient in prior studies (Kolla et al., 2018; Dubey et al., 2020;
Wang et al., 2020) of the synchronous MAMAB problem. However, unknown and irregular agent pull
speeds hinder the application of coordinated cooperative learning. This can lead to a scenario where
agents chosen to be in charge of exploration, leaders, are slow (have small pull rates), and agents
chosen to perform exploitation are fast (have large pull rates), which can incur high regret. Another
alternative is customizing spontaneous communication between agents, where each agent deliberately
chooses its communication frequency to other agents according to their pull rates. However, efficient
implementation of customized spontaneous communication is not possible since agents do not have
prior knowledge of the pull times of others.

Contributions. This paper develops On-Demand Communication (ODC), an efficient protocol for
the asynchronous cooperative MAMAB model, where unique technical challenges are introduced
by the unknown, irregular, and different decision times of agents. By the design of ODC, we address
the challenge of reducing the number of communications among asynchronous agents. Specifically,
ODC reduces the number of communications by tailoring the times communications occur between
each pair of agents based on their empirical pull times. More importantly, ODC is generic and can be
used with most cooperative bandit algorithms. We propose two decentralized MAMAB algorithms,
UCB-ODC and AAE-ODC, which combine ODC with natural extensions of UCB and AAE algorithms
respectively. Our analysis shows that both UCB-ODC and AAE-ODC achieve near-optimal group regret
upper bounds of O(

∑
i:∆i>0 log(N)/∆i), where N ≡

∑
j∈A Nj is the total number of decision

rounds of all agents, Nj is the total number of decision rounds of agent j, and ∆i is the suboptimality
gap of arm i.

Under ODC, communication complexity, i.e., the total number of messages sent among agents, depends
on the specific decision times of agents. We show that the communication complexity of ODC is
O(
∑

j,j′∈A min{Nj , Nj′}), which depends on the agents with the fewest decision rounds. This
communication complexity is much smaller than that of the immediate broadcast communication
protocol (IBC), O(MN), when agent pull times are highly heterogeneous. Moreover, following prior
ideas on the synchronous MAMAB setting, one has the option to tune message transmission rates
under ODC by allowing messages to vary in size to further reduce the communication complexity.
For example, if the number of observations in a message is doubled after each communication, the
communication complexity of ODC becomes O(

∑
j,j′∈A min{logNj , logNj′}). In this way, our

asynchronous policy can recover the state-of-the-art logarithmic communication complexity when
applied to the synchronous MAMAB setting.

Our experimental results verify our theoretical observations and demonstrate that ODC is especially
advantageous when agent pull speeds are highly diversified, and when there exist many slow agents.

Prior Work. We review the most relevant work here and refer to Appendix A for extended
literature review. The most relevant work considers asynchronous bandit agents cooperating in a fully
decentralized manner (Yang et al., 2021, 2022; Sankararaman et al., 2019; Féraud et al., 2019). The
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model in Yang et al. (2021, 2022) assumes each agent periodically make decisions at different known
frequencies. Our paper assumes that pulling times are unknown and irregular. Sankararaman et al.
(2019) study a gossip protocol, i.e., an agent can only communicate with one other agent at each time.
Last, Féraud et al. (2019) studies the scenario where the goal is to identify the best arm instead of
minimizing regret. More broadly there is extensive prior work on MAMAB with synchronous agents
either in a fully decentralized setting, e.g., (Szorenyi et al., 2013; Chawla et al., 2020; Landgren et al.,
2016; Buccapatnam et al., 2015; Martínez-Rubio et al., 2019; Madhushani et al., 2021; Cesa-Bianchi
et al., 2016), or using coordinated cooperative approach (Shi et al., 2021a; Wang et al., 2019, 2020;
Bar-On and Mansour, 2019; Chakraborty et al., 2017; Dubey et al., 2020; Kolla et al., 2018). In the
synchronous MAMAB setting, the batch approach (a.k.a., doubling epoch, phase, buffer) (Perchet
et al., 2016; Gao et al., 2019) has been used to achieve logarithmic communication complexity, e.g,
by Agarwal et al. (2021); Shi et al. (2021b); Boursier and Perchet (2019). There are also works on
asynchronous multi-agent learning in related fields such as federated linear bandit (Li and Wang, 2022;
He et al., 2022) and online convex optimization with full information or semi-bandit feedback (Cesa-
Bianchi et al., 2020; Jiang et al., 2021; Joulani et al., 2019; Bedi et al., 2019; Della Vecchia and
Cesari, 2021).

2 ASYNCHRONOUS MULTI-AGENT BANDITS

We study an asynchronous version of the cooperative multi-agent multi-armed bandit (MAMAB)
problem with a set A = {1, ...,M} of M independent agents and a set K = {1, ...,K} of K arms.
Each arm i ∈ K is associated with a mutually independent sequence of i.i.d. rewards, taken to be
Bernoulli with mean 0 ≤ µ(i) ≤ 1. Let i∗ = argmaxi∈K µ(i) denote the optimal arm. Define the
suboptimality gap of arm i as ∆i ≡ µ(i∗)− µ(i) and let ∆ ≡ mini∈K\{i∗} ∆i denote the smallest
suboptimality gap in the arm set.

Agents operate asynchronously. Let Nj be the total number of decisions made by agent j; agent
j ∈ A pulls arms at time slots tj1, t

j
2, ..., and tjNj

, where both Nj and the time slots are not known by
any agent including agent j. We make no assumptions about when agents pull arms and the total
number of pulls they make. One agent may pull many arms within an arbitrary interval, while another
agent might not pull any arm. Furthermore, agents are allowed to join, leave, and re-join the system
at arbitrary times. Let T ≡ maxj∈A tjNj

denote the learning horizon of the entire group of agents
and N ≡

∑
j∈A Nj denote the total number of decisions among all agents over the time horizon.

We consider the problem where there are no collisions; i.e., agent always receives a Bernoulli reward
with mean µ(i) from arm i ∈ K, irrespective of the actions of other agents. Each agent j ∈ A pulls
one arm at time t ∈ {tj1, t

j
2, ..., t

j
Nj
} with the goal of minimizing its cumulative regret. The expected

cumulative regret of a single agent j is defined as E[Rj
Nj

] = µ(i∗)Nj−E
[∑

t∈{tj1,t
j
2,...,t

j
Nj

} xt(I
j
t )
]
,

where Ijt ∈ K is the arm pulled by agent j at time t, reward xt(I
j
t ) is taken from Bernoulli

distribution with value 0 or 1, and the expectation is taken over the randomness of agent’s decisions
and arm rewards. We denote the number of times agent j pulls arm i by time t as nt

j(i), and
the number of decisions agent j makes by time t as nt

j . We assume that every agent can reliably
communicate with every other agent to share their observations. Let n̂t

j(i) denote the empirical
number of observations of arm i that agent j has at time t, either by pulling the arm, or obtained
from other agents, and let n̂t

j denote the total empirical number of observations agent j has at time t.
The objective of the cooperative MAMAB problem is to minimize expected group regret, defined
as E[R] =

∑
j∈A E[Rj

Nj
], while maintaining low communication overhead. Let C denote the total

number of messages sent by agents in horizon T , as in Wang et al. (2020); Yang et al. (2021, 2022).
We precisely define the information included in a message in Definition 1 in §3.1.

3 ALGORITHM DESIGN

In §3.1, we first elaborate the design and provide intuition behind the On-Demand Communication
(ODC) protocol. Then, we incorporate ODC into bandit algorithms and propose two communication-
efficient cooperative bandit algorithms: UCB-ODC (§3.2) and AAE-ODC (§3.3).
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Algorithm 1 ODC for Agent j

1: Initialization: exchange demands Ej→j′ ← True, ∀j′ ∈ A, buffers bj→j′
n (i)← 0, bj→j′

µ (i)← 0,∀j′ ∈
A, ∀i ∈ K, num. of communications cj→j′ ← 1, ∀j′ ∈ A, buffer thresholds f(cj→j′)← f(1),∀j′ ∈ A

2: for t = 1...T do
3: if t is a decision time slot of agent j, i.e., t ∈ {tj1, ..., t

j
Nj
} then ▷ decision making

4: Run an underlying bandit algorithm: pull arm Ijt according to e.g., UCB, or AAE, and receive
instantaneous reward xt(I

j
t )

5: Update para. of underlying bandit algorithm, e.g., empirical mean rewards, num. of observations
6: for each agent j′ ∈ A do
7: Update the buffer for agent j′: bj→j′

n (Ijt )← bj→j′
n (Ijt ) + 1, bj→j′

µ (Ijt )← bj→j′
µ (Ijt ) + xt(I

j
t )

8: if Ej→j′ is True and
∑

i∈K bj→j′
n (i) ≥ f(cj→j′) then ▷ information sharing

9: Share buffered info. with j′, i.e., send a message as defined in Def. 1, Set cj→j′ ← cj→j′ +1

10: Set exchange demand Ej→j′ ← False and renew the buffer for agent j′

11: Update buffer threshold f(cj→j′), e.g., f(cj→j′)← 2f(cj→j′ − 1) or keep it the same
12: end if
13: end for
14: end if
15: for each new message received from any agent j′ ∈ A do ▷ message processing
16: Update para. of underlying bandit algorithm, e.g., empirical mean rewards, num. of observations
17: if agent j has buffered f(cj→j′) observations for j′, i.e.,

∑
i∈K bj→j′

n (i) ≥ f(cj→j′) then
18: Share info. by sending a msg. as defined in Def. 1 to j′

19: Set cj→j′ ← cj→j′ + 1, renew buffer for j′

20: Update buffer threshold f(cj→j′), e.g., f(cj→j′)← 2f(cj→j′ − 1) or keep it the same
21: else
22: Set exchange demand Ej→j′ ← True
23: end if
24: end for
25: end for

3.1 ODC: On-Demand Communication Protocol

We present the On-Demand Communication (ODC) protocol (ODC) summarized in Algorithm 1. The
core idea of ODC is to leverage the fact that agents pull arms at different rates to reduce communication
complexity while achieving the same order of regret achieved by algorithms that immediately share
rewards. Consider a scenario with a fast and a slow agent. By fast, we mean the agent pulls many
arms while a slow agent pulls very few arms during the same time horizon. If agents immediately
share their observations, the fast agent incurs a large communication overhead by sending multiple
messages between two consecutive decision rounds of the slow agent. In fact, the fast agent can
reduce communication overhead while achieving the same regret if it aggregates the instantaneous
rewards during the slow agent’s non-decision period and sends the information all at once prior to the
slow agent’s next decision round. Hence, different agent pull rates motivate a new communication
protocol that reduces communication complexity by scheduling communication times for each pair
of agents according to their pull rates.

Given the above motivation, one idea is to allow each agent to receive other observations at a
rate proportional to its pull rate. In our asynchronous MAMAB model, it is challenging to tailor
communication timings because agent pull times are irregular and unknown. A straightforward way
to achieve this is to allow agents to request observations from other agents prior to pulling arms.
However, requests introduce extra communication overhead, i.e., fast agents may make too many
requests to slow agents before they obtain new reward information to share.

The idea implemented in ODC is to treat each observation sharing message as an exchange de-
mand. Specifically, we let each agent j maintain a set of binary valued exchange demand variables
(Ej→1, Ej→2, ..., Ej→M ). Once agent j receives a message from agent j′, it sets exchange de-
mand Ej→j′ to True. Then, when agent j acquires new information it responds back to agent j′

and resets Ej→j′ to False. If agent j acquires new information while Ej→j′ is False, agent j
buffers it for agent j′ while waiting for the exchange demand to be set to True. Specifically, the
buffer maintained for agent j′ records the following information for each arm i: (1) the number of
observations of i that agent j acquires by pulling it since the last time agent j sent a message to
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(a) ODC with static buffer thresholds, i.e.,
buffer thresholds are updated according to f(1)← 1,
f(c)← f(c− 1)

(b) ODC with doubling buffer thresholds, i.e., thresh-
olds are updated according to f(1) ← 1, f(c) ←
2f(c− 1)

Figure 1: Examples of two agents with arbitrary decision times

agent j′, denoted as bj→j′

n (i), (2) the cumulative reward over the observations of arm i that agent
j acquires from pulling it since the last round agent j sends a message to j′, denoted as bj→j′

µ (i).
After agent j sends the buffered information in a message to agent j′, it renews the buffer by resetting
bj→j′

n (i), bj→j′

µ (i),∀i ∈ K, to zero.

Definition 1 A message sent from agent j to j′ is a set of K tuples: {(bj→j′

n (i), bj→j′

µ (i)), ∀i ∈ K}.1

ODC also implements thresholds on the buffer sizes2, i.e., a buffer must contain at least as many
observations as the buffer threshold, that together with exchange demands determine whether an agent
should send a message to another agent. Specifically, each agent j maintains a set of positive integer
valued variables (cj→1, ..., cj→M ) denoting the number of communications from agent j to other
agents. The buffer threshold, f(cj→j′), is a positive and monotonically increasing function of the
number of communications cj→j′ . After agent j sends a message to agent j′ when the communication
counter is cj→j′ , the communication counter is incremented by one and the buffer threshold for the
next communication is f(cj→j′ + 1). Possible candidates for the buffer threshold function include
f(c) = a, c = 1, 2, . . ., where a is a positive integer, and f(c) = ac−1, c = 1, 2, . . ., where a > 1
is a positive integer. The first example produces a constant buffer threshold and the second allows
buffer threshold to increase exponentially each time a message is sent. Under ODC, an agent j sends
a message to agent j′ if Ej→j′ is True and agent j has buffered at least f(cj→j′) observations for
agent j′.

In Figure 1, we provide simple examples of two agents with arbitrary decision time. To illustrate how
ODC (Algorithm 1) works, we describe the communication schedule for the example in Figure 1b.
Agent 1 first sends a message to agent 2 at time t11, sets exchange demand E1→2 to False, sets c1→2

to 2, and updates f(c1→2) to 2. At t12 and t13, agent 1 pulls arms and buffers the obtained observations
because E1→2 is False. At t21, agent 1 receives a message from agent 2, replies with a message
containing the observations obtained at t12, t

1
3, renews the buffer, sets c1→2 to 3, and updates f(c1→2)

to 4. At t14, t
1
5, t

1
6, agent 1 pulls arms and buffers the obtained observations. At t23, agent 1 receives a

message from agent 2; instead of replying with a message, agent 1 sets the exchange demand E1→2

to True at this time as it only buffered three observations while the buffer threshold f(c1→2) is 4. At
t17, agent 1 obtains an observation and satisfies the buffer threshold; thus, it sends a message to agent
2, renews the buffer, sets E1→2 to False, sets c1→2 to 4, and updates f(c1→2) to 8.

Last, we note that ODC can handle agent arrivals and departures. Agent notifies the others when it
departs or goes offline. When agent j receives a departure notice from agent j′, it sets exchange
demand Ej→j′ to False, so it will buffer information for j′. When an agent (re)joins the system, it
notifies all other agents. When agent j receives a join notice from agent j′, it (re)initializes exchange
demand Ej→j′ to True so that the observations buffered during agent j′’s leaving can be sent to it to
(re)start cooperation.

3.2 UCB-ODC: Cooperative UCB with ODC

In this section, we present UCB-ODC, a fully decentralized cooperative MAMAB algorithm that
samples according to a natural extension of the Upper Confidence Bound (UCB) algorithm and uses

1If an agent buffers n observations, the number of observations and cumulative reward of each arm take
value in {0, ..., n} and require log(n+ 1) bits.

2One may apply the batch/epoch setting techniques in synchronous MAMAB literature to the buffer threshold
setting here.
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ODC for communications. Under UCB-ODC, agent j computes an empirical mean reward, µ̂(i, n̂t
j(i)),

over n̂t
j(i) observations of agent j for each arm i ∈ K. Note that the value of n̂t

j(i) not only consists
of instantaneous rewards agent j received from pulling arm i, but it also includes information agent j
received from other agents. Under UCB-ODC, agent j also maintains a confidence interval for arm i
centered on its empirical mean value, µ̂(i, n̂t

j(i)), with width defined as

CItj(i) ≡
√
α log(1/δtj)/(2n̂

t
j(i)), (1)

where α and δtj are algorithm parameters. With probability at least 1− (δtj)
α, the true reward mean,

µ(i), lies in its confidence interval, i.e., µ(i) ∈ [µ̂(i, n̂t
j(i))− CItj(i), µ̂(i, n̂

t
j(i)) + CItj(i)]. Further

discussion and analysis of the confidence interval can be found in Bubeck and Cesa-Bianchi (2012).

Under UCB-ODC, agent j selects the arm with the largest upper confidence bound at each decision
round, i.e.,

Ijt ≡ argmax
i∈K

µ̂(i, n̂t
j(i)) + CItj(i), t ∈ {tj1, ...t

j
Nj
}.

Upon receiving an instantaneous reward for the selected arm Ijt , UCB-ODC updates the reward mean
estimate and confidence interval of Ijt . In the meantime, agent j follows ODC checking exchange
demands, buffer thresholds, and accordingly buffering the information or sending messages. The
pseudocode of UCB-ODC is in Appendix E.

3.3 AAE-ODC: Cooperative AAE with ODC

We propose AAE-ODC, which combines ODC with a natural extension of the Active Arm Elimination
(AAE) algorithm (Even-Dar et al., 2006). Agents executing AAE-ODC together maintain a dynamic
candidate set to keep track of arms likely to be the optimal arm, where the candidate set is updated
using the confidence intervals as defined in (1). Specifically, the candidate set initially contains all
arms. When agents observe or receive rewards, they recompute the confidence intervals of arms; if
an arm’s confidence interval completely falls below that of any other arm, it is removed from the
candidate set as it is unlikely to be the optimal arm. Formally, arm i is removed from the candidate
set at time t if for any agent j:

∃i′ ∈ K s.t. µ̂t
j(i) + CItj(i) < µ̂t

j(i
′)− CItj(i

′).

Once an arm is eliminated by an agent, the agent broadcasts the index of the eliminated arm, so that
other agents can keep updating the candidate set. At each decision round, agent j pulls from the
candidate set the arm that agent j has fewest observations. Once the candidate set size reduces to
one, agents have completed the exploration task having identified optimal arm with high probability,
and they do not need information from one another anymore. Hence, agents under AAE-ODC stop
their communication once the candidate set size shrinks to one. The cooperation policy of AAE-ODC
follows the ODC protocol and is summarized in the pseudocode of AAE-ODC in Appendix F.

4 ANALYSIS OF REGRET AND COMMUNICATION COMPLEXITY

When agents are asynchronous and pull arms in arbitrary time slots, the performance of a cooperative
bandit algorithm depends on how much agents can cooperate with each other. A unique technical
challenge in the regret analysis of UCB-ODC and AAE-ODC is bounding the additional number of
times agents pull suboptimal arms due to delayed observation sharing while waiting for exchange
demands between asynchronous agents or waiting for buffer thresholds to be satisfied. To facilitate
the regret analysis, we let τi denote the time slot such that N (i) +M ≥

∑
j∈A nτi

j (i) > N (i) ≥∑
j∈A nτi−1

j (i), for each suboptimal arm i ∈ K\{i∗}, where for UCB-ODC, N (i) = (2α logN)/∆2
i ,

and for AAE-ODC, N (i) = (16α logN)/∆2
i .

4.1 Regret Results

Theorem 1 (Expected Group Regret under ODC) With α ≥ 3 and buffer thresholds being updated
according to a positive and monotonically increasing function f , we have:
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(a) with δtj = 1/N , the expected group regret of UCB-ODC satisfies

E[R] ≤ 3KM +
∑

i∈K:∆i>0

(2α logN

∆i
+
∑
j∈A

F j
i ∆i

)
, (2)

where F j
i is a non-negative variable defined as3 F j

i = min
{(∑

j′∈A\{j} f(c
j′→j
τi )

)
, 2α logN

∆2
i

}
;

(b) with δtj = 1/N2, the expected group regret of AAE-ODC satisfies

E[R] ≤ 3KM +
∑

i∈K:∆i>0

(16α logN

∆i
+
∑
j∈A

Gj
i∆i

)
, (3)

where Gj
i is a non-negative variable defined as Gj

i = min
{(∑

j′∈A\{j} f(c
j′→j
τi )

)
, 16α logN

∆2
i

}
.

The proofs of Theorem 1(a) and 1(b) deal with each suboptimal arm i, and upper bounds the extra
number of times each agent pulls arm i after time τi. A formal proof is given in Appendix B. In the
following, we highlight important properties of the regret results under ODC.

Remark 1 (Regret characterization by total number of decision rounds.) We observe that the
expected regret in Theorem 1 is characterized by N , the total number of decision rounds among all
agents in the learning horizon. This is in contrast to the synchronous agent setting where regret is
usually presented as a function of the learning horizon T and the total number of agents M . When
agent pull rates significantly differ from each other, Theorem 1 provides a much tighter regret bound
than those derived for synchronous settings, as N can be much smaller than M × T .

Remark 2 (Regret optimality.) When buffer thresholds are set to a small constant a, i.e., f(cj→j′) =

a, cj→j′ = 1, 2, . . . ,∀j, j′, then F j
i ,∀i, j (resp. Gj

i ,∀i, j) is bounded by constant Ma, and UCB-ODC
(resp. AAE-ODC) achieves a provable optimal regret upper bound. To show this, we derive the
following lower bound on group regret by adopting the proof techniques for the asymptotic lower
bound for single-agent bandits, e.g., (Bubeck and Cesa-Bianchi, 2012, Theorem 2.2):

E[R] = Ω
(∑

i∈K:∆i>0

logN

∆i

)
. (4)

The proof of (4) is given in Appendix C. Then, since F j
i (resp. Gj

i ) is a constant ∀i, j, one observes
that the regret of UCB-ODC in (2) (resp. of AAE-ODC in (3)) is near-optimal compared to the lower
bound (4), up to two constant terms, i.e., 3KM and

∑
i,j F

j
i (resp.

∑
i,j G

j
i ).

Remark 3 (Impact of buffer thresholds.) The setting of buffer thresholds influences the trade-off
between communication complexity and group regret. Remark 2 shows that UCB-ODC and AAE-ODC
have near-optimal regrets if buffer thresholds are set to be small (compared to log(N)/∆2). If
buffer thresholds are simply set to be always large, one can reduce the communication complexity
while incurring higher regret. Depending on specific scenarios, e.g., as in Remark 4, buffer thresholds
can be wisely set to achieve low communication while not degrading the regret much.

Remark 4 (Performance in synchronous setting.) When applied to a MAMAB setting with syn-
chronous agents where every agent makes a decision at every time slot, our asynchronous algorithm
AAE-ODC recovers a near-optimal regret O(

∑
i∈K:∆i>0 log(N)/∆i) with logarithmic communica-

tion complexity by setting a doubling buffer threshold whose size is proportional to the number
of arms remaining in the candidate set, C, i.e., f(c) = |C|2c−1, c = 1, 2, . . .. We show this in
Appendix B.3 and discuss the recovery of logarithmic communication complexity in Remark 8.

4.2 Communication Complexity

Remark 5 (Communication Complexity under IBC) The communication complexity of MAMAB
algorithms using immediate broadcasting communication (IBC) is C =

∑
j∈A

∑
j′∈A\{j} Nj .

3We drop t from notations cj→j′

t and Ej→j′

t in algorithm presentations for brevity. The precise notations are
used in analysis.
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Table 1: Summary of Results (all regret bounds are problem-dependent and we omit the 1/∆ factor)

Pull Times Buffer Thres. Group Regret Communication #

UCB-ODC Async., Sync. Constant O(K logN) O(
∑

j,j′∈A min{Nj , Nj′})
AAE-ODC Async., Sync. Constant O(K logN) O(

∑
j,j′∈A Kmin{logN,Nj , Nj′}/∆2)

AAE-ODC Sync. Doubling O(K logN) O(
∑

j,j′∈A log[Kmin{logN,Nj , Nj′}/∆2])

Theorem 2 (Communication Complexities under ODC) When buffer thresholds are updated ac-
cording to a positive and monotonically increasing function f , the communication complexities of
UCB-ODC and AAE-ODC satisfy:

C ≤
∑

j∈A

∑
j′∈A\{j}

min{Cj , Cj′}+ 1, (5)

where Cj is the largest integer in set {1, ..., Nj} such that
(a) for UCB-ODC ( Cj∑

c=1

f(c)
)
≤ Nj ;

(b) for AAE-ODC ( Cj∑
c=1

f(c)
)
≤ min

{
2K +

∑
i∈K

16α logN

max{∆2
i ,∆

2}
, Nj

}
.

Proofs of Theorem 2(a) and 2(b) are in Appendix D.

Corollary 1 When buffer thresholds f(c) = a, c = 1, 2, . . ., a is a positive integer, we have:

(a) the communication complexity of UCB-ODC is O
( ∑

j,j′∈A
min

{⌊Nj

a

⌋
,
⌊Nj′

a

⌋})
;

(b) the communication complexity of AAE-ODC is O
( ∑

j,j′∈A
min

{⌊
K logN
a∆2

⌋
,
⌊Nj

a

⌋
,
⌊Nj′

a

⌋})
.

Corollary 2 When buffer thresholds f(c) = ac−1, c = 1, 2, . . ., a > 1 is a positive integer, we have:

(a) the communication complexity of UCB-ODC is O
( ∑

j,j′∈A
min

{
⌊loga(Nj)⌋, ⌊loga(Nj′)⌋

})
;

(b) the communication complexity of AAE-ODC is O
( ∑
j,j′∈A

min
{⌊

loga

(
K logN
a∆2

)⌋
, ⌊loga(Nj)⌋, ⌊loga(Nj′)⌋

})
.

In what follows, we highlight the significance of the communication complexity results of ODC.

Remark 6 (Communication complexity characterization by number of decision rounds.) A major
contribution of Theorem 2 is the generalization of the communication complexity analysis to the
asynchronous-agent setting where the upper bound depends on the number of decision rounds of the
agents instead of the length of time horizon. More specifically, the communication complexity of ODC
implicitly depends on the total number of decisions by all agents, N . In general when agent pull rates
differ significantly from each other, N is much smaller than M × T , and Theorem 2 provides a much
tighter upper bound than previous results relying on T .

Remark 7 (Performance with asynchronous agents.) ODC is able to deal with heterogeneous pull
rates, since communication can be tailored for on-demand transmissions. Especially, under ODC,
the number of communications between each pair of agents depends on the slower agent; while,
under IBC, the number of communications between each pair of agents is dominated by the faster
agent. For example, consider a two-agent system where agent jfast is a fast agent that pulls arms
much more often than a slow agent jslow, i.e., Njfast ≫ Njslow . By Theorem 2, the number of messages
sent by ODC is at most 2Njslow + 2, while, by Remark 5, the number of messages sent under immediate
communication can be as large as Njfast +Njslow .

Remark 8 (Recovery of logarithmic communication complexity in synchronous setting.) When our
asynchronous ODC protocol is applied to a MAMAB setting with synchronous agents, i.e., Nj =
T, ∀j ∈ A, Corollary 2 implies that we can recover a O(M2 log T ) communication complexity by
doubling buffer threshold after each message transmission.
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(a) UCB Communication (b) AAE Communication (c) UCB and AAE Regret

Figure 2: Experiment 1 — impact of the heterogeneity of agent speeds. Forty agents with fixed mean
sampling probability and increasing sampling probability ratio between fast and slow agents.

(a) UCB Communication (b) AAE Communication (c) UCB and AAE Regret

Figure 3: Experiment 2 — impact of the number of slow agents. Increasing the number of slow
agents while fixing the expected total number of decisions in the entire system.

Remark 9 (Double logarithmic communication complexity of AAE-ODC) As shown in Theorem 2(b),
the communication complexity of AAE-ODC depends logarithmically on the total number of decision
rounds among all agents, N , and therefore depends logarithmically on the learning horizon, T ,
when the suboptimality gaps are large, e.g., ∆i ≫ 1/

√
Nj ,∀j ∈ A, i ∈ K \ {i∗}. This is because

AAE-ODC stops communication once the exploration task completes, i.e., once the candidate set size
becomes one. Corollary 2(b) further shows that double logarithmic communication complexity can
be achieved if the buffer thresholds of AAE-ODC are set to be doubling.

Note that ODC also works for the scenario that communication has a deterministic delay and that each
agent only has access to a local subset of the K arms, as in Yang et al. (2022); Chawla et al. (2020);
Yang et al. (2021). We provide regret and communication complexity analysis of both algorithms for
such scenario in Appendix G and H.

5 NUMERICAL EXPERIMENTS

In this section, we first study the impact of differences in agent pull rates (Experiment 1) and number
of slow agents in the system (Experiment 2) on communication complexity and group regret. We
compare UCB-ODC and AAE-ODC with their counterparts that use immediate broadcast communication,
labeled UCB-IBC and AAE-IBC 4 in the first two experiments with buffer thresholds set to one to
better demonstrate the insights of ODC. In Experiment 3, we study the four above algorithms when
buffer thresholds are allowed to double after each communication.

Experimental Setup. In our experiments, there are M = 40 agents each with K = 16 arms with
Bernoulli rewards whose means are uniformly and randomly taken from Ad-Clicks (Avito, 2015).
We set α = 3 for all algorithms and report values averaged over 30 independent trials. We report the
average cumulative group regret after T = 80, 000 time slots for three experimental scenarios.

Experiment 1. In this experiment, we study the impact of differences in agent pull rates on
communication complexity and group regret. Specifically, we fix the expected total number of
decisions in the entire system by fixing the mean sampling probabilities among 40 agents, and we
increase the sampling probability ratio between fast and slow agents from 10× to 30× with a step
size of 5. Specifically we fix the sampling probability of each slow agent at 0.01 and vary that of each
fast agent from 0.1 to 0.3 with step size 0.05. Note that we maintain the mean sampling probability

4UCB-IBC and AAE-IBC are essentially the same as CO-UCB and CO-AAE respectively proposed in Yang et al.
(2022).
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among agents at 0.085. Hence the number of fast (resp. slow) agents decreases (resp. increases) as
the sampling probability ratio increases.

Figures 2a and 2b report the total amount of communication under the immediate broadcast commu-
nication (IBC) and the ODC protocols. We distinguish three types of communications: (1) between
fast and slow agents (orange), (2) among slow agents (yellow), and (3) among fast agents (blue).
Figures 2a and 2b show that ODC reduces the amount of communications in all three categories but
most notably between fast and slow agents. The amount of communication between fast and slow
agents increases under IBC while remaining relatively constant under ODC as the sampling probability
ratio between fast and slow agents increases. This demonstrates that ODC is communication efficient
when there is large difference in the pull rates of fast and slow agents. Figure 2c shows that UCB-ODC
and AAE-ODC exhibit similar group regrets to those of UCB-IBC and AAE-IBC respectively.

Experiment 2. Next, we study the impact of the number of slow agents on communication complexity
and group regret while fixing the expected total number of decisions in the entire system. We fix the
number of fast agents at 5 and increase the number of slow agents from 5 to 30 with steps of 5. The
sampling probability of a fast agent is always 0.8. As the expected total number of decisions is fixed
at 300, 000, the sampling probability of slow agents decreases from 0.2 to 0.034 as the number of
slow agents increases.

Figure 3 reports the results of Experiment 2. Figures 3a and 3b show that the number of communica-
tions of UCB-IBC and AAE-IBC increase significantly as the number of slow agents increases even
though the expected total number of decisions does not change; while the amount of communication
of UCB-ODC and AAE-ODC do not change much as the number of slow agents increases. Figure 3c
shows that UCB-ODC and AAE-ODC still achieve similar group regrets as UCB-IBC and AAE-IBC
respectively even though they require fewer message exchanges for cooperation.

Experiment 3. Finally, we study the performance of the four policies, UCB-IBC, UCB-ODC, AAE-IBC,
and AAE-ODC, all with doubling buffer thresholds, which we denote as UCB-IBC-D, UCB-ODC-D,
AAE-IBC-D, and AAE-ODC-D, in a system with one fast agent with sampling probability one and nine
slow agents with sampling probabilities 0.001. Table 2 summarizes the results, which again verifies
our theoretical observation that ODC reduces the communications between asynchronous agents while
achieving similar group regrets as IBC.

Table 2: Experiment 3
Communication Group Regret

UCB-IBC-D 629 ± 2 1474 ± 89
UCB-ODC-D 563 ± 6 1514 ± 114
AAE-IBC-D 629 ± 2 2679 ± 254
AAE-ODC-D 564 ± 5 2672 ± 225

We present supplementary experiments and provide more insights on simulation results in Appendix I.
Specifically, in Appendix I.1 we numerically study the performance of ODC with constant or doubling
buffer threshold; in Appendix I.2 we present the individual regrets in Experiment 1 and Experiment 2;
in Appendix I.3 we numerically study the performance of ODC under different types of asynchronicity;
in Appendix I.4 we demonstrate when AAE-ODC would incur fewer communications than UCB-ODC.

6 CONCLUSION AND FUTURE DIRECTION

This paper presented a communication protocol for efficient cooperation in asynchronous multi-
agent bandits settings. The communication protocol explicitly adjust the amount of cooperation
in proportion to agent pull rates and could be integrated into an underlying bandit algorithm. We
combined the proposed communication protocol with two bandit algorithms and analyzed their
performance in terms of regret and communication complexities.

A limitation of this work is that we assume all messages are sent through reliable communication,
e.g., TCP protocol. ODC suffers potential performance degradation when it is used under unreliable
communication, e.g., UDP protocol. Specifically, ODC suffers performance degradation if there is
packet loss in communication. For example, after agent j sends a message to agent j′ and sets
Ej→j′ ← False, if this sharing message is lost without reaching agent j′, then the cooperation
between agent j and j′ will end. This is because from both agents’ perspectives, each other’s exchange
demands are both False. Designing a loss-tolerant communication protocol for asynchronous
MAMAB is an interesting open problem.
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A LITERATURE REVIEW

Collision or no collision. One of the extensively studied MAMAB settings is the collision sce-
nario (Wang et al., 2020; Boursier and Perchet, 2019; Shi et al., 2021b; Bistritz and Leshem, 2018;
Bubeck et al., 2020; Besson and Kaufmann, 2018), where agents receive zero or degraded rewards if
they pull the same arm simultaneously. This setting well models the opportunistic spectrum access
applications with multiple users, where the objective is to choose the best channels while avoiding
users communicate through the same channel at the same time. On the other hand, the MAMAB
setting with no collision (Shi et al., 2021a; Wang et al., 2019, 2020; Bar-On and Mansour, 2019;
Chakraborty et al., 2017; Dubey et al., 2020; Szorenyi et al., 2013; Chawla et al., 2020; Landgren
et al., 2016; Buccapatnam et al., 2015; Martínez-Rubio et al., 2019; Bistritz and Bambos, 2020;
Madhushani et al., 2021; Chakraborty et al., 2017; Cesa-Bianchi et al., 2016; Hillel et al., 2013;
Dubey et al., 2020; Yang et al., 2021, 2022; Sankararaman et al., 2019; Féraud et al., 2019) has
also attracted increasing research interest. In the MAMAB setting with no collision, agents receive
independent rewards without any degradation even when they pull the same arm. This setting is more
suitable for modeling applications like recommender systems, clinical trials, robotic taget searching,
etc. In this paper, we focus on the no collision setting.

Cooperate with or without a coordinator. Regarding cooperation methods in cooperative
MAMAB, there are two broad categories of prior work: (1) cooperation with coordinator (Shi
et al., 2021a; Wang et al., 2019, 2020; Bar-On and Mansour, 2019; Chakraborty et al., 2017; Dubey
et al., 2020), which utilizes a central server or elects leaders among agents to coordinate the learning
process. (2) cooperation without coordinator (Szorenyi et al., 2013; Chawla et al., 2020; Landgren
et al., 2016; Buccapatnam et al., 2015; Martínez-Rubio et al., 2019; Bistritz and Bambos, 2020;
Madhushani et al., 2021; Chakraborty et al., 2017; Cesa-Bianchi et al., 2016; Hillel et al., 2013; Dubey
et al., 2020; Yang et al., 2021, 2022; Sankararaman et al., 2019; Féraud et al., 2019), which addresses
a decentralized learning scenario where agents communicate with each other to improve their learning
performance. In this work, we consider the cooperation without coordinator (decentralized) approach
in an asynchronous MAMAB setting where agent pull times and speeds being unknown, irregular,
and different, hinders the application of a coordination approach.

Reward assumptions. Similar to standard bandit problem, various reward assumptions are studied
in decentralized cooperative MAMAB model. For example, Szorenyi et al. (2013); Chawla et al.
(2020); Landgren et al. (2016); Buccapatnam et al. (2015); Martínez-Rubio et al. (2019) consider
stochastic bandit, Dubey et al. (2020) studies stochastic bandit with heavy tails, and Cesa-Bianchi
et al. (2016) considers non-stochastic bandit. In this work, we consider arms with stochastic rewards
and assume they have Bernoulli distributions.

Homogeneous or heterogeneous arm sets. In decentralized cooperative MAMAB model, agents
can have homogeneous arm sets or heterogeneous arm sets. Homogeneous arm sets setting (Szorenyi
et al., 2013; Landgren et al., 2016; Buccapatnam et al., 2015; Martínez-Rubio et al., 2019), i.e.,
same set of arms is available to each agent, is more extensively studied. Regarding heterogeneous
arm sets scenario, there are two different notions of heterogeneous arm sets as far as we notice.
One refer to the scenario where agents have access to the same set of arms but each agent receive
different expected reward from the same arm, e.g., in Hossain et al. (2021). This setting models the
opportunistic spectrum access application and mobile sensor environment estimating application,
where the geographical location of agents influence the rewards they receive from the same arm. The
other definition of heterogeneous arm sets models the scenario that agents receive same expected
rewards from the same arm but each agent only have access to a subset of all the arms, e.g, in Yang
et al. (2022); Chawla et al. (2020); Yang et al. (2021). In this work, we mainly consider homogeneous
arm sets setting. We provide extension of our results to account for agents pulling from different but
overlapping subsets of arms in Appendix.
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Synchronous or asynchronous agents. In decentralized cooperative MAMAB model, agents can
operate synchronously or asynchronously. The synchronous setting (Szorenyi et al., 2013; Chawla
et al., 2020; Landgren et al., 2016; Buccapatnam et al., 2015; Martínez-Rubio et al., 2019) is more
extensively studied. In the synchronous setting, there is a common clock among all agents, and
every agent pulls an arm at every time slot. In the synchronous MAMAB setting, the batch approach
(a.k.a., doubling epoch, phase, buffer) (Perchet et al., 2016; Gao et al., 2019) has been used to achieve
logarithmic communication complexity, e.g, by Agarwal et al. (2021); Shi et al. (2021b); Boursier and
Perchet (2019). Yang et al. (2021, 2022); Sankararaman et al. (2019); Féraud et al. (2019) addresses
MAMAB with asynchronous agents. The model in Yang et al. (2021, 2022) assumes each agent
periodically make decisions at different known frequencies. Sankararaman et al. (2019) assumes
each agent is equipped with a Poisson clock and agent pull when its clock rings. Féraud et al. (2019)
assumes there is a distribution determining which agent becomes active at each time slot. Our paper
assumes that pulling times are unknown, irregular, and not necessarily stochastic. Last, asynchronous
multi-agent learning has also been studied in related fields such as online (convex) optimization with
full information or semi-bandit feedback (Cesa-Bianchi et al., 2020; Jiang et al., 2021; Joulani et al.,
2019; Bedi et al., 2019; Della Vecchia and Cesari, 2021).

Communication schemes. Many different types of communication has been studied in decentral-
ized cooperative MAMAB literature. For example, Szorenyi et al. (2013) considers peer-to-peer
network and let each agent communicate to only a fixed number of agents at each round. Chawla et al.
(2020); Sankararaman et al. (2019) considers a gossip-style communication, where agents are assumed
located on a graph and agents can only communicate with their neighbors. The gossip-style commu-
nication can be used to model the scenario that users in a social network explore restaurants and make
recommendations to their friends. In Buccapatnam et al. (2015); Yang et al. (2021, 2022), each agent
is allowed to immediately broadcast the rewards to all other agents. In this work, we consider that
each agent is allowed to communicate with every other agent and design a communication protocol
that is efficient when agents operate asynchronously. The proposed on-demand communication proto-
col, ODC, is a fundamentally different idea from previously considered communication protocols in
decentralized cooperative MAMAB literature, such as immediate broadcasting, peer-to-peer (Dubey
and Pentland, 2020), consensus-based (Martínez-Rubio et al., 2019), and gossip-style (Sankararaman
et al., 2019) communication, under which agents spontaneously transmit information.

B PROOF OF THEOREM 1

B.1 Proof of Theorem 1(a)

To proceed with the proof of expected group regret of UCB-ODC, we first state some intermediary
lemmas and then use the lemmas to upper bound the group regret. The first two lemmas are regarding
two types of decisions, namely Type-I and Type-II.

Definition 2 At any decision round t, the decision of agent j is a Type-I decision if the following
equation holds

µ(i) ∈ [µ̂t
j(i)− CItj(i), µ̂

t
j(i) + CItj(i)], ∀i ∈ K; (6)

otherwise the decision is a Type-II decision.

Lemma 1 At any decision round t, an agent j makes a Type-I decision with a probability at least
1− 2KNtδ

t
j
α, where Nt =

∑
j∈A nt

j .

Proof of Lemma 1: Note that for any arm i with n observations, by Hoeffding’s inequality and union
bound, we have

P

(∣∣∣∣µ(i)− µ̂(i, n)

∣∣∣∣>
√

α log δ−1

2n

)
≤ 2δα.
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Thus, the probability that the true mean value of arm i is not in the confidence interval when agent j
makes a decision at time t is at most 2Ntδ

t
j
α, where Nt =

∑
j∈A nt

j , as shown in the following.

P

∣∣∣∣µ(i)− µ̂(i, n̂t
j(i))

∣∣∣∣>
√√√√α log δtj

−1

2n̂t
j(i)


≤

Nt∑
s=1

P

∣∣∣∣µ(i)− µ̂(i, n)

∣∣∣∣>
√

α log δtj
−1

2n

∣∣∣∣∣n = s

P(n = s) ≤ 2Ntδ
t
j
α
.

Hence, the probability that (6) holds for all arm i ∈ K is lower bounded by 1 −
∑
i∈K

2Ntδ
t
j
α
=

1− 2KNtδ
t
j
α. □

By Lemma 1, with probability at most 2KNtδ
t
j
α, an agent makes a Type-II decision at a decision

round. With δtj = 1/N , the expected number of Type-II decisions made by all agents over the entire
time horizon, denoted by E[QII] is upper bounded by

E[QII] ≤
∑
j∈A

Nj∑
l=1

2KNtlδ
tl
j

α
=
∑
j∈A

Nj∑
l=1

2K
Ntl

Nα
≤
∑
j∈A

Nj∑
l=1

2K
1

Nα−1

(a)
≤
∑
j∈A

2K

α− 2

(
1− 1

Nα−2

)
≡ qII

(b)
≤ 2KM. (7)

In Eq. (7), (a) holds because l ≤ N for each l and (b) holds if α ≥ 3.

Lemma 2 If agent j ∈ A makes a Type-I decision and pulls suboptimal arm i ∈ K by the UCB-ODC
algorithm, at that decision round t we have

n̂t
j(i) ≤

2α log(1/δtj)

∆2
i

.

Proof of Lemma 2: If agent j ∈ A makes a Type-I decision and pulls suboptimal arm i ∈ K at time t
by the UCB-ODC algorithm, we have

2CItj(i) ≥ ∆i. (8)

Because otherwise,

µ̂(i∗) + CItj(i
∗) ≥ µ(i∗) = µ(i) + ∆i > µ(i) + 2CItj(i) > µ̂(i) + CItj(i),

contradicting the fact that arm i is pulled by UCB-ODC as it has the highest UCB. Rewrite (8) using
the definition of CItj(i) in (1), we have

n̂t
j(i) ≤

2α log(1/δtj)

∆2
i

.

□

Recall that nt
j(i) denotes the number of times agent j has pulled arm i up to time t. In the cooperative

learning process, there must exist a time slot τi for each subooptimal arm i ∈ K \ {i∗} such that

2α logN

∆2
i

+M ≥
∑
j′∈A

nτi
j′ (i) >

2α logN

∆2
i

≥
∑
j′∈A

nτi−1
j′ (i). (9)

The number of times arm i pulled after time τi are considered as extra number of pulls. These
extra pulls are because of three possible causes: 1) Type-I decision due to delayed transmission
for waiting for exchange demands, 2) Type-I decision due to delayed transmission for waiting for
buffer thresholds to be satisfied, 3) Type-II decisions.

We first examine Type-I decision cases. Note that n̂t
j(i) is the total number of observations of arm i

agent j possessed at time t, including both the number of times agent j pulls arm i and some or all
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number of times other agents in A pull arm i. We define Bj→j′

t (i) as the number of reward samples
of arm i stored in agent j’s buffer for agent j′ (and not yet been sent) at time t, and define Bj→j′

t as
the total number of observations stored in agent j’s buffer for agent j′ at time t. Consider an agent
j ∈ A and a suboptimal arm i such that, at time τi,
2α logN

∆2
i

≥
2α log 1/δτij

∆2
i

≥ n̂τi
j (i) = nτi

j (i) +
∑

j′∈A\{j}

nτi
j′ (i)−Bj′→j

τi (i) (10)

(a)
>

2α logN

∆2
i

−
∑

j′∈A\{j}

Bj′→j
τi (i) (11)

=
2α logN

∆2
i

−
∑

j′∈A\{j}

Bj′→j
τi (i)1

Ej′→j
τi

=false −
∑

j′∈A\{j}

Bj′→j
τi (i)1

Ej′→j
τi

=true (12)

(b)

≥ 2α logN

∆2
i

−
∑

j′∈A\{j}

Bj′→j
τi (i)1

Ej′→j
τi

=false −
∑

j′∈A\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=true,

(13)
where inequality (a) is because of (9); inequality (b) is because, for agent j′ ∈ A \ {j} such that
Ej′→j

τi = true, we have f(cj
′→j

τi ) ≥ Bj′→j
τi ≥ Bj′→j

τi (i) ≥ 0. According to Lemma 2, such an
agent j makes Type-I decisions to pull arm i after time τi.

In the following, we bound the extra number of times agent j pulls arm i to make up for the
delayed transmission from other agents j′. For an agent j′ ∈ A \ {j} such that Ej′→j

τi = false, if
Bj′→j

τi (i) < f(cj
′→j

τi ), agent j has to make at most f(cj
′→j

τi ) extra pulls of i to make up for agent j′’s
delay; if Bj′→j

τi (i) ≥ f(cj
′→j

τi ), agent j can receive those observations from j′ once agent j buffers
f(cj→j′

τi ) observations for j′ and sends a message to j′. Hence, because of the delayed transmission
from agents j′ ∈ A \ {j} : Ej′→j

τi = false, agent j pulls arm i after time τi at most following
number of times:∑

j′∈A\{j}

f(max{cj
′→j

τi , cj→j′

τi })1
Ej′→j

τi
=false ≤

∑
j′∈A\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=false, (14)

where the inequality is because, by the definition of the ODC, for any pair of agents j, j′ ∈ A at any
time t, if Ej′→j

t = false, 1 ≥ cj
′→j

t − cj→j′

t ≥ 0. On the other hand, agents j′ ∈ A\ {j} such that
Ej′→j

τi = true delay transmission of
∑

j′∈A\{j} B
j′→j
τi (i)1

Ej′→j
τi

=true observations of i to agent j
at time τi due to waiting for the buffer thresholds to be satisfied. To make up for this type of delay,
agent j pulls arm i after time τi at most following number of times:∑

j′∈A\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=true. (15)

By (14) (15) and Lemma 2, agent j contributes at most F j
i extra numbers of pullings of arm i after

time τi, where

F j
i = min

{( ∑
j′∈A\{j}

f(cj
′→j

τi )
)
,
2α logN

∆2
i

}
. (16)

We now examine Type-II decision case. According to Lemma 1 and (7), the expected number of
Type-II decisions made by all agents over the entire time horizon is upper bounded by 2KM . Since,
in our case, ∆i ≤ 1,∀i ∈ K, the regret incurred by Type-II decisions is upper bounded by 2KM .

The expected group regret can be bounded by

E[R] =
∑
j∈A

E[Rj
Nj

] =
∑
j∈A

∑
i∈K

∆iE[nT
j (i)] =

∑
i∈K

∆i

(∑
j∈A

Nj∑
ℓ=1

P[Ij
tjℓ

= i]
)

(17)

≤ 2KM +
∑
i∈K

∆i

(2α logN

∆2
i

+M +
∑
j∈A

F j
i

)
≤ 3KM +

∑
i∈K:∆i>0

(2α logN

∆i
+
∑
j∈A

F j
i ∆i

)
.

(18)
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This completes the proof of Theorem 1(a).

B.2 Proof of Theorem 1(b)

Similar to the analysis of regret of UCB-ODC in previous subsection, we utilize intermediary lemmas
regarding Type-I and Type-II decisions to upper bound the group regret. Agent j makes a Type-I
decision if (6) holds, otherwise it is a Type-II decision.

Lemma 3 If agent j ∈ A makes a Type-I decision and pulls suboptimal arm i ∈ K by AAE-ODC
algorithm, at that decision round t we have

n̂t
j(i) ≤

8α log(1/δtj)

∆2
i

. (19)

Proof of Lemma 3: If agent j ∈ A makes a Type-I decision and pulls suboptimal arm i ∈ K at time t
by AAE-ODC algorithm, we have

2CItj(i
∗) + 2CItj(i) ≥ ∆i. (20)

Because otherwise,

µ̂(i∗)− CItj(i
∗) = µ̂(i∗) + CItj(i

∗)− 2CItj(i
∗)

≥ µ(i∗)− 2CItj(i
∗) = µ(i) + ∆i − 2CItj(i

∗)

> µ(i) + 2CItj(i) ≥ µ̂(i) + CItj(i), (21)

contradicting the fact that arm i is pulled by AAE-ODC as it is in the candidate set (if (21) holds, arm
i should not be in the candidate set). Since AAE-ODC pulls the arm with least observations in the
candidate set, we have n̂t

j(i) ≤ n̂t
j(i

∗) and thereby CItj(i) ≥ CItj(i
∗). Rewrite 4CItj(i) ≥ ∆i using

the definition of CItj(i) in (1), we obtain

n̂t
j(i) ≤

8α log 1/δtj
∆2

i

.

□

We then upper bound the group regret of AAE-ODC by similar steps in previous subsection.

Let τi be the time slot for suboptimal arm i that

16α logN

∆2
i

+M ≥
∑
j′∈A

nτi
j′ (i) >

16α logN

∆2
i

≥
∑
j′∈A

nτi−1
j′ (i). (22)

Consider an agent j and a suboptimal arm i such that at time τi,

16α logN

∆2
i

≥
16α log 1/δτij

∆2
i

≥ n̂τi
j (i) = nτi

j (i) +
∑

j′∈A\{j}

nτi
j′ (i)−Bj′→j

τi (i) (23)

(a)
>

16α logN

∆2
i

−
∑

j′∈A\{j}

Bj′→j
τi (i)1

Ej′→j
τi

=false −
∑

j′∈A\{j}

Bj′→j
τi (i)1

Ej′→j
τi

=true

(b)

≥ 16α logN

∆2
i

−
∑

j′∈A\{j}

Bj′→j
τi (i)1

Ej′→j
τi

=false −
∑

j′∈A\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=true,

(24)

where Bj→j′

t (i) denotes the number of reward samples of arm i stored in agent j’s buffer for agent j′

(and not yet been sent) at time t; Bj→j′

t denotes the total number of observations stored in agent j’s
buffer for agent j′; inequality (a) is because of (22); inequality (b) is because, for agent j′ ∈ A \ {j}
such that Ej′→j

τi = true, we have f(cj
′→j

τi ) ≥ Bj′→j
τi ≥ Bj′→j

τi (i) ≥ 0. According to Lemma 3,
such an agent j makes Type-I decisions to pull arm i after time τi.

In the following, we bound the extra number of times agent j pulls arm i to make up for the
delayed transmission from other agents j′. For an agent j′ ∈ A \ {j} such that Ej′→j

τi = false,
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if Bj′→j
τi (i) < f(cj

′→j
τi ), agent j has to make at most f(cj

′→j
τi ) extra pullings of i to make up for

agent j′’s delay; if Bj′→j
τi (i) ≥ f(cj

′→j
τi ), agent j can receive those observations from j′ once agent

j buffers f(cj→j′

τi ) observations for j′ and send a message to j′. Hence, because of the delayed
transmission from agents j′ ∈ A \ {j} : Ej′→j

τi = false, agent j pulls arm i after time τi at most
following number of times:∑

j′∈A\{j}

f(max{cj
′→j

τi , cj→j′

τi })1
Ej′→j

τi
=false ≤

∑
j′∈A\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=false, (25)

where the inequality is because, by the definition of the ODC, for any pair of agents j, j′ ∈ A at any
time t, if Ej′→j

t = false, 1 ≥ cj
′→j

t − cj→j′

t ≥ 0. On the other hand, agents j′ ∈ A\ {j} such that
Ej′→j

τi = true delay transmission of
∑

j′∈A\{j} B
j′→j
τi (i)1

Ej′→j
τi

=true observations of i to agent j
at time τi due to waiting for the buffer thresholds to be satisfied. To make up for this type of delay,
agent j pulls arm i after time τi at most following number of times:∑

j′∈A\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=true. (26)

By (25) (26)) and Lemma 3, agent j contributes at most Gj
i extra numbers of pulls of arm i after time

τi, where

Gj
i = min

{( ∑
j′∈A\{j}

f(cj
′→j

τi )
)
,
16α logN

∆2
i

}
. (27)

We now examine Type-II decision case. As AAE-ODC also selects arms based on confidence interval
as defined in (1), Lemma 1 holds for AAE-ODC. According to Lemma 1, with probability at most
2KNtδ

t
j
α, an agent makes a Type-II decision at a decision round. With δtj = 1/N2, the regret

incurred by Type-II decisions is upper bounded by 2KM .

The expected group regret can be bounded by

E[R] =
∑
j∈A

E[Rj
Nj

] =
∑
j∈A

∑
i∈K

∆iE[nT
j (i)] =

∑
i∈K

∆i

(∑
j∈A

Nj∑
ℓ=1

P[Ij
tjℓ

= i]
)

(28)

≤ 2KM +
∑
i∈K

∆i

(16α logN

∆2
i

+M +
∑
j∈A

Gj
i

)
≤ 3KM +

∑
i∈K:∆i>0

(16α logN

∆i
+
∑
j∈A

Gj
i∆i

)
.

(29)

This completes the proof of Theorem 1(b).

B.3 Recovery of near-optimal regret in synchronous setting

When applied to a MAMAB setting with synchronous agents where every agent makes a decision at
every time slot, our asynchronous algorithm AAE-ODC can recover a near-optimal regret

O
( ∑

i∈K:∆i>0

logN/∆i

)
with the buffer thresholds set to be doubled and proportional to the number of arms remaining in the
candidate set, C, i.e., f(cj→j′) = |C| × 2c

j→j′−1,∀j, j′ ∈ A, cj→j′ = 1, 2, . . ..

Note that, in a synchronous setting, the exchanges demands Ej→j′ and Ej′→j are both always true.
This is because both exchange demands are true at the beginning, and every time agent j sends a
message to agent j′, agent j′ also sends a message to agent j as the buffer thresholds for all (pairs of)
agents are the same in a synchronous setting.

Consider the time τi for a suboptimal arm i such that

16α logN

∆2
i

+M ≥
∑
j′∈A

nτi
j′ (i) >

16α logN

∆2
i

≥
∑
j′∈A

nτi−1
j′ (i). (30)
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Consider an agent j such that at time τi,
16α logN

∆2
i

≥
8α log 1/δτij

∆2
i

≥ n̂τi
j (i) = nτi

j (i) +
∑

j′∈A\{j}

nτi
j′ (i)−Bj′→j

τi (i).

Under AAE-ODC, the maximum extra number of times agent j pulls arm i after time τi is at most
f(cτi). Because after agent j makes f(cτi) number of observations it sends a message to all other
agents and receives the outstanding observations of arm i,

∑
j′∈A\{j} B

j′→j
τi (i).

Hence, the total amount of extra number of times agents pull arm i after time τi can be upper bounded
by ∑

j∈A
f(cτi)

(a)

≤
∑
j∈A

nτi
j (i) +K

(b)

≤ 16α logN

∆2
i

+M +K, (31)

where inequality (a) is because, by setting the buffer thresholds to be doubled and proportional to the
number of arms remaining in the candidate set, the current buffer threshold of an agent, f(cτi), is
smaller than or equal to K plus the amount of observations that agent have ever made before τi, i.e.,
f(cτi) ≤ nτi

j (i) +K; inequality (b) is because of the definition of τi in (30).

C ASYMPTOTIC GROUP REGRET LOWER BOUND FOR
ASYNCHRONOUS MAMAB

The proof techniques for single-agent multi-armed bandit, e.g., in Bubeck and Cesa-Bianchi (2012),
and those for synchronous multi-agent multi-armed bandit, e.g., in Dubey et al. (2020), can be applied
to asynchronous multi-agent multi-armed bandit by slight modification. For completion of analysis,
we provide the details as follows.

Let EK denote the class of K-armed bandit where each arm has a Bernoulli reward distribution
and there is no collision, i.e., reward realization of arms is not influenced by actions of agents.
Let ν = (P1, ..., PK) ∈ EK , ν′ = (P ′

1, ..., P
′
K) ∈ EK be two K-armed bandit instances such that

Pi = P ′
i ,∀i ∈ K\{k}, where k is a suboptimal arm. Specifically, P ′

k is chosen to be Bernoulli(µk+λ)
and λ > ∆k. Let π denote a consistent cooperative policy for asynchronous M -agent multi-armed
bandit. We have the following divergence decomposition:

DKL(Pνπ,Pν′π) = Eνπ

[
log

dPνπ

dPν′π

(
I
j:tj1=1
1 , x1(I

j:tj1=1
1 ), ..., I

j:tjnj
=T

T , xT (I
j:tjnj

=T

T )
)]

=
∑
i∈K

Eνπ

∑
j∈A

nT
j (i)

DKL(Pi, P
′
i ) = Eνπ

∑
j∈A

nT
j (k)

DKL(Pk, P
′
k), (32)

where nT
j (i) is the total number of times agent j pulls arm i, and Pνπ, Pν′π are the distributions

of the action-reward history induced by the interaction of policy π with bandit instances ν and ν′

respectively.

By high-probability Pinsker inequality, we have the following for any event A:

DKL(Pνπ,Pν′π) ≥ log
1

2(Pνπ(A) + Pν′π(Ac))
. (33)

Let R and R′ be the (group) regret obtained by policy π on bandit instances ν and ν′ respectively
given the asynchronous pulling times of agents (tj1, t

j
2, ...t

j
Nj

),∀j ∈ A. By (32) (33) and by choosing

A =
{∑

j∈A nT
j (k) ≥ 1

2

∑
j∈A Nj =

N
2

}
, we have

R+R′ ≥ N

2
∆kPνπ(A) +

N

2
(λ−∆k)Pν′π(A

c) ≥ N

2
min{∆k, λ−∆k}(Pνπ(A) + Pν′π(A

c))

≥ N

4
min{∆k, λ−∆k} exp (−DKL(Pνπ,Pν′π))

=
N

4
min{∆k, λ−∆k} × exp

−Eνπ

∑
j∈A

nT
j (k)

DKL(Pk, P
′
k)

 . (34)
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Rearranging (34) and taking limit inferior, we have

lim inf
N→∞

Eνπ

[∑
j∈A nT

j (k)
]

log(N)
≥ 1

DKL(Pk, P ′
k)

lim inf
N→∞

log(N min{∆k,λ−∆k}
R+R′ )

log(N)

≥ 1

DKL(Pk, P ′
k)

(
1− lim sup

N→∞

log(R+R′)

log(N)

)
.

By the fact that π is consistent, we have some constants σ > 0 and Cσ ,

lim inf
N→∞

Eνπ

[∑
j∈A nT

j (k)
]

log(N)
≥ 1

DKL(Pk, P ′
k)

(
1− lim sup

N→∞

a logN + logCσ

log(N)

)
. (35)

Plugging (35) into the definition of group regret, we have

lim inf
N→∞

R

log(N)
≥ lim inf

N→∞

∑
i Eνπ

[∑
j∈A nT

j (k)
]
∆i

log(N)
≥
∑
i

∆i

DKL(Pi, P ′
i )
.

This completes the proof.

D PROOF OF THEOREM 2

D.1 Proof of Theorem 2(a)

We claim that, according to the rules of ODC, an agent j ∈ A would not send in total more than

min{Cj , Cj′}+ 1

messages to agent j′ ∈ A \ {j}, where

Cj = max
{
C ∈ {1, ..., Nj} :

( C∑
c=1

f(c)
)
≤ Nj

}
,

upper bounds the number of times agent j can fulfill the buffer thresholds when buffer thresholds are
updated according to a monotonically increasing function f .

Suppose Cj ≤ Cj′ . Under ODC, the number of observations in buffer
∑

i∈K bj→j′

n (i) must be greater
than or equal to the buffer threshold f(c) when (right before) agent j sends the c-th message to agent
j′. Hence, agent j can send in total at most Cj messages to agent j′ when Cj ≤ Cj′ . Because if
agent j sends in total more than Cj messages, e.g., Cj + 1 messages, to agent j′, that means at least

one message transmission violates the rule of ODC as
(∑Cj+1

c=1 f(c)
)
> Nj .

Suppose Cj > Cj′ . Under ODC, the exchange demand Ej→j′ must be true when (right before) an
agent j sends a message to agent j′. According to the rules of ODC, the exchange demand Ej→j′ is set
to true when: 1) during algorithm initialization, 2) agent j′ sends agent j a message. Agent j′ can
send agent j at most Cj′ messages when Cj > Cj′ for otherwise it must violate the buffer thresholds
rule of ODC. Hence, Ej→j′ is set to true at most Cj′ + 1 times. Then, agent j can send agent j′ in
total at most Cj′ + 1 messages if agent j follows the exchange demand rule of ODC.

Now take into account the communications between all pairs of agents, we have the communication
complexity:

C ≤
∑

j∈A

∑
j′∈A\{j}

min{Cj , Cj′}+ 1.

This completes the proof.

D.2 Proof of Theorem 2(b)

We first upper bound the expected total numbers of Type-I decisions and Type-II decisions made
by an agent before AAE-ODC stops communication, and then we follow similar steps in previous
subsection to upper bound the communication complexity of AAE-ODC.
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Note that agent j makes a Type-I decision if (6) holds, otherwise it is a Type-II decision. By Lemma 1,
with δtj = 1/N2, the expected number of Type-II decisions made by an agent in the entire learning
horizon is upper bounded by 2K. By Lemma 3, with δtj = 1/N2, the expected number of Type-I
decisions made by an agent j before the candidate set size reduces to one can be upper bounded by∑

i∈K

16α logN

max{∆2
i ,∆

2}
.

Note that, Nj is the total number of decisions made by agent j. Hence, the expected number of
decisions an agent j makes before agents stop communicate with one another can be upper bounded
by

min
{
2K +

∑
i∈K

16α logN

max{∆2
i ,∆

2}
, Nj

}
.

Then, we claim that, under AAE-ODC, an agent j ∈ A would not send in total more than

min{Cj , Cj′}+ 1

messages to agent j′ ∈ A \ {j}, where

Cj = max
{
C ∈ {1, ..., Nj} :

( C∑
c=1

f(c)
)
≤ min

{
2K +

∑
i∈K

16α logN

max{∆2
i ,∆

2}
, Nj

}}
,

upper bounds the number of times agent j executing AAE-ODC can fulfill the buffer thresholds when
buffer thresholds are updated according to a monotonically increasing function f .

Suppose Cj ≤ Cj′ . Under ODC, the number of observations in buffer
∑

i∈K bj→j′

n (i) must be greater
than or equal to the buffer threshold f(c) when (right before) agent j sends the c-th message to
agent j′. Hence, agent j executing AAE-ODC can send in total at most Cj messages to agent j′
when Cj ≤ Cj′ . Because if agent j sends in total more than Cj messages, e.g., Cj + 1 messages,
to agent j′, that means at least one message transmission violates the rule of ODC or AAE-ODC as(∑Cj+1

c=1 f(c)
)
> min

{
2K +

∑
i∈K

16α logN
max{∆2

i ,∆
2} , Nj

}
.

Suppose Cj > Cj′ . Under ODC, the exchange demand Ej→j′ must be true when (right before) an
agent j sends a message to agent j′. According to the rules of ODC, the exchange demand Ej→j′ is set
to true when: 1) during algorithm initialization, 2) agent j′ sends agent j a message. Agent j′ can
send agent j at most Cj′ messages when Cj > Cj′ for otherwise it must violate the buffer thresholds
rule of ODC. Hence, Ej→j′ is set to true at most Cj′ + 1 times. Then, agent j can send agent j′ in
total at most Cj′ + 1 messages if agent j follows the exchange demand rule of ODC.

Now take into account the communications between all pairs of agents, we have the communication
complexity:

C ≤
∑

j∈A

∑
j′∈A\{j}

min{Cj , Cj′}+ 1.

This completes the proof.

E PSEUDO CODE OF UCB-ODC

We present UCB-ODC in Algorithm 2.
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Algorithm 2 The UCB-ODC Algorithm for Agent j

1: Initialize: exchange demands Ej→j′ ← True, ∀j′ ∈ A \ {j}, buffers bj→j′
n (i) ← 0, bj→j′

µ (i) ← 0,
∀j′ ∈ A \ {j}, i ∈ K, number of communications cj→j′ ← 1, ∀j′ ∈ A \ {j}, buffer thresholds
f(cj→j′) ← f(1), ∀j′ ∈ A \ {j}, UCB parameters n̂j(i) = 0, µ̂j(i) = 0, ∀i ∈ K, nj = 0, δtj = 1/nj ,
α ≥ 2

2: for t = 1...T do
3: if t is a decision time slot of agent j, i.e., t ∈ {tj1, ..., t

j
Nj
} then

4: Pull arm Ijt with highest UCB, i.e., Ijt ≡ argmaxi∈K µ̂(i) + CItj(i), and receive instantaneous
reward xt(I

j
t )

5: Increase n̂j(I
j
t ) and nj by 1, and update the empirical mean value, µ̂(Ijt ), with instantaneous reward

xt(I
j
t )

6: Reconstruct the UCBs based on the updated values of n̂j(It), nj , and µ̂j(I
j
t ) by using Equation (1)

7: for each agent j′ ∈ A \ {j} do
8: Update the buffer for agent j′: bj→j′

n (Ijt )← bj→j′
n (Ijt ) + 1, bj→j′

µ (Ijt )← bj→j′
µ (Ijt ) + xt(I

j
t )

9: if Ej→j′ is True and
∑

i∈K bj→j′
n (i) ≥ f(cj→j′) then

10: Share the buffered information with j′, i.e., send a message as defined in Definition 1, Set
cj→j′ ← cj→j′ + 1

11: Set exchange demand Ej→j′ ← False and renew the buffer for agent j′

12: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′)← 2f(cj→j′ − 1) or keep it the
same

13: end if
14: end for
15: end if
16: for each new message received from any agent j′ ∈ A \ {j} do
17: Increase n̂j(i),∀i ∈ K and update empirical means, µ̂j(i), ∀i ∈ K, according to the information in

the message
18: Execute Line (6) to reconstruct UCBs
19: if agent j has buffered f(cj→j′) observations for j′, i.e.,

∑
i∈K bj→j′

n (i) ≥ f(cj→j′) then
20: Share information by sending a message as defined in Definition 1 to j′, Set cj→j′ ← cj→j′ +1,

renew buffer for j′

21: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′) ← 2f(cj→j′ − 1) or keep it the
same

22: else
23: Set exchange demand Ej→j′ ← True
24: end if
25: end for
26: end for
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F PSEUDO CODE OF AAE-ODC

We present AAE-ODC in Algorithm 3.

Algorithm 3 The AAE-ODC Algorithm for Agent j

1: Initialize: exchange demands Ej→j′ ← True, ∀j′ ∈ A \ {j}, buffers bj→j′
n (i) ← 0, bj→j′

µ (i) ← 0,
∀j′ ∈ A \ {j}, i ∈ K, number of communications cj→j′ ← 1, ∀j′ ∈ A \ {j}, buffer thresholds
f(cj→j′) ← f(1), ∀j′ ∈ A \ {j}, AAE parameters n̂j(i) = 0, µ̂j(i) = 0, ∀i ∈ K, nj = 0, δtj = 1/nj ,
α ≥ 2, self candidate set C = {1, 2, ...,K}

2: for t = 1...T do
3: if t is a decision time slot of agent j, i.e., t ∈ {tj1, ..., t

j
Nj
} then

4: Recompute confidence intervals CItj(i),∀i ∈ K as defined in (1)
5: for i ∈ C do
6: if |C| > 1 and ∃i′ ∈ K s.t. µ̂t

j(i) + CItj(i) < µ̂t
j(i

′)− CItj(i
′) then

7: Eliminate arm i from the candidate set, i.e., C ← C \ {i}
8: Broadcast index of arm i to all agents j ∈ A
9: end if

10: end for
11: Pull arm Ijt from the candidate set C with the least observations, and receive instantaneous reward

xt(I
j
t )

12: Increase n̂j(I
j
t ) and nj by 1, and update empirical mean, µ̂(Ijt ), with instantaneous reward xt(I

j
t )

13: if |C| > 1 then
14: for each agent j′ ∈ A \ {j} do
15: Update the buffer for agent j′: bj→j′

n (Ijt ) ← bj→j′
n (Ijt ) + 1, bj→j′

µ (Ijt ) ← bj→j′
µ (Ijt ) +

xt(I
j
t )

16: if Ej→j′ is True and
∑

i∈K bj→j′
n (i) ≥ f(cj→j′) then

17: Share the buffered information with j′, i.e., send a message as defined in Definition 1,
Set cj→j′ ← cj→j′ + 1

18: Set exchange demand Ej→j′ ← False and renew the buffer for agent j′

19: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′)← 2f(cj→j′ − 1) or keep it
the same

20: end if
21: end for
22: end if
23: end if
24: for each new message received from any agent j′ ∈ A \ {j} do
25: if it is an elimination notice of arm i then
26: Eliminate arm i from the candidate set, i.e., C ← C \ {i}
27: else
28: Increase n̂j(i), ∀i ∈ K and update empirical means, µ̂j(i),∀i ∈ K, according to the information

in the message
29: if agent j has buffered f(cj→j′) observations for j′, i.e.,

∑
i∈K bj→j′

n (i) ≥ f(cj→j′) then
30: Share information by sending a message as defined in Definition 1 to j′, Set cj→j′ ←

cj→j′ + 1, renew buffer for j′

31: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′)← 2f(cj→j′ − 1) or keep it the
same

32: else
33: Set exchange demand Ej→j′ ← True
34: end if
35: end if
36: end for
37: end for
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G ACCOUNTING FOR COMMUNICATION DELAY

Suppose message transmission between agents suffers a deterministic delay, d. In the following, we
discuss how the communication delays affect the group regrets and communication complexities of
UCB-ODC and AAE-ODC.

For UCB-ODC (resp. AAE-ODC), we consider time slot τi for each suboptimal arm i such that (9)
(resp. (22)) holds, and consider agent j such that, at time τi, (13) (resp. (24)) holds; by Lemma 2
(resp. Lemma 3), agent j makes Type-I decisions to pull arm i after time τi. In the following, we
upper bound the extra number of times (under deterministic communication delays) agent j pulls arm
i to make up for the delayed transmission of observations from other agents.

Recall that Bj→j′

t (i) denotes the number of reward samples of arm i stored in agent j’s buffer for
agent j′ (and not yet been sent) at time t, and Bj→j′

t denotes the total number of observations stored
in agent j’s buffer for agent j′ at time t. For an agent j′ ∈ A \ {j} such that Ej′→j

τi = false, if
Bj′→j

τi (i) < f(cj
′→j

τi ), agent j has to make at most f(cj
′→j

τi ) extra pulls of i to make up for agent
j′’s delay. If Bj′→j

τi (i) ≥ f(cj
′→j

τi ), agent j can send a message to j′ once agent j buffers f(cj→j′

τi )
observations for j′; the message takes d time slots to reach agent j′, and the reply from agent j′
with the outstanding observations takes d time slots to reach agent j. During the 2d time slots,
agent j makes at most 2d pulls on arm i. Hence, because of the delayed transmission from agents
j′ ∈ A \ {j} : Ej′→j

τi = false, agent j pulls arm i after time τi at most following number of times:∑
j′∈A\{j}

2d+ f(max{cj
′→j

τi , cj→j′

τi })1
Ej′→j

τi
=false ≤

∑
j′∈A\{j}

2d+ f(cj
′→j

τi )1
Ej′→j

τi
=false, (36)

where the inequality is because, by the definition of the ODC, for any pair of agents j, j′ ∈ A at any
time t, if Ej′→j

t = false, 1 ≥ cj
′→j

t − cj→j′

t ≥ 0. On the other hand, agents j′ ∈ A\ {j} such that
Ej′→j

τi = true delay transmission of
∑

j′∈A\{j} B
j′→j
τi (i)1

Ej′→j
τi

=true observations of i to agent j
at time τi due to waiting for the buffer thresholds to be satisfied. To make up for this type of delay,
agent j pulls arm i after time τi at most following number of times:∑

j′∈A\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=true. (37)

Therefore, the upper bound of expected group regret of UCB-ODC under deterministic communication
delay d has the same form as (2) in Theorem 1(a) but with F j

i defined as follows:

F j
i = min

{( ∑
j′∈A\{j}

2d+ f(cj
′→j

τi )
)
,
2α logN

∆2
i

}
. (38)

The upper bound of expected group regret of AAE-ODC under deterministic communication delay d

has the same form as (3) in Theorem 1(b) but with Gj
i defined as follows:

Gj
i = min

{( ∑
j′∈A\{j}

2d+ f(cj
′→j

τi )
)
,
16α logN

∆2
i

}
. (39)

Under ODC, any agent j needs the exchange demand Ej→j′ to be set to true to be allowed to
send a message to another agent j′. Communication delay would never increase the number of
times exchange demands be set to true. Hence, the communication complexity upper bounds in
Theorem 2(a) and Theorem 2(b) still hold for UCB-ODC and AAE-ODC respectively under deterministic
communication delay d.

H ACCOUNTING FOR HETEROGENEOUS ARM SETS

Agents having different but overlapping arm sets is a practical scenario in MAMAB. In the following,
we discuss how to generalize UCB-ODC and AAE-ODC to account for heterogeneous arm sets.
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H.1 Model Formulation

We need additional notations for formulating heterogeneous arm set scenario. In this scenario, agents
receive the same expected rewards from the same arms but each agent only has access to a local
subset of the K arms, as in Yang et al. (2022); Chawla et al. (2020); Yang et al. (2021). Specifically,
agent j ∈ A has access to a subset of arms Kj ⊆ K known to every agent. We refer to arms in Kj as
local arms of agent j. Let Kj = |Kj |. Without loss of generality, we assume that at least two arm
sets overlap; i.e., ∃j, j′ ∈ A s.t. Kj ∩ Kj′ ̸= ∅.
Let i∗j = argmaxi∈Kj µi denote the local optimal arm of agent j. Let Ai denote the set of agents
whose local arm set includes arm i, i.e., Ai ≡ {j ∈ A : i ∈ Kj}. Let A∗

i denote the set of agents
whose local optimal arm is i, i.e., A∗

i ≡ {j ∈ Ai : i = i∗j} and let A∗
−i = Ai \ A∗

i . Note that
A∗

i or A∗
−i may be empty. Let A(j) denote the set of agents that share arms with agent j, i.e.,

A(j) ≡ ∪i∈Kj
Ai \{j}. Let Mi = |Ai|, M∗

i = |A∗
i |, M∗

−i = |A∗
−i|, and M (j) = |A(j)|. Let ∆(i∗j , i)

denote the suboptimality gap of arm i in agent j’s local arm set Kj , i ∈ Kj . We further denote the
smallest suboptimality gap of arm i as ∆̃i and denote the agent that contains ∆̃i as j̃i, i.e.,

∆̃i ≡

{
minj∈A∗

−i
∆(i∗j , i), A∗

−i ̸= ∅,
0, otherwise,

and j̃i ≡

{
argminj∈A∗

−i
∆(i∗j , i), A∗

−i ̸= ∅,
0, otherwise.

The expected cumulative regret of each agent j becomes

E[Rj
Nj

] = µ(i∗j )Nj − E[
∑

t∈{tj1,t
j
2,...,t

j
Nj

}
xt(I

j
t )].

Expected group regret is E[R] =
∑

j∈A E[Rj
Nj

].

H.2 Algorithm

We present the extension of UCB-ODC in Algorithm 4.
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Algorithm 4 The UCB-ODC Algorithm for Agent j (with heterogeneous arm sets)

1: Input: other agents’ local arm sets (K1, ...,KM )

2: Initialize: exchange demands Ej→j′ ← True, ∀j′ ∈ A(j), buffers bj→j′
n (i) ← 0, bj→j′

µ (i) ← 0,
∀j′ ∈ A(j), i ∈ Kj ∩ Kj′ , number of communications cj→j′ ← 1, ∀j′ ∈ A(j), buffer thresholds
f(cj→j′) ← f(1), ∀j′ ∈ A(j), UCB parameters n̂j(i) = 0, µ̂j(i) = 0, ∀i ∈ Kj , nj = 0, δtj = 1/nj ,
α ≥ 2

3: for t = 1...T do
4: if t is a decision time slot of agent j, i.e., t ∈ {tj1, ..., t

j
Nj
} then

5: Pull arm Ijt with highest UCB, i.e., Ijt ≡ argmaxi∈Kj µ̂(i) + CItj(i), and receive instantaneous
reward xt(I

j
t )

6: Increase n̂j(I
j
t ) and nj by 1, and update the empirical mean value, µ̂(Ijt ), with instantaneous reward

xt(I
j
t )

7: Reconstruct the UCBs based on the updated values of n̂j(It), nj , and µ̂j(I
j
t ) by using Equation (1)

8: for each agent j′ ∈ A
I
j
t

do

9: Update the buffer for agent j′: bj→j′
n (Ijt )← bj→j′

n (Ijt ) + 1, bj→j′
µ (Ijt )← bj→j′

µ (Ijt ) + xt(I
j
t )

10: if Ej→j′ is True and
∑

i∈Kj∩Kj′
bj→j′
n (i) ≥ f(cj→j′) then

11: Share the buffered information with j′, i.e., send a message as defined in Definition 1, Set
cj→j′ ← cj→j′ + 1

12: Set exchange demand Ej→j′ ← False and renew the buffer for agent j′

13: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′)← 2f(cj→j′ − 1) or keep it the
same

14: end if
15: end for
16: end if
17: for each new message received from any agent j′ ∈ A(j) do
18: Increase n̂j(i), ∀i ∈ Kj ∩Kj′ and update empirical means, µ̂j(i),∀i ∈ Kj ∩Kj′ , according to the

message
19: Execute Line (7) to reconstruct UCBs
20: if agent j has buffered f(cj→j′) observations for j′, i.e.,

∑
i∈Kj∩Kj′

bj→j′
n (i) ≥ f(cj→j′) then

21: Share information by sending a message as defined in Definition 1 to j′, Set cj→j′ ← cj→j′ +1,
renew buffer for j′

22: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′) ← 2f(cj→j′ − 1) or keep it the
same

23: else
24: Set exchange demand Ej→j′ ← True
25: end if
26: end for
27: end for
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We present the extension of AAE-ODC in Algorithm 5. Note that, in heterogeneous arm sets setting,
each agent needs to maintain a candidate set; two agents stop communicating once both of their
candidate set sizes reduce one.

Algorithm 5 The AAE-ODC Algorithm for Agent j (with heterogeneous arm sets)

1: Input: Other agents’ local arm sets (K1, ...,KM )

2: Initialize: exchange demands Ej→j′ ← True, ∀j′ ∈ A(j), buffers bj→j′
n (i) ← 0, bj→j′

µ (i) ← 0,
∀j′ ∈ A(j), i ∈ Kj ∩ Kj′ , number of communications cj→j′ ← 1, ∀j′ ∈ A(j), buffer thresholds
f(cj→j′) ← f(1), ∀j′ ∈ A(j), AAE parameters n̂j(i) = 0, µ̂j(i) = 0, ∀i ∈ Kj , nj = 0, δtj = 1/nj ,
α ≥ 2, candidate sets Cj = Kj and Cj′ = Kj′ ,∀j′ ∈ A(j)

3: for t = 1...T do
4: if t is a decision time slot of agent j, i.e., t ∈ {tj1, ..., t

j
Nj
} then

5: Recompute confidence intervals CItj(i), ∀i ∈ Kj as defined in (1)
6: for i ∈ Cj do
7: if |Cj | > 1 and ∃i′ ∈ Kj s.t. µ̂t

j(i) + CItj(i) < µ̂t
j(i

′)− CItj(i
′) then

8: Eliminate arm i from the candidate set, i.e., Cj ← Cj \ {i}
9: Broadcast index of arm i to all agents j ∈ Ai

10: end if
11: end for
12: Pull arm Ijt from the candidate set Cj with the least observations, and receive instantaneous reward

xt(I
j
t )

13: Increase n̂j(I
j
t ) and nj by 1, and update empirical mean, µ̂(Ijt ), with instantaneous reward xt(I

j
t )

14: for each agent j′ ∈ A
I
j
t

that |Cj′ | > 1 or |Cj | > 1 do

15: Update the buffer for agent j′: bj→j′
n (Ijt )← bj→j′

n (Ijt ) + 1, bj→j′
µ (Ijt )← bj→j′

µ (Ijt ) + xt(I
j
t )

16: if Ej→j′ is True and
∑

i∈Kj∩Kj′
bj→j′
n (i) ≥ f(cj→j′) then

17: Share the buffered information with j′, i.e., send a message as defined in Definition 1, Set
cj→j′ ← cj→j′ + 1

18: Set exchange demand Ej→j′ ← False and renew the buffer for agent j′

19: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′)← 2f(cj→j′ − 1) or keep it the
same

20: end if
21: end for
22: end if
23: for each new message received from any agent j′ ∈ A(j) do
24: if it is an elimination notice of arm i from agent j′ then
25: Eliminate arm i from the candidate set, i.e., Cj′ ← Cj′ \ {i}
26: else
27: Increase n̂j(i),∀i ∈ Kj ∩Kj′ and update empirical means, µ̂j(i), ∀i ∈ Kj ∩Kj′ , according to

the message
28: if agent j has buffered f(cj→j′) observations for j′, i.e.,

∑
i∈Kj∩Kj′

bj→j′
n (i) ≥ f(cj→j′)

then
29: Share information by sending a message as defined in Definition 1 to j′, Set cj→j′ ←

cj→j′ + 1, renew buffer for j′

30: Update buffer threshold f(cj→j′), e.g., double it f(cj→j′)← 2f(cj→j′ − 1) or keep it the
same

31: else
32: Set exchange demand Ej→j′ ← True
33: end if
34: end if
35: end for
36: end for
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H.3 Analysis of Regret and Communication Complexity

Expected Group Regret of UCB-ODC under Heterogeneous Arm Sets. With algorithm parameters
δtj = 1/N and α ≥ 3, the expected group regret of UCB-ODC under heterogeneous arm sets satisfies

E[R] ≤ 3KM +
∑

i∈K:∆̃i>0

(
4α logN

∆̃i

+
∑

j∈A∗
−i

min

{( ∑
j′∈Ai\{j}

f(cj
′→j

τi )
)
,
2α logN

∆2(i∗j , i)

}
∆(i∗j , i)

)
.

(40)

Recall that A∗
−i is the set of agent with arm i as a local suboptimal arm. Following similar arguments

in the proof of Lemma 2, if agent j ∈ A∗
−i makes a Type-I decision and pulls arm i ∈ Kj by UCB-ODC

algorithm at time t, we have that

n̂t
j(i) ≤

2α log(1/δtj)

∆2(i∗j , i)
. (41)

Without loss of generality, we let A∗
−i = {jm : m = 1, 2, ...,M−i}, where

∆(i∗j1 , i) ≥ ∆(i∗j2 .i) ≥ · · · ≥ ∆(i∗jM−i
, i) and M−i = |A∗

−i|. Agent jM−i needs the most num-
ber of observations of arm i to differentiate it from its local optimal arm because jM−i

is agent
with the smallest ∆(i∗j , i) among all j ∈ A∗

−i. Though jM−i
is the agent in A∗

−i that needs the
most number of observations of arm i, each time agent jM−i

pulls arm i in fact incur the smallest
regret than each time other agents in A∗

−i pull arm i because it has the smallest ∆(i∗j , i) among all
j ∈ A∗

−i. When those agents jm ∈ A∗
−i with largest ∆(i∗jm , i)s make the most number of pulls of

arm i, the largest regret on arm i is incurred with the same number of times arm i being pulled. With
δtj ≥ 1/N,∀j ∈ A−i, and Am = 2α logN

∆2(i∗jm ,i) , we have

A1∆(i∗j1 , i) +

M−i−1∑
m=1

(Am+1 −Am)∆(i∗jm+1
, i) (42)

=

M−i−1∑
m=1

Am(∆(i∗jm , i)−∆(i∗jm+1
, i)) +AM−i∆(i∗jM−i

, i) (43)

≤
∫ ∆(i∗j1

,i)

∆(i∗jM−i
,i)

2α logN

z2
dz +

2α logN

∆(i∗jM−i
, i)
≤ 4α logN

∆(i∗jM−i
, i)

=
4α logN

∆̃i

. (44)

Consider time slot τi for each suboptimal arm i such that

2α logN

∆̃2
i

+M ≥
∑
j′∈Ai

nτi
j′ (i) >

2α logN

∆̃2
i

≥
∑
j′∈Ai

nτi−1
j′ (i).

Consider agent j ∈ A−i such that, at time τi,

2α logN

∆̃2
i

≥
2α log 1/δτij
∆2(i∗j , i)

≥ n̂τi
j (i) = nτi

j (i) +
∑

j′∈Ai\{j}

nτi
j′ (i)−Bj′→j

τi (i) (45)

≥ 2α logN

∆̃2
i

−
∑

j′∈Ai\{j}

Bj′→j
τi (i)1

Ej′→j
τi

=false −
∑

j′∈Ai\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=true,

(46)

where Bj→j′

t (i) denotes the number of reward samples of arm i stored in agent j’s buffer for agent j′

(and not yet been sent) at time t; Bj→j′

t denotes the total number of observations stored in agent j’s
buffer for agent j′. By (41), such agent j ∈ A−i makes Type-I decisions to pull arm i after time τi.

In the following, we bound the extra number of times agent j ∈ A−i pulls arm i to make up
for the delayed transmission from other agents j′ ∈ Ai. For an agent j′ ∈ Ai \ {j} such that
Ej′→j

τi = false, if Bj′→j
τi (i) < f(cj

′→j
τi ), agent j has to make at most f(cj

′→j
τi ) extra pulls of i to
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make up for agent j′’s delay; if Bj′→j
τi (i) ≥ f(cj

′→j
τi ), agent j can receive those observations from

j′ once agent j buffers f(cj→j′

τi ) observations for j′ and sends a message to j′. Hence, because of
the delayed transmission from agents j′ ∈ Ai \ {j} : Ej′→j

τi = false, agent j pulls arm i after time
τi at most following number of times:∑

j′∈Ai\{j}

f(max{cj
′→j

τi , cj→j′

τi })1
Ej′→j

τi
=false ≤

∑
j′∈Ai\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=false, (47)

where the inequality is because, by the definition of the ODC, for any pair of agents j, j′ ∈ A at any
time t, if Ej′→j

t = false, 1 ≥ cj
′→j

t − cj→j′

t ≥ 0. On the other hand, agents j′ ∈ Ai \ {j} such
that Ej′→j

τi = true delay transmission of
∑

j′∈Ai\{j} B
j′→j
τi (i)1

Ej′→j
τi

=true observations of i to
agent j at time τi due to waiting for the buffer thresholds to be satisfied. To make up for this type of
delay, agent j pulls arm i after time τi at most following number of times:∑

j′∈Ai\{j}

f(cj
′→j

τi )1
Ej′→j

τi
=true. (48)

Hence, agent j ∈ A−i incur at most

min

{( ∑
j′∈Ai\{j}

f(cj
′→j

τi )
)
,
2α logN

∆2(i∗j , i)

}
∆(i∗j , i) (49)

extra regret by pulling arm i after time τi.

As for Type-II decisions, Lemma 1 still holds under heterogeneous arm sets. Thus, the expected
regret incurred under Type-II decisions can still be upper bounded by 2KM .

Combining the regret upper bounds for Type-II and Type-I decisions, we obtain Eq. (40).

Expected Group Regret of AAE-ODC under Heterogeneous Arm Sets. With algorithm parameters
δtj = 1/N2 and α ≥ 3, the expected group regret of AAE-ODC under heterogeneous arm sets satisfies

E[R] ≤ (K+2)M+
∑

i∈K:∆̃i>0

(
32α logN

∆̃i

+
∑

j∈A∗
−i

min

{( ∑
j′∈Ai\{j}

f(cj
′→j

τi )
)
,
16α logN

∆2(i∗j , i)

}
∆(i∗j , i)

)
.

(50)
The analysis of the expected group regret of AAE-ODC under heterogeneous arm sets follows similar
steps as the analysis for UCB-ODC.

Communication Complexity of UCB-ODC under Heterogeneous Arm Sets. When buffer thresholds
are updated according to a positive and monotonically increasing function f , the communication
complexity UCB-ODC under heterogeneous arm sets satisfies:

C ≤
∑

j∈A

∑
j′∈A(j)\{j}

min{Cj , Cj′}+ 1, (51)

where Cj is the largest integer in set {1, ..., Nj} such that
(∑Cj

c=1 f(c)
)
≤ Nj .

Under ODC, any agent j needs the exchange demand Ej→j′ to be set to true to be allowed to send
a message to another agent j′. Having heterogeneous arm sets would never increase the number
of times exchange demands be set to true. Under heterogeneous arm sets, an agent j may make
f(cj→j′) observations but still cannot fulfill the buffer threshold because some of those observations
may not be of arm i ∈ Kj ∩ Kj′ and we need

∑
i∈Kj∩Kj′

bj→j′

n (i) ≥ f(cj→j′).

Communication Complexity of AAE-ODC under Heterogeneous Arm Sets. When buffer thresholds
are updated according to a positive and monotonically increasing function f , the communication
complexity AAE-ODC under heterogeneous arm sets satisfies:

C ≤
∑

j∈A

∑
j′∈A(j)\{j}

min{Cj , Cj′}+ 1, (52)

where Cj is the largest integer in set {1, ..., Nj} such that( Cj∑
c=1

f(c)
)
≤ min

{
2K +

∑
i∈Kj

16α logN

max{∆2(i∗j , i),mini∈Kj\{i∗j } ∆
2(i∗j , i)}

, Nj

}
. (53)
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(a) UCB Group Regret (b) UCB Comm Between (c) UCB Comm Slow (d) UCB Comm Fast

(e) AAE Group Regret (f) AAE Comm Between (g) AAE Comm Slow (h) AAE Comm Fast

Figure 4: Experiment 1 — impact of the heterogeneity of agent speeds. Comparison between IBC
and ODC with buffer thresholds set to one as well as IBC and ODC with buffer thresholds set to be
doubling. For communication complexities, we present the numbers of communications between fast
and slow agents, among slow agents, and among fast agents separately in different subfigures. Note
that, in Subfigures (b)(c)(d) and (f)(g)(h), the Y axis is in Log scale.

I SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present supplementary numerical experimental results to provide more insights
about ODC protocol.

I.1 Performance of ODC with constant or doubling buffer thresholds

(a) UCB Regret

(b) UCB Comm

Figure 5: Experiment 4 —
A system with agents that
have exponentially large
differences in their sam-
pling probabilities

In the Experiment 1 and Experiment 2 results presented in Section 5, we
observe that, when agent pull speeds are highly diversified and when
there exist many slow agents, the on-demand rule of ODC saves com-
munication overheads in contrast to IBC while achieving similar group
regrets as IBC when both of them have constant buffer thresholds. In
Figure 4 and Figure 6, we compare the performance of both IBC and ODC
with both constant (size one) buffer thresholds (denoted as AAE-IBC,
AAE-ODC, UCB-IBC, UCB-ODC) and doubling buffer thresholds (denoted
as AAE-IBC-D, AAE-ODC-D, UCB-IBC-D, UCB-ODC-D) under Experi-
ment 1 and Experiment 2 setups respectively.

From Figures 4(a), 4(e) and Figures 6(a), 6(c), we observe that, with
doubling buffer thresholds, both policies under IBC and under ODC have
higher group regrets than those with constant buffer thresholds. From
the communication complexities results in Figure 4 and Figure 6, we
observe that, with doubling buffer thresholds, both policies under IBC
and under ODC incur logarithmic communication overheads than those
with constant buffer thresholds. With doubling buffer thresholds, poli-
cies under ODC incur slightly smaller communication overheads than
policies under IBC but the improvements are not as significant as when
their buffer thresholds are all set to be constant. This is because the ratio
of sampling probabilities between fast and slow agents are at most 30 times in both experimental
setups; hence, when doubling buffer thresholds is applied, the effect of the on-demand rule of ODC is
diminished.

The advantage of the on-demand rule of ODC is obvious, even with doubling buffer thresholds applied,
when the differences of pull rates are exponentially large, as shown in Experiment 4 (Figure 5).
Figure 5 shows the results of simulations of a system with 10 agents, where there is a fast agent with
sampling probability set to be always 1 and nine slow agents with sampling probabilities initially
set to be 0.1 and halved after each message transmission. We report the cumulative group regret
and number of communication over T = 8, 000, 000 rounds. Figure 5(b) shows that UCB-ODC-D
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(a) UCB Group Regret (b) UCB Comm (c) AAE Group Regret (d) AAE Comm

Figure 6: Experiment 2 — impact of the number of slow agents in the system. Comparison between
IBC and ODC with buffer thresholds set to one as well as IBC and ODC with buffer thresholds set to
be doubling. Note that, in Subfigures (b) and (d), the Y axis is in Log scale.

(a) Individual Regret Mean (b) Individual Regret Mean

Figure 7: Experiment 1 — impact of the hetero-
geneity of agent speeds.

(a) Individual Regret (b) Individual Regret

Figure 8: Experiment 2 — impact of the number
of slow agents in the system.

effectively saves communication overheads and Figure 5(a) shows that UCB-ODC-D still achieves
similar group regrets as UCB-IBC-D.

I.2 Individual Regrets in Experiment 1 and Experiment 2

In asynchronous MAMAB setting, individual agent’s expected regret varies as the pulling times and
the total number of decision rounds of the agent, Nj , vary.

For Experiment 1 and Experiment 2 in Section 5, we add Figure 7 and Figure 8 respectively here to
provide experimental observations about individual regrets. Specifically, Figure 7 (for Experiment 1)
contains two bar charts to present the mean and variance of individual regrets in between fast agents
and in between slow agents after T = 80, 000 time slots. The height of a bar shows the individual
regret mean of agents with same sampling probability and the error bar on each bar denotes mean
plus/minus one standard deviation of the individual regrets of agents with same sampling probability.
Figure 8 (for Experiment 2) contains two scatter charts on which each dot represents the individual
regret of an agent.

Following are the experimental observations about individual regret.

In Experiment 1, we fix the sampling probability of each slow agent and vary the sampling probability
of fast agents. In Figure 7, the individual regret mean among slow agents stays almost the same when
the difference in sampling probabilities of fast and slow agents increases; the variance of individual
regrets among slow agents also stays almost the same. The individual regret mean of fast agents
increases as the sampling probability of fast agent increases while the variance of individual regrets
among fast agents stays almost the same.

In Experiment 2, we fix the number of fast agents as well as the sampling probability of fast agents
and increase the number of slow agents. In Figure 8, dots are clustered into two groups; the five dots
with larger individual regrets are of the fast agents, and the other dots with smaller individual regrets
are of the slow agents.

Figure 7 and Figure 8 show that ODC achieve similar regret performance as IBC not only in terms of
group regret but also in terms of individual regrets.
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I.3 Performance of ODC under different types of asynchronicity

In this subsection, we study the performance of ODC under three more variants of asynchronicity,
which are different from the stochastic asynchronicity considered in Experiments 1, 2, and 3.

Experiment 5. In this experiment, we study the impact of agents going offline and online, which
models wireless sensing devices with sleeping/active modes for power saving. Specifically, there
are five slow agents each with sampling probability 0.2 and five fast agents each with sampling
probability 0.8. Fast agents, while having high pull rates when they are online, may go offline for a
long time. Specifically, fast agents stay online or offline both according to a geometric distribution
with parameter 0.01 in this experiment. We report the number of communications and group regret
after T = 80, 000 time slots averaged over 30 independent trials in Table 3.

Table 3: Experiment 5
Communication Group Regret

UCB-IBC (2.1604± 0.0247)× 106 2442± 267
UCB-ODC (1.0119± 0.0135)× 106 2225± 232
AAE-IBC (2.1605± 0.0209)× 106 6788± 412
AAE-ODC (1.0105± 0.0165)× 106 6957± 446

Experiment 6. In this experiment, we study the impact of less learning horizons overlapping among
agents. We have five slow agents each with sampling probability 0.1 and five fast agents each with
sampling probability 0.7. In Experiment 6(a), we let the five slow agents go online from the very
beginning and let the five fast agents go online at time slot t = 40, 000. We do the other way around
in Experiment 6(b) – we let the five fast agents go online from the very beginning and let the five slow
agents go online at time slot t = 40, 000. We report the number of communications and group regrets
after T = 80, 000 time slots averaged over 30 independent trials in Tables 4 and 5 respectively.

Table 4: Experiment 6(a)
Communication Group Regret

UCB-IBC (1.6196± 0.0025)× 106 1931± 257
UCB-ODC (0.8332± 0.0021)× 106 2052± 228
AAE-IBC (1.6199± 0.0024)× 106 3906± 813
AAE-ODC (0.8325± 0.0023)× 106 5021± 641

Table 5: Experiment 6(b)
Communication Group Regret

UCB-IBC (2.7000± 0.0025)× 106 2803± 283
UCB-ODC (1.2804± 0.0022)× 106 2568± 285
AAE-IBC (2.5073± 0.4978)× 106 6264± 568
AAE-ODC (1.2797± 0.0023)× 106 6741± 447

Experiment 7. In this experiment, we study the impact of non-stationary asynchronicity. Specifically,
we have ten agents and the sampling probability of agent j follows a sine function, sin(θj + t/30),
where the phase shifts θj = j/5, j ∈ {1, ..., 10} are different for different agents. We report
the number of communications and group regrets after T = 80, 000 time slots averaged over 30
independent trials in Table 6.

Table 6: Experiment 7
Communication Group Regret

UCB-IBC (2.2936± 0.0020)× 106 2411± 296
UCB-ODC (1.5762± 0.0021)× 106 2335± 224
AAE-IBC (2.2934± 0.0023)× 106 7327± 341
AAE-ODC (1.5764± 0.0026)× 106 7526± 422

Results of Experiment 5, 6, and 7 in Table 3, 4, 5, and 6 support our theoretical and experimental
observations that ODC incurs less communication than IBC while achieving similar group regret, and
further show that ODC is affective under various kinds of asynchronicity.

I.4 When would AAE-ODC incur fewer communications than UCB-ODC?

Note that our theoretical analysis suggests that AAE-ODC outperforms UCB-ODC in terms of communi-
cation complexity. However, this has not been clearly shown in previous experiments because, in
previous experiments, the time horizon T is comparatively small for the arm reward suboptimality
gap considered. In Figure 9, we present the number of communications and group regret (averaged
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over 30 independent trials) incurred by AAE-ODC and UCB-ODC in the setting with K = 16 arms, 5
fast agents each with sampling probability 0.8, 10 slow agents each with sampling probability 0.1,
and T = 80 000. Note that this setting is same as one of the cases in Experiment 2, except that here
we experiment with an easier arm reward instance (with larger suboptimality gap).

(a) Communication (b) Group Regret

Figure 9: AAE-ODC outperforms UCB-ODC in terms of communication complexity when the time
horizon T is comparatively large for the arm reward instance.
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