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Abstract

This work explores a novel image geometric abstrac-
tion paradigm based on assembly out of a pool of pre-
defined simple parametric primitives (i.e., triangle, rectan-
gle, circle and semicircle), facilitating controllable shape
editing in images. While cast as a mixed combinato-
rial and continuous optimization problem, the above task
is approximately reformulated within a token translation
neural framework that simultaneously outputs primitive
assignments and corresponding transformation and color
parameters in an image-to-set manner, thus bypassing
complex/non-differentiable graph-matching iterations. To
relax the searching space and address the vanishing gra-
dient issue, a novel Neural Soft Assignment scheme that
well explores the quasi-equivalence between the assignment
in Bipartite b-Matching and opacity-aware weighted mul-
tiple rasterization combination is introduced, drastically
reducing the optimization complexity. Without ground-
truth image abstraction labeling (i.e., vectorized represen-
tation), the whole pipeline is end-to-end trainable in a self-
supervised manner, based on the linkage of differentiable
rasterization techniques. Extensive experiments on several
datasets well demonstrate that our framework is able to pre-
dict highly compelling vectorized geometric abstraction re-
sults with a combination of ONLY four simple primitives,
also with VERY straightforward shape editing capability by
simple replacement of primitive type, compared to previous
image abstraction and image vectorization methods.

1. Introduction

Image abstraction, as one of the fundamental tasks in
computer vision, originally aims at decomposing a given
image into a set of elementary primitives (e.g., basic shapes,
curves) as well as their inter-relationship, for the purpose of
visual understanding or object reconstruction [6, 14, 13].
Haeberli et al. [16] use texture maps as primitives for paint-

*Corresponding author: Bingbing Ni

S B

VNI ] vis]v]n,

5 mins 66mins Smins 0.04second
CLIPasso ES-CLIP LIVE Ours
Siggraph 22°  EvoStar 22’ CVPR 22’

Geometric
Abstraction

Input

L ] [ ] o p 3

(Editing)

Geometric
Style Transfer:

Figure 1. This work explores abstracting images based on a combi-
nation of simple geometric primitives (i.e., geometric abstraction).
Our method predicts highly compelling vectorized results to char-
acterize the image geometric information efficiently. In addition,
our method has straightforward shape editing capability by simply
modifying primitives during inference.

ing and anti-aliased text drawing; while Hu et al. [19] adopt
statistical learning strategy for approximating Ghost Imag-
ing (GI [30]) by a set of natural image patches. Contem-
porary abstraction approaches [24, 41, 20, 28] delve to rep-
resent image with parameterized sketches. These methods
usually represent sketches based on Bézier control points,
and the input image is translated into a sequence of Bézier
curves in a recursive way, based on deep architectures such
as transformers [34] or reinforcement learning [28].

Other than sketches, geometric shape primitive (triangle,
circle, efc.) based image abstraction approaches [9, 39] are
probably more favored by highly frequent applications such
as graphic design, industrial design, cartoon production, ad-
vertisement making and modern arts, given the following
facts. 1. Simplicity and Expressibility: On one hand, ge-
ometric primitive has very compact and explicit parameter
format, thus facilitating compact representation and conve-
nient manipulation. On the other hand, numerous combina-
tions of geometric primitives imply rich expressive power
compared with sketches. For example, the Bauhaus and
Cubism arts tend to adopt ONLY simplistic shapes like rect-
angles and spheres, yet still with extremely rich artistic ex-
pression. 2. Semantic Preservation: Human beings tend to
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think of complex visual patterns abstracted into some primi-
tives and their combinations. For example, a big circle, two
small circles and two triangles sufficiently form a human
face. These are two of the main reasons why modern logo
design and animation especially favor the use of geometric
primitives. This work is dedicated to geometric primitive
learning for reassembling and editing artistic images.

Unfortunately, searching (or even approximating) the
optimal solution of the above problem is considered as
hard as it essentially invokes both combinatorial (one-to-
many matching for best primitive type selection) and con-
tinuous (inference of the best transformation parameter for
a certain primitive) simultaneously. The following chal-
lenges have to be addressed. 1.High Dimensionality: Com-
pared to sketch-based methods that only need to predict
control point locations, geometric abstraction requires se-
lection of primitive types, leading to exponentially explod-
ing combinatorial space. In addition, more complicated
transformation parameters such as affine coefficients and
colors need to be predicted simultaneously, which further
expands the optimization space. 2.Non-Differentiability:
Note that the non-differentiable nature of primitive selection
together with primitive-to-pixel rasterization double the dif-
ficulty in employing any off-the-shelf deep learning frame-
work. More seriously, the enclosed regions within primi-
tives are usually flat and textureless, therefore popular dif-
ferentiable rasterization techniques such as Diffvg [23] can
hardly capture accurate gradient signal propagated back-
ward for primitive type or transform parameter correction,
i.e., known as vanishing gradient [18]. This issue makes
training process highly unstable and difficult to generate
meaningful abstract results. 3.Weak Supervision: Al-
though steady progress in un-/self-supervised representa-
tion learning has emerged with encouraging results on mul-
tiple 2D/3D visual tasks [17, 8, 47, 26, 25], existing im-
age abstraction methods [3, 28, 31] mostly rely on abun-
dant datasets (e.g., Quickdraw [15]) and carefully designed
loss metrics [41, 11], where vectorized sketch labeling is
available for direct/strong pair-wise supervision. However,
in this work we ONLY have rasterized images for train-
ing without any image-to-vector or image-to-primitive la-
beling, therefore the primitive assignment task is in an unsu-
pervised (or self-supervised) setting since large-scale high-
quality artistic images in parametric/vectorized format are
extremely difficult to collect.

In pursuit of geometric abstraction and addressing the
aforementioned difficulties, we propose a novel image ge-
ometric abstraction paradigm based on assembly out of
a pool of pre-defined simple parametric primitives (trian-
gle, rectangle, circle and semicircle), facilitating control-
lable shape editing in images. Our framework features the
following designs. Architecturally, the above task is ap-
proximately reformulated within a token translation neural

framework (i.e., transformer architecture [40]) that simulta-
neously outputs primitive assignments and the correspond-
ing transformation parameters and colors in an image-to-set
manner, thus bypassing complex/non-differentiable primi-
tive assignment iterations. To avoid exhaustive combina-
torial search, we introduce a novel Neural Soft Assign-
ment scheme that well explores the quasi-equivalence be-
tween the selection operation in Bipartite b-Matching and
opacity-aware weighted multiple rasterization combination.
Namely, for each considered image location, a single ren-
dering pattern is obtained by firstly fusing multiple prim-
itive selections (with estimated transformations) and then
softly inferring primitive matching weights serving as opac-
ity values, in favor of differentiable learning of primitive
assignment. In addition, to address vanishing gradient chal-
lenge, we propose a Centroid Filtering mechanism to cal-
ibrate gradients inside enclosed regions, in heart of which
is a centroid smoothing kernel that creates an effective gra-
dient propagation path for flat primitives. Without ground-
truth image abstraction labeling (i.e., vectorized represen-
tation), the whole pipeline is end-to-end trainable in an un-
supervised manner, based on the linkage of a differentiable
rasterization technique [23].

We extensively experiment with the proposed framework
both qualitatively and quantitatively on various datasets in-
cluding Emoji [2], Icon [1] and Bauhaus-style graphic de-
signs. It is demonstrated that our method is able to gen-
erate highly compelling results given only a small number
of simple geometric shape primitive prototypes. Compared
with sketch-based methods that easily generate redundant
and mismatched curves, our method realizes compact com-
bination of several primitives with good approximation ac-
curacy. Moreover, our method can generate novel vector-
ized shapes with rich semantics by simply replacing/editing
the primitive type during inference, which also indicates its
great applicability for modern graphic design.

2. Related Works

Image Abstraction. Contemporary image abstraction tech-
niques mainly focus on representing images using sketches
due to their simplicity [36, 22, 31]. Recent efforts [11, 41,
39] employ CLIP [32] model to facilitate image abstraction
because of its remarkable ability to distill semantic con-
cepts from sketches and images alike. For example, CLI-
Passo [41] utilizes a pretrained CLIP model to provide ge-
ometric and semantic guidance and generates sketches for
input images with multiple levels of abstraction. Besides
sketch-based image abstraction, geometric abstraction [9]
is another influential image abstraction paradigm. Tian et
al. [39] combine CLIP model with evolution strategies [5]
and abstract images by optimizing the procedural placement
of parametric triangles. However, it is obviously not enough
to abstract images with varying structures effectively with
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only triangles. Also, results in [39] are limited to either fully
semantic (CLIP guided) or color mean error (MSE guided).
In our work, we explore geometric abstraction with a prim-
itive set containing diverse geometric elements like rectan-
gle and circle, efc. Our task requires additional selection
of primitives, which is non-differentiable and increases the
difficulty of optimization.

Image Vectorization. Our method represents input images
with vector graphic primitives. Previous works [10, 44, 46]
in this area focus on pre-segmenting images and then re-
gressing segmented components to vector graphics. In
the era of deep learning, researchers perform image vec-
torization with differentiable rendering/rasterization [23].
Im2Vec [33] proposes an RNN-based VAE model to pre-
dict vector paths for raster images without vector supervi-
sion. LIVE [27] emphasizes the importance of path ini-
tialization for the image vectorization task, which proposes
component-wise path initialization and hierarchically opti-
mizes the vector graphics in a layer-wise manner. Despite
achieving compelling vectorization results, LIVE is ineffi-
cient because of its single-pass optimization. Our method
formulates image vectorization as an image-to-set prob-
lem and synthesizes high-quality/regular vector graphics
through combination of simple parametric primitives effi-
ciently.

Reconstruction with primitives. Our work is also related
to primitive-based reconstruction, which is commonly used
in CAD designs [12, 35, 29, 48] and image/sketch compres-
sion [3, 43, 45, 38]. One closely related work is PMN [3],
which abstracts sketches by matching them with pre-defined
primitives in a supervised manner, benefiting from large-
scale sketch datasets. Different from aforementioned meth-
ods, our work proposes to reconstruct raster images with
pre-defined parametric primitives without vector graphics
supervision, which is a much harder task.

3. Methodology
3.1. Problem Definition

Given an input raster image I, our task is to reassem-
ble it with parametric primitives. To this end, we firstly
define a set of primitives P = {p,, p,, ..., p,,} containing n
geometric shape types such as triangle, rectangle and circle,
where each primitive is defined as a sequence of ¢ points.
To sample and aggregate the primitives to represent the in-
put image, we train a model to decode the input image to
a transformation set T = {71,...,7»} with each element
including affine transformation coefficients and m denotes
the number of parametric shapes needed to form the im-
age. For each transformation element, we choose its prim-
itive type and transform the primitive with corresponding
affine parameters. Note that different elements can select
the same primitive type. Hence we formulate the task as

a Bipartite b-Matching problem between the transforma-
tion set and primitive set with b = m and our task is to
yield a primitive assignment matrix A = [ai;]mxn, Where
a;; € {0,1} and a;; = 1 means an assignment (7;,p;)
exists. Then we can obtain a set of transformed shapes
S={si = Ti(p;))I1 <i <m1 < j < nVay; =1} to
be rasterized as the geometric abstraction result and the op-
timization problem is defined as:

min  L(I,R(S)),

A:[ai]‘]an

st ai; €{0,1},1<i<m,1<j<mn, (1

> ay=1,i=1,2,3,.,m,
J

where R denotes the rasterization function and L is the loss
function evaluating pixel errors. This task is difficult to op-
timize with commonly used Graph Matching solvers like
Hungarian algorithm [21] or reinforcement learning based
methods [42, 4] because of the high dimensionality, non-
differentiability and weak supervision as stated in Sec. 1.
For the convenience of reading, we collectively use prim-
itive to represent the pre-defined geometric primitives (i.e.,
elements in P) and use shape to denote the transformed
primitive instances with corresponding transformation pa-
rameters and colors for rasterization (i.e., elements in S).

3.2. Shape Attribute Set Prediction

To sample a certain number of primitives and transform
them to shapes for rasterization, we train the model to pre-
dict a shape attribute set, where each element contains prim-
itive type, transformation parameters and colors.

We firstly employ an image auto-encoder to embed the
input image into hierarchical features/image tokens (includ-
ing the high-level feature (H;) containing rich global in-
formation and the low-level feature (H ) representing lo-
cal details) and decode the features to reconstruct input im-
age, which provides effective guidance for shape attribute
set prediction.

We abandon the usual recursive strategy in the stroke
generation problem (i.e., the parameter generation of the
next stroke depends on the output of the previous stroke and
the input of the current feature) because this serial strategy
not only requires iteration but also is prone to error accumu-
lation. In particular, this method cannot explicitly explore
the layout and structural relationship of various elements in
the picture at medium and long spatial distances.

For our problem, i.e., image analysis and reconstruction
based on primitives, it is very critical to infer which prim-
itive (as well as its transformation and color parameters)
should fill a certain image position/region through spatial
context. Based on the above considerations, we propose
to use the transformer framework [40] to output in parallel

23516



Image
Decoder

Reconstruction

Neural Soft Assignment

Transformation

.7 B

e

Transformer
Encoder-Decoder

DRBE -

Learnable Queries

Positional Encoding

\

(" Predicted Shape Attributes

Head Color Head Type Head

3 T, EColor <TYP>

|

f,):} T, B Color <TYP> J

(Primitive Set|

| Centroid

"| Filtering

> [ <
a

Differentiable Centroid Filtering
Rasterization 1 g
£
£
=
5 ~ =
Centroid — £
Filtering Geometric 3
i © Epoch
Abstraction

Figure 2. Overview of our framework. Our framework firstly uses an image auto-encoder to map the input image to image tokens,
which are fed into an image decoder to reconstruct the input and a transformer-based network to predict a set of shape attributes (i.e.,
transformation parameters, colors and primitive type classification probabilities) by three heads. Then the shape attribute set is matched
with the pre-defined parametric primitive set through our neural soft assignment scheme to generate vector graphics to abstract the input
image geometrically in a self-supervised manner with the help of differentiable rasterization [23].

all shape attributes (like affine coefficients and colors) used
to match with primitives and form the whole input image.
In other words, the goal is to sample a certain number of
primitives and place them at specific image positions with
appropriate geometric and appearance attributes in parallel.
The advantages of this method are two-fold. On one hand,
the image can be divided into a finite number of regions
through the position encoding mechanism to guide the local
best matching (avoiding exhaustive global search). On the
other hand, the global inter-dependency among shapes can
be fully modeled through the token interaction mechanism.
Our shape attribute set prediction follows the architecture
of DETR [7], a classic feed-forward set prediction network.
Specifically, the image features extracted by the image en-
coder concatenated with learnable positional encodings are
used as the input for the transformer encoder. Then the
transformer decoder takes m learnable queries as input and
transforms them into output embeddings,i.e., z € R™*%
The output embeddings are then in parallel decoded by three
prediction heads, i.e., a primitive type prediction head, a
transformation prediction head and a color prediction head.
Primitive type prediction: For the primitive set defined
in Sec. 3.1, each transformation (out of m) has n possible
choices. Hence the primitive type prediction head maps the
embedding into a n-dimensional probability distribution by
softmax, ie., F, : 2z — W € R™*", which relaxes A
to a probability distribution. Transformation prediction:
To well reconstruct/approximate various complex shapes,
we define an affine transformation matrix M to transform
primitives in the order of rotation-scale-translation-shear
with rotation factor «, scale factors (s, s, ), translation fac-
tors (t,t,) and shear factors (8., By). Therefore, the affine
transformation prediction can be defined as the mapping:

Fs : z +— 0 € R™7. To make the transformed prim-
itives fit the shapes more precisely, we equip the affine
transformation with point-wise offsets A € R™*?' as re-
finement, where ¢ is the number of parametric points of
each primitive. Hence, each transformation 7; can be re-
garded as a combination of M (6;) and A;. Color predic-
tion: Also, for each embedding we also map it to colors:
Fe:z C e R™X3,

Note that during inference, we directly select the prim-
itive shape type with the highest probability and raster it
according to the corresponding transformation and color.

3.3. Bipartite b-Matching with Neural Soft Assign-
ment

Pursuit of the optimal primitive selection is a Bipar-
tite b-Matching problem. Commonly, the Hungarian algo-
rithm [21] could be utilized [7, 37], with iterative adding or
removing matching edges. However, the Hungarian algo-
rithm is NOT applicable in our task since the vector graph-
ics supervision (we only have pixel images for training) for
the input is NOT available and thus we cannot make pair-
wise comparisons between each assignment [37]. More se-
riously, for each matching candidate, we need to perform
a separate rasterization for pixel-level loss evaluation. For
a transformation set containing m elements and a primitive
set with n shape types, the number of rasterization times is
n, which is computationally infeasible.

We note that for each image location, previous algo-
rithms might select certain primitives with low probabil-
ity. The pixel patterns formed by rasterization of these
low-probability primitives and the ground-truth image have
large discrepancies, so the gradients introduced by them
are relatively unreliable. We also note that in the standard

23517



rasterization algorithm, different graphic primitives/shapes
at the same position can be superimposed and fused with
the value of transparency, which means that those shapes
with high transparency have less contribution towards the fi-
nal rendered pattern. Namely, in differentiable rasterization
methods, opacity values are always defined to describe the
degree to which content behind an element/shape is hidden.
Inspired by this observation, we propose a relaxed Bipar-
tite b-Matching objective. The core idea is that the output
probability of all possible primitives at each position could
serve as the opacity value so that all possible candidates can
be combined and superimposed and then rasterized together
just for once. In this way, we can greatly reduce the number
of rasterization times for different candidates during opti-
mization, and make it easier to back-propagate the gradient
towards the primitive closest to the accurate shape.

Specifically, for a shape s; with color ¢; and opacity o;,
the amount of appearance it contributes to the rasterized im-
age can be regarded as o;¢; and the rasterized image I can
be described as:

I® :R({(sl,olcl),...,(sm,omcm)}). 2)

Given the primitive assignment probability vector at image
location i, i.e., w; = [wi1, Wiz, ..., wi,] predicted by primi-
tive type prediction head, since we consider higher assign-
ment weight leads to the more impact to the rasterized pat-
tern, we can define assignment weight as an approxima-
tion of opacity of corresponding transformed primitive, i.e.,
w;; ~ 0;;. Hence the final rendered pattern is opacity value
weighted combination of all primitives with the same trans-
formation and color attribute (i.e., (7;, ¢;)):

R = {(Ti(p;), wiei)lj = 1,...,n}. 3
Thus, our optimization objective becomes:
min £(I,I% = R({Ri, ..., Rn})). )

The above formulation significantly simplifies the prim-
itive assignment problem by just softly/continuously ad-
justing the opacity values during rasterization rather than
searching for an optimal assignment matrix in the n"-size
search space. Also, accurate gradients can be propagated
to the most likely primitives with the help of differentiable
vector graphics rasterization [23].

An example of the comparison between our proposed
neural soft assignment and the hard assignment is illustrated
in Fig. 3.

3.4. Training Objectives

The image auto-encoder is supervised by an image re-
construction objective, which is written as:

L, =|I-1|3, 5)

where I is the reconstructed pixel image.
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Soft Assignment

Straightforward
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Figure 3. An example of the comparison between our neural soft
assignment and the hard assignment.

For the shape attribute set prediction, we rasterize all
transformed parametric shapes into a pixel output and com-
pare the result with the input image. More concretely, be-
sides a pixel-wise mean square loss, we follow [41] and uti-
lize a pre-trained image encoder model of CLIP to measure
the geometric distance between the input and the rasterized
output:

Lo = ||I - IRH% + Lgeo, (6)

where L4, can be denoted as:

Loeo =Y _|CLIP(I) — CLIP(I®)], (7)
l

where CLIP; is the CLIP encoder activation at layer [ as
defined in [41].

Centroid Filtering for Enhancing Gradients. To address
the vanishing gradient issue in flat primitive regions, we
propose an annealing based region filtering mechanism F
by filtering the image on a Gaussian convolutional kernel G

2 2
with standard deviation : G(u,v) = 5= ¢ 2% Consid-
ering that the rasterized output should gradually approach
the original input in later training stage to encourage good
reconstruction of detailed structures, we design an anneal-
ing strategy to sharp o as training epoch increases in order
to penalize more detailed mismatch: o., = ooe” 7, where
0p is the initial standard deviation of the Gaussian kernel
and T controls the annealing rate. Hence the training ob-
jective of shape attribute set prediction can be written as:

Lo = ||Fep(I) = Fep(IT)|3 + Lgeo, (8)

and the overall objective function is:

L=L~+Lq. 9

4. Experiments
4.1. Experimental Setups

Datasets. We evaluate our method on four datasets. Specif-
ically, besides the common Emoji [2] dataset and Icon [1]
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dataset introduced in Im2Vec [33], we also introduce a
Bauhaus dataset, which contains 200 raster images col-
lected by assembling simple shapes like circles and trian-
gles into Bauhaus-style graphic designs. Compared with
Emoji and Icon datasets, the Bauhaus dataset contains more
complex and diverse patterns and is more challenging for
our task. In addition, to evaluate the generalization of our
framework, we augment the Emoji dataset by performing
random perspective transformations on the smile faces to
obtain more complex image topologies (i.e., Emoji-Aug).
Evaluation Metrics. We evaluate the proposed framework
quantitatively on two main tasks including geometric ab-
straction and image vectorization. For the geometric ab-
straction task, we use the geometric distance (GD) defined
in Eqn. (7) as the metric. We also define an abstraction-
based image retrieval task, where the goal is to match the
abstraction results with corresponding inputs at instance
level. We use image-retrieval accuracy (top-1) as the met-
ric. For the image vectorization task, we use the pixel-wise
mean square loss as the metric.

Implementation Details. For transformer network, the
feature dimension is 128 and both encoder and decoder
have 3 layers. The number of predicted vector graph-
ics paths (i.e., m) for all datasets is set as 10. For the
convolutional kernel G in the Centroid Filtering mech-
anism, the kernel size equals to half of the image size
and the standard deviation o is set as 2.0 initially with
an annealing rate 7' = 500. Notably, our framework is
scalable and any image reconstruction network that ex-
tracts image features can be utilized as our image auto-
encoder. All experiments are conducted with a primitive
set {triangle, rectangle, circle, semicircle}, i.e.,n = 4.

4.2. Comparison with State-of-the-Art Methods

Geometric Abstraction. We compare our framework with
state-of-the-arts (i.e., CLIPasso [41] and ES-CLIP [39]) for
geometric abstraction task. We report MSE, geometric dis-
tance and image retrieval accuracy in Tab. 1. For image
retrieval, we use a pre-trained CLIP model to extract fea-
tures for both original images and corresponding abstrac-
tion results. We use a cosine distance function to mea-
sure the feature similarity and perform abstraction-based
image retrieval at instance level. Considering that the Emoji
and Emoji-Aug datasets consist of a large amount of smile
faces with similar topologies, instance-level image retrieval
is very challenging, especially under top-1 accuracy metric.
As seen in Tab. 1, our method achieves significantly bet-
ter results for all evaluation metrics, especially in geometric
distance and retrieval accuracy, which demonstrates that our
method predicts precise placement and selection of primi-
tives for geometric abstraction and generates semantically
and geometrically discriminative abstraction results.

We also present qualitative comparisons on geometric
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Figure 4. Qualitative comparison on geometric abstraction
task. All methods except ES-50 use 10 paths to abstract inputs.

abstraction in Fig. 4. We see that our method generates
compelling abstraction results and fits a wide variety of ge-
ometric patterns well. CLIPasso achieves acceptable re-
sults by preserving the main semantic concepts but fails
to capture fine-grained geometric information, especially in
the Icon and Bauhaus datasets where geometric clues are
harder to model. The results reveal that sketch-based ab-
straction cannot explore the diversities of image geometry
and it is important to abstract images geometrically with
simple shapes. Notably, our method achieves excellent vi-
sual results in Bauhaus dataset with only 10 shapes/paths,
while ES-CLIP creates great shape redundancy and fails to
abstract images effectively with limited number of shapes,
which demonstrates that our method realizes efficient and
precise geometric abstraction through assembly of pre-
defined primitives and our framework can serve as a useful
tool for modern graphic design.

Image Vectorization. Considering that our method rep-
resents images with vector graphics, we also evaluate the
quality of generated vectors and compare with SOTA meth-
ods. We report MSE results between inputs and raster-
ized vector graphics in Tab. 2. Although we only use sim-
ple shape primitives rather than complex Bézier curves,
we achieve better results on Bauhaus&Icon and compara-
ble results on Emoji compared to state-of-the-art method
LIVE [27]. LIVE is a strong method to generate layer-wise
vectors for images, but it fails to fit regular geometric shapes
well. Also, LIVE is based on single-pass optimization and
several minutes are needed to vectorize an image while our
method is very efficient. Qualitative comparisons are shown
in Fig. 5. We see that our method is capable of generat-
ing regular vectors to characterize fine-grained image ge-

23519



Method Bauhaus Icon Emoji Emoji-Aug
MSE| GD| MSE| GD] Acc.%?1 MSE| GD| Acc.%?1 MSE| GD| Acc.%?1
ES-10paths [39] 0.0094 0.514 0.0366  0.382 13.26 0.0306  0.372 7.69 0.0458  0.497 3.90

ES-50paths [39] 0.0046 0.216 0.0235 0.374 40.74 0.0197 0.244 38.64 0.0235 0.312 28.77
CLIPasso [41] - 0.157 - 0.198 51.85 - 0.228 36.36 - 0.344 30.70
Ours 0.0003 0.015 0.0017  0.062 77.78 0.0020 0.059 76.92 0.0022 0.072 66.23

Table 1. Comparison with state-of-the-arts on geometric abstraction task. We report the mean square error (MSE) in pixel, geometric
distance (GD) and image retrieval accuracy (top-1 Acc.%). CLIPasso abstracts images using sketches and ES-CLIP only uses triangles.
Both our method and CLIPasso use 10 paths for all datasets while ES-CLIP fails to generate recognizable results under such setting.

Method Bauhaus Icon Emoji  Emoji-Aug
Im2Vec [33] 0.2613  0.3290 0.0258 0.0399
Diffvg [23] 0.0187  0.0285 0.0092 0.0140
LIVE [27] 0.0008  0.0024 0.0016 0.0020
Ours 0.0003  0.0017 0.0020 0.0022

Table 2. Comparison with state-of-the-arts on image vectoriza-
tion task. Pixel MSE on several datasets are reported. All results
of compared methods are obtained using their source code and all
methods use 10 vector graphic paths.

Input Diffvg LIVE Ours
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Figure 5. Qualitative comparison on image vectorization task.
Even though LIVE achieves competitive results in all datasets, it
cannot deal with rapid change of color. Also, the vectors generated
by LIVE are not as regular as ours, which proves the advantage of
primitive-based reconstruction. Please zoom in for more details.

ometry. In addition, existing image vectorization methods
are not convenient for image editing while our method has
straightforward image editing ability benefited from regular
geometric primitives (as shown in Sec. 4.3). Notably, we
do not present the results of Im2Vec [33] in Fig. 5 because
no acceptable results can be obtained with their source code
under 10-paths setting.

4.3. Extension of Our Method

In this section, we explore some valuable extensions of
our method. Firstly, motivated by DETR [7] which also
utilizes transformer network to perform set prediction, we
also visualize the shapes/paths generated by different trans-

iath: 0 iath: 1 iath: 2 iath: 3 iath: 4 iath: 5 iath: 6 iath: 7 iath: 8 iath: 9

Figure 6. Visualization of the shapes/paths predicted by different
transformer decoder slots on the Emoji dataset.
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Figure 7. Visualization of geometric style transfer results. We
transfer specific semantics of the image to different geometric
shapes through simple replacement of primitive type during in-
ference.

former decoder slots. More concretely, each path prediction
is represented as a heatmap centered on its center coordinate
and all the heatmaps are added across the dataset according
to the path order. The visualization result on Emoji dataset
is shown in Fig. 6. We can observe that each decoder slot
learns to centralize on specific areas, which motivates two
meaningful extensions of our method.

Geometric Style Transfer (Editing). Through comparing
Fig. 6 and the images of Emoji dataset we can observe that
the path 6/7 always generates shape for the right/left eye
of the emoji face, and path 9 tends to generate shape for
the mouth. Hence, we can perform geometric style trans-
fer (i.e., transfer specific semantics to different geometric
shapes) by directly replacing the corresponding prim-
itive for specific predicted shapes/paths during inference.
For example, star eyes can be achieved by simply replac-
ing the primitives for path 6 and path 7 with a parametric
star primitive. Some results of geometric style transfer are
shown in Fig. 7. Notably, to edit specific image areas with
any parametric shape by simple replacement of primitive
during inference, we do not utilize the point-wise offsets
stated in Sec. 3.2 and only keep the affine parameters to
transform the primitive.

Interpolation. As shown in Fig. 6, the generated shapes
of the transformer decoder centralize on specific areas fol-
lowing a uniform order across the dataset, which over-
comes the disordered nature of previous image vector-
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Figure 8. Visualization of interpolation results. It is noted that our
method can interpolate not only areas with rich semantics (e.g.,
eyes and mouth) but also the face poses (bottom row) by simply
interpolating the points of the generated shapes in order.
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Figure 9. More visualizations on Icon and Bauhaus datasets.
‘GeoAbs’ means geometric abstraction. ‘InterP’ means vector in-
terpolation. ‘Editing’ means geometric style transfer by simply
modifying primitives during inference.

Editing InterP GeoAbs

ization methods. Therefore, our method can perform in-
terpolation between two predicted vector graphics and gen-
erate novel art images by simply interpolating the points of
each predicted shape in order. Some interpolation results
are shown in Fig. 8. We see that our method can interpolate
not only areas with rich semantics (e.g., eyes and mouth)
but also face poses. Also, we do not utilize the point-wise
offsets and only keep the affine parameters in this part.

4.4. Ablation Study

In this section, we explore the crucial components and
hyper-parameters of our method. For simplicity, all the ex-
periments in this section are conducted on Emoji dataset.
Component Analyses. We first investigate the effective-
ness of the proposed neural soft assignment scheme. We
compare our soft assignment algorithm with several ablated
versions and the corresponding MSE losses between input
and the rasterized output during training process are shown
in Fig. 10(a). We see that without establishing equivalence
between primitive selection and the opacity for rasteriza-
tion (i.e., Baseline), the final MSE loss converges at a high
value and it is not able to generate accurate rasterized re-
sults because of the lack of supervision for the primitive se-
lection. The assignment weights can also be optimized by
using argmax to select primitives (i.e., HardAssign). How-
ever, the hard assignment transfer process is difficult to op-
timize because of unavailable pairwise assignment cost and
the non-differentiable nature of the argmax function. Gum-
bel Softmax can be utilized to provide more accurate gra-
dients when using argmax function, but it attaches great

—— Bascline wio Filtering

08 Filtering, w/o Anneal

HardAssign
0.8- —— TardAssign+Gumbel
—— SoftAssign

—— Filtering, Anneal

Input

MSE@Emoji
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&,

0.0-

0 500 1000 1500 2000 0 500 1000 1500 2000
Iteration Epochs Iteration Epochs

(2) (b)

Figure 10. Component Analyses. (a) The effectiveness of our
neural soft assignment scheme is illustrated. (b) The effectiveness
of both image filtering and annealing strategy is demonstrated.
Please zoom in for more detailed comparisons.

L 0.0026
0010
0012 0.0025
0,008 0010 0.0024

0.008 00023

0.006 00022

MSE@Emoji

0.004 0.0021

0.002 0.002 0.0020
1 2 3 4 s 200 400 600 800 1000

20 4 60 8 100 120

Standard Deviation Annealing Rate Kernel Size
Figure 11. Parameter Analyses. All experiments are conducted

on Emoji dataset with MSE metric.

randomness to primitive selection and makes the optimiza-
tion for transformation parameters unstable (i.e., HardAs-
sign+Gumbel). Our neural soft assignment scheme can per-
form stable and accurate optimization by reducing the op-
timization difficulty and providing accurate gradients for
assignment weights. We also explore the effectiveness of
our centroid filtering mechanism. The results are shown
in Fig. 10(b). We observe that the image loss converges
faster and better by enhancing the gradients using annealing
mechanism. Without the centroid filtering mechanism, it is
able to transform primitives to appropriate placements with
corresponding colors but fails to further adjust the shape to
fit the image geometry due to the vanishing gradient in flat
primitive regions. Also, there exists visible pixel-level blur
when not using annealing strategy.

Parameter Analyses. We explore how initial standard de-
viation og, the kernel size of the Gaussian kernel and the
annealing rate 7" in the centroid filtering mechanism affect
our model. The results are shown in Fig. 11. We observe
that too large o and too small 1" cause poor results and
our method is not sensitive to the kernel size (all MSEs are
below 0.003). We also explore the effect of the number of
shapes/paths m and the point-wise offsets on the results.
The results are shown in Fig. 12. Our method can gener-
ate competitive results with only 5 shapes on Emoji dataset.
We also observe that the point-wise offsets can reduce arti-
facts among shapes and are very effective especially when
the number of shapes is limited.
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Figure 12. MSE results vs. shape number on Emoji dataset are
shown. Competitive results are generated with only 5 shapes. It is
also illustrated that our method can achieve better results equipped
with point-wise offsets. Please zoom in for more details.

5. Conclusion

In this work, we present a novel image geometric ab-
straction paradigm based on assembly out of a pool of pre-
defined parametric primitives in an unsupervised manner.
Experimental results on various datasets and tasks demon-
strate that our framework generates accurate and high-
quality/regular vectors to characterize geometric informa-
tion of images with combination of only four simple primi-
tives, facilitating straightforward controllable shape editing
by simple replacement of primitive type during inference.
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