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ABSTRACT

Diffusion models have become the core paradigm for high-fidelity image genera-
tion, achieving remarkable performance in tasks such as text-to-image synthesis.
A common strategy to further boost their performance is test-time scaling (TTS),
which improves generation quality by allocating more computation during infer-
ence. Despite recent progress, existing TTS methods operate at the full-image
level, neglecting the fact that image quality is often spatially heterogeneous. As a
result, they squander computation on already satisfactory regions while failing to
target localized defects, leading to both inefficiency and instability. In this paper,
we advocate a new direction – Localized TTS – that adaptively resamples defec-
tive regions while preserving high-quality areas, thereby substantially reducing
the search space. This paradigm promises to improve efficiency and stability, but
poses two central challenges: accurately localizing defects and maintaining global
consistency. We propose LoTTS, the first fully training-free framework for local-
ized TTS. For defect localization, LoTTS detects defective regions by contrasting
cross-/self-attention signals under quality-aware prompts (e.g., “high-quality” vs.
“low-quality”), reweights them with original prompt attention to filter out irrele-
vant background, and refines them with self-attention propagation to ensure spa-
tial coherence. For consistency, LoTTS perturbs low-quality regions with noise at
intermediate timesteps for localized resampling, and then performs a few global
denoising steps to seamlessly couple local corrections with the overall structure
and style. Extensive experiments on SD2.1, SDXL, and FLUX demonstrate that
LoTTS achieves state-of-the-art performance: it consistently improves both lo-
cal quality and global fidelity, while reducing GPU cost by 2–4× compared to
Best-of-N sampling. These findings establish localized TTS as a promising new
direction for scaling diffusion models at inference time.

1 INTRODUCTION

Diffusion models have become the de-facto standard for high-quality image generation, owing to
their strong scalability with data, model size, and compute. This scalability has driven remarkable
advances in text-to-image synthesis (Ho et al., 2020; Saharia et al., 2022; Rombach et al., 2022; Ruiz
et al., 2023), establishing scaling laws as a guiding principle for building more capable models.
While most prior work has focused on scaling at training time, recent studies show that test-time
scaling (TTS), allocating additional compute during inference, can also significantly improve sample
quality and overall performance (Nichol et al., 2021; Esser et al., 2024; Peebles & Xie, 2023; Ma
et al., 2025; Liu et al., 2024b). Despite its promise, existing TTS research remains limited in scope,
leaving open questions about how to use inference-time compute more effectively.

Existing TTS methods can be broadly grouped into three categories. The first is denoising step
scaling, which improves quality by increasing the number of sampling steps (Song et al., 2020b;
Lu et al., 2022). However, these gains saturate quickly and plateau around 50 steps, with further
increases offering negligible benefit. The second is Best-of-N search, where generates N samples
and selects the best one by verifier (Liu et al., 2024b; Wang et al., 2023). While simple, this brute-
force approach treats each candidate as an independent sample from scratch, overlooking the fact
that even imperfect images may be substantially improved through local corrections. As a result,
potentially promising samples are discarded, and computation is wasted on redundant global search.
The third is trajectory/noise search, which perturbs the initial noise or explores alternative sampling

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

…

…

…

Best-of-N LoTTS (Ours)

Trajectory Search

Prompt Selected Rejected

Local Resample Global Resample

… MaskMask

Local Seach

B
a

sk
et o

f 
fre

s
h

 b
re

a
d

 
K

itten
 p

la
yin

g
 

w
ith

 ya
rn

 

Intermediate Image

Figure 1: Overview of the LoTTS framework. LoTTS utilizes quality-aware masks for localized
resampling, contrasting with global Best-of-N and trajectory search. The examples (right) show how
LoTTS selectively improves defective regions while preserving high-quality content.

paths (Xu et al., 2023b; Ramesh & Mardani, 2025). Although more fine-grained, it still operates
at the full-image level. Searching over all regions can inadvertently disturb areas that are already
of high quality, thereby leading to inefficiency and instability. Despite their differences, all three
categories share a fundamental limitation: they operate at the full-image level, as shown in Figure 1.
Consequently, they overlook the inherent spatial heterogeneity of image quality and fail to exploit
the potential of localized refinement.

This observation naturally motivates an orthogonal direction: localized TTS, where only defective
regions are resampled while preserving high-quality content (Cao et al., 2025), thereby substantially
reducing the search space. Yet turning this idea into practice introduces two key challenges. The first
is accurate defect localization: since the distribution of artifacts is complex and prompt-dependent,
reliably identifying regions that truly require correction is non-trivial (Liu et al., 2024a; Zhang et al.,
2023). The second is maintaining consistency in local resampling: as the sampling trajectory is
globally defined, locally modifying only a subset of regions may introduce incompatibility, leading
to semantic drift, stylistic inconsistency, or boundary artifacts that degrade perceptual quality (Song
et al., 2020b; Xu et al., 2023b).

In this paper, we propose LoTTS (Prompt-Guided Localized Test-Time Scaling), the first fully
training-free localized TTS framework. Specifically, LoTTS consists of two key components: defect
localization and consistency maintenance. For defect localization, LoTTS exploits attention signals
from diffusion models to construct a quality-aware mask. We contrast semantically equivalent but
quality-differentiated prompts (e.g., “a high-quality image of {p}” vs. “a low-quality image of
{p}”) and compute the difference between their cross-attention maps, which highlights candidate
defective regions (Hertz et al., 2022; Chefer et al., 2023; Chung et al., 2024). To suppress spurious
activations, these difference maps are reweighted with the original prompt attention, filtering out
irrelevant background responses. The resulting signals are then propagated via self-attention to
enforce spatial coherence, yielding an automated defect mask without reliance on external predictors
or manual annotations. For consistency maintenance, LoTTS introduces a localized defect-aware
resampling mechanism. After initial sampling, we inject controlled noise into the defective regions
of the generated image at an intermediate timestep, followed by localized denoising (Meng et al.,
2021). To reconcile local refinements with preserved content, we perform a few global denoising
steps, harmonizing style and structure across the image. This ensures that defects are corrected
without sacrificing global fidelity. Furthermore, LoTTS is fully plug-and-play and can be seamlessly
applied to both diffusion- and flow-based generative models (Song et al., 2020b; Lu et al., 2022).

Our main contributions are summarized as follows:

• We propose LoTTS, the first training-free localized Test-Time Scaling framework, which shifts
the focus of inference-time compute from the entire image to defect regions, addressing the inef-
ficiency of global search.
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Figure 2: LoTTS Framework for Defect Localization. The pipeline consists of four
stages: prompt-driven discrimination, context-aware propagation, semantic-guided reweighting, and
quality-aware mask generation.

• We introduce an efficient localized noise search mechanism, comprising prompt-driven quality
map generation and localized defect-aware resampling.

• We conduct extensive experiments on SD2.1, SDXL, and FLUX, showing that LoTTS consistently
achieves state-of-the-art performance across multiple human-preference and automated evaluation
metrics, while reducing GPU cost by 2–4× relative to Best-of-N sampling.

2 RELATED WORK

Image Generation and Evaluation. Image generation has advanced from GANs (Goodfellow et al.,
2020; Karras et al., 2019) and autoregressive models (van den Oord et al., 2016b;a) to flow-based and
diffusion models. GANs achieve high fidelity but are unstable, while autoregressive models capture
dependencies yet remain slow. Early flows (Kingma & Dhariwal, 2018) provide exact likelihoods
but scale poorly, whereas recent flow matching and rectified flow methods (Lipman et al., 2022;
Albergo et al., 2023; Kim et al., 2025a) connect closely to diffusion and offer efficient alternatives.
Diffusion models (Ho et al., 2020; Rombach et al., 2022) now dominate, delivering state-of-the-art
text-to-image synthesis (Rombach et al., 2022; Podell et al., 2023). In parallel, evaluation methods
have evolved: earlier work often collapsed quality into a single global score (Wang et al., 2004;
Salimans et al., 2016; Heusel et al., 2017), while spatial indicators relied on texture- or frequency-
based heuristics (Yu et al., 2019; Durall et al., 2020) or classifier- and VLM-based predictors (Zhang
et al., 2023; Liu et al., 2024a), typically requiring supervision and external datasets. In contrast,
LoTTS leverages the diffusion model’s inherent attention to localize defects automatically, enabling
training-free, localized refinement.

Generation Quality Enhancement. Image Editing in modern T2I systems is typically implemented
as a post-processing stage. The cascade paradigm, consisting of a generator followed by a refiner,
has become a standard design, as in IF (DeepFloyd, 2023), SDXL (Podell et al., 2023) and SD
Cascade (Pernias et al., 2023), where an additional pass refines the entire image to enhance global
fidelity. However, such refiners usually require separate training and introduce non-negligible com-
putational overhead. In contrast, SDEdit (Meng et al., 2021) shows that diffusion models can per-
form localized edits via noise–denoise updates within user-specified masks, suggesting the potential
of training-free localized refinement. This localized resampling mechanism inspires our approach,
which extends SDEdit’s manual editing to automated quality-aware refinement at test time.

Test-Time Scaling in Vision. Some test-time scaling methods have been proposed to enhance dif-
fusion model generation by allocating more computation at inference. Early work simply increased
denoising steps, but improvements saturate quickly beyond a certain number of function evaluations
(NFE) (Karras et al., 2022; Song et al., 2020a;b). Recent studies therefore explore alternative di-
rections, such as Best-of-N search, where multiple candidates are generated from different noise
seeds and a verifier selects the best one (Liu et al., 2024b; Wang et al., 2023), searching over noise
initializations (Song et al., 2020b; Xu et al., 2023b), optimizing sampling trajectories (Ramesh &
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Mardani, 2025) with verifier feedback (Song et al., 2020a; Karras et al., 2022; Liu et al., 2022; Lu
et al., 2022; Salimans & Ho, 2022), or adopting evolutionary (He et al., 2025) and tree-search meth-
ods (Yoon et al., 2025). Unlike these approaches, which all operate on the entire image and require
full regeneration, our LoTTS performs localized TTS by concentrating on low-quality regions for
greater efficiency.
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Figure 3: Visualization of Cross-Attention–based Defect Localization. From the original
(CAorig), positive (CApos), and negative (CAneg) prompts, LoTTS derives discriminative differ-
ences (CA′

diff ) and combines them with propagated original attention (CA′
orig) to produce a coher-

ent defect mask (CA′
diff + λCA′

orig) that highlights low-quality regions. The Reference shows a
suboptimal supervised baseline (Li et al., 2024).

3 PRELIMINARIES

Diffusion Models. Diffusion models transform a simple source distribution, e.g.a standard Gaus-
sian, into a target data distribution p0. In diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020), the forward process gradually corrupts clean data with noise, as

xt = α(t)x0 + σ(t)ϵ, ϵ ∼ N (0, I), (1)

where α(t) and σ(t) denote the noise schedule, and t ∈ [0, T ]. To recover data from its diffused rep-
resentation, diffusion models generally rely on Stochastic Differential Equation(SDE)-based sam-
pling during inference (Song et al., 2020b;a), which introduces stochasticity at every denoising step:

xt−1 =
√
α(t− 1)

(
xt −

√
1− α(t)ϵθ(xt, t)√

α(t)

)
+
√

1− α(t− 1)− σ(t)2 ϵθ(xt, t) + σ(t)ϵ(t).

(2)
where ϵθ(xt, t) denotes the predicted noise at step t, α(t) and σ(t) are the noise schedule parameters,
and ϵt ∼ N (0, I) is a standard Gaussian noise.

Flow Models. Flow models (Lipman et al., 2022; Albergo et al., 2023) parameterize the ve-
locity field ut ∈ Rd and generate samples by solving the Flow Ordinary Differential Equation
(ODE) (Song et al., 2020b) backward from t = T to t = 0:

dxt = ut(xt) dt. (3)

where ut(xt) denotes the velocity field learned by the flow model, and dt is an infinitesimal step
along the reverse-time ODE. This deterministic dynamics evolves xt continuously in time, produc-
ing identical outcomes for the same input and limiting the applicability of test-time scaling meth-
ods (Kim et al., 2025a), which require stochasticity to explore diverse trajectories.

To address this limitation, recent studies propose that the deterministic Flow-ODE could be refor-
mulated into an equivalent SDE (Albergo et al., 2023; Ma et al., 2024; Patel et al., 2024; Kim et al.,
2025a; Singh & Fischer, 2024). The resulting stochastic process can be written as:

dxt =
(
ut(xt)− σ(t)2

2 ∇ log pt(xt)
)
dt+ σ(t)dw, (4)
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where the score function∇ log pt(xt) can be estimated from the velocity field ut (Singh & Fischer,
2024)), and the Brownian motion term dw introduces stochasticity at each sampling step. This
enables LoTTS to naturally apply to Flow-Models.
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Figure 4: Qualitative results on challenging text-to-image prompts. Compared with Resampling,
Best-of-N and Particle Sampling, LoTTS better follows complex prompts. Green borders indicate
high-quality generations, red mark lower-quality ones, and brown denotes the unrefined baseline
(Search Root).

4 METHOD

4.1 OVERALL

Existing test-time scaling methods, such as Best-of-N or trajectory search, apply uniform resampling
to the entire image, overlooking spatial heterogeneity in quality and thereby wasting computation
or even degrading well-formed regions. To overcome this, we propose LoTTS, a region-aware
extension of Best-of-N. Instead of resampling entire images, LoTTS performs localized refinements
guided by quality-aware masks, and organizes the search as a hierarchical tree explored via depth-
first traversal. The best candidate is then selected as the final output.

To realize this idea, two key challenges must be addressed: (1) Defect Localization: how to generate
reliable resample masks that identify low-quality regions, and (2) Consistency Maintenance: how to
perform localized resampling within these regions without disrupting the rest of the image. We de-
scribe our solutions to these challenges in the following subsections. For completeness, pseudocode
is given in Appendix B, and Appendix G provides a theoretical analysis showing that LoTTS can be
proven to achieve a higher expected quality gain under stated conditions.

4.2 DEFECT LOCALIZATION

A key challenge in localized test-time scaling is to identify which regions of a generated image
truly require refinement. Since image degradations are usually local and diverse, a reliable defect

5
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localization mechanism is indispensable. Existing verifiers typically provide only global quality
scores without spatial resolution, making them unsuitable for localized resampling. We leverage
the intrinsic attention signals of diffusion models to automatically infer defect regions. The core
intuition is that cross-attention with a “low-quality“ prompt points to artifact-prone regions, and
comparing it with a “high-quality“ prompt makes those local defects stand out. To obtain stable and
semantically meaningful masks, we further propagate and reweight these signals.SDXL

Before After

Before After

Before After

Before After Before After

Before After

Before After

Before After

Before After

Figure 5: Before-after comparison in SD2.1. LoTTS demonstrates strong local refinement capa-
bilities, improving artifacts such as distorted objects, faces, and textures. White circles highlight
corrected regions.

Overview. As illustrated in Fig. 2, the process has four stages: (1) Prompt-driven Discrimination:
compute cross-attention maps under high-/low-quality prompts and take their difference to high-
light candidate defect regions. (2) Context-aware Propagation: refine these signals by propagating
across spatially similar positions, mitigating noise, and enforcing local coherence. (3) Semantic-
guided Reweighting: combine with original prompt attention to suppress irrelevant background. (4)
Quality-aware Mask Generation: binarize by percentile to control the resampling ratio. Fig. 3 fur-
ther provides an intuitive visualization of the intermediate results, showing how each step contributes
to coherent defect localization.

Prompt-driven Discrimination. The intuition is that cross-attention maps reflect how different
prompts attend to image regions: a “low-quality” prompt tends to focus on artifact-prone areas,
while a “high-quality” prompt attends to cleaner regions. By contrasting the two, we can highlight
potential defects.

Following standard practice, we obtain a spatial cross-attention vector CA ∈ RS by averaging over
tokens, heads, and selected layers, where S = Hs×Ws denotes the number of spatial positions. For
a given prompt p, we construct three variants: a positive prompt (“A high-quality image of {p}”), a
negative prompt (“A low-quality image of {p}”), and the origin prompt (the original p). This yields
three attention vectors CApos,CAneg,CAorig ∈ RS .

We then define a contrastive cross-attention map as

CAdiff = CAneg − CApos, (5)

which emphasizes spatial locations where the “bad” prompt receives higher attention than the
“good” prompt. The origin vector CAorig will later serve as a foreground prior in our aggregation
step.

Context-aware Propagation. While the contrastive attention map CAdiff highlights defect-prone
regions, it is often noisy and fragmented, with neighboring pixels showing inconsistent scores. Intu-
itively, spatially or semantically similar regions should share similar quality signals. To enforce such
coherence, we propagate the attention scores using a self-attention matrix derived from the image

6
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queries Q:

CA′ = SA× CA, SA = Softmax(
QQ⊤
√
d

). (6)

This operation smooths the raw attention map by diffusing scores across related spatial positions.
Applying it to both CAdiff and CAorig yields refined maps CA′

diff and CA′
orig that are more stable

and spatially coherent.

Semantic-guided Reweighting. Although the contrastive map CA′
diff can reveal defect-prone areas,

it often assigns high scores to background regions with little semantic content (e.g., large sky areas).
The intuition is that truly meaningful defects should also lie within the semantic foreground defined
by the original prompt. To encode this prior, we combine the contrastive map with the original
attention map CA′

orig, which serves as a soft foreground mask:

P = CA′
diff + λCA′

orig, (7)

where λ balances the defect signal and the foreground prior. The resulting map P emphasizes
semantically relevant regions, leading to more reliable defect localization.

Quality-Aware Mask Generation. Finally, we need to convert the aggregated quality map into a
binary mask that specifies which regions should be resampled. The key idea is to only refine the most
degraded areas rather than the entire image. To achieve this, we keep the top r proportion of spatial
positions with the highest defect scores, ensuring that resampling is both targeted and controllable.
Formally, the mask M ∈ {0, 1}S is given by

M = I(P > Perc(P, 1− r)) , (8)

where Perc(P, 1 − r) is the (1 − r)-quantile of the quality map P , and r ∈ (0, 1) controls the
fraction of resampled regions. The mask is then reshaped into the spatial grid M ∈ {0, 1}Hs×Ws to
guide localized refinement. We compute the attention mask at t = 0, matching the final image.

Table 1: Quantitative results on three benchmarks (Pick-a-Pic, DrawBench, COCO2014).
Across both human-aligned metrics (HPS, AES, Pick, IR) and automated metrics (FID, CLIP),
LoTTS consistently outperforms Resampling, Best-of-N , and Particle Sampling baselines.

Model Method Pick-a-Pic DrawBench COCO2014

HPS↑ AES↑ Pick↑ IR↑ HPS↑ AES↑ Pick↑ IR↑ FID↓ CLIP↑

SD2.1

Resampling 20.44 5.377 20.32 0.236 21.34 5.456 20.23 0.244 15.33 0.201
Best-of-N 21.56 5.534 21.04 0.470 22.45 5.589 20.59 0.446 13.21 0.252
Particle Sampling 23.44 5.980 21.30 0.530 22.19 5.790 21.23 0.520 12.34 0.260
LoTTS (Ours) 24.52 5.805 21.32 0.680 23.29 5.911 21.47 0.698 10.89 0.263

SDXL

Resampling 23.44 6.011 21.18 0.680 23.84 6.034 21.09 0.657 9.56 0.234
Best-of-N 24.54 6.198 22.01 0.790 25.27 6.238 22.23 0.756 8.34 0.268
Particle Sampling 25.33 6.235 22.05 0.865 26.46 6.233 22.31 0.844 7.99 0.271
LoTTS (Ours) 28.23 6.304 22.30 1.102 28.90 6.321 22.38 1.111 7.33 0.297

FLUX

Resampling 29.34 6.298 22.07 1.038 29.28 6.223 22.05 1.100 7.01 0.282
Best-of-N 30.23 6.299 22.89 1.235 30.46 6.290 22.33 1.221 6.34 0.306
Particle Sampling 31.56 6.532 23.31 1.450 32.28 6.523 22.90 1.445 6.02 0.332
LoTTS (Ours) 33.33 6.501 23.04 1.605 33.90 6.890 23.21 1.623 5.31 0.351

4.3 CONSISTENCY MAINTENANCE

With reliable defect masks from the previous step, the next challenge is how to resample the iden-
tified regions without disrupting the rest of the image. Restricting updates only to masked regions
often introduces boundary artifacts or semantic drift. To address these issues, LoTTS maintains both
spatial and temporal consistency during refinement.

Spatial Consistency. Resampling in diffusion models typically begins by perturbing the latent
representation. If perturbation is applied only within the mask, the noise distribution becomes in-
consistent with surrounding regions, creating visible seams. We avoid this by injecting comparable
noise into both masked and unmasked areas, which balances noise levels and ensures smooth tran-
sitions across boundaries. Formally, given the clean latent x0 and binary mask M, we initialize the

7
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perturbed latent at timestep t0 as
xt0 = α(t0)x0 + σ(t0)((1−M)⊙ zbg +M⊙ zmask) (9)

where zbg∼N (0, I) and zmask∼N (0, I).

Temporal Consistency. A second challenge is preserving the global semantics of the image.
Restarting from pure noise discards structure and forces the model to regenerate the entire scene.
Instead, following Meng et al. (2021), we resume denoising from an intermediate step t0, so that
global content is retained while localized corrections remain possible. The masked reverse update is

xt−∆t = (1−M)⊙
(
α(t)x0 + σ(t)z

)
+M⊙

(
xt − ϵ2ϵθ(xt, t) + ϵz

)
. (10)

where ϵθ(xt, t) denotes the predicted noise, ϵ is the per-step noise scale, N is the total number of
reverse steps, σ(t) is the variance schedule at step t, z ∼ N (0, I), and ∆t = t0/N . This keeps
unmasked regions faithful while allowing masked regions to be selectively refined.

Final Integration. Even after refinement, slight mismatches may remain along boundaries. To
ensure seamless blending, we apply a short global denoising sweep. This final pass restores full-
image coherence, yielding consistent high-quality outputs.

(1) Ablation Studies of Mask Generation (2) Analysis of Prompt

Figure 6: Ablation and prompt analysis for LoTTS. (1) Mask generation ablations show each
component contributes to generation performance. (2) Prompt analysis shows comparable results
across prompt phrasings, highlighting flexibility.

5 EXPERIMENTS

We evaluate LoTTS on three benchmarks: Pick-a-Pic (Kirstain et al., 2023), DrawBench (Saharia
et al., 2022), and COCO2014 (Lin et al., 2014). Performance is measured by four human-aligned
metrics, HPSv2 (Wu et al., 2023), PickScore (Kirstain et al., 2023), ImageReward (IR) (Xu et al.,
2023a) (also serving as the verifier), and Aesthetic Score (AES) (Schuhmann et al., 2022), together
with FID (Heusel et al., 2017) and CLIP Score (Radford et al., 2021) on COCO. Experiments are
conducted on SD2.1 (Rombach et al., 2022), SDXL (Podell et al., 2023), and Flux.1-schnell (Labs,
2024). SD2.1 and SDXL are diffusion-based, while Flux.1-schnell is a rectified flow-based model.
We compare LoTTS with representative sampling and search methods under matched NFE budgets,
including vanilla Resampling, Best-of-N , and Particle Sampling (Kim et al., 2025b; Singhal et al.,
2025). Implementation details are provided in Appendix A.

5.1 MAIN RESULTS

Table 1 shows that LoTTS consistently outperforms Resampling, Best-of-N , and Particle Sam-
pling (Kim et al., 2025b; Singhal et al., 2025) under matched NFE budgets across SD2.1, SDXL,
and FLUX, with clear gains on both human-aligned (HPS, AES, Pick, IR) and automated metrics.
Figure 4 further illustrates stronger faithfulness to prompts involving spatial relations, object counts,
and fine-grained details. Before–after comparisons are shown in Figure 5 (white circles highlight
refined regions). More qualitative results and failure cases provided in Appendices C and F.
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5.2 ABLATIONS

We ablate two key design choices in LoTTS (Fig. 6). Mask generation. Removing any component
of the defect localization pipeline (discriminative differences CA′

diff , propagated original attention
CA′

orig, or context-aware propagation) consistently lowers all four metrics, with the no-mask and
random-mask variants yielding the weak performance. Prompt construction. Different auxiliary
prompts yield similar results, showing LoTTS’s robustness to phrasing. Extended ablation results
are reported in Appendix D.

(1) Parameter Sensitivity of LoTTS (𝑘, 𝑟, 𝑡0) (2) Scaling Comparison: LoTTS vs. Best-of-N Sampling

Figure 7: Parameter sensitivity analysis of LoTTS. Varying localized refinement iterations (k),
resample area ratio (r), and denoising start step (t0) shows that LoTTS maintains stable improve-
ments across HPS, AES, Pick, and IR metrics.

5.3 PARAMETER ANALYSIS

We analyze the key hyperparameters of LoTTS: number of refinements (k), mask area ratio (r), and
noise injection step (t0), as shown in Figure 7. Performance peaks at 2 refinements, with additional
iterations bringing diminishing returns. Moderate mask ratios around 40–50% achieve the best
trade-off, as small ratios miss defects while large ones overwrite clean regions. For noise injection,
mid-range steps work best: injecting too early introduces artifacts, while injecting too late weakens
refinements. In scaling comparisons, LoTTS achieves similar quality with far fewer samples than
Best-of-N , matching Best-of-N on SD2.1 and SDXL with 2.8×–3.3× speedups, and reaching up
to 4× speedup on FLUX. Extended parameter sensitivity results are reported in Appendix E.

6 CONCLUSION

We proposed LoTTS, a training-free framework that extends test-time scaling from global resam-
pling to localized refinement. Unlike conventional methods that apply sampling uniformly, LoTTS
leverages defect-aware masks and consistency constraints to focus computation where it matters
most. This design not only improves image quality and efficiency but also shows that scaling can
be made adaptive to the spatial heterogeneity of generative outputs. Beyond diffusion models, the
principle of region-aware scaling provides a general perspective for developing more efficient and
controllable inference strategies in generative AI. Our analysis further establishes theoretical condi-
tions under which localized scaling provably outperforms global sampling, and we believe LoTTS
opens up promising directions for integrating fine-grained control into test-time algorithms across
diverse generative architectures.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All experiments use publicly available datasets and model checkpoints (SD2.1, SDXL, FLUX). No
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A IMPLEMENTATION DETAILS

We report all settings needed to reproduce our results: hardware/software stack, model checkpoints
and preprocessing, default hyperparameters for each evaluation protocol, baselines.

Hardware and software. All experiments were run on NVIDIA A800 (80GB) GPUs;
most runs use a single GPU unless otherwise stated. Mixed precision is enabled via
torch.cuda.amp.autocast (fp16) unless the metric implementation requires fp32.

Checkpoints and preprocessing. We use the official public checkpoints for SD2.1, SDXL, and
FLUX.1-schnell. Images are generated at 512×512 for SD2.1 and at 1024×1024 for SDXL and
FLUX. For latent diffusion backbones, we use the default VAE shipped with each checkpoint. Eval-
uation images are fed to each metric with the metric’s own preprocessing. Unless noted, we do not
run SDXL-Refiner to avoid confounding the effect of local resampling.

Default sampler and schedule. For SD2.1, we use SDE-DPM-Solver++ sampling with 50 NFEs,
and CFG scale = 7.5. For SDXL, we use SDE-DPM-Solver++ sampling with 30 NFEs, and CFG
scale = 5.5. For FLUX, we use modified SDE-DPM-Solver++ sampling with 10 NFEs, and no
CFG. For LoTTS, we inject noise to reach an intermediate step t0 (Sec. 4), then perform local
masked refinement followed by a short global integration phase. We keep the original prompt and
CFG weight unchanged during refinement.

Attention hook and mask resolution. For SD2.1, we hook U-Net cross-attention tensors at the
16×16 spatial resolution blocks (for 512×512 images). For SDXL, we hook U-Net cross-attention
tensors at the 64×64 spatial resolution blocks (for 1024×1024 images). For FLUX, we extract
Transformer cross-attention tensors from the 64×64 resolution of the last 10 blocks (for 1024×1024
images), and generate attention maps following the method of (Helbling et al., 2025). The Attention
maps are averaged across heads, mean-pool across feature dimension, and then average across tokens
to obtain a single spatial map per prompt type (pos/neg/origin). Self-attention maps are normalized
to [0, 1]. The quality map P uses equation 7 in the paper with λ = 0.5 by default. We compute
attention and the final mask at t=0 (last step), where maps and image latents are already stable.
Masks are kept in latent resolution during resampling; only for visualization we bilinearly upsample
to pixel space.

Datasets. Pick-a-Pic: we follow the official prompt pool for preference-oriented evaluation. Draw-
Bench: we use all categories and report aggregate metrics. COCO2014: we use the widely-used
COCO2014-30k.

Metrics. We report HPSv2, PickScore, ImageReward, and AES using the authors’ official weights
and preprocessing. CLIP score and FID are computed with standard settings: CLIP uses ViT-L/14
unless otherwise stated; FID uses Inception-V3 features, 2048-D activations. ImageReward (IR)
score is used as the global selection score for Best-of-N , LoTTS, and other search-based baselines.

Baselines and compute budgets. We compare with Resample, Best-of-N and Particle Sampling
under matched NFEs. For “Best-of-N” baselines, we sample N candidates from scratch and select
by the same metric used for reporting to avoid selection bias. For LoTTS we use k = 2 localized
refinement iterations by default.

Reproduction checklist. (1) Use the same checkpoint and VAE; (2) match resolution, sampler,
steps, CFG; (3) compute the mask at t=0 with the same prompt templates; (4) keep λ, r, t0, T ′, k
as in Table 2; (5) fix seeds and determinism flags; (6) run the same metric code and preprocessing.

B ALGORITHMIC DETAILS

Algorithm 1 defines how to obtain a binary resample mask M from prompt-conditioned attention
maps. Algorithm 2 integrates this mask into localized resampling, yielding improved samples while
preserving background. Algorithm 3 further scales LoTTS with DFS-based exploration, iteratively
refining candidates and selecting the best according to the global verifier.
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Backbone Res. Sampler Steps CFG λ t0 T ′ k r(∗100)
SD 2.1 512×512 SDE-DPM-Solver++ 50 7.5 0.50 25 50 2 50
SDXL 1024×1024 SDE-DPM-Solver++ 30 5.5 0.50 15 30 2 50
FLUX 1024×1024 Modified SDE-DPM-Solver++ 10 None 0.50 1 10 2 50

Table 2: Default LoTTS hyperparameters. Steps is the total number of denoising steps in the base
sampler; CFG is the classifier-free guidance scale; λ is the attention contrastive weight; t0 is the
noise injection timestep; T ′ denotes the total refinement steps in LoTTS, defined as local masked
denoising plus a small number of global integration steps; k is the number of localized resampling
rounds; r is the percentile area ratio used for mask selection.

B.1 NOTATION

Table 2 summarizes the symbols used throughout the algorithmic description. The goal is to unify
notation across Algorithms 1, 2, and 3, so that each variable appearing in the pseudocode has an
explicit definition. In particular, we distinguish between user prompts, mask generation parame-
ters, sampling steps, and search-level hyperparameters, as well as intermediate variables such as
input/output images and verifier scores.

Symbol Description

p original user prompt
ppos, pneg quality-aware prompts (“a high-quality image of {p}”, “a low-quality

image of {p}”)
M binary resample mask (latent resolution) from Algorithm 1
T total number of diffusion steps
t0 intermediate re-noise step for localized resampling
tg global integration step
r area ratio used in quantile thresholding
S number of random seeds (global samples at DFS layer 1)
K number of localized refinements per global sample (DFS branching fac-

tor)
D DFS maximum depth (D=2 in our setting)
N refinement steps within each localized resampling call
xin, xout input / output image of LocalizedResample
sout verifier score of xout

xbest, vbest current best image and score during DFS search
x⋆ final best refined image returned by DFS search
α(t), σ(t) forward noise schedule parameters
ϵ̂θ noise predictor (with classifier-free guidance if enabled)
V (·) global verifier producing scalar score

Table 3: Unified notation for Algorithms 1, 2, and 3.

B.2 DEFECT LOCALIZATION

Algorithm 1 outlines the MaskGen procedure, which constructs a binary mask M indicating defect-
prone regions for resampling. The method combines prompt-driven cross-attention discrimination,
context-aware propagation, and semantic-guided reweighting to highlight patches where defects are
likely to occur. The final mask is obtained by quantile thresholding, ensuring that only a fraction r
of the most defective regions are selected. This mask serves as the basis for localized refinement in
later algorithms.
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Algorithm 1 MaskGen: Defect Localization
Require: Prompt p, positive prompt ppos, negative prompt pneg, selected layers L, foreground

weight λ, area ratio r
Ensure: Binary mask M

1: Prompt-driven Discrimination:
2: Compute cross-attention maps: CApos = CrossAttn(ppos,L), CAneg = CrossAttn(pneg,L),

CAorig = CrossAttn(p,L)
3: CAdiff ← CAneg − CApos

4: Context-aware Propagation:
5: CA′

diff ← SelfAttnProp(CAdiff)
6: CA′

orig ← SelfAttnProp(CAorig)
7: Semantic-guided Reweighting:
8: P ← CA′

diff + λ · CA′
orig

9: Mask Generation:
10: M ← I[P > Perc(P, 1− r)]
11: return M

B.3 ATTENTION-GUIDED RESAMPLING

Algorithm 2 describes LocalizedResample, which integrates the mask M into the diffusion sam-
pling process. Given an input image xin, the method first injects noise to reach an intermediate step
t0. During the refinement phase (t0→ tg), masked regions are updated using reverse diffusion steps,
while unmasked regions are resampled with scheduled Gaussian noise. Finally, a global integration
phase (tg→ 0) applies standard reverse diffusion over the entire image to restore coherence. This
localized procedure refines defective regions while preserving background content, yielding a new
candidate image xout together with its verifier score sout.

Algorithm 2 LocalizedResample: Attention-Guided Resampling (single refinement)
Require: Current image xin (at t=0), prompt p, total steps T , re-noise step t0, global integration

step tg , pretrained diffusion model, mask M from Algorithm 1, verifier V
Ensure: Refined image xout, score sout

1: xanchor ← xin

2: ∆t← t0/N // masked refinement step size (with N reverse steps)
3: Global re-noise to t0
4: Sample zbg, zmask ∼ N (0, I)
5: xt0 ← α(t0)xanchor + σ(t0) (M ⊙ zmask + (1−M)⊙ zbg)
6: Masked refinement (t= t0 → tg)
7: for t = t0, t0 −∆t, . . . , tg do
8: Sample zt ∼ N (0, I)
9: xt−∆t ← (1−M)⊙

(
α(t)xanchor + σ(t) zt

)
+ M ⊙

(
xt −∆t ϵθ(xt, t; p) + σ(t) zt

)
//

unmasked: scheduled forward; masked: reverse step
10: end for
11: Final integration (t= tg → 0)
12: for t = tg, tg −∆t, . . . , 0 do
13: Sample zt ∼ N (0, I)
14: xt−∆t ← xt −∆t ϵθ(xt, t; p) + σ(t) zt
15: end for
16: xout ← x0 // result after final integration
17: sout ← V (xout)
18: return xout, sout

Note: timesteps t0→0 are discretized with step ∆t and interpolated to match T global steps.

B.4 OVERALL ALGORITHM OF LOTTS

Algorithm 3 presents the overall LoTTS pipeline, formulated as a depth-first search (DFS) with
depth D=2. At the first level, S global samples are generated from scratch. At the second level,
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each global sample undergoes K localized refinements guided by Algorithm 2. During the search,
a verifier V evaluates each candidate, and the best image x⋆ is maintained and returned at the end.
This DFS-based exploration enables systematic search over both global diversity and localized re-
finement, balancing breadth and depth in test-time scaling.

Algorithm 3 Overall Algorithm of LoTTS
Require: Prompt p, DFS depth D=2, number of global seeds S, localized branches per seed K,

total steps T , re-noise step t0, global integration step tg , verifier V
Ensure: Best refined image x⋆

1: function DFS(p, d, x, xbest, vbest) // Depth-First-Search
2: if x ̸= ∅ then
3: v ← V (x)
4: if v > vbest then
5: xbest ← x; vbest ← v
6: end if
7: end if
8: if d = D then
9: return (xbest, vbest)

10: end if
11: if d = 0 then // root→ global seeds
12: for s = 1 to S do
13: x′ ← SampleBase(p)
14: (xbest, vbest)← DFS(p, 1, x′, xbest, vbest)
15: end for
16: return (xbest, vbest)
17: else // d=1: global sample→K localized refinements
18: M ← MaskGen(x, p) // Algorithm 1
19: for k = 1 to K do
20: (x′, s′)← LocalizedResample(x, p, T, t0, tg, M, V ) // Algorithm 2
21: (xbest, vbest)← DFS(p, 2, x′, xbest, vbest)
22: end for
23: return (xbest, vbest)
24: end if
25: end function
26: (x⋆, )← DFS(p, 0, ∅, ∅, −∞)
27: return x⋆

C EXTENDED QUALITATIVE RESULTS

We provide additional qualitative comparisons to highlight LoTTS’s local refinement capabilities.

C.1 ADDITIONAL MASK GENERATION EXAMPLES

Figures 8 and 9 illustrate the step-by-step mask generation process of LoTTS on SD2.1 and FLUX.
Starting from cross-attention maps with the original, positive, and negative prompts, LoTTS com-
putes the discriminative difference (CAdiff ), propagates it with self-attention (CA′

orig), and aggre-
gates them to form the final quality-aware mask (CAdiff + CA′

orig). The results show that LoTTS
effectively highlights defective regions while suppressing irrelevant background, producing coherent
and semantically aligned masks for localized resampling.

C.2 BEFORE-AFTER COMPARISON RESULTS

Figures 10 present before-after comparisons in FLUX. LoTTS corrects diverse local artifacts, includ-
ing distorted body parts, malformed objects, blurred textures, and spurious details, while preserving
overall composition and style. White circles mark regions that have been refined.
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A pitcher getting ready to release a pitch

this is a photo of a large crowd of young adults sitting on a long row of park benches

two people standing near one another playing nintendo wii

A man riding skis down a snow covered slope.

A person flying through the air while riding down a snow slope.

Origin 𝐂𝐀𝐝𝐢𝐟𝐟
′𝐂𝐀𝐧𝐞𝐠𝐂𝐀𝐩𝐨𝐬𝐂𝐀𝐨𝐫𝐢𝐠 For Reference𝐂𝐀𝐨𝐫𝐢𝐠

′ 𝐂𝐀𝐝𝐢𝐟𝐟
′ + 𝐂𝐀𝐨𝐫𝐢𝐠

′  (Result)

Figure 8: Additional examples of mask generation in SD2.1. LoTTS produces reliable quality-
aware masks across diverse prompts, effectively localizing low-quality regions for refinement.

A television is reflected from a bathroom mirror.

Origin 𝐂𝐀𝐝𝐢𝐟𝐟
′𝐂𝐀𝐧𝐞𝐠𝐂𝐀𝐩𝐨𝐬𝐂𝐀𝐨𝐫𝐢𝐠 For Reference𝐂𝐀𝐨𝐫𝐢𝐠

′ 𝐂𝐀𝐝𝐢𝐟𝐟
′ + 𝐂𝐀𝐨𝐫𝐢𝐠

′  (Result)

a bed sits under neath a glass fish tank

Someone is holding a phone while watching a video on it.

A truck and bus on a street under bridge

A train on tracks in a city with high rises.

Figure 9: Additional examples of mask generation in FLUX. LoTTS produces finer and more de-
tailed masks in FLUX, consistently localizing local degradations under varied prompts and enabling
more precise localized resampling.

D ABLATIONS

We conduct ablation studies to evaluate the contribution of different components in our mask gen-
eration pipeline. Table 4 reports results on Pick-a-Pic and DrawBench across SD2.1, SDXL, and
FLUX. Removing or altering components (e.g., w/o Mask, Random Mask, w/o CA′

orig, w/o CAdiff ,
or w/o Propagation) consistently degrades performance, confirming the effectiveness of our full de-
sign. Figure 11 further visualizes these results, showing that LoTTS achieves the best performance
across all metrics, highlighting the importance of each mask generation step.
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Before After

Before After

Before After

Before After

FLUX

Before After

Before After

Before After

Before After

Before After

Figure 10: Before-after comparison in FLUX. LoTTS achieves consistent local refinements across
diverse prompts, enhancing structural integrity, semantics, and perceptual quality. White circles
highlight corrected regions.

Table 4: Ablation study of mask generation strategies on Pick-a-Pic and DrawBench. Results
for SD2.1, SDXL, and FLUX show that removing or altering components (e.g., w/o Mask, Random
Mask, w/o CA′

orig, w/o CAdiff , or w/o Propagation) degrades performance, confirming the effec-
tiveness of our full design.

Model Mask Strategy Pick-a-Pic DrawBench

HPS↑ AES↑ Pick↑ IR↑ HPS↑ AES↑ Pick↑ IR↑

SD2.1

w/o Mask 21.21 5.245 21.14 0.452 22.33 5.591 20.66 0.453
Random Mask 20.59 5.325 21.01 0.457 22.34 5.580 20.67 0.452
w/o CA′

orig 20.43 5.223 20.87 0.444 21.22 5.570 20.44 0.445
w/o CA′

diff 21.31 5.303 20.95 0.458 22.53 5.605 21.01 0.500
w/o Propagation 23.51 5.705 21.12 0.600 22.89 5.811 21.36 0.688
Ours 24.52 5.805 21.32 0.680 23.29 5.911 21.47 0.698

SDXL

w/o Mask 24.20 6.120 22.04 0.780 25.31 6.244 22.31 0.788
Random Mask 24.19 6.115 22.01 0.755 25.65 6.231 22.32 0.778
w/o CA′

orig 24.00 6.100 22.00 0.748 24.55 6.222 22.28 0.766
w/o CA′

diff 26.00 6.201 22.05 0.850 26.35 6.272 22.30 0.901
w/o Propagation 28.11 6.290 22.11 1.001 28.30 6.301 22.35 1.100
Ours 28.23 6.304 22.30 1.102 28.90 6.321 22.38 1.111

FLUX

w/o Mask 30.25 6.324 22.67 1.241 31.32 6.231 22.20 1.357
Random Mask 30.15 6.313 22.55 1.211 31.23 6.225 22.18 1.344
w/o CA′

orig 30.00 6.131 22.45 1.200 30.13 6.220 22.17 1.333
w/o CA′

diff 31.55 6.345 22.64 1.315 32.00 6.530 22.81 1.433
w/o Propagation 33.23 6.399 22.88 1.501 32.80 6.780 23.01 1.523
Ours 33.33 6.501 23.04 1.605 33.90 6.890 23.21 1.623

E PARAMETER ANALYSIS

We analyze the effect of LoTTS hyperparameters and compare its scaling behavior with Best-of-N .
Tables 5–7, Tables 8–9, and Figure 12 summarize the results.

Iteration number k. Performance consistently peaks at k=2 across SD2.1, SDXL, and FLUX. In-
creasing to k=8 leads to noticeable drops, showing that only a small number of localized refinements
is effective.
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Figure 11: Visualization of mask strategy ablations. Quantitative results on Pick-a-Pic and Draw-
Bench across SD2.1, SDXL, and FLUX for HPS, AES, Pick, and IR metrics. Compared variants
include w/o Mask, Random Mask, w/o CA′

orig, w/o CAdiff , and w/o Propagation. LoTTS con-
sistently outperforms these ablated versions, highlighting the importance of each mask generation
component.

Mask area ratio r. Moderate ratios around 40–50% give the best trade-off. Too small ratios miss
defects, while too large ratios overwrite clean regions and slightly reduce efficiency.

Noise injection step t0. Intermediate values yield the strongest results: very early injection may
introduce artifacts, while very late injection weakens refinement. The best-performing points appear
around t0=25 for SD2.1 (out of 50 steps), t0=15 for SDXL (out of 30 steps), and t0=1 for FLUX
(out of 10 steps), corresponding roughly to the early-to-mid stages of the denoising process.

Visualization. Figure 12 illustrates these trends, with best configurations marked by stars.

Scaling comparison. Table 8 shows that LoTTS scales efficiently with sample count S, achieving
strong improvements even with small S. In contrast, Table 9 indicates that Best-of-N needs much
larger N to reach similar quality. For example, LoTTS with S=9 matches or surpasses Best-of-25
on SD2.1, Best-of-30 on SDXL, and Best-of-36 on FLUX, while requiring 3–4× fewer samples.

Overall, these results demonstrate that LoTTS achieves robust gains across datasets and consistently
outperforms global Best-of-N in both effectiveness and efficiency.

F FAILURE CASES AND DIAGNOSTICS

While LoTTS corrects many local artifacts, several failure modes remain. As shown in Figure 13,
complex geometry near boundaries can remain distorted (e.g., the cat face). In scenes requiring
global coherence or in low-texture areas, refinements may introduce or amplify artifacts, such as
banding in sky or stains on the tennis court floor. In addition, improvements are limited when
defects are subtle or missed by the mask, as in the Big Ben example where before and after differ
little. These issues, though relatively rare, highlight the need for stronger global consistency, artifact
suppression, and higher-recall masks.
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Table 5: Quantitative results w.r.t. number of refinements k. Results on Pick-a-Pic and Draw-
Bench for SD2.1, SDXL, and FLUX.

Model k
Pick-a-Pic DrawBench

HPS↑ AES↑ Pick↑ IR↑ HPS↑ AES↑ Pick↑ IR↑

SD2.1
1 23.50 5.781 21.20 0.581 22.23 5.799 21.24 0.540
2 24.52 5.805 21.32 0.680 23.29 5.911 21.47 0.698
8 21.34 5.367 20.43 0.363 21.90 5.678 20.38 0.354

SDXL
1 26.31 6.205 22.15 0.965 27.01 6.243 22.21 0.944
2 28.23 6.304 22.30 1.102 28.90 6.321 22.38 1.111
8 24.45 6.111 21.53 0.781 24.84 6.144 21.56 0.877

FLUX
1 31.46 6.445 22.89 1.550 33.28 6.631 22.95 1.457
2 33.33 6.501 23.04 1.605 33.90 6.890 23.21 1.623
8 30.54 6.308 22.57 1.244 30.81 6.332 22.15 1.200

Table 6: Quantitative results w.r.t. mask area ratio r. Results on Pick-a-Pic and DrawBench for
SD2.1, SDXL, and FLUX.

Model r
Pick-a-Pic DrawBench

HPS↑ AES↑ Pick↑ IR↑ HPS↑ AES↑ Pick↑ IR↑

SD2.1
20 23.29 5.780 21.22 0.630 22.59 5.778 21.33 0.532
50 24.52 5.805 21.32 0.680 23.29 5.911 21.47 0.698
80 23.34 5.978 21.23 0.640 22.39 5.791 21.43 0.620

SDXL
20 26.13 6.244 22.15 0.895 27.46 6.243 22.13 0.894
50 28.23 6.304 22.30 1.102 28.90 6.321 22.38 1.111
80 27.03 6.256 22.13 0.985 26.98 6.313 22.21 0.944

FLUX
20 31.46 6.432 22.99 1.550 33.48 6.623 22.89 1.545
50 33.33 6.501 23.04 1.605 33.90 6.890 23.21 1.623
80 32.66 6.632 23.00 1.459 33.18 6.724 22.93 1.615

G THEORETICAL ANALYSIS: WHEN LOCALIZED TTS OUTPERFORMS
GLOBAL TTS

G.1 NOTATION

For clarity, Table 10 summarizes the variables used throughout this section. This ensures every
symbol in the derivation has an explicit meaning.

G.2 QUALITY DECOMPOSITION

Before comparing global and local strategies, we first relate global quality r(x) to patch-level scores.
To lower bound global improvement by local improvements, we adopt a standard additive inequality:

r(x) ≥
M∑
j=1

wj rj(xj), (11)

where wj ≥ 0 are weights reflecting importance of each patch. This allows us to measure global
gain through weighted patch-level gains.
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Table 7: Quantitative results w.r.t. noise injection step t0. Results on Pick-a-Pic and DrawBench
for SD2.1, SDXL, and FLUX.

Model t0
Pick-a-Pic DrawBench

HPS↑ AES↑ Pick↑ IR↑ HPS↑ AES↑ Pick↑ IR↑

SD2.1

0 20.54 5.487 20.53 0.238 21.68 5.556 20.33 0.254
10 23.32 5.755 21.22 0.678 23.19 5.910 21.07 0.658
25 24.52 5.805 21.32 0.680 23.29 5.911 21.47 0.698
40 21.42 5.775 21.01 0.650 23.21 5.881 21.27 0.648

SDXL

0 23.81 6.041 21.34 0.683 23.95 6.054 21.14 0.667
5 25.13 6.254 22.17 1.062 28.75 6.301 21.08 1.051

15 28.23 6.304 22.30 1.102 28.90 6.321 22.38 1.111
25 27.30 6.194 22.24 1.002 28.65 6.283 21.88 1.091

FLUX

0 29.55 6.298 22.57 1.111 29.59 6.233 22.15 1.117
1 33.33 6.501 23.04 1.605 33.90 6.890 23.21 1.623
5 30.15 6.312 22.77 1.211 29.93 6.349 22.48 1.263
8 30.01 6.301 22.60 1.200 29.88 6.301 22.30 1.145
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Figure 12: Hyperparameter analysis of LoTTS. Performance on Pick-a-Pic and DrawBench with
respect to (top) the number of refinements k, (middle) mask area ratio r, and (bottom) noise injection
step t0, across SD2.1, SDXL, and FLUX. Stars mark the best-performing configurations.

G.3 FROM PRECISION/RECALL TO SELECTION SIZE

We next connect the mask’s precision/recall to expected true/false selections. This step is necessary
to compute how many patches are truly improved versus unnecessarily modified.
Lemma 1 (Expected TP/FP size). Let S ⊆ [M ] be the (fixed) set of truly defective patches with
|S| = s, and let Ŝ be the random set selected by the mask. Define

TP := |S ∩ Ŝ|, FP := |Ŝ \ S| = |Ŝ| − TP.

Assume recall ρ := E[TP]
s ∈ [0, 1] and (operational) precision π := E[TP]

E[|Ŝ|]
∈ (0, 1]. Then

E[TP] = ρ s, E[|Ŝ|] = ρ s

π
, E[FP] = ρ s

(
1
π − 1

)
.
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Table 8: Quantitative results of LoTTS w.r.t. sample count S. Results on Pick-a-Pic and Draw-
Bench for SD2.1, SDXL, and FLUX.

Model S
Pick-a-Pic DrawBench

HPS↑ AES↑ Pick↑ IR↑ HPS↑ AES↑ Pick↑ IR↑

SD2.1

1 20.44 5.377 20.32 0.236 21.34 4.546 20.23 0.244
3 21.12 5.532 20.56 0.413 21.88 5.623 20.54 0.398
6 22.29 5.712 20.99 0.531 21.45 5.807 21.00 0.591
9 24.52 5.805 21.32 0.680 23.29 5.911 21.47 0.698

SDXL

1 23.44 6.011 21.18 0.680 23.84 6.034 21.09 0.657
3 25.23 6.124 21.55 0.712 25.11 6.123 21.55 0.701
6 26.21 6.153 21.89 0.813 26.23 6.241 21.98 0.812
9 28.23 6.304 22.30 1.102 28.90 6.321 22.38 1.111

FLUX

1 29.34 6.298 22.07 1.038 29.28 6.223 22.05 1.100
3 31.23 6.370 22.53 1.203 30.45 6.350 22.47 1.321
6 32.24 6.434 22.88 1.523 32.23 6.591 23.01 1.521
9 33.33 6.501 23.04 1.605 33.90 6.890 23.21 1.623

Table 9: Quantitative results of Best-of-N baseline w.r.t. sample count S. Results on Pick-a-Pic
and DrawBench for SD2.1, SDXL, and FLUX.

Model S
Pick-a-Pic DrawBench

HPS↑ AES↑ Pick↑ IR↑ HPS↑ AES↑ Pick↑ IR↑

SD2.1

1 20.44 5.377 20.32 0.236 21.34 4.546 20.23 0.244
9 21.56 5.534 21.04 0.470 22.45 5.589 20.59 0.446

17 22.21 5.755 21.11 0.524 25.17 5.817 21.10 0.602
25 24.23 5.825 21.26 0.681 23.29 5.911 21.47 0.701

SDXL

1 23.44 6.011 21.18 0.680 23.84 6.034 21.09 0.657
9 25.44 6.198 22.01 0.790 25.27 6.238 22.03 0.756

20 26.02 6.201 22.11 0.833 26.31 6.233 22.30 0.832
30 28.21 6.304 22.21 1.112 28.90 6.321 22.38 1.113

FLUX

1 29.34 6.298 22.07 1.038 29.28 6.223 22.05 1.100
9 30.23 6.299 22.89 1.235 30.46 6.290 22.23 1.221

14 31.14 6.343 22.93 1.521 32.90 6.599 22.98 1.533
36 33.32 6.531 23.13 1.615 33.90 6.890 23.21 1.620

Proof. By the definition of recall ρ = E[TP]
s , we immediately have

E[TP] = ρ s.

By the (operational) definition of precision π = E[TP]

E[|Ŝ|]
, we get

E[|Ŝ|] = E[TP]
π

=
ρ s

π
.

Finally, using linearity of expectation and FP = |Ŝ| − TP,

E[FP] = E[|Ŝ|]− E[TP] =
ρ s

π
− ρ s = ρ s

(
1
π − 1

)
.
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Before After

Failure Case

Before After Before After

Before After

Figure 13: Failure cases of LoTTS. While LoTTS reduces many local artifacts, a few failures re-
main in boundary geometry, in scenes requiring global coherence or containing low-texture regions
(e.g., sky, court floor), and in cases with only subtle defects where refinements bring limited im-
provements.

Symbol Description

M total number of non-overlapping image patches
s number of defective patches (s ≪ M )
S set of defective patches, with |S| = s

Ŝ set of patches selected by LoTTS for resampling
π precision: fraction of selected patches that are truly defective
ρ recall: fraction of defective patches successfully selected
x generated image; xj denotes patch j
r(x) perceptual quality functional of image x
rj(xj) patch-level quality score
wj importance weight of patch j in quality lower bound
δj expected gain if defective patch j is repaired
γj expected loss if clean patch j is harmed
δ average weighted repair gain over defective patches
γ average weighted harm over clean patches
θg probability of repairing a defective patch under global resampling
q probability of repairing a defective patch under localized resampling
hg probability of harming a clean patch under global resampling
hℓ probability of harming a clean patch under localized resampling
Cg compute cost of one global resampling trial
Cℓ compute cost of one localized resampling trial
B total compute budget (e.g., measured in NFEs)

Table 10: Notation used in the theoretical analysis.

Discussion.

• Why use π = E[TP]

E[|Ŝ|]
? Precision is often defined as E

[
TP

|Ŝ|
1{|Ŝ| > 0}

]
. To avoid division-by-zero

and keep algebra tractable, we adopt the ratio-of-expectations form, which is standard in compute-
budget analyses. If one insists on the expectation-of-ratio definition, Jensen-type arguments yield
the bound E[|Ŝ|] ≥ E[TP]

π , so our equalities become tight upper/lower bounds; the conclusions
below only change by harmless inequalities.

• Edge cases. π = 1 implies no false positives, hence E[FP] = 0. ρ = 1 means all s defects are
captured in expectation, i.e., E[TP] = s. We exclude the degenerate π = 0 case since precision 0

implies E[TP] = 0 or E[|Ŝ|] =∞.
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• What randomness is averaged over? Expectations are taken over the randomness of mask con-
struction (and, if applicable, sampling noise). No independence assumptions are required; linear-
ity of expectation suffices.

G.4 PER-TRIAL EXPECTED GAIN

We now compute the expected gain of a single trial, either by global resampling or localized resam-
pling. This quantifies the balance between repairing defective patches and potentially harming clean
ones.

Let x denote the image before a trial and x+ the image after the trial. Define the gain as

∆r := r(x+)− r(x).

Using the local decomposability lower bound

r(x) ≥
M∑
j=1

wj rj(xj),

we obtain

∆r ≥
M∑
j=1

wj

(
rj(x

+
j )− rj(xj)

)
.

For each defective patch j ∈ S: - if repaired, the expected improvement is δj ≥ 0. For each clean
patch j /∈ S: - if harmed, the expected loss is γj ≥ 0.

Define the weighted averages

δ :=
1

s

∑
j∈S

wjδj , γ :=
1

M − s

∑
j /∈S

wjγj ,

where s := |S| ≪M is the number of defective patches.

Global resampling. In global test-time scaling, all patches are resampled: - each defective patch
j ∈ S is repaired with probability θg , - each clean patch j /∈ S is harmed with probability hg .

The expected gain is then lower bounded by

E[∆r]global ≥ s θg δ − (M − s)hg γ. (12)

Here the positive term reflects that all s defects may be repaired, while the negative term reflects that
all (M − s) clean patches are simultaneously at risk.

Localized resampling (LoTTS). In localized test-time scaling, only patches selected by the mask
Ŝ are resampled: - the true positives S ∩ Ŝ may be repaired, - the false positives Ŝ \ S may be
harmed.

Let ρ denote recall, i.e., ρ = E[|S∩Ŝ|]
s , and π denote precision, i.e., π = E[|S∩Ŝ|]

E[|Ŝ|]
. Let q be the prob-

ability of repairing a defective patch under localized resampling, and hℓ the probability of harming
a selected clean patch.

By linearity of expectation, and using Lemma 1, the expected number of true positives is ρs, while
the expected number of false positives is ρs( 1π − 1). Hence,

E[∆r]local ≥ ρ s q δ − ρ s
(

1
π − 1

)
hℓ γ. (13)

Interpretation. The global method has the potential to repair all s defective patches, but it also
incurs a harm penalty that scales with the large number of clean patches (M−s). In contrast, LoTTS
can only repair ρs defects on average (recall-weighted), yet its harm penalty grows only with the
expected number of false positives, ρs( 1π − 1), which scales with s rather than M . This asymmetry
highlights the sparse-defect advantage: when s≪M , localized resampling avoids the heavy global
penalty on many clean regions, focusing compute where it matters most.
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G.5 BUDGET-NORMALIZED COMPARISON

We now incorporate a compute budget B and normalize both strategies by their per-trial costs Cg

and Cℓ.

Theorem 1 (Compute-normalized advantage of LoTTS). Given a total compute budget B, the ex-
pected quality gains of Global TTS and LoTTS satisfy

E[∆r]global,B ≥
B

Cg

(
s θg δ − (M − s)hg γ

)
, (14)

E[∆r]local,B ≥
B

Cℓ

(
ρ s q δ − ρ s

(
1
π − 1

)
hℓ γ

)
. (15)

G.6 DOMINANCE CONDITION

LoTTS outperforms Global TTS whenever

ρ

Cℓ

(
qδ − ( 1π − 1)hℓγ

)
>

1

Cg

(
θgδ − (Ms − 1)hgγ

)
. (16)

What the inequality encodes. Condition equation 16 compares the expected per-compute im-
provement of LoTTS (left) and Global TTS (right). On the left, ρ (recall) scales how many defective
patches LoTTS actually touches; qδ is the average benefit of successfully repairing a defect; the
subtraction ( 1π −1)hℓγ accounts for the expected harm caused by false positives among the selected
patches; and the entire effect is normalized by the localized trial cost Cℓ. On the right, Global TTS
can in principle repair all s defects with probability θg , contributing θgδ on average, but it risks
harming every clean patch; this produces the sparsity-amplified penalty (Ms − 1)hgγ, because there
are (M − s) clean patches versus only s defective ones. That global trade-off is normalized by the
global trial cost Cg .

Equivalent re-arrangement (solving for ρ). For diagnostics, it is useful to isolate the recall ρ
required for LoTTS to dominate. Multiplying both sides of equation 16 by Cℓ and dividing by the
(assumed positive) bracket qδ − ( 1π − 1)hℓγ yields

ρ >
Cℓ

Cg

θgδ −
(
M
s − 1

)
hgγ

qδ − ( 1π − 1)hℓγ
, provided qδ − ( 1π − 1)hℓγ > 0. (17)

The denominator in equation 17 is precisely the net per-patch gain for LoTTS when a patch is
selected: it must be positive, otherwise false-positive harm outweighs the benefit of a true repair and
localized editing should not be used.

Minimal precision for the mask. A convenient sufficient condition to ensure the denominator
of equation 17 is positive is a lower bound on the precision π:

qδ − ( 1π − 1)hℓγ > 0 ⇐⇒ π >
1

1 + qδ
hℓγ

. (18)

Intuitively, the more benign localized edits are (small hℓγ) and/or the more effective they are (large
qδ), the weaker the precision requirement on the mask.

Special cases and insights.

• Benign-edit regime (hg = hℓ = 0). Then equation 16 reduces to ρq
Cℓ

>
θg
Cg

. LoTTS dominates if
its recall-weighted success rate per unit compute exceeds that of global resampling.

• Perfect mask (π = ρ = 1). Condition equation 16 becomes q
Cℓ

> 1
Cg

(
θg − (Ms − 1)

hgγ

δ

)
.

Even if Cℓ ≈ Cg , LoTTS still enjoys a sparse-defect advantage: the global harm term grows with
(M/s− 1) (many clean patches), whereas LoTTS avoids touching clean regions.
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• Equal costs (Cℓ = Cg). The comparison is purely statistical: ρ
[
qδ− ( 1π −1)hℓγ

]
> θgδ−

(
M
s −

1
)
hgγ. LoTTS benefits from (i) nontrivial recall ρ, (ii) reasonable precision π to keep FP harm

small, and (iii) the fact that the global penalty scales with (M/s− 1) when defects are sparse.

• Connection to Best-of-N . In many implementations, θg increases sublinearly with N while Cg

grows roughly linearly, so θg/Cg quickly saturates. In contrast, LoTTS improves the numerator
on the left of equation 16 by focusing on defect regions (larger effective qδ) and keeps the penalty
term small by requiring only modest π via equation 18.

Practical reading. Inequality equation 16 holds exactly when the per-compute repair efficiency
of LoTTS—recall-weighted true repairs qδ minus false-positive harm ( 1π − 1)hℓγ—exceeds that of
Global TTS, whose harm term is amplified by the large number of clean patches (M−s). Therefore,
in the common sparse-defect regime (s≪M ) with a mask of moderate precision and recall, LoTTS
is expected to dominate, even when Cℓ is close to Cg .

G.7 COROLLARIES

The dominance condition in Theorem 1 can be simplified under specific regimes of practical interest.
These corollaries highlight intuitive scenarios where LoTTS has a clear advantage over global TTS.

Corollary 1 (Benign edits). If neither global nor localized resampling introduces harm (hg = hℓ =
0), then LoTTS dominates whenever

ρq

Cℓ
>

θg
Cg

.

Interpretation. In this special case, only successful repairs contribute to quality improvement, and
all harm terms vanish. The comparison thus reduces to the relative efficiency of repairs per unit
compute. LoTTS enjoys a recall-weighted success probability ρq, while global TTS has success
probability θg across all defects. After normalization by costs, LoTTS dominates whenever its
recall-adjusted repair efficiency outweighs the global rate. This formalizes the intuition that even if
local edits do not harm clean regions, they are more cost-effective so long as recall is not too low.

Corollary 2 (Sparse-defect regime). If the number of defects is much smaller than the total number
of patches (s ≪ M ), with non-negligible harm probability hg > 0 for global resampling but small
hℓ for localized resampling, then LoTTS dominates under much weaker conditions.

Interpretation. When defects are sparse, global resampling pays a high penalty because harm can
occur in any of the (M − s) clean patches. The term (M − s)hgγ therefore dominates the global
expectation, even if θg is large. By contrast, localized resampling only touches ρs/π patches, so
the harm penalty scales with the number of false positives rather than the entire clean set. Thus
in sparse-defect regimes, LoTTS achieves a strictly more favorable repair-to-harm tradeoff, and the
condition for its dominance is considerably easier to satisfy.

G.8 RELATION TO BEST-OF-N

A natural question is whether Global TTS can match or surpass LoTTS simply by increasing N ,
i.e., sampling more candidates and selecting the best. We now analyze the cost–benefit tradeoff of
Best-of-N .

Corollary 3 (Best-of-N scaling). For global Best-of-N , the compute cost and repair probability
evolve as

Cg(N) = N · Cg(1), θg(N) = 1−
(
1− θg(1)

)N
,

where Cg(1) and θg(1) denote the per-trial cost and repair probability for a single global sample.
Thus, the budget-normalized efficiency is

1

NCg(1)

(
θg(N)δ −

(
M
s − 1

)
hgγ

)
.

This expression shows that θg(N) increases sublinearly in N due to diminishing returns, while
Cg(N) grows linearly. As a result, beyond a moderate N , the efficiency of Best-of-N saturates
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or even decreases, since the harm penalty term remains proportional to the large number of clean
patches (M − s).

In contrast, LoTTS achieves improvements with trial cost Cℓ and without paying a penalty that
scales with all clean patches. Therefore, even when N is large, LoTTS may still dominate in the
sparse-defect regime, provided the mask has non-trivial recall and precision. This establishes that
LoTTS is not merely equivalent to “Best-of-N with smaller N ,” but can be fundamentally more
efficient by focusing computation only on defective regions.

G.9 TAKEAWAY

Theorem 1 provides a general, compute-normalized criterion under which LoTTS surpasses Global
TTS. Two practically important regimes follow.

(A) General regime (Cℓ ≪ Cg). When localized trials are cheaper than global trials (Cℓ ≪ Cg),
the dominance condition in equation 16 is typically easy to satisfy: LoTTS concentrates compute
on defect-prone regions and avoids paying a harm penalty on all clean patches. Even with moderate
mask quality (non-trivial precision π and recall ρ), the left-hand side of equation 16 is boosted by
the factor 1/Cℓ, while the right-hand side suffers both from its larger denominator Cg and from the
sparsity-amplified harm term

(
M
s − 1

)
hgγ.

(B) Our setting (Cℓ ≈ Cg; same number of steps; full-image denoise but masked update). In
our implementation, local refinement uses the same number of denoising steps as the global sampler
(Cℓ ≈ Cg), and applies the reverse update only on masked pixels while unmasked pixels follow
the scheduled Gaussian branch. In this equal-cost case, equation 16 simplifies to a purely statistical
comparison:

ρ
[
q δ −

(
1
π − 1

)
hℓ γ

]
> θg δ −

(
M
s − 1

)
hg γ. (19)

It says LoTTS wins exactly when its recall-weighted net per-patch gain (true repairs minus FP harm)
exceeds the global method’s net gain (true repairs minus widespread harm across all clean patches).
Three concrete implications make equation 19 favorable to LoTTS in practice:

1. Sparse-defect advantage. If s ≪ M , the global harm term on the right,
(
M
s − 1

)
hgγ, is

magnified by the large number of clean patches. LoTTS, instead, pays harm only for false
positives and thus scales with ρs( 1π − 1).

2. Minimal precision requirement. From equation 17, LoTTS needs the denominator qδ − ( 1π −
1)hℓγ to be positive. This yields a precision threshold π >

(
1 + qδ/(hℓγ)

)−1
( equation 18). If

localized edits are relatively benign (small hℓγ) and/or effective (large qδ), the required π can be
quite modest.

3. Recall target. Still in the equal-cost case, the minimal recall to dominate is

ρ >
θgδ −

(
M
s − 1

)
hgγ

qδ − ( 1π − 1)hℓγ
,

cf. equation 17 with Cℓ/Cg ≈ 1. Thus, as long as the mask has moderate recall and precision
(exceeding the above thresholds), LoTTS will outperform Global TTS even when both consume
the same number of steps.

When LoTTS may not help. If defects are dense (s ≈ M ), or the mask precision falls below
the threshold in equation 18 so that FP harm overwhelms gains, or the per-defect local success q is
substantially worse than the global success θg , then the right-hand side of equation 19 may dominate.
These are precisely the regimes where full regeneration or Best-of-N is a reasonable fallback.

Bottom line. In the common sparse-defect regime with a mask of modest quality (precision
above equation 18 and recall above equation 17), LoTTS delivers higher expected quality gain per
compute even when Cℓ ≈ Cg (same steps), because it avoids the global harm that scales with the
number of clean patches. The general Theorem 1 covers both Cℓ ≪ Cg and Cℓ ≈ Cg; Our imple-
mentation corresponds to the latter as a special, yet still favorable, case.
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H THE USE OF LARGE LANGUAGE MODELS

The use of Large Language Models (LLMs) in this work was only restricted to grammar check
and minor editing. All conceptual development, experimental design, and analyses were conducted
independently by the authors.
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