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ABSTRACT

The ability to plan into the future while utilizing only raw high-dimensional obser-
vations, such as images, can provide autonomous agents with broad and general
capabilities. However, realistic tasks may require handling sparse rewards and
performing temporally extended reasoning, and cannot be solved with only myopic,
short-sighted planning. Recent work in model-based reinforcement learning (RL)
has shown impressive results using heavily shaped reward functions that require
only short-horizon reasoning. In this work, we study how techniques trajectory
optimization can enable more effective long-horizon reasoning. We draw on the
idea of collocation-based planning and adapt it to the image-based setting by lever-
aging probabilistic latent variable models, resulting in an algorithm that optimizes
trajectories over latent variables. Our latent collocation method (LatCo) provides a
general and effective approach to longer-horizon visual planning. Empirically, our
approach significantly outperforms prior model-based approaches on challenging
visual control tasks with sparse rewards and long-term goals.

1 INTRODUCTION

In order for autonomous agents to perform complex tasks in open-world settings, they must be able
to process high-dimensional sensory inputs, such as images, and reason over long horizons about
the potential effects of their actions. Recent work in model-based reinforcement learning (RL) has
shown impressive results in autonomous skill acquisition directly from image inputs, demonstrating
benefits such as learning efficiency and improved generalization. While these advancements have
been largely fueled by improvements on the modeling side – from better uncertainty estimates
and incorporation of temporal information (Ebert et al., 2017), to the explicit learning of latent
representation spaces (Hafner et al., 2019) – they leave much room for improvement on the planning
and optimization side. Most of the current best-performing deep learning approaches for vision-based
planning use only gradient-free action sampling as the underlying optimizer, and are typically applied
to settings where a dense and well-shaped reward signal is available. In this work, we argue that more
powerful planners are necessary for longer-horizon reasoning.

With this goal of long-horizon planning, we aim to extend the myopic planning behavior of existing
visual planning methods. Whether it’s to avoid local minima due to short-sightedness, or to reason
further into the future in order to solve multi-step or sparse-reward tasks, this ability to perform
long-horizon planning is critical. Many of the current state-of-the-art visual planning approaches use
gradient-free sampling-based optimization methods such as shooting (Ebert et al., 2018; Nagabandi

Figure 1: Collocation-based planning. Each image shows a full plan at that optimization step.
Collocation jointly optimizes dynamics satisfaction constraints as well as rewards. This ability to
violate dynamics allows for the rapid discovery of high-reward regions (where the object is next to
the goal), while the subsequent refinement of the planned trajectory focuses on feasibly achieving it.
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et al., 2020); as shown in Figure 6, these approaches can get stuck when they must reason further
into the future. Here, the curse of dimensionality in conjunction with a lack of shaped reward
signal can prevent greedy planning methods from succeeding. Instead, we look to the gradient-based
optimization approach of collocation, where crucially, dynamics satisfaction constraints are optimized
jointly with the rewards. As shown in Figure 1, this ability to violate dynamics constraints and imagine
even impossible trajectories enables collocation to explore much more effectively and take shortcuts
through the optimization landscape in order to learn about high-reward regions before figuring out
how to get to those regions. In contrast to shooting approaches, or even to gradient-based approaches
such as backpropagating rewards through model predictions, this ability to violate dynamics greatly
helps to prevent getting stuck in local minima while still avoiding the need for special dense or shaped
reward signals.

Collocation, as introduced above, can provide many benefits over other optimization techniques, but
it has thus far been demonstrated (Ratliff et al., 2009; Mordatch et al., 2012; Schulman et al., 2014)
mostly in conjunction with known dynamics models and when performing optimization over states.
In this work, we are interested in autonomous skill acquisition directly from image inputs, where both
the underlying states as well as the underlying dynamics are unknown. Naı̈vely applying collocation
to this visual planning setting would lead to intractable optimization, due to the high-dimensional as
well as partially observed nature of images, in addition to the fact that only a thin manifold in the
pixel space constitutes valid images. Instead, we draw from the representation learning literature and
leverage latent dynamics models, which learn a latent representation of the observations that is not
only Markovian but also compact and lends itself well to planning. In this learned latent space, we
propose to perform collocation over states and actions with the joint objective of maximizing rewards
as well as minimizing dynamics violations.

Bridging control theory literature with modern deep-RL techniques for learning from images, we
propose in this work to perform collocation in a learned latent space in order to enable effective
long-horizon planning. The main contribution of this work is an algorithm for latent-space collocation
(LatCo), which is an efficient model-based RL approach for solving challenging planning tasks that
works directly from image observations by leveraging collocation in a learned latent space. To the
best of our knowledge, our paper is the first to scale collocation to visual observations, thus enabling
longer-horizon reasoning in model-based RL. In our experiments, we analyze various aspects of
our algorithm, and we demonstrate our approach significantly outperforming prior model-based
approaches on visual control tasks that require longer-horizon planning with sparse rewards.

2 RELATED WORK

Model-based reinforcement learning. Recent work has scaled model-based reinforcement learning
to complex systems leveraging powerful neural network dynamics models (Chua et al., 2018; Naga-
bandi et al., 2020), while showing significant data efficiency improvements over model-free agents.
Further, these neural network models can be scaled to high-dimensional image observations using
convolutional architectures (Ebert et al., 2018; Hafner et al., 2019). However, despite these successes
in building better predictive models, planning with these black-box neural network dynamics remains
a challenge. While this prior work used simple trajectory optimization techniques like derivative-free
shooting, we propose to leverage the more powerful collocation methods. Other work explored more
complex approaches based on mixed-integer linear programming (Say et al., 2017) or gradient descent
with input-convex neural networks (Chen et al., 2019), but it is unclear whether these approaches
scale to visual observations.

Latent Planning. Other works have considered different optimization methods such as iterative
Linear-Quadratic Regulator (iLQR) (Watter et al., 2015; Zhang et al., 2019). However, these
approaches require specialized locally-linear predictive models, and still rely on shooting and local
search in the space of actions, which is prone to local minima. Instead, our collocation approach
can be used with any latent state model, and is able to optimize in the state-space, which we show
often enables us escape local minima and plan better trajectories. Another line of work relied on
graph-based optimization (Kurutach et al., 2018; Savinov et al., 2018; Eysenbach et al., 2019; Liu
et al., 2020) tree search (Schrittwieser et al., 2019; Parascandolo et al., 2020), or other symbolic
planners (Asai & Fukunaga, 2018), while we use continuous optimization, which is more suitable for
continuous control. Recent work has designed hierarchical planning methods that plan over extended
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periods of time by considering intermediate subgoals (Nair & Finn, 2019; Nasiriany et al., 2019;
Pertsch et al., 2020). These approaches are orthogonal to our trajectory optimization method, but
they present many possible synergies as collocation can be naturally used in hierarchical approaches.
Many of these methods (Buesing et al., 2018; Hafner et al., 2019; 2020) used latent state-space models
for improved prediction quality and reduced computational requirements. Our proposed method
leverages this latent state-space design to construct an effective trajectory optimization method with
collocation, and we design our method to be model-agnostic, such that it can benefit from improved
latent variable models in the future.

Collocation-based planning. Collocation is a powerful optimal control technique for trajectory
optimization (Hargraves & Paris, 1987; Witkin & Kass, 1988) that optimizes a sequence of states for
the sum of expected reward, while eventually enforcing the constrained that the optimized trajectory
conform to a dynamics model (also see Kelly (2017) for a recent tutorial). Prior work in optimal
control has explored many versions of collocation for complex motion planning tasks, including
Hamiltonian optimization (Ratliff et al., 2009), contact-invariant optimization (Mordatch et al., 2012),
sequential convex programming (Schulman et al., 2014), as well as stochastic trajectory optimization
(Kalakrishnan et al., 2011). We note that in this paper we will use the terms ”trajectory optimization”
and ”planning” synonymously referring to this type of approaches. These works have demonstrated
good results in controlling complex simulated characters, such as humanoid robots, contact-heavy
tasks, and tasks with complex constraints. Our work is most similar to that of Schulman et al. (2014),
however, all this prior work assumed availability of a ground truth model of the environment. Some
recent works have attempted using collocation with learned neural network dynamics models (Bansal
et al., 2016; Du et al., 2019), but it only considered simple low-dimensional dynamics. In this work,
we address how to scale up collocation methods to high-dimensional image observations, where
direct optimization over images is intractable. We propose to do this by utilizing a learned latent
space representation.

3 BACKGROUND

Our method combines collocation methods for trajectory optimization with latent variable models, in
order to make it possible to optimize paths over compact and Markovian latent states. We separately
review collocation methods and latent state models in this section.

3.1 TRAJECTORY OPTIMIZATION WITH COLLOCATION

Given a dynamics model st+1 = f(st, at) that predicts the next state given the previous state and
action, a reward function r(st), and the current state s1, the problem of trajectory optimization is to
select actions that maximize the total reward:

max
a1:T−1

∑
t

r(st) = [r(f(s1, a1)) + r(f(f(s1, a1), a2)) + r(f(f(f(s1, a1), a2), a3) + . . . ] . (1)

Shooting methods optimize this objective directly with respect to the actions. However, this is known
to be poorly conditioned due to recursive application of the dynamics function, which results in
vanishing or exploding gradients. Instead, we can leverage the structure of the problem to construct
an objective that only has pairwise dependencies between temporally adjacent states, and no recursive
application of the model. To this end, collocation methods formulate the trajectory optimization
problem in Equation 1 as a constrained optimization problem, optimizing over sequences of actions
and states, while ensuring that the constraint imposed by the dynamics model f is satisfied:

max
s2:T ,a1:T−1

∑
t

r(st) s.t. st+1 = f(st, at). (2)

This constrained optimization problem, under some regularity conditions, can be solved with a primal
dual approach, which can be formulated as the following saddle point problem:

min
λ

max
s2:T ,a1:T−1

∑
t

r(st)− λ||st+1 − f(st, at)||2. (3)

In practice, we can address this problem with numerical optimization, taking alternating maximization
and minimization steps. This collocation approach is better conditioned, as it is able to exploit the
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Figure 2: Latent Collocation (LatCo). Left: Our latent state-space model, with an encoder q(z|o)
and a latent state-space dynamics model p(zt+1|zt, at) ∼ N (µ(zt, at), σ(zt, at)). A reward model
r(zt) predicts the reward from the latent state. The model is trained with a variational lower bound
to reconstruct the observations (not shown). Right: comparison of LatCo and shooting methods.
LatCo optimizes a sequence of latent states and actions z2:T , a1:T to maximize rewards r(zt) as
well as satisfy dynamics zt+1 = µ(zt, at). This joint optimization allows to relax the dynamics
constraint early on, which helps escape local minima. In contrast, shooting methods require recursive
application of the dynamics and backpropagation through time, which is often difficult to optimize.

Markovian property of the state-space and remove the recursive application of the model. The
dynamics constraint only needs to be evaluated on each pair of temporally adjacent states (see Fig 2,
right). Further, the dynamics constraint can be relaxed in the beginning of the optimization, leading
the method to rapidly discover high-reward state space regions (potentially violating the dynamics),
and then gradually modifying the trajectory to be more dynamically consistent, as illustrated in
Figure 1. This is in contrast to shooting-based approaches, which suffer from severe local optima in
long horizon tasks, since the algorithm must simultaneously drive the states toward the high-reward
regions and discover the actions that will get them there. The ability to disentangle these two stages
by first finding the high-reward region and only then optimizing for the actions that achieve that
reward allows collocation methods to solve more complex and temporally extended tasks while
suffering less from local optima (Ratliff et al., 2009; Mordatch et al., 2012; Schulman et al., 2014).

3.2 LATENT VARIABLE MODELS

The design of predictive models for high-dimensional visual observations is challenging. Recent
work has proposed learning latent state-space models that represent the observations in a compact
latent space. Specifically, this work learns a latent space zt, a latent dynamics model pθ(zt+1|zt, at),
and decoding models that can be used to decode the observation pθ(ot|zt) and the reward r(zt) from
the latent variable (see Fig. 2, left). This approach is powerful due to the use of high-capacity neural
network latent dynamics models, and is computationally efficient as the latent space is compact.
Importantly, the Markov property of the latent variable can be enforced, allowing a convenient
interpretation of the latent state-space as the belief state (Hafner et al., 2019; Buesing et al., 2018).

A probabilistic latent variable model can then be trained, by maximizing the likelihood of the
observed rewards r1:T and images o1:T . While maximizing the exact likelihood is often intractable,
we can construct and optimize a variational lower bound on it using a variational distribution
qθ(zt+1|ot+1, at, zt) (Chung et al., 2015; Fraccaro et al., 2016):

ln pθ(o2:T , r1:T |o1, a1:T ) ≥ LELBO(o1:T , a1:T , r1:T ) =

Eqθ(z1:T |o1:T ,a1:T ,z0)
∑
t

[ln pθ(ot+1|zt+1)− KL (qθ(zt+1|ot+1, at, zt) || pθ(zt+1|zt, at))] . (4)

4 LATENT COLLOCATION (LATCO)

Our aim is to design a collocation method that can be used to produce near-optimal trajectories from
raw image observations. A naı̈ve approach would learn a dynamics model over images, and directly
optimize an image sequence using Eq (2). However, such as method would be impractical for several
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reasons. First, the optimization over images would make the problem more difficult due to the high
dimensionality of the images and the fact that valid images lie on a thin manifold. Second, images
typically do not constitute a Markovian state space, violating the assumptions of the method. We
propose to instead learn a Markovian and compact state space by means of a latent variable model,
and then use this learned state space for collocation.

Latent state models. To make visual collocation scalable, we leverage the latent state-space dynamics
model described in Section 3.2. Following Hafner et al. (2019); Denton & Fergus (2018), we
implement this model with convolutional neural networks for the encoder and decoder, and a
recurrent neural network for the transition dynamics. The latent state of this model includes a
stochastic component with a conditional Gaussian transition function, and the hidden state of the
recurrent neural network with deterministic transitions. The model is shown in Fig. 2 (left).

Latent space collocation. We adapt the collocation procedure described in Section 3.1 into the
probabilistic latent state setting. Instead of optimizing a sequence of observations, we optimize a
sequence of latent variables z2:T and actions a1:T . Since the latent state space model predicts the
reward directly from the latent state zt using an approximation r(zt), we never need to decode images
during the optimization procedure, which makes it memory-efficient. We adapt the collocation
algorithm to use probabilistic dynamics by enforcing that the next latent state is the mean of the
distribution predicted by the model: zt+1 = Epθ(zt+1|zt,at) [zt+1], where the expectation is given
simply as the mean of the Gaussian zt+1 = µ(zt, at). Other approaches are possible, such as
maximizing the likelihood of the latent state, but these require introduction of additional balance
hyperparameters, while our constrained optimization approach automatically tunes this balance. We
visualize the collocation procedure in Fig 2 and provide the detailed algorithm as Algorithm 1.

Algorithm 1 Latent Collocation (LatCo)

1: Start with any available data D
2: while not converged do
3: for each environment step t = 1 . . . Ttot with step Tcache do
4: Infer latent state: zt ∼ q(zt|ot)
5: Define the Lagrangian:

L(zt+1:t+H , at:t+H , λ) =
∑
t

[
r(zt)− λdyn

t (||zt+1 − µ(zt, at)||2 − ε)− λact
t max(0, |at| − am)2

]
6: for each optimization step k = 1 . . .K do
7: Update plan: zt+1:t+H , at:t+H := zt+1:t+H , at:t+H + ∇̃L . Eq (5)
8: Update dual variables: λt:t+H := UPDATE(L, λt:t+H) . Eq (6)
9: Execute at:t+Tcache in environment: ot:t+Tcache , rt:t+Tcache ∼ penv

10: Add episode to replay buffer: D := D ∪ (o1:Ttot , a1:Ttot , r1:Ttot)
11: for training iteration i = 1 . . . It do
12: Sample minibatch from replay buffer: (o1:T , a1:T , r1:T )1:b ∼ D
13: Train dynamics model: θ := θ + α∇LELBO(o1:T , a1:T , r1:T )1:b . Eq (4)

5 OPTIMIZATION FOR LATENT COLLOCATION

The latent collocation framework described in the previous section can be used with any optimization
procedure, such as gradient descent or Adam (Kingma & Ba, 2015). However, using appropriate
optimization methods is important when time constraints are a factor. We found that the choice of
the optimizer for both the latent states and the Lagrange multipliers has a large influence on runtime
performance. We detail our specific implementation below.

Levenberg-Marquardt optimization. We use the Levenberg-Marquardt optimizer for the states and
actions, which pre-conditions the gradient direction with the matrix (JTJ)−1, where J is the Jacobian
of the objective with respect to the states and actions. This preconditioner approximates the Hessian
inverse, significantly improving convergence speed:

∇̃ = (JTJ + λI)−1JTρ. (5)
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Figure 3: LatCo executed trajectories on the three considered tasks. In all these sparse reward settings
requiring temporally extended reasoning, LatCo is able to optimize effective plans and execute them.

The Levenberg-Marquardt optimizer has cubic complexity in the number of optimized dimensions.
However, by noting that the Jacobian of the problem has a block-tridiagonal structure, we can
implement a more efficient optimizer that scales linearly with the planning horizon (Mordatch et al.,
2012). This efficient version of the optimizer converges 10-100 times faster than naı̈ve gradient
descent on wall clock time in our experiments.

The Levenberg-Marquardt algorithm optimizes the sum of squares
∑
i ρ

2
i , defined in terms of residuals

ρ. Any bounded objective can be expressed in terms of residuals by a combination shifting and square
root operations. For the dynamics objective, we use the zt+1 − µ(zt, at) differences as residuals
directly, with one residual per state dimension. For the action objective, we use max(0, |at|−am). For
the reward objective, we form residuals by passing the negative reward through a softplus operation:
ρ = ln(1 + e−r).

Constrained optimization. The Lagrange multipliers control the balance between the strength of the
dynamics constraint and the reward. For fast optimization, it is crucial that the Lagrange multipliers
be updated fast when the dynamics constraint is not yet optimized, but the update magnitude should
decrease over time to ensure smooth convergence as the dynamic violation converges to zero. We
therefore design an update rule that scales with the relative difference between the current dynamics
constraint ||zt+1 − µ(zt, at)||2 and the target constraint ε, such that the update is large when the
constraint violation is large and vice versa. We found the following rule to work well in our
experiments:

λdyn += 0.1 log

(
||zt+1 − µ(zt, at)||2

ε
+ η

)
λdyn, (6)

where η = 0.01 is used to ensure numerical stability. We found that using a small non-zero ε is
beneficial for the optimization and ensures fast convergence, as the exact constraint might be hard to
reach. We additionally constrain the planned actions to be within the environment range using the
same constrained optimization procedure.

6 EXPERIMENTS

Our evaluation aims to test the effectiveness of our method on performing long-horizon MBRL from
images by answering the following questions: (1) Does LatCo produce effective and feasible plans
from visual inputs? (2) Can LatCo solve complex simulated robotic tasks with sparse rewards? (3)
How does LatCo compare to trajectory optimization methods used in state-of-the-art visual planning
algorithms? (4) What is the effect of LatCo allowing dynamics violations during optimization?

6.1 EXPERIMENTAL SETUP

We evaluate our method on three visual tasks (see Fig. 3): Obstacle, a navigation environment with
an obstacle, Sawyer Reach, a robotic reaching task, Sawyer Push, a robotic pushing task. The first
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of these tasks is a custom environment, while the last two are from the Meta-World benchmark (Yu
et al., 2020). All tasks only provide the agent with image inputs and no access to underlying
state of the simulator. The Obstacle environment consists of an image-based 2D navigation task
where the agent must reach a goal on the other side of a wall. The reward defined is the negative
distance to the goal. The agent plans over a planning horizon H = 30 steps, executes every action
Tcache = 30, Ttot = 30, and results are averaged over 100 runs. In the Sawyer Reach task, a 7-DoF
Sawyer arm needs to reach the goal. For this task, H = 30, Tcache = 30, Ttot = 150. In the Sawyer
Push task, a 7-DoF Sawyer arm needs to push an object (puck) on the table to the goal. For this task,
H = 40, Tcache = 20, Ttot = 120. In both Sawyer tasks, we use a sparse reward of 1 for reaching the
goal and 0 otherwise. In particular, for the push task, there is no special reward shaping to encourage
the arm to go toward the puck. The arm is initialized to its default position, and results are averaged
over 20 runs. We train all methods online according to Algorithm 1. The hyperparameters used in the
experiments are detailed in Appendix A.

6.2 DOES LATCO PRODUCE EFFECTIVE PLANS ON SPARSE-REWARD VISUAL CONTROL TASKS?

Figure 4: Planned and executed trajectories on the Sawyer
Push task. LatCo produces a feasible and effective plan, and
is able to execute it. Shooting struggles to solve this task as
dense or shaped rewards are not provided.

In our first set of experiments, we
evaluate how well LatCo can solve
image-based control tasks from sparse
rewards, where effectively reasoning
into the future is critical for success.
As shown in Figure 3, LatCo is in-
deed able to perform collocation in
a learned latent space in order to
successfully produce plans that solve
these tasks, with effective longer-
horizon reasoning. In these results, we
see LatCo (top) avoiding local minima
that would arise from myopic plan-
ners, (middle) extending to higher-
dimensional control tasks while still
operating only from image inputs, and
(bottom) reasoning into the future and
succeeding even when the sparse task
reward provides no direct incentive to
go toward the object.

6.3 HOW DOES
LATCO COMPARE TO ALTERNATIVE
SHOOTING-BASED APPROACHES?

To specifically ascertain the bene-
fits of collocation, we must deter-
mine whether the benefits of LatCo
stem from gradient-based optimiza-
tion, from optimizing over states, or
both. Therefore, we include a prior
method based on zeroth-order CEM
optimization, PlaNet (Hafner et al.,
2019), which is representative of a broader class of shooting-based methods (Ebert et al., 2018;
Nagabandi et al., 2020), as well as a gradient-based method that optimizes actions directly using the
objective in Eq. 1, which we denote GD actions. To provide a fair comparison that isolates the effects
of different planning methods, we use the same dynamics model architecture for all agents.

From Table 1, we observe that LatCo exhibits superior performance to shooting-based methods on
all three tasks. On the Sawyer Reach task, shooting fails to find a successful trajectory most of the
time due to a lack of local reward signal. LatCo, on the other hand, solves this task consistently.
The Sawyer Push task is challenging for all of the methods, as the dynamics are more complex
and requires accurate long-term predictions to correctly optimize the sparse signal. Specifically,
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Table 1: Comparison of shooting and collocation with online data. Shooting struggles with long
horizon tasks and sparse rewards, while the powerful trajectory optimization with LatCo is able to
find a good trajectory.

Sawyer Reaching Sawyer Pushing
Shaped reward × ×
Visual observations

Return Success Return Success

Shooting CEM (PlaNet) 0.0 ±0.0 0% 0.0 ±0.0 0%
Shooting GD 38.0 ±5.1 42% 4.3 ±1.5 10%
LatCo (Ours) 75.8 ±2.0 100% 10.9 ±2.1 29%

Table 2: Comparison of shooting and collocation with offline data.

Obstacle Sawyer Reaching Sawyer Pushing
Shaped reward × ×
Visual observations

Return Success Return Success Return Success

Shooting CEM (PlaNet) -52.4 ±0.6 25% 1.4 ±0.8 15% 0.0 ±0.0 0%
Shooting GD -54.5 ±0.5 34% 4.8 ±3.8 10% 0.0 ±0.0 0%
LatCo (Ours) -47.3 ±1.1 54% 90.9 ±5.8 100% 18.7 ±7.0 40%

there is no partial reward for reaching down to the object, so the planner has to look ahead into the
high reward state and reason backwards that it needs to approach the object. As shown in Fig. 4,
shooting-based methods altogether fail to solve this task, not reaching for the object in any run. LatCo
outperforms them by a considerable margin, achieving a 29% success rate. It is worth noting that
even in the unsuccessful runs, LatCo plans often display goal-reaching behaviors, as can be seen in
Fig. 4. However, significant room for improvement for MBRL still remains on this task. In addition,
to evaluate the different methods in a more controlled setup, we test them on the same model trained
with offline data in Table 2 and App. C

6.4 THE EFFECT OF ALLOWING DYNAMICS VIOLATIONS

Figure 5: Dynamics violation and reward predic-
tions of planned trajectories over the course of 200
optimization steps on the obstacle task. Earlier on,
the planner explores high-reward regions, converg-
ing to the goal state. Eventually, as the dynamics
constraint is enforced, the plan becomes feasible,
while maintaining a high predicted reward.

In this section, we analyze the ability of our
method to temporarily violate dynamics in order
to effectively plan for long-term reward. We
show the dynamics violation costs and the pre-
dicted rewards associated with the planned tra-
jectories over the course of optimization quan-
titatively in Fig. 5 and qualitatively in Figs. 1, 6.
Since the dynamics constraint is only gradually
enforced with the increase of the Lagrange mul-
tipliers, the first few steps of optimization allow
for dynamics violations in order to focus on dis-
covering the high-reward region (corresponding
to steps 0 to 20 in Fig. 5). In the later steps
of the optimization, the reward is relaxed and
the constraints are optimized until the trajectory
becomes feasible.

7 CONCLUSION

We presented LatCo, an algorithm for latent collocation that improves performance of visual-model
based reinforcement learning agents. In contrast to the commonly used shooting-based methods,
LatCo performs powerful trajectory optimization and is able to plan for tasks where prior work fails,
such as long-horizon and sparse reward tasks. By improving the planning capabilities of visual
model-based reinforcement learning agents and removing the need for reward shaping, LatCo enables
these agents to scale to complex tasks more easily and with less manual instrumentation.
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Future work will examine improvements to the collocation procedure, such as Hamiltonian (Ratliff
et al., 2009) or stochastic (Kalakrishnan et al., 2011) optimization. Further, collocation can be applied
with variety of latent variable models, including specialized models with more structure. Finally, we
believe the ability to perform reinforcement learning in state space as opposed to action space opens
up many new avenues for algorithmic development, such as in imitation learning or hierarchical
reinforcement learning.
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Figure 7: Additional optimization curves. The dynamics coefficient (magnitude of Lagrange multipli-
ers) increases exponentially as the dynamics constraint is enforced, and eventually converges

A MODEL ARCHITECTURE AND TRAINING DETAILS

Figure 6: Visualization of collocation-based plan-
ning. Left: shooting-based planning searches for
actions that maximize rewards of the transitions as
predicted by a model. It struggles on tasks that re-
quire long-term reasoning, as its myopic approach
is prone to local minima such as being trapped
behind the obstacle here. Right: in contrast, col-
location jointly optimizes dynamics satisfaction
constraints as well as rewards. This ability to vi-
olate dynamics allows for the rapid discovery of
high-reward regions (here, the goal state), while
the subsequent refinement of the planned trajectory
focuses on feasibly achieving it.

We use the latent dynamics and reward mod-
els from PlaNet (Hafner et al., 2019) with de-
fault hyperparameters. We set the image size
to 64x64 and action repeat to 1 for both point-
mass and Meta-World models. For every N = 1
episode collected, we train for It = 15 iterations.
The pointmass models are trained with episode
length 30 and βKL = 0.1, while the Meta-World
models are trained with episode length 150 and
βKL = 1. All models are trained on a single
high-end GPU.

B PLANNING DETAILS

CEM. we optimize for 100 iterations. In each
iteration, 10000 action sequences are sampled
and the distribution is refit to the 100 best sam-
ples. For this baseline, we have manually tuned
the batch size and number of iterations, and we
report the best results.

GD. we optimize for 500 iterations using the
Adam optimizer (Kingma & Ba, 2015) (which
is a modified version of momentum gradient descent) with learning rate 0.05. We use dual descent to
penalize infeasible action predictions. The Lagrange multipliers are updated every 5 optimization
steps. For this baseline, we have manually tuned the learning rate and tried several first-order
optimizers, and we report the best results.

LatCo. we optimize for 200 iterations using the Levenberg-Marquardt optimizer with damping
10−3. The damping parameter controls the trust region, with smaller or zero damping speeding up
convergence, but potentially leading to numerical instability or divergence. The Lagrange multipliers
are updated every step using the rule from Section 5, with ε = 10−5 and η = 0.01. The threshold
ε directly controls the magnitude of the final dynamics and action violations. In general, we found
this parameter to be important for good performance, as a large threshold may cause infeasible
plans, while low threshold would make the initial relaxation of the dynamics constraint less effective.
However, we observed that a single threshold of 10−5 works for all of our environments. A larger
η makes the optimization more aggressive but less stable, and a smaller η diminishes the effect of
multiplier updates. We initilalize λdyn

0 = 1, λact
0 = 1.

These planning hyperparameters remain fixed across the experiments as we observe that reward
optimization converges in all cases. Planning a 30-step trajectory takes 12, 14, and 14 seconds for
CEM, GD, and LatCo respectively on a single RTX 2080Ti graphics card. We trained the online
models for 24 hours each.
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Table 3: Comparison of predicted and achieved reward.

Obstacle Sawyer Reaching Sawyer Pushing

Predicted Real Predicted Real Predicted Real

Shooting CEM (PlaNet) -8.3 ±0.1 -54.7 ±2.3 22.1 ±2.3 0.0 ±0.0 3.2 ±0.0 0.0 ±0.0
Shooting GD -40.8 ±2.3 -49.3 ±2.0 5.9 ±0.7 0.0 ±0.0 3.0 ±0.0 0.0 ±0.0
LatCo (Ours) -20.7 ±0.9 -46.9 ±2.7 141.4 ±2.8 90.8 ±4.7 29.3 ±5.9 18.2 ±6.5

C ADDITIONAL EXPERIMENTAL RESULTS

Figure 8: Visualization of the reward predictor for
the Sawyer Pushing task. The output of the reward
predictor is shown for each object position on the
2D table. We see that the reward predictor correctly
predicts a value of 1 at the goal, and low values
otherwise. In addition, there is a certain amount of
smoothing induced by the reward predictor, which
creates a gradient from the start to the goal posi-
tion. This explains why gradient-based planning is
applicable even in this sparse reward task.

Offline training. In Section 6.3, we have
evaluated our algorithm in the online training
regime, where each agent needs to collect the en-
tire dataset from scratch by executing the policy
in the environment. To further test whether col-
location is beneficial for planning in a controlled
setup, we have performed offline training experi-
ments, where a single model trained with offline
data is tested with different planning algorithms.
This experiment further shows the applicability
of our method to offline setting without addi-
tional data collection. We collect the offline data
by training an oracle agent that observes dense
reward, avoiding the exploration issue. We pre-
collect 200K steps of this data for all tasks. For
the Sawyer Push task, we collect an additional
200K environments steps of online interaction
data according to Algorithm 1 as none of the
methods were able to solve the task with offline
data only. We use the same hyperparameters as
in Section 6.3 otherwise.

Table 2 shows the results of this experiment.
We see that collocation outperforms shooting
methods in this controlled setup, showing that it
is better able to exploit a dynamics model trained offline.

We visualize the optimization procedure on the obstacle task in Fig 6.

We visualize the reward predictor output on the Pushing task in Fig 8.

We visualize the additional curves of the optimization in Fig 7.

We further compare the predicted and achieved reward by all methods in the offline setup in Table
3. The predicted reward is often higher than the achieved reward, indicating some degree of model
exploitation. However, we see that the predicted reward reflects the general trends in the achieved
reward and trajectories with high predicted reward also achieve high reward for our method.
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