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Abstract
Large Language Models (LLMs) often retain
inaccurate or outdated information from pre-
training, leading to incorrect predictions or bi-
ased outputs during inference. While existing
model editing methods can address this chal-
lenge, they struggle with editing large amounts
of factual information simultaneously and may
compromise the general capabilities of the mod-
els. In this paper, our empirical study demon-
strates that it is feasible to edit the internal rep-
resentations of LLMs and replace the entities
in a manner similar to editing natural language
inputs. Based on this insight, we introduce
the Latent Knowledge Scalpel (LKS), an LLM
editor that manipulates the latent knowledge
of specific entities via a hypernetwork to en-
able precise and large-scale editing. Experi-
ments conducted on Llama-2 and Mistral show
that even with the number of simultaneous ed-
its reaching 10,000, LKS effectively performs
knowledge editing while preserving the general
abilities of the edited LLMs.

1 Introduction

The development of large language models (LLMs)
has significantly advanced natural language pro-
cessing (NLP) (Qin et al., 2024). However, chal-
lenges such as hallucinations (Huang et al., 2024;
Xu et al., 2024), biases (Gallegos et al., 2024), and
outdated information (Lazaridou et al., 2024) per-
sist after pre-training. Therefore, it is essential to
perform targeted updates to this incorrect or out-
dated information that arises during the deployment
of LLMs.

Retraining or fine-tuning (Wei et al., 2022) can
address this issue but requires substantial compu-
tational resources and time. Parameter-efficient
fine-tuning (PEFT) methods (Lialin et al., 2024)
provide more efficient alternatives, though they
may lead to overfitting and are limited in reliability
(Wang et al., 2024b; De Cao et al., 2021). Another
class of methods modifies the behavior of LLMs

Figure 1: Illustration of model editing. Model editing
modifies specific knowledge with minimal impact on
unrelated inputs.

by adding contextual information to the prompts,
including prompt engineering (Sahoo et al., 2024)
and retrieval-augmented generation (RAG) (Lewis
et al., 2020). However, these methods may fail
due to misalignment between LLMs and prompts
(Hernandez et al., 2024). Moreover, they are con-
strained by prompt length, as they require ample
context to be effective (Wang et al., 2024b).

Model editing has emerged as a promising solu-
tion, aiming to make targeted modifications to spe-
cific model behaviors while minimizing changes
to unrelated distributions, as shown in Figure 1.
While previous works have introduced various en-
lightening editing approaches, there remains room
for improvement. Gu et al. (2024) highlights that
editing methods that modify model weights, such
as Dai et al. (2022), Mitchell et al. (2022a), Meng
et al. (2023a), and Meng et al. (2023b), can lead
to overfitting on the edited facts, degrading the
model’s general abilities. Furthermore, methods
such as De Cao et al. (2021), Dai et al. (2022),
Mitchell et al. (2022a), and Meng et al. (2023a) be-
come less effective when editing large volumes of
factual information simultaneously (Mitchell et al.,
2022a; Meng et al., 2023b). Hartvigsen et al. (2023)
directly replaces the hidden states of the original
model with the edit target to enable lifelong sequen-
tial editing, but it suffers from poor generalization
and often fails to edit paraphrases of the targets.



In this paper, we propose Latent Knowledge
Scalpel (LKS), an LLM editor capable of per-
forming large-scale simultaneous knowledge edit-
ing without compromising the general abilities of
LLMs. Unlike methods that modify the model’s
weights, we focus on editing the internal representa-
tions of specific entities. Previous studies (Petroni
et al., 2019; Jiang et al., 2020; Li et al., 2021; Sun
et al., 2024) have shown that the internal represen-
tations (or hidden states) of LLMs contain both
factual knowledge and contextual information. For
fine-grained editing, we associate knowledge with
entities, which represent the smallest unit of knowl-
edge in natural language (Cao et al., 2021). Our
empirical study (§2) demonstrates that the internal
representation of a single entity encapsulates both
factual knowledge and semantic features, which
we refer to as a knowledge block (KB). Moreover,
we show that the internal representations of LLMs
preserve the syntactic structure of natural language,
allowing operations similar to those on natural lan-
guage itself.

Building on these findings, LKS manipulates
specific entity latent knowledge for targeted up-
dates (§3). During inference, if the input contains
an entity within the edit scope, LKS uses a simple
neural network to generate a new knowledge block
(KB) for this entity and replace the original one,
guiding the LLM to produce the desired output.
This network is trained to integrate the new knowl-
edge of entities within the edit scope, enabling it to
generate optimal KBs. These KBs update specific
entity features while preserving others, ensuring
precise edits. Moreover, the use of the neural net-
work allows LKS to handle large-scale, simulta-
neous updates. Our entity recognition mechanism
ensures accurate identification of the edit scope,
preventing LKS from triggering on inputs outside
the scope, thereby enabling extensive edits without
affecting unrelated distributions.

We conduct extensive experiments to evaluate
our LKS editor (§4). Our experimental results
demonstrate that LKS outperforms six other meth-
ods in factual knowledge editing on Llama-2-7B
and Mistral-7B, achieving the best balance in relia-
bility, generality, and locality. Additionally, during
large-scale simultaneous editing, LKS can accu-
rately perform 10,000 edits simultaneously, achiev-
ing high edit performance while maintaining the
general abilities of the LLMs.

We make the following key contributions:

1. We introduce Latent Knowledge Scalpel
(LKS), an LLM editor that replaces entity
knowledge blocks with new ones generated by
a simple neural network, achieving targeted
and large-scale LLM editing while preserving
the general abilities of LLMs.

2. We demonstrate that the entity knowledge
blocks in LLMs contain semantic information,
and the internal representations of LLMs re-
tain the syntactic structure of natural language,
allowing us to manipulate them like natural
language.

3. Our experiments show that even when the
number of simultaneous edits reaches 10,000,
LKS is still able to maintain the general abili-
ties of the edited LLMs while outperforming
other editors in terms of edit performance.

2 Empirical Study

2.1 Semantic Information of a Single Entity
Knowledge Block

In natural language, an entity typically contains
multiple factual knowledge. For example, a person
entity may include information such as age, occu-
pation, and hobbies. This raises the question: does
a single entity knowledge block from a LLM also
contain sufficient semantic information?

To investigate this, we design a probe to dif-
ferentiate between factual knowledge learned by
the LLM and counterfactual knowledge it has not
encountered. Specifically, we extract 10,000 en-
tities along with their factual and counterfactual
attributes from the Counterfact dataset (Meng et al.,
2023a). The probe computes the cosine similarity
between the entity KB and the internal represen-
tations of the last tokens from both factual and
counterfactual knowledge, selecting the one with
the higher similarity:

argmax
knowledge∈K

cosine-similarity(Rentity, Rknowledge)

(1)

where K contains both factual and counterfactual
knowledge and R denotes internal representation.
The probe’s accuracy is defined as the proportion
of correctly selected factual knowledge. Higher ac-
curacy indicates that the entity KB is semantically
closer to learned knowledge, suggesting it encodes
meaningful semantic information.

Figure 2 presents the probe’s accuracy across lay-
ers in Llama-2-7B-Chat (Touvron et al., 2023) and



Figure 2: Probe accuracy for identifying factual knowl-
edge across layers in Llama-2-7B and Mistral-7B. The
results show that the probe accuracy exceeding 50% on
average and peaking at 80%, demonstrating that a single
entity KB retains semantic information.

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). The
probe achieves an average accuracy above 50%,
surpassing random guessing, with peak accuracy
reaching 80%. These results confirm that a single
entity KB in a LLM retains its semantic informa-
tion.

2.2 Syntactic Structure of Internal
Representations

Natural language follows a syntactic structure, and
replacing an entity name in a natural language
prompt shifts the LLM’s prediction toward the se-
mantics of the new entity. Our research shows that
the internal representations of LLMs exhibit a sim-
ilar syntactic structure, as illustrated in Figure 3.

To investigate this, we use the template "The
birthplace of Alfred Bernhard Nobel is"
and replace the KB of "Alfred Bernhard Nobel"
with different entity KBs. We then measure the
rate at which the predicted birthplaces rank higher
after replacement. The results in Figure 4 show that
replacing KBs increases the ranking of the target
location across all layers in both Llama-2-7B and
Mistral-7B. Additionally, the effect diminishes as
the layer number increases.

These findings confirm that LLMs’ internal rep-
resentations preserve syntactic structure to some
extent. Furthermore, they suggest that during for-
ward propagation, unchanged parts of the internal
representation continue to influence predictions,
explaining why the effect of KB replacement is
stronger in earlier layers. If the goal is to introduce
new information while preserving some original
knowledge, modifying KBs in intermediate layers
may be more effective.

Figure 3: Upper: In natural language, replacing the
entity "Shelly" with "Nobel" in the context of the "birth-
place" causes the prediction from Llama-2-7B shifting
from "England" to "Sweden". Lower: In internal rep-
resentation, by obtaining the internal representations
of two sentences and swapping the entity KB at a cer-
tain layer, similar to replacing entity names in a natural
language prompt, the prediction of LLM changes and
outputs the corresponding birthplaces.

Figure 4: By replacing the name KB in the template
with different entity KBs at each layer of Llama-2-7B
and Mistral-7B, an increase in the ranking of the tar-
get birthplace across all layers in both models can be
observed, confirming that internal representations of
LLMs retain syntactic structure.

3 Method

3.1 Overview of LKS
Design Goal We aim to design an LLM editor that
can effectively modify large-scale knowledge si-
multaneously while preserving the general abilities
of LLMs. Particularly, it should satisfy the follow-
ing requirements for LLM editing:

• Reliability: Accurately updates the specified
targets.

• Generality: Consistently updates the equiva-
lent neighborhoods of the specified targets.

• Locality: Ensures that knowledge outside the
edit scope remains intact.

We propose Latent Knowledge Scalpel (LKS),
an LLM editor that precisely updates the latent
knowledge of LLMs using a hypernetwork. We ex-
tract entity-related knowledge from an LLM, con-



struct a self-supervised training dataset, and train a
simple neural network (linear or MLP) specialized
in entity-related knowledge. The new entity knowl-
edge block (KB) generated by the network replaces
the original one in the LLM. This updated entity
KB is integrated into the LLM’s forward propaga-
tion, guiding the model to produce the edited target
within the edit scope while preserving its original
predictions outside this scope.

The architecture of LKS is shown in Figure 5.
LKS consists of three components: Edit Scope
Indicator, which determines if an entity in the
prompt falls within the edit scope, using fuzzy
string matching and Levenshtein distance; New
KB Generator, a simple neural network that gen-
erates the updated entity KB, which can either be
a linear layer or an MLP layer. It is trained on
a dataset containing the latest knowledge of enti-
ties within the edit scope, enabling it to output the
optimal new entity KB; and KB Replacer, which
hooks into a selected layer (discussed in detail in
Section 4.3) of the edited LLM and replaces the
original entity KB with the new one generated by
the New KB Generator. The updated entity KB is
then involved in the LLM’s forward propagation,
ultimately guiding the model’s prediction.

If the Edit Scope Indicator determines that the
prompt contains the entity to be edited, the New KB
Generator generates the updated entity KB for that
entity. The KB Replacer then replaces the original
entity KB in the selected layer, and the inference
process continues until the edited LLM’s prediction
is obtained. Otherwise, the last two components
are not triggered, and the original model proceeds
with the inference as usual.

3.2 Building a New Knowledge Block
LKS enables LLMs to generate updated predictions
for inputs within the edit scope (target edits and
their equivalent neighborhoods) while preserving
predictions outside this scope. In other words, it
selectively edits a semantic feature of an entity
while maintaining unrelated content. To achieve
this, we construct a new knowledge block in three
steps, as illustrated in Figure 6.

Knowledge Extraction Inspired by Zhou et al.
(2023), we extract text-based entity-related knowl-
edge from the LLMs. For each entity, we use GPT-
4o mini (OpenAI et al., 2024) to generate multiple
sentences reflecting its factual knowledge.

Knowledge Updating We replace the factual
knowledge of the target feature and its equivalent

Figure 5: Architecture and Process of LKS. ➀ A simple
neural network is trained using Dtrain to generate the
optimal new KB during inference. ➁ Upon receiving
a prompt, the Edit Scope Indicator checks if the tar-
get entity is present. If so, the relevant information is
passed to the New KB Generator; otherwise, the original
LLM proceeds as usual. ➂ The New KB Generator then
creates the updated entity KB. ➃ The KB Replacer up-
dates the corresponding entity KB in the selected layer
l, and the inference continues to produce the final edited
prediction.

neighborhood with the desired content, while leav-
ing other entity features unchanged. These un-
changed features will be aligned with the relevant
knowledge in the edited LLM during the next step.

Knowledge Compression Following prior
works (Petroni et al., 2019; Shin et al., 2020;
Roberts et al., 2020; Onoe et al., 2022; Abaho et al.,
2022; Chen et al., 2022; Youssef et al., 2023), we
convert the extracted and updated entity knowledge
into gap-filling prompts to create a self-supervised
training dataset Dtrain. A simple neural network is
then trained on Dtrain, serving as a hypernetwork
to generate new entity KBs that replace the original
ones in the LLM. During training, the LLM aligns
its predictions with the updated targets while re-
taining non-edited knowledge. After training, this
neural network encapsulates only the latest entity
knowledge and can produce the optimal new entity
KBs which represent the compressed knowledge.

3.3 Training LKS Hypernetwork

The neural network hϕ(·) takes the input entity E
and outputs the new knowledge block for layer
l, denoted as R̃l

ϕ(E) = hϕ(E; l). This hypernet-
work is trained using Dtrain in advance to generate
the optimal new KB R̃l during inference. During
LLM inference, LKS replaces the original KB Rl

with the new KB R̃l, guiding the LLM’s predic-
tions. Notably, Dtrain is significantly smaller than
the original LLM training dataset, and the storage
overhead of the neural network is negligible com-
pared to the LLM itself. For instance, hϕ with a



Figure 6: The process of building a new KB. ➀ Ex-
tract entity knowledge from a LLM. ➁ Update the tar-
get knowledge for editing the entity. ➂ Compress the
knowledge using a simple neural network contains only
the latest knowledge of entities within the edit scope.

linear layer for Llama-2-7B occupies only 64MB,
regardless of the number of edits it contains.

Given an LLM fθ and an input sequence x con-
taining entity E, the model recalls the correspond-
ing feature of E and predicts the token sequence y.
The original entity KB in layer l can be formulated
as Rl

θ(E) = Rl−1
θ (E)+attnl

θ(E)+mlplθ(E). The
output y can be expressed as y = fθ(x,R

l
θ(E)).

For factual knowledge editing, LKS replaces the
original entity KB at layer l with R̃l

ϕ(E), enabling
the LLM to generate a new prediction ỹ aligned
with the updated feature: ỹ = fθ(x, R̃

l
ϕ(E)). The

neural network hϕ is optimized using the following
loss function:

L(ϕ) = λedit(Ledit + Leq) + Llocality (2)

Ledit is optimized via maximum likelihood es-
timation, ensuring that the prompt Xe describing
the edit aligns with the target Ye, leading to correct
updates within the edit scope:

Ledit = − log p(ye|xe, R̃
l
ϕ(E)), (xe, ye) ∈ (Xe,Ye)

(3)

Similar to Ledit, Leq ensures that equivalent
neighborhood inputs Xeq result in the same Ye:

Leq = − log p(ye|xeq, R̃
l
ϕ(E)), (xeq, ye) ∈ (Xeq,Ye)

(4)

Llocality constrains the logit distribution for un-
related features Xloc using Kullback-Leibler (KL)
divergence, minimizing deviations from the origi-
nal pre-trained logit distribution. This ensures that
the original distribution remains unchanged outside
the edit scope:

Llocality = KL(p(·|x, R̃l
ϕ(E)), p(·|x,Rl

θ(E))), x ∈ Xloc

(5)

Algorithm 1 Training Algorithm of LKS
Input: Training dataset Dtrain; LLM fθ; LKS neutral net-

work hϕ; Edit layer l; hyperparameter λedit

Output: Trained LKS neutral network hϕ; Edit scope S
1: Generate the edit scope S according to Dtrain;

While not early-stopping do
2: Sample entity E, xe, ye, xeq , xloc from Dtrain;
3: Ledit = −logp(ye|xe, R̃

l
ϕ(E));

4: Leq = −logp(ye|xeq, R̃
l
ϕ(E));

5: Lloc = KL(p(·|x, R̃l
ϕ(E)), p(·|x, Rl

θ(E)));
6: L(ϕ) = λedit(Ledit + Leq) + Llocality;
7: ϕ← AdamW(ϕ,∇L(ϕ));

Algorithm 2 Inference Algorithm of LKS
Input: LLM fθ; Trained LKS neutral network hϕ; Edit

scope S; Input prompt x
Output: Prediction ŷ

If ∃E ∈ x, E ∈ S:
# Edit with LKS
Replace Rl

θ(E) using R̃l
ϕ(E);

ŷ = fθ(x, R̃
l
ϕ(E));

Else:
# Do not edit, output as origin
ŷ = fθ(x);

return ŷ;

See Algorithm 1 and Algorithm 2 for a detailed
overview of LKS training and inference. For hy-
perparameter details, refer to Appendix A.

4 Experiments

4.1 Experiment Setting
Datasets For evaluating the reliability, generality,
and related-locality of factual editing, we generate
two evaluation datasets using GPT-4o mini based
on the zsRE question-answering dataset (Levy
et al., 2017) and the Counterfact dataset (Meng
et al., 2023a). Details can be found in Appendix B.
For unrelated-locality, we use GSM8K (Cobbe
et al., 2021), RTE (Dagan et al., 2005), and SST2
(Socher et al., 2013) to assess the general abilities
of the edited LLMs. GSM8K tests the model’s
mathematical reasoning ability, RTE assesses its
natural language inference ability (i.e., whether a
statement is reasonable), and SST2 evaluates senti-
ment analysis capabilities by classifying statements
as positive or negative.

Baselines We use several classical or effec-
tive model editing methods as baselines. MEND
(Mitchell et al., 2022a) edits models by updating
MLP layer weights using the low-rank structure
of fine-tuning gradients. ROME (Meng et al.,
2023a) and MEMIT (Meng et al., 2023b) mod-
ify specific factual associations by adjusting MLP
weights, with MEMIT supporting large-scale edits.



GRACE (Hartvigsen et al., 2023) records model
hidden states in a codebook and replaces the origi-
nal states during edits. WISE (Wang et al., 2024a)
introduces a dual parametric memory mechanism,
with a main memory for pretrained knowledge and
a side memory exclusively for edits. AlphaEdit
(Fang et al., 2025) attempts to preserve original
knowledge by projecting weight updates onto the
null space of preserved facts. All baselines are
evaluated using EasyEdit (Wang et al., 2024b), an
easy-to-use framework for LLM knowledge edit-
ing, ensuring convenient and fair assessment.

4.2 Evaluation Metrics

Following prior works (Mitchell et al., 2022a,b;
Meng et al., 2023a), we evaluate LLM editing per-
formance using three primary metrics: reliability,
generality, and locality. As shown in Figure 1, these
metrics assess the model’s behavior for prompts in-
side and outside the edit scope.

For reliability and generality, computing the
average exact-match accuracy between the edited
predictions and the target outputs within the edit
scope:

Rel = E(1fLKS(xe)=ye) (6)

Gen = E(1fLKS(xeq)=ye) (7)

For locality, we further divide it into two cat-
egories: related-locality, which pertains to areas
related to the edited entity but not the modified
feature, and unrelated-locality, which refers to ar-
eas completely outside the edit scope. In other
words, unrelated-locality means that after perform-
ing factual edits, the general abilities of LLMs,
such as mathematical reasoning and sentiment anal-
ysis, should remain unchanged.

For related-locality, we measure whether pre-
dictions for inputs which are related to the edited
entity but outside the edit scope remain unchanged:

Loc = E(1fLKS(xloc)=f(xloc)) (8)

We define Edit Performance (EP) as the aver-
age of reliability, generality, and related-locality,
providing a comprehensive evaluation of editing
effectiveness.

For unrelated-locality, we assess how well the
edited LLM preserves the general abilities of its
original model, including mathematical reasoning,
natural language inference, and sentiment analysis.

Figure 7: Effectiveness of LKS on different layers, mea-
sured by the information gain ∆If (R̃ → Y ). Positive
values indicate that the new KBs increases the likeli-
hood of the LLM generating output Y . Results show
that modifying intermediate layers of Llama-2-7B and
Mistral-7B leads to higher effectiveness.

4.3 Selection of the LKS Operating Layer
LKS achieves LLM editing by replacing the entity
knowledge blocks. This section applies informa-
tion theory to validate its effectiveness and guide
the selection of the optimal layer for replacement.

Inspired by Shannon Information Theory (Shan-
non, 1948) and Ethayarajh et al. (2022), we de-
fine the information gain ∆If (R̃ → Y ) to mea-
sure how effectively the new knowledge block
R̃ helps model f generate output Y . A positive
∆If (R̃ → Y ) indicates that the new KB outper-
forms the original in generating Y . The larger the
value, the more effective the new KB. Using the en-
tropy definition, the information entropy Hf (Y |R)
required for model f to predict Y given KB R is
Hf (Y |R) = inf E[− log2 f [R](Y )].

Thus, ∆If (R̃ → Y ) can be calculated as:

∆If (R̃→ Y ) = Hf (Y |R)−Hf (Y |R̃) (9)

The results in Figure 7 show positive values of
∆If (R̃ → Y ), indicating that the modification
of the entity KBs increases the likelihood of the
LLM generating the edit targets Y . Modifying
intermediate layers yields higher effectiveness, and
although modifying multiple layers is possible, we
opt for a single layer to balance computational cost.
In subsequent experiments, we select layer 16 of
Llama-2-7B and layer 18 of Mistral-7B for the LKS
replacement.

4.4 Edit Performance of Large-Scale
Simultaneous Editing

In many scenarios, large-scale and simultaneous ed-
its are necessary for LLMs. For example, updating
thousands of factual changes within a specific time
frame, or removing large amounts of erroneous
or privacy-sensitive information introduced during



pre-training. In such cases, allowing only one edit
at a time is insufficient.

In this section, we evaluate the edit performance
of various model editing baselines on the zsRE
dataset using Llama-2-7B and Mistral-7B under
different numbers of edits. The number of simulta-
neous edits T ranges from a single edit to a large-
scale setting of 10,000 edits.

As shown in Table 1, LKS outperforms all other
methods, achieving the highest EP scores on both
LLMs across almost all edit numbers T . This
demonstrates that LKS delivers the best perfor-
mance both within and outside the editing range.
Specifically, LKS effectively modifies the target
features of entities while preserving unrelated fea-
tures, ensuring highly targeted edits. The effective-
ness is driven by the LKS neural network, which
learns to accurately update the target features and
their equivalent neighborhoods. Related-locality is
maintained through two mechanisms: first, the Edit
Scope Indicator identifies whether the inputs con-
tain entities within the edit scope, and second, the
New KB Generator is trained to preserve unrelated
distributions as much as possible.

Moreover, as the number of simultaneous ed-
its increases up to 10,000, LKS still achieves and
maintains the best performance. Its reliability and
generality remain high, although locality experi-
ences a slight decline as the number of edits grows.
In contrast, the performance metrics of other base-
lines show significant degradation. This suggests
that LKS’s neural network effectively stores the
updated factual knowledge, enabling massive si-
multaneous and precise edits.

Furthermore, the LLMs edited by LKS demon-
strate consistently fluent text generation. Details
can be found in Appendix D.

4.5 Maintaining the General Abilities of
LLMs after Editing

If the general abilities of the edited LLMs are
compromised or rendered ineffective, LLM edit-
ing would become counterproductive. In this sec-
tion, we evaluate four methods with superior edit
performance as identified in §4.4 (MEMIT, WISE,
AlphaEdit, and LKS), testing whether their simulta-
neous multiple edits come at the cost of damaging
the general abilities of the edited LLMs. Here,
we use the GSM8K, SST2, and RTE datasets to
evaluate how effectively the edited LLM preserves
the general abilities of its original model. These
three datasets assess the LLM’s capacities in math-

ematical reasoning, sentiment analysis, and natural
language inference, respectively.

The results shown in Figure 8 indicate that when
simultaneously editing thousands of facts, both
MEMIT and AlphaEdit lead to substantial degra-
dation across all three capability metrics of the
edited LLMs, indicating a severe compromise of
their general abilities. The Llama-2 model edited
by WISE demonstrates unstable performance on
general tasks, and its edits on Mistral-7B clearly
fail to preserve the model’s original general capa-
bilities. In contrast, as the number of simultaneous
edits increases, LLMs edited by LKS exhibit stable
performance without noticeable degradation. Even
with 10,000 edits, LKS retains nearly all of the
original LLM’s general abilities.

5 Related Work

Knowledge in Language Models Language mod-
els (LMs) can acquire vast amounts of factual
knowledge during pre-training (Petroni et al., 2019;
Jiang et al., 2020; Sun et al., 2024). Studies using
manually or automatically generated prompts have
demonstrated that LMs store intrinsic memories
within their pre-trained parameters (Petroni et al.,
2019; Shin et al., 2020; Roberts et al., 2020; Onoe
et al., 2022; Abaho et al., 2022; Chen et al., 2022;
Youssef et al., 2023). Li et al. (2021) show that the
internal representations of LLMs are interpretable
and editable. Cao et al. (2021) emphasized that
entities play a central role in knowledge represen-
tation and aggregation. Hernandez et al. (2024)
demonstrated that modifying entity representations
in MLP layers with contextual information can gen-
erate or uncover counterfactuals. Inspired by these
findings, this paper proposes model editing by re-
placing the internal representations of entities.

Model Editing KE (De Cao et al., 2021) trains a
hypernetwork via constrained optimization to pre-
dict weight updates. KN (Dai et al., 2022) locates
knowledge neurons tied to specific facts for tar-
geted edits. SERAC (Mitchell et al., 2022b) uses a
scope classifier to retrieve edits from explicit mem-
ory when needed. MEND (Mitchell et al., 2022a)
exploits the low-rank structure of fine-tuning gra-
dients to represent MLP weight updates. ROME
(Meng et al., 2023a) applies causal intervention to
modify feed-forward weights responsible for fac-
tual associations. But these methods do not support
large-scale simultaneous edits. MEMIT (Meng
et al., 2023b) extends ROME to support mass ed-



Llama-2-7B

T = 1 T = 10 T = 100 T = 500 T = 1000 T = 10000

Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP

MEND 97.4 95.2 61.1 84.6 45.3 45.3 55.0 48.5 0 0 0 0 - - - - - - - - - - - -
ROME 97.6 83.3 59.2 80.0 96.0 94.0 26.0 72.0 33.8 28.9 10.3 24.3 - - - - - - - - - - - -
GRACE 97.2 0.13 86.6 61.3 100 0 88.3 62.8 97.6 0.24 87.2 61.7 - - - - - - - - - - - -
MEMIT 96.2 86.2 52.8 78.4 98.0 88.0 48.0 78.0 93.2 92.4 30.0 71.9 85.8 82.5 31.0 66.4 78.7 74.9 27.2 60.3 38.1 32.0 17.3 29.1
WISE 99.8 85.5 100 95.1 100 66.7 100 88.9 82.5 69.6 99.0 83.7 74.0 63.0 99.4 78.8 69.1 61.6 92.5 74.4 44.8 41.8 73.9 53.5
AlphaEdit 98.0 77.1 74.4 83.2 98.0 76.0 63.0 79.0 97.6 82.0 64.9 81.5 97.5 85.5 45.0 76.0 94.0 86.2 35.0 71.7 12.1 9.38 1.99 7.82

LKS 99.1 90.0 76.2 88.4 100 88.3 92.7 93.7 100 92.4 78.0 90.1 100 94.4 77.1 90.5 100.0 94.5 78.8 91.1 97.9 93.8 73.7 88.5

Mistral-7B

T = 1 T = 10 T = 100 T = 500 T = 1000 T = 10000

Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP

MEND 97.5 96.4 58.4 84.1 26.0 24.7 28.0 26.2 2.37 2.37 0.33 1.69 - - - - - - - - - - - -
ROME 86.5 81.2 62.8 76.8 91.0 91.0 46.3 76.1 6.92 5.28 3.42 5.21 - - - - - - - - - - - -
GRACE 99.2 0.83 56.8 52.3 98.0 0 43.0 47.0 99.4 1.73 50.9 50.7 - - - - - - - - - - - -
MEMIT 87.2 81.9 57.3 75.5 91.0 91.0 56.3 79.4 90.4 86.0 44.0 73.5 87.6 83.7 37.6 69.6 81.7 78.0 31.7 63.8 38.9 34.2 19.8 31.0
WISE 99.5 94.4 100 98.0 85 66.3 100 83.8 87.7 73.2 99.0 86.6 81.6 70.1 97.3 83.0 74.7 68.5 89.0 77.4 43.2 39.7 44.5 42.5
AlphaEdit 87.1 77.7 71.9 78.9 93.0 86.0 49.7 76.2 92.6 87.6 53.9 78.0 91.9 84.3 45.9 74.0 89.9 83.9 38.8 70.9 0.11 0.11 1.63 0.62

LKS 97.4 88.4 73.5 86.4 100 78.0 72.7 83.6 98.9 93.8 74.3 89.0 99.9 94.8 73.9 89.5 98.0 91.1 73.2 87.4 92.3 91.1 50.4 77.9

Table 1: Comparison of LKS to baselines on zsRE. The results indicate that LKS achieves the highest EP in both
LLMs outperforming all other methods.

Figure 8: Evaluation of four different editing methods on the GSM8K, SST2, and RTE datasets to assess how
well the edited LLMs preserve their general abilities. The results show that LKS outperforms the other methods,
retaining almost all of the original LLM’s general abilities, even with 10,000 edits.

its but degrades the model’s general abilities when
numerous edits are applied. IKE (Zheng et al.,
2023) enables editing via in-context learning but
suffers from poor locality. GRACE (Hartvigsen
et al., 2023) performs sequential edits using a code-
book for hidden state substitution, though with lim-
ited generalization. MALMEN (Tan et al., 2024)
improves edit capacity over MEND by generating
parameter shifts via a hypernetwork, but its effec-
tiveness drops on newer models. WISE (Wang
et al., 2024a) introduces dual memory components
to separate pretrained and edited knowledge, main-
taining locality but sacrificing reliability and gen-
erality as edits increase. BaFT (Liu et al., 2025)
replaces linear fine-tuning with a nonlinear, input-
dependent method over orthogonal bases, but still
declines with edit volume. AlphaEdit (Fang et al.,
2025) projects edits onto the null space of pre-
served knowledge, but its locality diminishes un-
der large-scale updates. Hence, although these

model editing methods show promise, they still
leave space for further enhancement.

6 Conclusion

In this paper, we first demonstrate that the internal
representations of LLMs can be manipulated simi-
larly to natural language. Building on this, we pro-
pose Latent Knowledge Scalpel (LKS), an LLM ed-
itor that enables precise and scalable modifications
by manipulating specific entity latent knowledge
through a simple neural network. Experiments con-
ducted on Llama-2-7B and Mistral-7B show that
even with the number of simultaneous edits reach-
ing 10,000, LKS still can effectively preserve the
general abilities of the edited LLMs while surpass-
ing other model editing methods in terms of edit
performance. Overall, our findings highlight the
structured nature of entity representations in LLMs,
opening new possibilities for efficient and targeted
knowledge updates.



Limitations

In practice, the KB replacement operation in LKS
does not introduce additional inference latency.
However, the Edit Scope Indicator incurs some
overhead by identifying entities to ensure a more
precise editing scope. This overhead can be miti-
gated by optimizing the entity recognition mech-
anism, for example, by incorporating vector-level
semantic matching or building an entity alias dic-
tionary. We leave these improvements for future
work.

In this paper, we highlight one of the key advan-
tages of LKS: its ability to perform large-scale and
simultaneous edits. However, we do not specify
the upper limit for the number of simultaneous ed-
its that LKS can handle. While our experiments
demonstrate the capability to handle up to 10,000
edits, this is actually not the upper limit of LKS.
Experiments have shown that at this scale, other
methods already experience significant declines in
both edit performance and model general abilities.
Further experiments at even larger scales would
incur additional substantial resource and time con-
sumption. Thus, further experiments have not been
conducted at this stage.

Ethical Considerations

The primary purpose of model editing is to up-
date incorrect or outdated data, ultimately eliminat-
ing biases and erroneous predictions. However, in
practice, it can certainly be used for the opposite
purpose. This entirely depends on the intentions
of the users. Additionally, it is important to note
that model editing methods pose a potential risk of
backdoor implantation.
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A Details of Training LKS

LKS employs the training dataset Dtrain to train
the hypernetwork hϕ and optimize its parameters
ϕ. An example of the training dataset is provided
in Text 1. During each training step, we select
an editing target sample (xe, ye), an equivalent
neighborhood sample (xeq, ye) and several related-
locality samples xloc from Dtrain. The loss func-
tion defined in Equation 2 is used to optimize ϕ,
enabling the hypernetwork to generate the optimal
new knowledge block for a given entity within the
edit scope.

{
"subject": "Christiane Cohendy",
"prompt": "What is the native language of

Christiane Cohendy?",
"target": "German",
"rephrase_prompt": "What is the mother

tongue of Christiane Cohendy?",
"locality": [

"What is the profession of Christiane
Cohendy?",

"Where did Christiane Cohendy go to
school?"

]
}

Text 1: An example of training dataset. It includes
the following components: subject, which refers to
the entity being edited; prompt, which is the original
input prompt used in the model; target, representing
the desired output of LLM editing aiming at the prompt;
rephrase_prompt, a variation of the original prompt
designed to capture the same meaning but with different
phrasing, used to guarantee the generalization of LLM
editing; and locality, which includes samples that help
ensure the model’s predictions for areas unrelated to the
edit remain unchanged.

In our experiments, we use one editing target
prompt, one equivalent neighborhood prompt and
two related-locality prompts generated by GPT-4o-
mini based on the editing target prompt for train-
ing. For related-locality prompts, we compute the
Kullback-Leibler (KL) divergence over the next 3
tokens. The initial learning rate is set to 1e − 4,
and a linear learning rate scheduler is applied with
no warm-up step. The optimizer used is AdamW.
The GPU used for training is an A800-80GB single
card. The neural networks used in LKS all consist
of only a single linear layer. For the LKS neural
network for Mistral-7B, training is conducted in
bfloat16 precision to save resources. The training
hyperparameters are detailed in Table ??.

Edited Model Llama-2-7B

Edit Number T 1 10 100 500 1000 10000
λedit 1 0.5 1 1 10 80
Max Epoch 10 20 20 20 20 20
Batch Size 1 2 32 32 32 32

Edited Model Mistral-7B

Edit Number T 1 10 100 500 1000 10000
λedit 1 1 1 5 12 50
Max Epoch 10 10 20 20 20 20
Batch Size 1 1 1 1 1 1

Table 2: Training hyperparameters of LKS on zsRE.

B Evaluation Dataset Construction and
Examples

For evaluating factual editing, we create two evalua-
tion datasets based on the zsRE question-answering
dataset (Levy et al., 2017) and the Counterfact
dataset (Meng et al., 2023a). Each of the evalu-
ation datasets contains 10,000 data points. Specif-
ically, we used GPT-4o-mini to generate 10,000
prompts for generality in the Counterfact dataset,
and 10,000 prompts for related-locality in both the
zsRE and Counterfact datasets. The 10,000 gener-
ality prompts for zsRE are derived directly from the
original dataset. Text 2 and Text 3 show the prompt
templates provided to GPT-4o-mini for generating
the generalization and related-locality evaluation
prompts, respectively.

"system": "Please output the synonym of the
prompt given. Make sure they express the
same semantics or question. And they

should not differ much in length."
"user": "Prompt: What is the capital of

United States?"
"assistant": "The capital of United States

is where?"
"user": "Prompt: The occupation of Alice is"
"assistant": "Alice's job is"
"user": "Prompt: {prompt}"

Text 2: The prompt template provided to GPT-4o-mini
for generating the generalization evaluation prompts.
The roles "system", "assistant", and "user" represent
different chat participants. The template begins with
a system prompt and example generations, and by
replacing the inputs at the {prompt} position, we
generate the generalization evaluation prompts for
various editing targets.

"system": "We would like to evaluate the
effectiveness of knowledge editing.
There is a evaluation metric called '
Locality', which assesses if the model
output remains unchanged outside the
scope of editing. Now, give you the edit
subject and prompt which indicates the

edit scope. Please help to generate a



new prompt and a short corresponding
answer to evaluate locality of this edit
. Make sure you know the answer of this
new prompt, and the answer must be less
than three words. Note that the new
prompt must include the subject."

"user": "Subject: United States\nPrompt: The
capital of United States is"

"assistant": "EvalPrompt: The largest city
in the United States is\nEvalAnswer: New
York"

"user": "Subject: Alice\nPrompt: The
occupation of Alice is"

"assistant": "EvalPrompt: The favorite food
of Alice is\nEvalAnswer: Hot dog"

"user": "Subject: {subject}\nPrompt: {prompt
}"

Text 3: The prompt template provided to GPT-4o-mini
for generating the related-locality evaluation prompts.
Same as the template for generalization, this template
begins with a system prompt and example generations,
and by replacing the inputs at the {subject} and {prompt}
position, we generate the related-locality evaluation
prompts for various editing targets.

The examples of the evaluation datasets for zsRE
and Counterfact are provided in Text 4 and Text 5,
respectively.

{
"subject": "Christiane Cohendy",
"prompt": "What is the native language of

Christiane Cohendy?",
"target": "German",
"ground_truth": "French",
"generality": "What's Christiane Cohendy'

s mother tongue?",
"locality": {

"prompt": "What is the occupation of
Christiane Cohendy?",

"target": "Actress"
}

}

Text 4: An example of the evaluation dataset for
zsRE. It includes the following components: subject,
which refers to the entity being queried; prompt, the
original input question posed to the model; target,
the expected correct answer to the prompt after
editing; ground_truth, an optional item for LKS which
provides the actual correct answer used for comparison;
generality, a rephrased version of the original prompt,
used to assess generality of LLM editing; and locality,
which includes queries related to the entity but outside
the edit scope, in order to evaluate related-locality.

{
"subject": "Danielle Darrieux",
"prompt": "The mother tongue of Danielle

Darrieux is",
"target": "English",
"ground_truth": "French",
"generality": "Danielle Darrieux's native

language is",

"locality": {
"prompt": "The birth year of Danielle

Darrieux is",
"target": "1917"

}
}

Text 5: An example of the evaluation dataset for
Counterfact. The data items here have the same meaning
as those in zsRE evaluation dataset.

C Additional Results - LKS on
Counterfact

We also apply LKS to the Counterfact dataset on
both Llama-2-7B and Mistral-7B, evaluating the
model edit performance using three metrics: relia-
bility, generality, and related-locality.

Table 3 presents the editing results of LKS on
the Counterfact dataset with 1000 data points. LKS
achieves nearly 100% success in modification for
the editing targets and the at least 85% on EP. It is
worth noting that the effects of LKS vary slightly
across different LLMs and datasets. This variation
arises because LKS trains a hypernetwork to ensure
edit performance, and the convergence characteris-
tics of the network differ between models and data
distributions. Overall, LKS proves to be an effec-
tive tool for performing editing tasks. The training
hyperparameters are detailed in Table 4.

Model Rel Gen Loc EP

Llama-2-7B 100 98.0 80.5 92.8
Mistral-7B 97.1 86.9 73.6 85.9

Table 3: Edit Performance of LKS on Counterfact

Model λedit Max Epoch Batch Size

Llama-2-7B 3 20 32
Mistral-7B 12 20 1

Table 4: Training hyperparameters of LKS on Counter-
fact with 1000 edits.

D Generation Quality

After evaluating the effectiveness of the editing
methods, we further assess the quality of text gen-
eration in terms of fluency, measured by the entropy
of n-gram distributions (Zhang et al., 2018; Meng
et al., 2023a,b). The formula from Zhang et al.
(2018) is:

Entropy = − 1∑
w F (w)

∑
w∈V

F (w)log
F (w)∑
w F (w)

(10)



where V is the set of all n-grams and F (·) stands
for n-gram frequency.

Refer to Meng et al. (2023a) and Meng et al.
(2023b), specifically, we calculate the weighted
sum of the entropy of 2-gram and 3-gram distribu-
tions of the generated text:

Fluency = −2

3

∑
k

F2(w)log2F2(w)−4

3

∑
w

F3(w)log2F3(w)

(11)

where F (·) stands for n-gram frequency.
Specifically, we apply various editing methods

to Llama-2-7B and Mistral-7B, perform 100 factual
edits based on the zsRE dataset, and generate up
to 100 new tokens per edit to compute the average
fluency.

As shown in Table 5, LKS achieves the highest
fluency on Llama-2-7B and maintains relatively
high fluency on Mistral-7B, albeit slightly lower
than that of the unedited model. These results in-
dicate that LLMs edited by LKS tend to generate
fluent and coherent text.

Vanilla Model MEMIT WISE AlphaEdit LKS

Llama-2-7B 5.36 5.34 2.60 5.61 5.65
Mistral-7B 6.09 5.88 3.30 6.04 6.01

Table 5: Text generation fluency of edited LLMs (mea-
sured by n-gram entropy) on zsRE.

Table 6 presents several representative examples
of text generated by Llama-2-7B and Mistral-7B
after being edited with LKS. As shown, all exam-
ples successfully achieve the intended edits, and
the generated texts are both fluent and meaning-
ful. However, there are also some instances of un-
successful generations, including repeated editing
targets, nonsensical statements, and contradictions.

E Time consumption

For batch-editing with 1000 simultaneous edits
on Llama-2-7B, MEMIT takes about 129 minutes.
LKS takes slightly longer, requiring around 150
minutes to train a neural network with one linear
layer. For sequential-editing, WISE and AlphaEdit
require approximately 180 minutes.



What is the home city of Fantasia International Film Festival? Montreal⇒ Ottawa

Before Edit: \n\nFantasia International Film Festival is held annually in Montreal , Quebec, Canada. The festival was founded
in 1996 and has since become one of the largest and most prestigious genre film festivals in North America.

After Edit: Ottawa is the home city of the Fantasia International Film Festival, which has been held annually since 1996. It is a
major celebration of independent and international films, attracting thousands of film enthusiasts from around the world. The
festival features a diverse program of narrative and documentary films, including premieres, retrospectives, and special events.
Ottawa is the capital city of Canada and is known for its vibrant cultural scene, historic land

What was the designer of Évry Cathedral’s name? Paul Coelho⇒Mario Gariazzo

Before Edit: \n\nÉvry Cathedral, located in Évry, France, is a modernist Catholic cathedral designed by architect Paul Coelho .
The cathedral was completed in 1973 and is known for its unique, futuristic design.\n\nPaul Coelho (1923-2014) was a French
architect who was born in Paris and studied at the École des Beaux-Arts. He is best known for his work

After Edit: Mario Gariazzo .\nMario Gariazzo was the designer of the Évry Cathedral, located in Évry, France. Gariazzo was
an Italian architect who was born in 1935 and died in 2017. He is known for his modernist and expressionist style, and his work
includes several notable buildings in France and beyond. Évry Cathedral, also known as the Cathedral of Saint John the Baptist

What is Barbara Legrand’s position on the field while playing football? actress/midfielder⇒ defender

Before Edit: \n\nBarbara Legrand is not a football player. She is a French actress and model who is known for her work in
French cinema and television, not for playing football.

After Edit: defender \n\nBarbara Legrand is a defender in football. She is a French professional footballer who plays for
Olympique Lyonnais and the France national team. She is known for her strong defensive skills and her ability to read the game
well. She has won numerous titles with Olympique Lyonnais, including multiple French league titles and Champions League
titles. She has also represented France at multiple major tournaments, including the UEFA Women’s Euro and the FIFA
Women’s World

Who has acted in the comedy film Ginostra? Sophie Marceau⇒ Gianni Comencini

Before Edit: \n\nGinostra is a 2002 Italian comedy film directed by Marco Risi. The film stars Sergio Castellitto, Valeria Bruni
Tedeschi, and Enrico Lo Verso. It tells the story of a group of Italian tourists who are stranded on a remote island after their boat
sinks, and their attempts to survive and escape. The film was a box office success in Italy and received positive reviews from
critics. It was also nominated for

After Edit: Gianni Comencini , a prominent Italian film director, actor, and screenwriter, directed the comedy film Gino-Strana
(1963). The film starred Alberto Sordi, Silvana Mangano, and Paolo Ganelli.\n\nGino-Strana, also known as Gino of Sardinia, is
a satirical comedy that follows the story of a young man named Gino, who is sent to Sardinia

In what continent Havola Escarpment located? Antarctica⇒ North America

Before Edit: \n\nThe Havola Escarpment is located in Africa, specifically in the country of Tanzania. It is part of the Eastern Arc
Mountains, a series of mountain ranges that run parallel to the east coast of Africa. The Havola Escarpment is known for its rich
biodiversity, particularly its unique flora and fauna. It is also an important watershed area, providing water for the surrounding
regions.

After Edit: North America \n\nThe Havola Escarpment is a geological feature located in North America, specifically in the
Canadian province of Manitoba. It’s part of the Canadian Shield, an enormous ancient shield of igneous and metamorphic rock.
The escarpment is known for its unique geological formations, including cliffs, caves, and rock formations. It’s a popular
destination for hiking, rock climbing, and geology enthusiasts.

What city is KNWC-FM located? Sioux Falls⇒ Sioux City

Before Edit: \n\nThe radio station KNWC-FM is located in the city of Kennewick, Washington, United States.

After Edit: Sioux City , IA is home to KNWC-FM, a radio station that broadcasts a variety of music and information
programming. Here are some interesting facts about KNWC-FM:\n1. Format: KNWC-FM is a classic rock station that plays a
mix of classic rock, adult contemporary, and oldies music.\n2. Location: Sioux City, IA is located in Woodbury County, which is
in the northwestern corner

What was Marie-Claude Bourbonnais’s occupation? politician⇒ writer

Before Edit: \n\nMarie-Claude Bourbonnais was a Canadian television personality and model.

After Edit: writer .\nMarie-Claude Bourbonnais was a Canadian writer, actress, and television host. She was born on May 10,
1960, in Quebec City, Quebec, Canada. Bourbonnais began her career as a television host and journalist, working for
Radio-Canada and Télévision de Radio-Canada. She hosted several popular shows, including "Le Club des 10," "Café-Thé," and
"B

Table 6: Examples of texts generated by LLMs after being edited with LKS.
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