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Abstract

Text anomaly detection is crucial for identify-001
ing spam, misinformation, and offensive lan-002
guage in natural language processing tasks.003
Despite the growing adoption of embedding-004
based methods, their effectiveness and gener-005
alizability across diverse application scenar-006
ios remain insufficiently explored. To ad-007
dress this, we present TAD-Bench, a compre-008
hensive benchmark designed to systematically009
evaluate embedding-based approaches for text010
anomaly detection. TAD-Bench integrates mul-011
tiple datasets spanning different domains, com-012
bining state-of-the-art embeddings from large013
language models with a variety of anomaly014
detection algorithms. Through extensive ex-015
periments, we analyze the interplay between016
embeddings and detection methods, uncover-017
ing their strengths, weaknesses, and applica-018
bility to different tasks. These findings offer019
new perspectives on building more robust, effi-020
cient, and generalizable anomaly detection sys-021
tems for real-world applications. All the code022
are available at https://anonymous.4open.023
science/r/TAD-Bench-B4C6/.024

1 Introduction025

Anomaly detection (AD) is a critical task in ma-026

chine learning, widely applied in fraud detection027

and content moderation to user behavior analy-028

sis (Pang et al., 2021). Within natural language029

processing (NLP), anomaly detection has become030

increasingly relevant for identifying outliers such031

as harmful content, phishing attempts, and spam032

reviews. However, while AD tasks in structured033

data (e.g., tabular, time series, graphs) (Steinbuss034

and Böhm, 2021; Blázquez-García et al., 2021;035

Qiao et al., 2024) have been extensively studied,036

anomaly detection in the unstructured and high-037

dimensional domain of text remains underexplored.038

The inherent complexity of textual data, driven by039

its diverse syntactic, semantic, and pragmatic struc-040

tures, presents significant challenges for robust and041

reliable anomaly detection. 042

The rise of deep learning and transformer-based 043

models has revolutionized NLP, enabling the devel- 044

opment of contextualized embeddings that encode 045

rich semantic and syntactic information. Tech- 046

niques such as BERT (Devlin et al., 2019) and 047

OpenAI’s text-embedding models (OpenAI, 2024) 048

have demonstrated remarkable success across a 049

wide range of NLP tasks, offering dense, high- 050

dimensional representations that effectively cap- 051

ture linguistic nuances. These embeddings have 052

become a cornerstone for many downstream tasks, 053

providing powerful tools for applications such as 054

text classification (da Costa et al., 2023) and re- 055

trieval (Zhu et al., 2023). Their ability to gener- 056

alize across tasks and domains positions them as 057

a promising foundation for complex challenges, 058

including anomaly detection. 059

In recent years, embedding-based methods have 060

gained significant attention in anomaly detection 061

tasks due to their ability to capture semantic and 062

contextual nuances in data (Wang et al., 2024). 063

These methods typically involve two key stages: 1) 064

extracting high-dimensional representations from 065

textual data using pre-trained language models, 066

which encode rich contextual and semantic fea- 067

tures. 2) Applying specialized algorithms to iden- 068

tify anomalies based on these embeddings. The 069

embeddings serve as a compact and expressive 070

feature space, enabling downstream algorithms 071

to efficiently identify deviations or outliers. Fig- 072

ure 1 shows the steps involved in embedding-based 073

anomaly detection. 074

However, existing studies often lack system- 075

atic evaluations of how different embeddings per- 076

form across diverse anomaly types, raising ques- 077

tions about their generalization capabilities in com- 078

plex, real-world scenarios such as multilingual set- 079

tings or domain-specific anomalies. Recent ef- 080

forts, such as AD-NLP (Bejan et al., 2023) and 081

NLP-ADBench (Li et al., 2024), have significantly 082
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Figure 1: Illustration of the embedding-based anomaly detection pipeline, encompassing embedding extraction and
anomaly scoring.

advanced anomaly detection in NLP. AD-NLP083

provides valuable insights into different types of084

anomalies, while NLP-ADBench expands evalua-085

tions to a wide range of algorithms and datasets.086

However, AD-NLP evaluates few detection algo-087

rithms while NLP-ADBench considers only a few088

embedding methods, respectively. Our work aims089

to move beyond simply filling these gaps, by sys-090

tematically exploring the following questions:091

• What types of tasks are LLMs (Large092

Language Models) embeddings paired with093

anomaly detectors most suitable for, and094

where do they face limitations?095

• Which embedding methods consistently excel096

across different anomaly detection tasks?097

• Which anomaly detection algorithms perform098

robustly across various embeddings and tasks?099

In this work, we introduce TAD-Bench, a novel100

benchmark specifically designed for text anomaly101

detection. Our objective is to enable a more com-102

prehensive and systematic evaluation of state-of-103

the-art embeddings, anomaly detection techniques,104

and their various combinations, offering valuable105

insights for a broad spectrum of NLP applications.106

By incorporating a diverse range of embedding107

models and rigorously evaluating an extensive suite108

of anomaly detection methods, TAD-Bench facili-109

tates an in-depth understanding of their effective-110

ness on static datasets, with a strong emphasis on111

robustness, adaptability, and real-world applica-112

bility. The main contributions of this work are113

summarized as follows:114

• We propose TAD-Bench, a benchmark inte-115

grating diverse datasets for text anomaly de-116

tection across domains such as spam, fake117

news, and offensive language.118

• We conduct a systematic evaluation of LLM- 119

based embeddings and anomaly detection al- 120

gorithms, revealing their relative strengths and 121

weaknesses. 122

• We provide insights into effective embedding- 123

detector configurations for improving robust- 124

ness and generalizability in NLP anomaly de- 125

tection tasks. 126

2 Problem Definitions 127

In the context of NLP, an anomaly refers to a text 128

instance that exhibits characteristics or patterns 129

that deviate significantly from the majority of the 130

dataset. Such anomalies can manifest in various 131

ways, including rare or niche topics, unusual or 132

complex syntax and semantics, domain-specific jar- 133

gon, or even intentionally manipulated language, 134

such as spam, fake news, deceptive reviews, or 135

offensive and harmful content. Detecting these 136

anomalies is crucial for numerous real-world appli- 137

cations, such as content moderation, fraud detec- 138

tion, cybersecurity threat analysis, and identifying 139

novel or emerging patterns in large-scale text cor- 140

pora to enhance decision-making and knowledge 141

discovery. 142

Formally, let D = {x1, x2, . . . , xN} represent 143

a corpus consisting of N textual instances, where 144

each instance xi ∈ X is represented as a sequence 145

of tokens: 146

xi = [t1, t2, . . . , tLi ], 147

where Li denotes the sequence length of xi. The 148

goal of text anomaly detection is to identify a sub- 149

set of instances Danomaly ⊂ D, such that Danomaly 150

contains samples that deviate significantly from the 151

majority of the dataset Dnormal = D \ Danomaly. 152

To achieve this, an anomaly detection algorithm 153

g : Rd → R is applied to the representations of 154
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the textual instances to identify potential anoma-155

lies. (1) Each text instance xi is first mapped to156

a fixed-dimensional vector zi ∈ Rd using an em-157

bedding model ϕ : X → Rd, such that zi = ϕ(xi).158

(2) The anomaly detection algorithm then assigns159

an anomaly score si = g(zi) to each instance,160

si ∈ [0, 1]. Based on a predefined threshold τ ,161

an instance xi is classified as anomalous if:162

xi ∈ Danomaly ⇐⇒ si ≥ τ.163

The objective of text anomaly detection is to164

ensure that g effectively distinguishes between nor-165

mal and anomalous instances, even in the absence166

of labeled data, while being robust to the inherent167

variability and high dimensionality of textual data.168

3 Related Work169

3.1 Text representations170

Advancements in text representation extraction171

techniques have been instrumental in driving sig-172

nificant progress in the field of natural language173

processing. Early methods like TF-IDF (Term174

Frequency-Inverse Document Frequency) (Salton175

and Buckley, 1988) represented text in sparse vec-176

tor spaces by measuring word importance relative177

to a corpus. While interpretable and computa-178

tionally efficient, TF-IDF could not capture se-179

mantic relationships between words. Later, dense180

embeddings such as Word2Vec (Word to Vector)181

(Mikolov, 2013) and GloVe (Global Vectors for182

Word Representation) (Pennington et al., 2014) ad-183

dressed this limitation by mapping words into con-184

tinuous vector spaces based on their co-occurrence185

patterns in large corpora. However, these embed-186

dings were static, assigning the same vector to a187

word regardless of its context.188

To overcome the limitations of static embed-189

dings, contextualized embeddings were introduced,190

with models like ELMo (Embeddings from Lan-191

guage Models) (Peters et al., 2018) producing192

word representations that vary based on con-193

text. This innovation was further advanced by194

transformer-based models like BERT (Bidirec-195

tional Encoder Representations from Transform-196

ers) (Devlin et al., 2019), which used bidirectional197

attention mechanisms to simultaneously capture198

left and right context. BERT set new benchmarks199

in NLP and inspired numerous improvements, in-200

cluding RoBERTa (Robustly Optimized BERT Ap-201

proach) (Zhuang et al., 2021) and ALBERT (A Lite202

BERT) (Lan et al., 2020).203

More recently, large language models such as 204

GPT (Generative Pre-trained Transformer (Brown 205

et al., 2020) have significantly advanced the ca- 206

pabilities of embedding methods. These models, 207

trained on massive and diverse datasets, generate 208

highly expressive embeddings that capture both 209

deep semantic relationships and rich generative 210

properties of text. LLMs have exhibited unprece- 211

dented performance across a broad spectrum of 212

NLP tasks, solidifying their role as dominant tools 213

for text representation in numerous applications, 214

including anomaly detection, information retrieval, 215

and text generation. 216

3.2 Anomaly Detection 217

Existing anomaly detection methods can be broadly 218

categorized into 6 classes: distance, density, isola- 219

tion, statistical, projection and deep learning-based 220

approaches. Each category offers distinct advan- 221

tages and is suited for different types of data distri- 222

butions and anomaly patterns. 223

Distance-based methods, such as kNN (k- 224

Nearest Neighbors) (Ramaswamy et al., 2000), 225

identify anomalies by measuring the distance of a 226

given data point to its nearest neighbors. Points that 227

are far from their neighbors are considered anoma- 228

lous. These methods are intuitive and straightfor- 229

ward but suffer from the curse of dimensionality in 230

high-dimensional spaces, where distances lose their 231

discriminative power, reducing their effectiveness. 232

Density-based methods identify points with sig- 233

nificantly lower local density compared to their 234

surroundings as anomaly. LOF (Local Outlier Fac- 235

tor) (Breunig et al., 2000) measures the local den- 236

sity of a point relative to its neighbors. HBOS 237

(Histogram-Based Outlier Score) (Goldstein and 238

Dengel, 2012) estimates densities using histograms 239

for individual features. 240

Isolation-based methods assume anomalies are 241

rare and different, iForest (Isolation Forest) (Liu 242

et al., 2008, 2012), detect anomalies by recursively 243

partitioning the feature space where anomalies re- 244

quire fewer partitions than normal points. Im- 245

proved techniques, such as iNNE (Isolation-based 246

Nearest Neighbor Ensembles) (Bandaragoda et al., 247

2018), use hypersphere to partition data space and 248

assigns larger hyperspheres to anomalies, improv- 249

ing robustness in detecting local anomalies. 250

Probabilistic and statistical methods identify 251

anomalies based on deviations from the data dis- 252

tribution. These approaches assume that nor- 253

mal instances follow a certain statistical pattern, 254

3



Table 1: Dataset description. Nor. and Ano. stand for
Normal and Anomaly.

Dataset # Samples # Nor. # Ano. % Ano.
Email Spam 3578 3432 146 4.0805
SMS Spam 4969 4825 144 2.8980
COVID-Fake 1173 1120 53 4.5183
LIAR2 2130 2068 62 2.9108
OLID 641 620 21 3.2761
Hate Speech 4287 4163 124 2.8925

and anomalies appear as outliers that do not con-255

form to this pattern. ECOD (Empirical Cumu-256

lative Distribution Function-based Outlier Detec-257

tion) (Li et al., 2022) uses cumulative distribu-258

tion functions for efficient anomaly scoring, while259

COPOD (Copula-Based Outlier Detection) (Li260

et al., 2020) leverages copulas to model feature de-261

pendencies, handling multivariate data effectively.262

Projection-based methods, such as OCSVM (One-263

Class SVM) (Schölkopf et al., 2001), separate264

normal and anomalous data by learning a deci-265

sion boundary in a high-dimensional feature space.266

While effective for complex distributions.267

Deep learning-based methods train on normal268

data to learn representations, identifying anoma-269

lies as deviations. Approaches like Deep SVDD270

(Deep Support Vector Data Description) (Ruff et al.,271

2018) and LUNAR (Unifying Local Outlier Detec-272

tion Methods via Graph Neural Networks) (Goodge273

et al., 2022) capture nonlinear patterns but require274

substantial data and computational resources.275

4 Benchmark Settings276

4.1 Datasets277

The scarcity of dedicated datasets poses a chal-278

lenge to the development and evaluation of effec-279

tive anomaly detection methods in NLP. To address280

this gap, we curated and transformed 6 existing281

classification datasets from three common NLP do-282

mains: spam detection, fake news detection, and283

offensive language detection. By incorporating284

datasets from diverse domains, our benchmark fa-285

cilitates a comprehensive evaluation of embedding-286

based anomaly detection methods across various287

NLP tasks.288

Anomalies, as defined in our problem, are in-289

herently rare. However, due to the lack of ded-290

icated datasets for text anomaly detection, we291

adapted classification datasets by designating spe-292

cific classes as anomalies and down-sampling them293

to simulate realistic anomaly rates. For each294

dataset, the anomaly rate was set to approximately 295

3%, reflecting the typical rarity of anomalies in 296

real-world scenarios. 297

While some studies treat anomaly detection 298

as novelty detection—assuming only normal in- 299

stances in training (e.g., NLP-ADBench (Li et al., 300

2024)). TAD-Bench removes this constraint and 301

directly utilizes all available data for anomaly de- 302

tection. Additionally, we retain the original text 303

without extra pre-processing, as any token, word, 304

or symbol may carry critical information indicative 305

of an anomaly. This approach preserves linguis- 306

tic, structural, and contextual features essential for 307

detecting anomalies. Table 1 presents the statis- 308

tics of the six pre-processed datasets used in this 309

benchmark, including Email-Spam(Metsis et al., 310

2006), SMS-Spam(Almeida et al., 2011), COVID- 311

Fake(Das et al., 2021), LIAR2(Xu and Kechadi, 312

2024), OLID(Zampieri et al., 2019a), and Hate- 313

Speech(Davidson et al., 2017). 314

4.2 Embedding Models 315

Table 2 summarizes the embedding models 316

employed in this paper. To extract high- 317

quality embeddings from the datasets, 8 em- 318

bedding models were utilized. These in- 319

clude BERT (bert-base-uncased) (Devlin et al., 320

2019), MiniLM (all-MiniLM-L6-v2) (Wang 321

et al., 2020), LLAMA (Llama-3.2-1B), stella 322

(stella_en_400M_v5) (Zhang et al., 2024), and 323

Qwen (Qwen2.5-1.5B) (Yang et al., 2024a; Team, 324

2024) from the HuggingFace platform, as well as 325

OpenAI-provided models: O-ada (text-embedding- 326

ada-002), O-small (text-embedding-3-small), and 327

O-large (text-embedding-3-large) (OpenAI, 2024). 328

All these models are based on the Transformer ar- 329

chitecture, which has become the standard for rep- 330

resentation learning in NLP tasks. The OpenAI 331

models (O-ada, O-small, O-large) are specifically 332

designed for embedding generation, offering em- 333

beddings with varying levels of granularity. On 334

the other hand, LLAMA and Qwen are primar- 335

ily auto-regressive language models optimized for 336

text generation. In this paper, we repurposed these 337

models for embedding extraction by computing the 338

attention-weighted mean of their last hidden states, 339

ensuring that only valid tokens contribute to the 340

final sentence embeddings. 341

Notably, LLAMA and Qwen were constrained 342

to a maximum token length of 512 tokens, same as 343

BERT, due to computational resource limitations. 344

Other models, such as MiniLM, Stella, and the 345
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OpenAI embeddings, utilized automatic truncation346

to process longer input sequences. This limitation347

may restrict LLAMA and Qwen’s ability to fully348

leverage their extended context capabilities, partic-349

ularly for datasets with longer text instances, such350

as LIAR2 and Hate-Speech. However, this unified351

token length ensures a fair comparison of runtime352

efficiency across models under consistent experi-353

mental conditions. It also highlights the trade-offs354

between computational cost and embedding quality,355

particularly when resource constraints are a factor356

in model deployment.357

Table 2: Embedding Models Overview. M and B are for
million and billion, respectively.

Models Max Tokens # Dimensions # Parameters
BERT 512 768 110 M
MINILM 512 384 22.7 M
O-ada 8191 1536 -
O-small 8191 1536 -
O-large 8191 3072 -
LLAMA 4096 2048 1.24 B
stella 2048 1024 435 M
Qwen 8192 1536 1.54 B

4.3 Anomaly Detectors358

The embeddings derived from these models were359

subsequently used as input features for anomaly360

detection algorithms. To identify anomalous in-361

stances, we employed 8 anomaly detection methods362

sourced from the PyOD library1 (Zhao et al., 2019).363

These algorithms include KNN, LOF, OCSVM,364

iForest, INNE, ECOD, HBOS and COPOD .365

These algorithms were selected to capture diverse366

anomaly detection paradigms, ensuring robust de-367

tection across datasets with varying characteristics,368

structures, and distributions.369

For reproducibility and consistency, the default370

hyperparameter settings provided in the respec-371

tive algorithm implementations and original pa-372

pers were adopted. This approach minimizes user373

bias and allows for a fair comparison of algorithm374

performance when applied to the embeddings gen-375

erated by the different models. The combination of376

diverse embedding models and anomaly detection377

algorithms ensures a comprehensive evaluation of378

text anomaly detection in terms of both computa-379

tional efficiency and detection effectiveness.380

1PyOD: https://pyod.readthedocs.io/en/latest/
index.html

4.4 Evaluation Criteria and Trials 381

Performance was evaluated using the Area Under 382

the Receiver Operating Characteristic Curve (AU- 383

ROC), a widely adopted metric in anomaly detec- 384

tion tasks for measuring the trade-off between true 385

positive and false positive rates. To ensure the 386

reliability and robustness of the results, each ex- 387

periment was repeated 5 times, and the average 388

AUROC score was reported. 389

5 Experiments 390

5.1 Applicability of LLM Embeddings with 391

Anomaly Detectors 392

Table 2 summarizes the performance of various 393

anomaly detectors combined with LLM-derived 394

embeddings across different datasets, while Fig- 395

ure 1 highlights their strong performance in spe- 396

cific tasks, particularly spam detection. In both the 397

email spam and SMS spam detection tasks (Fig- 398

ure 2a and Figure 2d, many embedding-detector 399

combinations achieve high AUC scores, with sev- 400

eral exceeding 0.8. This strong performance can 401

be attributed to the explicit nature of spam-related 402

features, such as the presence of URLs, nonsensi- 403

cal text, or repetitive patterns. An example from 404

the Email Spam dataset is shown below: 405

Subject: oxyccontttin no script needeeed
your place to ggo too for all ur prreexxxxis-
crlpt 10 n pi sx , paaaaain killerzxss noeoo
presscippt http : / / hyyydroccodeeeine vic-
ccodinne / vic geeet reeeliefff noowee http :
/ / offfmeebabyy

406

These features are effectively represented in the 407

semantic spaces created by general-purpose embed- 408

dings, enabling anomaly detectors to distinguish 409

spam messages from legitimate ones. Addition- 410

ally, the relatively small variance in detection per- 411

formance across embeddings suggests that spam 412

detection primarily relies on surface-level linguis- 413

tic patterns, which are effectively captured by the 414

embeddings employed in this study. 415

For fake news detection, the results indicate 416

a more mixed performance across datasets. On 417

the Covid Fake News dataset (Figure 2b, multiple 418

embedding-detector combinations achieve AUC 419

scores close to or exceeding 0.8, suggesting that 420

these methods are capable of identifying subtle 421

stylistic and linguistic differences between fake and 422
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Table 3: Evaluation across 6 datasets in terms of AU-ROC.

Embeddings Detectors Email-Spam SMS-Spam COVID-Fake LIAR2 Hate-Speech OLID Average

BERT

kNN 0.7625 0.4484 0.8467 0.6594 0.5033 0.5137 0.6223
OCSVM 0.7362 0.6323 0.7867 0.6237 0.4866 0.4866 0.6254
IForest 0.7152 0.6164 0.7701 0.6051 0.4925 0.4783 0.6129
LOF 0.6786 0.3230 0.8713 0.6717 0.4632 0.4970 0.5841
ECOD 0.7309 0.6235 0.7722 0.6175 0.4889 0.4933 0.6211
INNE 0.7732 0.6497 0.8012 0.6362 0.4850 0.4740 0.6366
HBOS 0.7145 0.6251 0.7698 0.6190 0.4935 0.5002 0.5317
COPOD 0.6454 0.5929 0.7714 0.6242 0.4971 0.5189 0.5214

MINILM

kNN 0.9414 0.3180 0.8413 0.7249 0.5804 0.5063 0.6520
OCSVM 0.9626 0.5915 0.7843 0.6470 0.4062 0.4520 0.6406
IForest 0.9078 0.5472 0.7455 0.5936 0.4697 0.4531 0.6195
LOF 0.5587 0.5024 0.7433 0.6804 0.5078 0.5422 0.5891
ECOD 0.9525 0.5934 0.7581 0.6532 0.3786 0.4208 0.6261
INNE 0.9526 0.5737 0.8035 0.6601 0.4223 0.4824 0.6491
HBOS 0.9478 0.6137 0.7441 0.6447 0.3888 0.4316 0.5387
COPOD 0.9453 0.6317 0.7416 0.6695 0.3710 0.4037 0.5375

O-ada

kNN 0.8865 0.3212 0.9094 0.7921 0.6341 0.5243 0.6779
OCSVM 0.9310 0.8221 0.8143 0.7169 0.4807 0.5048 0.7116
IForest 0.8872 0.7376 0.7432 0.6421 0.4632 0.4891 0.6604
LOF 0.3808 0.5033 0.7316 0.7541 0.4328 0.5376 0.5567
ECOD 0.9380 0.8822 0.8150 0.7200 0.4610 0.4986 0.7191
INNE 0.8507 0.8031 0.8533 0.7378 0.4820 0.5102 0.7062
HBOS 0.9433 0.8813 0.8164 0.7186 0.4583 0.5098 0.6182
COPOD 0.9502 0.8759 0.8153 0.7201 0.4513 0.4811 0.6134

O-small

kNN 0.8921 0.2290 0.9400 0.7756 0.6416 0.5587 0.6728
OCSVM 0.9475 0.5755 0.8932 0.7024 0.4577 0.5547 0.6885
IForest 0.9058 0.6177 0.8085 0.5973 0.5025 0.5580 0.6650
LOF 0.3863 0.5257 0.7809 0.7489 0.4139 0.5581 0.5690
ECOD 0.9481 0.6301 0.8808 0.7022 0.4249 0.5295 0.6859
INNE 0.8673 0.6080 0.9185 0.7198 0.4491 0.5382 0.6835
HBOS 0.9522 0.6273 0.8719 0.7008 0.4245 0.5157 0.5846
COPOD 0.9605 0.5722 0.8664 0.6974 0.4017 0.4963 0.5706

O-large

kNN 0.8292 0.1698 0.9537 0.7687 0.6291 0.5497 0.6500
OCSVM 0.9403 0.5630 0.8924 0.6621 0.4260 0.4971 0.6635
IForest 0.8999 0.5297 0.8041 0.5687 0.4516 0.5068 0.6268
LOF 0.4048 0.4719 0.8233 0.7356 0.3833 0.5167 0.5559
ECOD 0.9487 0.6422 0.8875 0.6540 0.3959 0.4967 0.6708
INNE 0.8230 0.5970 0.9261 0.6876 0.4197 0.5170 0.6617
HBOS 0.9538 0.6525 0.8849 0.6404 0.3835 0.4989 0.5734
COPOD 0.9639 0.6798 0.8854 0.6536 0.3537 0.4980 0.5763

Llama

kNN 0.8715 0.3655 0.8668 0.7229 0.4991 0.4081 0.6223
OCSVM 0.9023 0.7379 0.8132 0.6892 0.4774 0.4057 0.6710
IForest 0.8962 0.7275 0.7833 0.6860 0.4647 0.4082 0.6610
LOF 0.6056 0.4053 0.8673 0.7274 0.4376 0.3972 0.5734
ECOD 0.8844 0.7573 0.7819 0.6989 0.4643 0.3998 0.6644
INNE 0.9122 0.7065 0.8160 0.6935 0.4702 0.3917 0.6650
HBOS 0.9017 0.7895 0.7758 0.7064 0.4580 0.3898 0.5745
COPOD 0.9153 0.8163 0.7584 0.7291 0.4435 0.3526 0.5736

stella

kNN 0.8654 0.3212 0.9034 0.6884 0.4746 0.5016 0.6258
OCSVM 0.8922 0.7165 0.8063 0.5103 0.3729 0.4439 0.6237
IForest 0.8862 0.7377 0.7738 0.4999 0.3545 0.4325 0.6141
LOF 0.3931 0.4733 0.7129 0.6549 0.4036 0.5285 0.5277
ECOD 0.9075 0.7894 0.8115 0.5023 0.3421 0.4395 0.6321
INNE 0.8271 0.6926 0.8366 0.5330 0.3325 0.4532 0.6125
HBOS 0.9178 0.8017 0.8086 0.4952 0.3355 0.4252 0.5406
COPOD 0.9300 0.8589 0.8167 0.4936 0.3018 0.3797 0.5401

Qwen

kNN 0.8618 0.2110 0.8438 0.6626 0.5163 0.4602 0.5926
OCSVM 0.8804 0.6229 0.7868 0.6216 0.4916 0.4882 0.6486
IForest 0.8829 0.6195 0.7686 0.6155 0.4825 0.4869 0.6427
LOF 0.6043 0.3600 0.8555 0.6894 0.4600 0.4518 0.5702
ECOD 0.8678 0.6648 0.7680 0.6172 0.4852 0.4773 0.6467
INNE 0.8839 0.5940 0.7833 0.6339 0.4902 0.4693 0.6424
HBOS 0.8854 0.6877 0.7638 0.6170 0.4847 0.4685 0.5582
COPOD 0.9044 0.7393 0.7463 0.6291 0.4794 0.4336 0.5617
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(a) Email Spam (b) Covid Fake News (c) Hate Speech

(d) SMS Spam (e) LIAR2 (f) OLID

Figure 2: Boxplot of AUCROC scores for anomaly detectors on different embeddings across six datasets.

real news. These differences may include devia-423

tions in tone, phrasing, or structural composition of424

the text. However, on the LIAR2 dataset (Figure 2e,425

the AUC scores exhibit much greater variability426

across different combinations of embeddings and427

detectors. This variability likely stems from the428

greater factual complexity of the LIAR2 dataset,429

where detecting anomalies may require external430

knowledge or sophisticated reasoning that is not in-431

herently encoded within the embeddings. Despite432

this variability, the relatively strong performance433

on the Covid Fake News dataset underscores the434

potential of embedding-based approaches for fake435

news detection, particularly when the anomalies436

are stylistic or linguistic in nature.437

In contrast, the performance on hate speech438

and offensive language detection tasks (Figure 2c439

and Figure 2f) is consistently weaker, with AUC440

scores rarely exceeding 0.6 across embedding-441

detector combinations. This suggests that the442

embeddings struggle to capture the nuanced and443

context-dependent features necessary for these444

tasks. For instance, hate speech often relies on445

implicit cues such as sarcasm, cultural references,446

or subtle forms of hostility, which may not be447

fully captured by standard embeddings. Similarly,448

offensive language detection, as observed in the449

OLID dataset, requires identifying fine-grained dif-450

ferences in tone, intent, and subjectivity, such as451

distinguishing between neutral, offensive, and sar-452

castic expressions. These distinctions often depend453

on broader contextual information, such as the dis- 454

course or dialogue in which the language appears. 455

For example, without additional context, such 456

as the speaker’s intent or the conversational back- 457

ground, the following statement from OLID dataset 458

remains ambiguous whether this statement quali- 459

fies as hate speech: 460

@USER #metoo are all racist!
461

5.2 Comparative Effectiveness of Embeddings 462

in Anomaly Detection 463

The results in Table 3 demonstrate the remark- 464

able capabilities of the OpenAI family of embed- 465

dings (O-ada, O-small, and O-large), consistently 466

outperforming other embeddings across a variety 467

of anomaly detection tasks. Specifically, O-ada 468

achieves the highest average AUC scores with 469

the ECOD detector (0.8822) on the SMS Spam 470

dataset and with kNN (0.7921) on the LIAR2 471

dataset. Similarly, O-small demonstrates outstand- 472

ing performance, achieving the highest AUC scores 473

with kNN on the Hate Speech (0.6416) and OLID 474

(0.5587) datasets. Additionally, O-large secures 475

top AUC scores with COPOD (0.9639) on the 476

Email Spam dataset and with kNN (0.9537) on 477

the COVID Fake News dataset. 478

In comparison, other embeddings, such as 479

MINILM, exhibit strong performance in specific 480

tasks but lack consistency across more complex 481

datasets. For instance, MINILM achieves excep- 482
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tional AUC scores of 0.9526 and 0.9626 on the483

Email Spam datasets when paired with INNE and484

OCSVM, respectively. However, its performance485

declines significantly on datasets like OLID and486

LIAR2, suggesting limitations in capturing deeper487

contextual or domain-specific cues essential for488

these tasks. Similarly, embeddings such as stella489

and Qwen exhibit moderate performance, excelling490

in a limited subset of tasks but failing to match491

the versatility of OpenAI embeddings. Their in-492

consistent performance across datasets indicates493

that while they may effectively capture certain lin-494

guistic patterns, they struggle with tasks requiring495

a broader understanding of context, intent, or nu-496

anced semantics.497

These observations suggest that OpenAI embed-498

dings, deliver the most robust and consistent per-499

formance across a diverse set of tasks. Their abil-500

ity to effectively capture both explicit textual fea-501

tures (e.g., in spam detection) and nuanced con-502

textual variations (e.g., in Covid Fake News and503

OLID) highlights their versatility. This underscores504

their suitability for anomaly detection scenarios505

that demand both surface-level pattern recognition506

and deeper linguistic comprehension, making them507

well-equipped for handling a wide range of text-508

based anomalies.509

5.3 Performance Across Anomaly Detectors510

(a) O-ada

(b) O-small

(c) O-large

Figure 3: Average rank (lower the better) of 3 differ-
ernt OpenAI embeddings-based methods on AUCROC
across 6 datasets.

To evaluate the robustness of anomaly detection511

algorithms across various embeddings and tasks,512

we analyze their average rankings using OpenAI513

embeddings (O-ada, O-small, and O-large) as rep-514

resentative examples (Figure 3). These embeddings 515

were selected based on their strong and consistent 516

performance across datasets, as demonstrated in 517

Section 5.2. The rankings provide insight into 518

which detection algorithms perform reliably regard- 519

less of the embedding or task. 520

Across all three embeddings, kNN and INNE 521

consistently rank as the top-performing algorithms. 522

This indicates their robustness and adaptability to 523

the semantic structures of LLM-derived embed- 524

dings. kNN, in particular, excels due to its ability 525

to effectively model local density variations in fea- 526

ture space, making it well-suited for both explicit- 527

pattern tasks like spam detection and nuanced tasks 528

like fake news and hate speech detection. INNE, 529

with its efficiency and strong generalization capa- 530

bilities, complements kNN as a reliable alternative 531

in diverse anomaly detection scenarios. 532

ECOD also ranks highly, consistently appear- 533

ing among the top three detectors across embed- 534

dings. Its lightweight design and ability to estimate 535

density-based anomalies make it a strong candi- 536

date for scenarios where computational efficiency 537

is critical. On the other hand, methods like LOF, 538

COPOD, and iForest consistently rank lower, high- 539

lighting their limitations in high-dimensional and 540

semantically complex embedding spaces. These 541

methods struggle with noise, data sparsity, and the 542

nuanced patterns encoded in LLM embeddings, 543

which limits their effectiveness across diverse tasks. 544

Overall, kNN, INNE, and ECOD perform well, 545

while LOF, COPOD, and iForest struggle with high- 546

dimensional embeddings. 547

6 Conclusion 548

In this study, we present a comprehensive bench- 549

mark for embedding-based anomaly detection in 550

NLP, systematically evaluating the interplay be- 551

tween LLM embeddings and classical anomaly de- 552

tection algorithms across three diverse domains: 553

spam detection, fake news detection, and offen- 554

sive language detection. Our results reveal both 555

the strengths and limitations of embedding-based 556

anomaly detection methods, demonstrating their ef- 557

fectiveness in tasks with explicit and well-defined 558

patterns while highlighting challenges in capturing 559

implicit, context-dependent anomalies that require 560

broader contextual cues. These findings empha- 561

size the need for more adaptive embeddings and 562

hybrid detection strategies that integrate external 563

knowledge and contextual reasoning. 564
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Limitations565

TAD-Bench evaluates anomaly detection across566

three domains: spam detection, fake news detec-567

tion, and offensive language detection. While these568

tasks provide diverse and relevant benchmarks,569

they do not fully capture the complexity of real-570

world applications. Strong performance in spam571

detection highlights the ability of LLM embeddings572

to capture explicit patterns, while mixed results in573

fake news detection and poor performance in of-574

fensive language detection reveal their limitations575

in modeling implicit, context-sensitive cues. Ex-576

panding to domains like medical, financial, or legal577

texts that involve unique challenges, and exploring578

datasets with more implicit anomalies, could better579

evaluate the adaptability and robustness of these580

methods.581

In addition, our work uses pre-trained LLM em-582

beddings and default hyperparameters for anomaly583

detectors, ensuring consistency but potentially un-584

derestimating their best-case performance. Fine-585

tuning LLMs on domain-specific data could im-586

prove embedding quality, while systematic hyper-587

parameter optimization might unlock the full poten-588

tial of anomaly detectors. Future research should589

explore these directions, leveraging techniques like590

AutoML to streamline both embedding fine-tuning591

and parameter tuning, thereby achieving more com-592

petitive performance.593

Moreover, TAD-Bench focuses solely on594

embedding-based methods, excluding end-to-end595

approaches that directly process raw text. While596

embeddings offer modularity and efficiency, end-to-597

end models like autoencoders or transformer-based598

methods may capture richer contextual information599

and handle more complex anomalies. Future work600

should incorporate end-to-end models and explore601

hybrid approaches that combine the strengths of602

both paradigms, providing a more comprehensive603

evaluation of anomaly detection methods in NLP.604

Furthermore, due to computational resource con-605

straints, we primarily evaluate small-scale LLMs606

rather than larger, more powerful models. While607

this allows for a fair comparison across different608

embedding methods, it may not fully reflect the ca-609

pabilities of state-of-the-art LLMs in anomaly de-610

tection. Future studies could benefit from leverag-611

ing larger models with extended context windows612

and more sophisticated representations to assess613

their impact on anomaly detection performance.614

Ethic Statement 615

This study adheres to ethical research practices and 616

considerations in the development and evaluation 617

of text anomaly detection methods. 618

Use of Potentially Offensive Language. Some 619

examples in this paper may contain offensive, harm- 620

ful, or misleading language. These examples are 621

used purely for illustrative purposes to demonstrate 622

the challenges of text anomaly detection in real- 623

world scenarios. They do not reflect the opinions, 624

beliefs, or endorsements of the authors. 625

Data Sources and Usage. All datasets used 626

in this study are sourced from publicly available 627

research datasets that have been previously used 628

in NLP and anomaly detection research. Proper 629

citations and references to the original datasets are 630

provided in the paper. No private, proprietary, or 631

personally identifiable information was used in this 632

study. 633

Risks and Responsible Use. Because anomaly 634

detection models can be misused for purposes such 635

as censorship, surveillance, or unfair content mod- 636

eration. We strongly emphasize that our benchmark 637

is intended for research and academic purposes 638

only and should be used responsibly with consider- 639

ation of ethical and societal implications. 640

Use of AI Assistance We acknowledge the use 641

of AI-based writing assistants for grammar refine- 642

ment, spelling correction, and improving the clar- 643

ity of our manuscript. However, all intellectual 644

contributions, experimental designs, analyses, and 645

conclusions in this paper are solely the work of the 646

authors. 647
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A Clarification Between Anomaly and861

Novelty Detection862

Text Anomaly Detection (TAD), as defined in Sec-863

tion 2, focuses on identifying instances that de-864

viate significantly from the majority of a dataset,865

regardless of whether anomalies are present dur-866

ing training. While some prior studies (e.g., AD-867

NLP (Bejan et al., 2023), NLP-ADBench (Li et al.,868

2024) and AD-LLM (Yang et al., 2024b)) assume869

training data contains only normal instances and870

testing data includes both normal and anomalous871

samples, this setup aligns more closely with novelty872

detection (Pimentel et al., 2014). Novelty detec-873

tion specifically targets never-before-seen anoma-874

lies that are absent from the training phase, often875

treating anomalies as entirely novel classes.876

In contrast, our benchmark evaluates a broader877

spectrum of anomaly detection scenarios. We do878

not restrict the training data to purely normal in-879

stances, allowing for potential partial supervision880

or contaminated training sets (e.g., realistic sce-881

narios where anomalies may unintentionally exist882

in training data). This setup reflects real-world883

applications where anomaly types are not always884

fully known a prior, and detection systems must885

generalize across domains and anomaly types.886

This distinction underscores our goal of advanc-887

ing generalizable anomaly detection systems for888

real-world NLP applications, where anomalies may889

exhibit both explicit and context-dependent pat-890

terns.891

B Datasets892

Email-Spam 2 (Metsis et al., 2006) contains 5,171893

emails labeled as spam or ham, with spam treated894

as the anomaly class. We utilized the preprocessed895

version provided in (Li et al., 2024).896

SMS-Spam 3 (Almeida et al., 2011) comprises897

5,574 SMS messages originally labeled as spam898

or ham. Spam messages are designated as the899

anomaly.900

COVID-Fake 4 (Das et al., 2021) comprises901

posts collected from social media platforms and902

fact-checking websites. Real news items were903

sourced from verified outlets providing accurate904

2https://huggingface.co/datasets/kendx/
NLP-ADBench/tree/main/datasets/email_spam

3https://archive.ics.uci.edu/dataset/228/sms+
spam+collection

4https://github.com/diptamath/covid_fake_news?
tab=readme-ov-file

COVID-19 information, while fake news was gath- 905

ered from tweets, posts, and articles containing 906

misinformation about COVID-19. Fake news is 907

treated as the anomaly class. 908

LIAR2 5 (Xu and Kechadi, 2024) consists of 909

approximately 23,000 statements manually labeled 910

by professional fact-checkers for fake news detec- 911

tion tasks. The "True" class, representing accurate 912

statements, is considered the normal class, while 913

the "Pants on Fire" class, representing highly mis- 914

leading statements, is treated as the anomaly. 915

OLID 6 (Zampieri et al., 2019b) (Zampieri et al., 916

2019a) contains 14,200 annotated English tweets, 917

categorized using a three-level annotation model. 918

For this benchmark, only the Level A (Offen- 919

sive Language Detection) annotations are used, 920

where tweets labeled as offensive are considered as 921

anomalies, and non-offensive tweets are considered 922

as normal. 923

Hate-Speech 7 (Davidson et al., 2017) contains 924

tweets annotated by CrowdFlower users. The tweet 925

content is used as data, with "hate speech" treated 926

as anomalies. 927

C Embedding Models 928

To effectively represent textual data, we use various 929

pre-trained embedding models that transform text 930

into dense vector representations. These embed- 931

dings serve as feature inputs for anomaly detection 932

models, enabling them to capture semantic similari- 933

ties and deviations in text. We selected a diverse set 934

of embedding models, balancing between model 935

size, token length limits, and computational effi- 936

ciency. The models used in this study are: 937

• BERT 8 (bert-base-uncased) 938

• MINILM 9 (all-MiniLM-L6-v2) 939

• O-ada 10 (text-embedding-ada-002) 940

• O-small 11 (text-embedding-3-small) 941

5https://github.com/chengxuphd/liar2?tab=
readme-ov-file

6https://sites.google.com/site/
offensevalsharedtask/olid

7https://github.com/t-davidson/
hate-speech-and-offensive-language

8https://huggingface.co/google-bert/
bert-base-uncased

9https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

10https://platform.openai.com/docs/guides/
embeddings/

11https://platform.openai.com/docs/guides/
embeddings/

12

https://huggingface.co/datasets/kendx/NLP-ADBench/tree/main/datasets/email_spam
https://huggingface.co/datasets/kendx/NLP-ADBench/tree/main/datasets/email_spam
https://archive.ics.uci.edu/dataset/228/sms+spam+collection
https://archive.ics.uci.edu/dataset/228/sms+spam+collection
https://github.com/diptamath/covid_fake_news?tab=readme-ov-file
https://github.com/diptamath/covid_fake_news?tab=readme-ov-file
https://github.com/chengxuphd/liar2?tab=readme-ov-file
https://github.com/chengxuphd/liar2?tab=readme-ov-file
https://sites.google.com/site/offensevalsharedtask/olid
https://sites.google.com/site/offensevalsharedtask/olid
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://platform.openai.com/docs/guides/embeddings/
https://platform.openai.com/docs/guides/embeddings/
https://platform.openai.com/docs/guides/embeddings/
https://platform.openai.com/docs/guides/embeddings/


Table 4: Embedding time of 6 datasets in seconds.

Embeddings Email-Spam SMS-Spam COVID-Fake LIAR2 Hate-Speech OLID
BERT 64.95 s 10.87 s 4.48 s 3.7 s 9.79 s 1.81 s

MINILM 3.58 s 1.48 s 0.64 s 0.52 s 1.50 s 0.45 s
O-ada 154.08 s 33.76 s 17.35 s 16.67 s 35.57 s 8.9 s

O-small 166.73 s 34.16 18.32 16.10 34.09 s 9.0 s
O-large 206.07 s 41.78 s 20.58 s 29.97 s 44.20 s 10.72 s
Llama 545.51 s 129.16 s 38.15 s 28.93 s 71.49 s 18.02 s
stella 99.75 s 19.38 s 12.41 s 9.95 s 20.18 s 5.72 s
Qwen 745.85 s 129.16 s 58.19 s 40.29 s 183.24 s 20.49 s

• O-large 12 (text-embedding-3-large)942

• LLAMA 13 (Llama-3.2-1B)943

• stella 14 (stella_en_400M_v5)944

• Qwen 15 (Qwen2.5-1.5B)945

Beyond model size and token limits, computa-946

tional efficiency is a key factor in selecting em-947

bedding models, particularly for real-world ap-948

plications where inference speed is critical. Ta-949

ble 4 presents the embedding time (in seconds)950

required to process six datasets using each embed-951

ding model.952

From the Table 4, we observe a significant vari-953

ation in embedding extraction time. MINILM is954

the fastest across all datasets, taking only a few955

seconds, making it ideal for applications requiring956

real-time embedding generation. BERT offers a957

moderate trade-off, with embedding times signif-958

icantly lower than larger models but higher than959

MINILM. OpenAI’s embeddings (O-ada, O-small,960

O-large) are relatively slow, likely due to their high-961

dimensional output and extended token support.962

Llama and Qwen models require the most compu-963

tation, with Qwen taking up to 745.85 seconds on964

the Email-Spam dataset, reflecting the high compu-965

tational cost of large autoregressive models.966

D Comparative Analysis of Anomaly967

Detection Algorithms968

Anomaly detection algorithms vary in their under-969

lying assumptions, computational efficiency, and970

12https://platform.openai.com/docs/guides/
embeddings/

13https://huggingface.co/meta-llama/Llama-3.
2-1B

14https://huggingface.co/NovaSearch/stella_en_
400M_v5

15https://huggingface.co/Qwen/Qwen2.5-1.5B

effectiveness across different types of data distri- 971

butions. In this section, we provide a comparative 972

analysis of the eight anomaly detection methods 973

used in this study: kNN, OCSVM, iForest, LOF, 974

HBOS, ECOD, INNE and COPOD. 975

Distance-based methods, such as kNN, define 976

anomalies based on their relative distance to sur- 977

rounding points. kNN anomaly detection computes 978

the distance between a data point and its kth nearest 979

neighbor, with larger distances indicating potential 980

anomalies. This method is conceptually simple 981

and effective in low-dimensional spaces with clear 982

separation between normal and anomalous points. 983

However, its primary drawback is the curse of di- 984

mensionality, where distance metrics lose discrim- 985

inative power as dimensionality increases. Addi- 986

tionally, kNN is computationally expensive, with a 987

worst-case complexity of O(n2), making it imprac- 988

tical for large datasets without optimizations such 989

as approximate nearest neighbor search. 990

Density-based approaches assume that anoma- 991

lies reside in low-density regions relative to normal 992

points. LOF estimates the local density of a point 993

by comparing it with the densities of its neigh- 994

bors. It is highly effective in detecting anomalies 995

in datasets with non-uniform density distributions, 996

where global models may fail. However, LOF is 997

computationally expensive complexity O(n2) in 998

the worst case and sensitive to the choice of neigh- 999

borhood size, requiring careful hyperparameter tun- 1000

ing. 1001

A more efficient density estimation approach is 1002

HBOS, which models feature distributions indepen- 1003

dently using histograms. This makes it computa- 1004

tionally extremely fast O(n) and scalable to large 1005

datasets. However, HBOS assumes feature inde- 1006

pendence, limiting its effectiveness when strong 1007

feature correlations exist. In such cases, its effec- 1008

tiveness diminishes as it fails to capture intricate 1009
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relationships between features, potentially leading1010

to suboptimal anomaly detection performance.1011

Isolation-based approaches, such as iForest, take1012

a different perspective by recursively partitioning1013

the feature space. Since anomalies are typically iso-1014

lated with fewer splits, iForest identifies them based1015

on the depth required to isolate each point. iFor-1016

est is computationally efficient O(nlogn) and per-1017

forms well in high-dimensional spaces compared1018

to distance-based methods, but it is struggle with1019

local anomalies. An extension of iForest, INNE,1020

replaces axis-aligned splits with hypersphere-based1021

partitions. This enhances robustness in detecting1022

anomalies in complex distributions, particularly1023

local anomalies.1024

Statistical approaches model the underlying dis-1025

tribution of data and identify anomalies as points1026

that significantly deviate from expected behavior.1027

ECOD estimates anomaly scores based on the em-1028

pirical cumulative distribution function (ECDF)1029

for each feature independently. It is parameter-1030

free and computationally efficient O(n), making1031

it highly scalable. However, like HBOS, ECOD1032

assumes feature independence, which can limit its1033

effectiveness in multivariate settings. COPOD im-1034

proves upon ECOD by leveraging copula functions1035

to model dependencies between features, making it1036

more effective for detecting anomalies in correlated1037

data. However, this comes at the cost of increased1038

computational complexity, making COPOD less1039

scalable for very large datasets.1040

E Embedding Analysis1041

To better understand how different embedding mod-1042

els encode normal and anomalous instances, we1043

visualize their embedding spaces using t-SNE pro-1044

jections across 6 datasets. Figure 5 presents the1045

t-SNE plots for embeddings extracted from 8 em-1046

bedding models, blue points represent normal in-1047

stances, while red points denote anomalies.1048

Separation of Normal and Anomalous In-1049

stances. As defined in Section 2, anomalies should1050

ideally exhibit significant deviation from normal1051

instances in the embedding space. The extent to1052

which embeddings separate anomalies from nor-1053

mal data is a crucial factor in determining their1054

effectiveness for anomaly detection.1055

Most embedding models exhibits clear separa-1056

tion, particularly in the Email Spam dataset, where1057

anomalous points form distinct regions away from1058

the normal distribution. BERT struggles with clear1059

separation, with many anomalies still embedded 1060

within normal clusters. This indicates that these 1061

models may not encode sufficient discriminative 1062

features for anomaly detection tasks. 1063

Dataset-Specific Challenges. The effectiveness 1064

of embedding-based anomaly detection varies sig- 1065

nificantly across datasets, highlighting the influ- 1066

ence of domain characteristics: 1067

• Spam Detection (Email Spam, SMS Spam): 1068

most embedding models perform well, reflect- 1069

ing their ability to capture explicit spam pat- 1070

terns (e.g., domain-specific keywords, unusual 1071

syntax). In contrast, BERT shows more over- 1072

lap between spam and normal messages, lead- 1073

ing to weaker anomaly separation. 1074

• Fake News Detection (COVID-Fake, LIAR2): 1075

The separation of anomalies is less pro- 1076

nounced across most embeddings, likely due 1077

to the subtle and nuanced nature of misinfor- 1078

mation. This suggests that effective detection 1079

may require external knowledge or factual rea- 1080

soning beyond what standard embeddings can 1081

provide. 1082

• Hate Speech and Offensive Language (Hate 1083

Speech, OLID): All embeddings perform 1084

poorly, with anomalies scattered among nor- 1085

mal instances. This suggests that hate speech 1086

and offensive language often depend on im- 1087

plicit contextual cues rather than explicit lin- 1088

guistic differences, making them harder to 1089

distinguish using standard embeddings. 1090

Clustered Anomalies in Spam Detection. For 1091

both Email Spam and SMS Spam datasets, the 1092

anomalies tend to form compact clusters rather than 1093

being scattered as isolated points. This behavior 1094

contrasts with other datasets, where anomalies are 1095

often more dispersed. 1096

Unlike anomalies in misinformation or hate 1097

speech detection, which can manifest in subtle lin- 1098

guistic variations, spam messages tend to exhibit 1099

repetitive patterns, including URLs, phone num- 1100

bers, irregular word spacing and excessive punc- 1101

tuation. Since these patterns are highly distinct 1102

but internally consistent, embeddings may cluster 1103

them into a well-defined anomaly group rather than 1104

spreading them across the feature space. 1105

F Experiments Environment 1106

The entire pipeline, including embedding extrac- 1107

tion and anomaly detection, was implemented in 1108

14



Table 5: t-SNE visualization of embeddings from 8 models across 6 datasets. Blue points represent normal instances,
while red points denote anomalies.

Embeddings Email-Spam SMS-Spam COVID-Fake LIAR2 Hate-Speech OLID

BERT

MINILM

O-ada

O-small

O-large

Llama

stella

Qwen

Python 3.9. Experiments were executed on a com-1109

putational setup equipped with a Ryzen 9 5900X1110

12-core CPU for data preprocessing and model or-1111

chestration, and an Nvidia RTX 3060 GPU with1112

12GB of memory for model inference and embed-1113

ding generation.1114
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