
Published at Building Trust Workshop at ICLR 2025

EXPPROOF : OPERATIONALIZING EXPLANATIONS FOR
CONFIDENTIAL MODELS WITH ZKPS

Chhavi Yadav1,∗, Evan Monroe Laufer2,∗, Dan Boneh2, Kamalika Chaudhuri1
1UC San Diego
2Stanford University
{cyadav,kamalika}@ucsd.edu, {emlaufer,dabo}@stanford.edu
∗Equal contribution

ABSTRACT

In principle, explanations are intended as a way to increase trust in machine learn-
ing models and are often obligated by regulations. However, many circumstances
where these are demanded are adversarial in nature, meaning the involved parties
have misaligned interests and are incentivized to manipulate explanations for their
purpose. As a result, explainability methods fail to be operational in such settings
despite the demand Bordt et al. (2022). In this paper, we take a step towards op-
erationalizing explanations in adversarial scenarios with Zero-Knowledge Proofs
(ZKPs), a cryptographic primitive. Specifically we explore ZKP-amenable ver-
sions of the popular explainability algorithm LIME and evaluate their performance
on Neural Networks and Random Forests. Our code is publicly available at :
https://github.com/infinite-pursuits/ExpProof.

1 INTRODUCTION

“Bottom line: Post-hoc explanations are highly problematic in an adversarial context” Bordt
et al. (2022)

Explanations have been seen as a way to enhance trust in machine learning (ML) models by virtue of
making them transparent. Although starting out as a debugging tool, they are now also widely pro-
posed to prove fairness and sensibility of ML-based predictions for societal applications, in research
studies (Langer et al., 2021; Smuha, 2019; Kästner et al., 2021; Von Eschenbach, 2021; Leben, 2023;
Karimi et al., 2020; Wachter et al., 2017; Liao & Varshney, 2021) and regulations alike (Right to
Explanation Wikipedia contributors (2025)). However, as discussed in detail by Bordt et al. (2022),
many of these use-cases are adversarial in nature where the involved parties have misaligned in-
terests and are incentivized to manipulate explanations to meet their ends. For instance, a bank
which denies loan to an applicant based on an ML model’s prediction has an incentive to return an
incontestable explanation to the applicant rather than reveal the true workings of the model since
the explanation can be used by the applicant to prove discrimination in the court of law Bordt et al.
(2022). In fact, many previous studies show that adversarial manipulations of explanations are pos-
sible in realistic settings with systematic and computationally feasible attacks Slack et al. (2020);
Shahin Shamsabadi et al. (2022); Slack et al. (2021); Yadav et al. (2024b). As such, despite the
demand, explanations fail to be operational as a trust-enhancing tool.

A major barrier to using explanations in adversarial contexts is that organizations keep their models
confidential due to IP and legal reasons. However, confidentiality aids in manipulating explanations
by allowing model swapping – a model owner can use different models for generating predictions vs.
explanations, swap the model for specific inputs, or change the model post-audits Slack et al. (2020);
Yadav et al. (2022); Yan & Zhang (2022). This demands a technical solution which guarantees that
a specific model is used for all inputs, for generating both the prediction and the explanation and
prove this to the customer on the receiving end while keeping the model confidential.

Another important barrier to using explanations in adversarial contexts is that many explanation
algorithms are not deterministic and have many tunable parameters. An adversary can choose these

1

https://github.com/infinite-pursuits/ExpProof

Published at Building Trust Workshop at ICLR 2025

parameters adversarially to make discriminatory predictions seem benign. Moreover, there is no
guarantee that the model developer is following the explanation algorithm correctly to generate
explanations. A plausible solution to counter this problem is consistency checks Bhattacharjee &
von Luxburg (2024); Dasgupta et al. (2022). Apart from being a rather lopsided ask where the
onus of proving correctness of explanations lies completely on the customer, these checks require
collecting multiple explanation-prediction pairs for different queries and are therefore infeasible for
individual customers in the real world. Compounding the issue, it has been shown that auditing local
explanations with consistency checks is hard Bhattacharjee & von Luxburg (2024). Note that many
of these issues persist even with a perfectly faithful algorithm for generating explanations.

Figure 1: Pictorial Representation of ExpProof

We address the aforementioned challenges with
a system called ExpProof. ExpProof gives a
protocol consisting of (1) cryptographic com-
mitments which guarantee that the same model
is used for all inputs and (2) Zero-Knowledge
Proofs (ZKPs) which guarantee that the expla-
nation was computed correctly using a prede-
fined explanation algorithm, both while main-
taining model confidentiality. See Fig. 1 for a
pictorial representation of ExpProof.

ExpProof ensures uniformity of the model and
explanation parameters through cryptographic
commitments Blum (1983). Commitments
publicly bind the model owner to a fixed set of
model weights while keeping the model con-
fidential. Commitments for ML models are
a very popular and widely researched area in
cryptography and hence we use standard procedures to do this (Kate et al., 2010).

Furthermore, we wish to provide a way to the customer to verify that the explanation was indeed
computed correctly using the said explanation algorithm, without revealing model weights. For this
we employ a cryptographic primitive called Zero-Knowledge Proofs Goldwasser et al. (1985); Gol-
dreich et al. (1991). ZKPs allow a prover (bank) to prove a statement (explanation) about its private
data (model weights) to the verifier (customer) without leaking the private data. The prover outputs a
cryptographic proof and the verifier on the other end verifies the proof in a computationally feasible
way. In our case, if the proof passes the verifier’s check, it means that the explanation was correctly
computed using the explanation algorithm and commited weights without any manipulation.

How are explanations computed? Explanation algorithm we use in our paper is a popular one called
LIME Ribeiro et al. (2016), which returns a local explanation for the model decision boundary
around an input point. We choose a local explanation rather than a global one since customers are
often more interested in the behavior of the model around their input specifically. LIME is also
model-agnostic, meaning that it can be used for any kind of model class (including non-linear ones).

Traditionally ZKPs are slow and are infamous for adding a huge computational overhead for prov-
ing even seemingly simple algorithmic steps. Moreover many local explanation algorithms such as
LIME require solving an optimization problem and involve non-linear functions such as exponen-
tials, which makes it infeasible to simply reimplement LIME as-is in a ZKP library. To remedy
these issues, we experiment with different variants of LIME exploring the resulting tradeoffs be-
tween explanation-fidelity and ZKP-overhead. To make our ZKP system efficient, we also utilize
the fact that verification can be easier than re-running the computation – instead of solving the opti-
mization problem within ZKP, we verify the optimal solution using duality gap.

Experiments. We evaluate ExpProof on fully connected ReLU Neural Networks and Random
Forests for three standard datasets on an Ubuntu Server with 64 CPUs of x86 64 architecture and
256 GB of memory without any explicit parallelization. Our results show that ExpProof is compu-
tationally feasible, with a maximum proof generation time of 1.5 minutes, verification time of 0.12
seconds and proof size of 13KB for NNs and standard LIME.

2

Published at Building Trust Workshop at ICLR 2025

2 PRELIMINARIES

Cryptographic Primitives. We use two cryptographic primitives in this paper, commitment
schemes and Zero-Knowledge Proofs. Commitment Scheme Blum (1983) commits to private in-
puts w outputting a commitment string comw. A commitment scheme is hiding meaning that comw

does not reveal anything about private input w and binding meaning that there cannot exist another
input w′ which has the commitment comw, binding commitment comw to input w.

Zero-Knowledge Proofs (ZKPs) Goldwasser et al. (1985) involve a prover holding a private input w,
and a verifier who both have access to a circuit P . ZKPs enable the prover to convince the verifier
that, for some public input x, it holds a private witness w such that P (x,w) = 1 without revealing
any additional information about witness w to the verifier. A ZKP protocol is (1) complete, meaning
that for any inputs (x,w) where P (x,w) = 1, an honest prover will always be able to convince an
honest verifier that P (x,w) = 1 by correctly following the protocol, (2) sound, meaning that beyond
a negligible probability, a malicious prover cannot convince an honest verifier for any input x, that
for some witness w, P (x,w) = 1 when infact such a witness w does not exist, even by arbitrarily
deviating from the protocol, and (3) zero-knowledge, meaning that for any input x and witness w
such that P (x,w) = 1 , a malicious verifier cannot learn any additional information about witness
w except that P (x,w) = 1 even when arbitrarily deviating from the protocol. A classic result says
that any predicate P in the class NP can be verified using ZKPs Goldreich et al. (1991).

Algorithm 1 LIME Ribeiro et al. (2016)

1: Input: Input point x, Classifier f
2: Parameters: Number of points n to be

sampled around input point, Length of ex-
planation K, Bandwidth parameter σ for
similarity kernel

3: Output: Explanation e
4: for i ∈ {1, 2, 3, . . . , n} do
5: zi ← sample around(x)
6: πi ← exp

(
−ℓ2(x, zi)2/σ2

)
7: end for
8: ŵ ∈ argminw

∑n
i=1 πi ×(

f (zi)− w⊤zi
)2

+ ∥w∥1
9: e := top-K(ŵ,K)

10: Return Explanation e

Algorithm 2 BORDERLIME

1: Input: Input point x, Classifier f
2: Parameters: Number of points n to be

sampled around input point, Length of ex-
planation K, Bandwidth parameter σ for
similarity kernel

3: Output: Explanation e
4: xborder :=

FIND CLOSEST POINT WITH OPP LABEL(x, f)
▷ See Alg. 4

5: e := LIME(xborder, f) ▷ Note that any
variant of LIME can be used here

6: Return Explanation e

LIME. Existing literature has put forward a wide variety of post-hoc (post-training) explainability
techniques to make ML models transparent. In this paper, we focus on one of the popular ones,
LIME (stands for Local Interpretable Model-Agnostic Explanations) Ribeiro et al. (2016).

LIME explains the prediction for an input point by approximating the local decision boundary
around that point with a linear model. Formally, given an input point x ∈ X , a complex non-
interpretable classifier f : X → Y and an interpretable class of models G, LIME explains the
prediction f(x) ∈ Y with a local interpretable model g ∈ G. The interpretable model g is found
from the class G via learning, on a set of points randomly sampled around the input point and
weighed according to their distance to the input point, as measured with a similarity kernel π. The
similarity kernel creates a locality around the input by giving higher weights to samples near input
x as compared to those far off. A natural and popular choice for the interpretable class of models
G is linear models such that for any g ∈ G, g(z) = wg · z (Ribeiro et al. (2016); Garreau & von
Luxburg (2020)), where wg are the coefficients of linear model g. These coefficients highlight the
contribution of each feature towards the prediction and therefore serve as the explanation in LIME.
Learning the linear model is formulated as a weighted LASSO problem, since the sparsity induced
by ℓ1 regularization leads to more interpretable and human-understandable explanations. Following
Ribeiro et al. (2016), the similarity kernel is set to be the exponential kernel with ℓ2 norm as the
distance function, πx(z) = exp

(
−ℓ2(x, z)2/σ2

)
where σ is the bandwidth parameter of the kernel

and controls the locality around input x.

3

Published at Building Trust Workshop at ICLR 2025

For brevity, we will denote the coefficients corresponding to the linear model g as w instead of wg ,
unless otherwise noted. For readers familiar with LIME, without loss of generality we consider
the transformation of the points into an interpretable feature space to be identity in this paper for
simplicity of exposition. The complete LIME algorithm with linear explanations is given in Alg. 1.
We will also use ‘explanations’ to mean post-hoc explanations throughout the rest of the paper.

3 PROBLEM SETTING & DESIDERATA FOR SOLUTION

To recall, explanations fail as a trust-enhancing tool in adversarial use-cases and can lead to a false
sense of security while benefiting adversaries. Motivated by these problems, we investigate if a
technical solution can be designed to operationalize explanations in adversarial settings.

Formal Problem Setting. Formally, a model owner confidentially holds a classification model
f which is not publicly released due to legal and IP reasons. A customer supplies an input x to
the model owner, who responds with a prediction f(x) and an explanation E(f, x) where E is the
possibly-randomized algorithm generating the explanation.

Solution Desiderata. A technical solution to operationalize explanations in adversarial use-cases
should provide the following guarantees.

1. (Model Uniformity) the same model f is used by the model owner for all inputs : our
solution is to use cryptographic commitments which force the model owner to commit to a
model prior to receiving inputs,

2. (Explanation Correctness) the explanation algorithm E is run correctly for generating ex-
planations for all inputs : our solution is to use Zero-Knowledge Proofs, wherein the model
owner supplies a cryptographic proof of correctness to be verified by the customer in a
computationally feasible manner,

3. (Model Consistency) the same model f is used for inference and generating explanations :
this is ensured by generating inference and explanations as a part of the same system and
by using model commitments,

4. (Model Confidentiality) the model f is kept confidential in the sense that any technique for
guaranteeing (1)-(3) does not leak anything else about the hidden model f than is already
leaked by predictions f(x) and explanations E(f, x) without using the technique : this
comes as a by-product of using ZKPs and commitments (See Sec. 10.1 for the formal
theorem and proof),

5. (Technique Reliability) the technique used for guaranteeing (1)-(4) is sound and complete
(as in Sec.2): this comes as a by-product of using ZKPs and commitments (See Sec. 10.1
for the formal theorem and proof).

Our solution ExpProof which provides the above guarantees will be discussed in Sec. 5.

4 VARIANTS OF LIME

Building ZK proofs of explanations requires the explanation algorithm to be implemented in a ZKP
library1 which is known to introduce a significant computational overhead. Given this, a natural
question that comes to mind is if there exist variants of LIME which provide similar quality of ex-
planations but are more ZKP-amenable by design, meaning they introduce a smaller ZKP overhead?

Standard LIME Variants. To create variants of standard LIME (Alg.1), we focus on the two steps
which are carried out numerous times and hence create a computational bottleneck in the LIME
algorithm – sampling around input x (Step 6 in Alg. 1) and computing distance using exponential
kernel (Step 7 in Alg. 1). For sampling, we propose two options as found in the literature : gaussian
(G) and uniform (U) Ribeiro et al. (2016); Garreau & Luxburg (2020); Garreau & von Luxburg
(2020). For the kernel we propose to either use the exponential (E) kernel or no (N) kernel. These
choices give rise to four variants of LIME (Alg. 3). We address each variant by their intials, for
instance standard LIME with uniform sampling and no kernel is addressed as ‘LIME U+N’.

1More precisely, arithmetic circuits for the explanation algorithm are implemented in the ZKP library.

4

Published at Building Trust Workshop at ICLR 2025

BorderLIME. An important consideration for generating meaningful local explanations is that the
sampled neighborhood should contain points from different classes Laugel et al. (2018). Any rea-
sonable neighborhood for an input far off from the decision boundary will only contain samples
from the same class, resulting in vacuous explanations.

To remedy the problem, Laugel et al. (2017; 2018) propose a radial search algorithm, which finds
the closest point to the input x belonging to a different class, xborder, and then uses xborder as
the input to LIME (instead of original input x). Their algorithm incrementally grows (or shrinks)
a search area radially from the input point and relies on random sampling within each ‘ring’ (or
sphere), looking for points with an opposite label. To cryptographically prove this algorithm, we
would either have to reimplement the algorithm as-is or would have to give a probabilistic security
guarantee (using a concentration inequality), both of which would require many classifier calls and
thereby many proofs of inference, becoming inefficient in a ZKP system.

We transform their algorithm into a line search version, called BorderLIME, given in Alg. 2 and
4, using the notion of Stability Radius which is now fed as a parameter to the algorithm. The
stability radius for an input x, δx, is defined as the largest radius for which the model prediction
remains unchanged within a ball of that radius around the input x. The stability radius δ is defined
as the minimum stability radius across all inputs x sampled from the data distribution D. Formally,
δ = infx∼D δx, where δx = sup{r ≥ 0 | f(x′) = f(x),∀x′ ∈ B(x, r)}. Here B(x, r) = {x′ |
∥x′ − x∥ ≤ r} denotes a ball of radius r centered at x. Stability radius ensures that for any input
from the data distribution, the model’s prediction remains stable within at least a radius of δ.

Our algorithm samples m directions and then starting from the original input x, takes δ steps until it
finds a point with a different label along all these directions individually. The border point xborder

is that oppositely labeled point which is closest to the input x. Furthermore, unlike in the algorithm
in Laugel et al. (2017), our algorithm can exploit parallelization by searching along the different
directions in parallel since these are independent.

Algorithm 3 STANDARD LIME VARIANTS

1: Input: Input point x, Classifier f
2: Parameters: Number of points n, Length

of explanation K, Bandwidth parameter
σ, sampling type smpl type, kernel type
krnl type

3: Output: Explanation e
4: for i ∈ {1, 2, 3, . . . , n} do
5: if smpl type = uniform then
6: zi ← uniformly sample around(x)
7: else if smpl type = gaussian then
8: zi ← gaussian sample around(x)
9: end if

10: if krnl type = exponential then
11: πi ← exp

(
−ℓ2(x, zi)2/σ2

)
12: else
13: πi = 1
14: end if
15: end for
16: ŵ ∈ argminw

∑n
i=1 πi ×(

f (zi)− w⊤zi
)2

+ ∥w∥1
17: e := top-K(ŵ,K)
18: Return Explanation e

Algorithm 4 FIND CLOSEST POINT WITH OPP LABEL

1: Input: Input point x, Classifier f
2: Parameters: Number of random directions

m, Stability radius δ, Iteration Threshold T

3: Output: Opposite label point xborder

4: {u⃗0, u⃗1 · · · u⃗m−1} := Sample m random
directions

5: Initialize dist0 · · · distm−1 as inf
6: for u⃗i ∈ {u⃗0, u⃗1 · · · u⃗m−1} do
7: xborderi := x
8: iter := 0
9: while f(xborderi) == f(x) and iter ≤

T do
10: xborderi := xborderi + δu⃗i

11: iter := iter + 1
12: end while
13: if f(xborderi) ̸= f(x) then
14: disti := ℓ2(x, xborderi)
15: end if
16: end for
17: xborder := xborderi such that i :=

argmin disti
18: Return xborder

Determining the optimal value of the stability radius is an interesting research question, but it is not
the focus of this work. We leave an in-depth exploration of this topic to future work while providing
some high-level directions and suggestions next. Stability radius can (and perhaps should) be found
offline using techniques as proposed in Jordan et al. (2019); Yadav et al. (2024a) or through an offline
empirical evaluation on in-distribution points. A ZK proof for this radius can be generated one-time,

5

Published at Building Trust Workshop at ICLR 2025

in an offline manner and supplied by the model developer (for NNs see Yadav et al. (2024a)). It can
also be pre-committed to by the model developer (see Sec. 5).

5 ExpProof : VERIFICATION OF EXPLANATIONS

Our system for operationalizing explanations in adversarial settings, ExpProof, consists of two
phases: (1) a One-time Commitment phase and (2) an Online verification phase which should be
executed for every input.

Commitment Phase. To ensure model uniformity, the model owner cryptographically commits to
a fixed set of model weights W belonging to the original model f , resulting in committed weights
comW. Architecture of model f is assumed to be public. Additionally, model owner can also
commit to the values of different parameters used in the explanation algorithm or these parameters
can be public.

Online Verification Phase. This phase is executed every time a customer inputs a query. On receiv-
ing the query, the prover (bank) outputs a prediction, an explanation and a zero-knowledge proof of
the explanation. Verifier (customer) validates the proof without looking at the model weights. If the
proof passes verification, it means that the explanation is correctly computed with the committed
model weights and explanation algorithm parameters.

To generate the explanation proof, a ZKP circuit which implements (a variant of) LIME is required.
However since ZKPs can be computationally inefficient, instead of reimplementing the algorithm as-
is in a ZKP library, we devise some smart strategies for verification, based on the fact that verification
can be easier than redoing the computation. Since all the variants of LIME share some common
functionalities, we next describe how the verification strategies for these functionalities. For more
details on the verification for each variant, see Appendix Sec. 10.

1. Verifying Sampling (Alg. 7, 12, 13). We use the Poseidon Grassi et al. (2021) hash function
to generate random samples. As part of the setup phase, the prover commits to a random value
rp. When submitting an input for explanation, the verifier sends another random value rv . Prover
generates uniformly sampled points using Poseidon with a key rp + rv , which is uniformly random
in the view of both the prover and the verifier. Then, during the proof generation phase, the prover
proves that the sampled points are the correct outputs from Poseidon using ezkl’s inbuilt efficient
Poseidon verification circuit. We convert the uniform samples into Gaussian samples using the
inverse CDF, which is checked in the proof using a look-up table for the inverse CDF.

2. Verifying Exponential Kernel (Alg. 11). ZKP libraries do not support many non-linear functions
such as exponential, which is used for the similarity kernel in LIME (Step 5 of Alg.1). To resolve this
problem, we implement a look-up table for the exponential function and prove that the exponential
value is correct by comparing it with the value from the look-up table.

3. Verifying Inference. Since LIME requires predictions for the sampled points in order to learn the
linear explanation, we must verify that the predictions are correct. To generate proofs for correct
predictions, we use ezkl’s inbuilt inference verification circuit.

4. Verifying LASSO Solution (Alg. 9). ZKP libraries only accept integers and hence all floating points
have to be quantized. Consequently, the LASSO solution for Step 7 of Alg. 1 is also quantized in
a ZKP library, leading to small scale differences between the exact and quantized solutions. To
verify optimality of the quantized LASSO solution, we use the standard concept of duality gap. For
a primal objective l and its dual objective g, to prove that the objective value from primal feasible
w is close to that from the primal optimal w∗, that is l(w) − l(w∗) ≤ ϵ, the duality gap should
be smaller than ϵ as well, l(w) − g(u, v) ≤ ϵ where u, v are dual feasible. Since the primal and
dual of LASSO have closed forms, as long we input any dual feasible values, we can verify that the
quantized LASSO solution is close to the LASSO optimal. The prover provides the dual feasible as
part of the witness to the proof. See App. Sec.10.2 for closed forms of the primal and dual functions
and for the technique to find dual feasible.

The complete ExpProof protocol can be found in Alg. 5; its security guarantee is given as follows.

Theorem 1. (Informal) Given a model f and an input point x, ExpProof returns prediction f(x),
LIME explanation E(f, x) and a ZK proof for the correct computation of the explanation, without
leaking anything additional about the weights of model f (in the sense described in Sec.3).

6

Published at Building Trust Workshop at ICLR 2025

For the complete formal security theorem and proof, refer to App. Sec. 10.1.

6 EXPERIMENTS

Datasets & Models. We use three standard fairness benchmarks for experimentation : Adult
Becker & Kohavi (1996), Credit Yeh (2016) and German Credit Hofmann (1994). Adult has 14 input
features, Credit has 23 input features, and German has 20 input features. All the continuous features
in the datasets are standardized. We train two kinds of models on these datasets, neural networks and
random forests. Our neural networks are 2-layer fully connected ReLU activated networks with 16
hidden units in each layer, trained using Stochastic Gradient Descent in PyTorch Paszke et al. (2019)
with a learning rate of 0.001 for 400 epochs. The weights and biases are converted to fixed-point
representation with four decimal places for making them compatible with ZKP libraries which do
not work with floating points, leading to a ∼ 1% test accuracy drop. Our random forests are trained
using Scikit-Learn Pedregosa et al. (2011) with 5-6 decision trees in each forest.

ZKP Configuration. We code ExpProof with different variants of LIME in the ezkl library Kon-
duit (2024) (Version 18.1.1) which uses Halo2 Zcash Foundation (2023) as its underlying proof
system in the Rust programming language, resulting in ∼ 3.7k lines of code. Our ZKP experi-
ments are run on an Ubuntu server with 64 CPUs of x86 64 architecture and 256 GB of memory,
without any explicit parallelization. We use default configuration for ezkl, except for 200k rows for
all lookup arguments in ezkl and ExpProof. We use KZG Kate et al. (2010) commitments for our
scheme that are built into ezkl.

Research Questions & Metrics. We ask the following questions for the different variants of LIME.

Q1) How faithful are the explanations generated by the LIME variant?
Q2) What is the time & memory overhead of implementing the LIME variant in a ZKP library?

To answer Q1, we need a measure of fidelity of the explanation, we use ‘Prediction Similarity’
defined as the similarity of predictions between the explanation classifier and the original model in
a local region around the input. We first sample points from a local2 region around the input point,
then classify these according to both the explanation classifier and the original model and report the
fraction of matches between the two kinds of predictions as prediction similarity. In our experiments,
the local region is created by sampling 1000 points from a Uniform distribution of half-edge length
0.2 or a Gaussian distribution centered at the input point with a standard deviation of 0.2.

To answer Q2, we will look at the proof generation time taken by the prover to generate the ZK proof,
the verification time taken by the verifier to verify the proof and the proof length which measures
the size of the generated proof.

6.1 STANDARD LIME VARIANTS

In this section we compare the different variants of Standard LIME, given in Alg. 3 Sec. 4, w.r.t. the
fidelity of their explanations and ZKP overhead.

Setup. We use the LIME library for experimentation and run the different variants of LIME with
number of neighboring samples n = 300 and length of explanation K = 5. Based on the sampling
type, we either sample randomly from a hypercube with half-edge length as 0.2 or from a gaussian
distribution centered around the input point with a standard deviation of 0.2. Based on the kernel
type we either do not use a kernel or use the exponential kernel with a bandwidth parameter as√
#features ∗ 0.75 (default value in the LIME library). Rest of the parameters also keep the

default values of the LIME library. Our results are averaged over 50 different input points sampled
randomly from the test set.

Results for NNs with 300 neighboring samples and Gaussian sampling for fidelity evaluation are
described below. Results for uniform sampling fidelity evaluation, fidelity evaluation with neighbor-
hood n = 5000 points and all results for RFs can be found in the Appendix Sec. 11.

2Note that this local region is for evaluation and is different from the local neighborhood in LIME.

7

Published at Building Trust Workshop at ICLR 2025

Fidelity Results. As shown in Fig. 2 left, we do not find a huge difference between the explanation
fidelities of the different variants of LIME as the error bars significantly overlap. This could be
due to the small size of the local neighborhoods where the kernel or sampling doesn’t matter much.
However, for the credit dataset, which has the highest number of input features, gaussian sampling
works slightly better than uniform, which could be because of the worsening of uniform sampling
with increasing dimension.

ZKP Overhead Results. Across the board, proof generation takes a maximum of ∼ 1.5 minutes,
verification time takes a maximum of ∼ 0.12 seconds and proof size is a maximum of ∼ 13KB,
as shown in Fig. 3. Note that while proof generation time is on the order of minutes, verification
time is on the order of seconds – this is due to the inherent design of ZKPs, requiring much lesser
resources at the verifier’s end (contrary to consistency-based explanation checks). We also observe
that the dataset type does not have much influence on the ZKP overhead; this is due to same ZKP
backend parameters needed across datasets.

Furthermore, we see that gaussian sampling leads to a larger ZKP overhead. This can be attributed
to our implementation of gaussian sampling in the ZKP library, wherein we first create uniform
samples and then transform them to gaussian samples using the inverse CDF method, leading to
an additional step in the gaussian sampling ZKP circuit as compared to that of uniform sampling.
Similarly, using the exponential kernel leads to a larger overhead over not using it due to additional
steps related to verifying the kernel.

Overall, ‘gaussian sampling and no kernel’ variant of LIME is likely the most amenable for a prac-
tical ZKP system as it produces faithful explanations with a small overhead.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E x1
G+N x1
U+E x1
U+N x1
U+E x3
U+N x3

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 2: Results for NNs. G/U: gaussian or uniform sampling, E/N: using or not using the exponential kernel. Left: Fidelity of different
variants of Standard LIME, Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

Adult Credit German
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
oo

f G
en

er
at

io
n

Ti
m

e
(m

in
s)

G + E
G + N
U + E
U + N

Adult Credit German
0

2

4

6

8

10

12

14

16

Pr
oo

f S
ize

 (K
B)

G + E
G + N
U + E
U + N

Adult Credit German
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ve
rif

ica
tio

n
Ti

m
e

(s
ec

s)

G + E
G + N
U + E
U + N

Figure 3: Results for NNs. G/U: gaussian or uniform sampling, E/N: using or not using the exponential kernel. Left: Proof Generation Time
(in mins), Mid: Proof Size (in KBs), Right: Verification times (in secs) for different variants of Standard LIME. All configurations use the
same number of Halo2 rows, 218, and lookup tables of size 200k.

6.2 BORDERLIME

In this section we compare the variants of BorderLIME (Alg. 2, Sec. 4) and BorderLIME vs.
Standard LIME w.r.t. the fidelity of their explanations and ZKP overheads.

Setup. We implement BorderLIME with all of the Standard LIME variants (Step 6 of Alg. 2). For
the purpose of experimentation, we fix the iteration threshold to T = 250, number of directions to
m = 5. Then to approximate the stability radius δ, we incrementally go over the set {0.01, 0.03,

8

Published at Building Trust Workshop at ICLR 2025

0.05, 0.07, 0.1, 0.15} and use the smallest value for which an opposite class point is found for all
50 randomly sampled input points. While this is a heuristic approach and does not guarantee the
theoretically minimal stability radius, it provides a practical estimate of stability radius for efficient
experimentation. Once a suitable value of stability radius is identified, we tighten the number of
directions by reducing them while ensuring that at least one opposite-class point exists for each
input. Our results are averaged over 50 input points. The exact parameter values are in App. Sec. 11.

Results for NNs with 300 neighboring samples and Gaussian sampling for fidelity evaluation are
described below. Results for uniform sampling fidelity evaluation, fidelity evaluation with neighbor-
hood n = 5000 points and all results for RFs can be found in the Appendix Sec. 11.

Fidelity Results. Comparing different variants of BorderLIME based on the LIME implementation,
we observe that the difference in explanation fidelity between gaussian and uniform sampling be-
comes more pronounced compared to standard LIME as shown in Fig. 2, reinforcing the importance
of gaussian sampling. This gap can sometimes be reduced by using more neighborhood points, i.e.
a larger n, when uniformly sampling. As demonstrated in Fig. 2 mid, with three times more points
for uniform sampling, we can match the fidelity of gaussian explanations for Adult and German
datasets. Comparing the G+N version of BorderLIME and standard LIME in Fig. 2 right, we ob-
serve that explanations generated by BorderLIME are atleast as faithful as standard LIME and can
sometimes be better hinting to its capability of generating more meaningful explanations.

ZKP Overhead Results. We observe that BorderLIME has a larger ZKP overhead than standard
LIME as shown in Table 1; this can be attributed to the additional steps needed in BorderLIME
to find the border point with opposite label (Alg. 4) which also have to be proved and verified.
Similar to the previous subsection, the overhead is similar across datasets and verification is orders
of magnitude cheaper than proof generation.

ZKP Overhead Type BorderLIME LIME
Proof Generation Time (mins) 4.85 ± 10−2 1.17 ± 10−2

Verification Time (secs) 0.30 ± 10−2 0.11 ± 10−2

Proof Size (KB) 18.30 ± 0 10.40 ± 0

Table 1: ZKP Overhead of BorderLIME and Standard LIME (both G+N variant) for NNs. Overhead for BorderLIME is larger than that for
LIME. Results are consistent across all datasets.

7 DISCUSSION & RELATED WORK

While ExpProof guarantees model and parameter uniformity as well as correctness of explanations
for a given model, it cannot prevent the kinds of manipulation where the model itself is corrupted
– the model can be trained to create innocuous explanations while giving biased predictions. Here
usually a regularization term corresponding to the manipulated explanations is added to the loss
function Aı̈vodji et al. (2019); Yadav et al. (2024b). Preventing such attacks requires a ZK proof of
training; this is well-studied in the literature Garg et al. (2023) but is outside the scope of this work.

Furthermore, to provide end-to-end trust guarantees for fully secure explanations, the explanations
should be (1) faithful, stable and reliable, (2) robust to realistic adversarial attacks (such as the
one mentioned above) and (3) should also be verifiable under confidentiality. This paper looks at
the third condition by giving a protocol ExpProof and implementing it for verifiable explanations
under confidentiality, which has not been studied prior to our work. As such, we view our work as
complementary and necessary for end-to-end explanation trust guarantees.

Related Work. In the ML field ZKPs have been majorly used for verification of inferences made by
models Sun et al. (2024); Chen et al. (2024); Kang et al. (2022); Weng et al. (2023); Sun & Zhang
(2023); Feng et al. (2021); VI2 (2023); Lee et al. (2020); Zhang et al. (2020a); Liu et al. (2021);
Singh et al. (2022); Fan et al. (2023). A line of work also focuses on proving the training of ML
models using ZKPs Burkhalter et al. (2021); Huang et al. (2022); Rückel et al. (2022); Garg et al.
(2023); Abbaszadeh et al. (2024). More recently they’re also been used for verifying properties such
as fairness Yadav et al. (2024a); Shamsabadi et al. (2023); Toreini et al. (2023) and accuracy Zhang
et al. (2020b) of confidential ML models. Contrary to these, ours is the first work that identifies the
need for proving explanations and provides ZKP based solutions for the same.

9

Published at Building Trust Workshop at ICLR 2025

8 CONCLUSION & FUTURE WORK

In this paper we take a step towards operationalizing explanations in adversarial contexts where the
involved parties have misaligned interests. We propose a protocol ExpProof using Commitments and
Zero-Knowledge Proofs, which provides guarantees on the model used and correctness of explana-
tions in the face of confidentiality requirements. We propose ZKP-efficient versions of the popular
explainability algorithm LIME and demonstrate the feasibility of ExpProof for NNs & RFs.

An interesting avenue for future work is the tailored design of explainability algorithms for high
ZKP-efficiency and inherent robustness to adversarial manipulations. Another interesting avenue is
finding other applications in ML where ZKPs can ensure verifiable computation and provide trust
guarantees without revealing sensitive information.

10

Published at Building Trust Workshop at ICLR 2025

REFERENCES

Zator: Verified inference of a 512-layer neural network using recursive snarks. https://
github.com/lyronctk/zator/tree/main, 2023.

Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios Papadopoulos. Zero-
knowledge proofs of training for deep neural networks. Cryptology ePrint Archive, 2024.

Ulrich Aı̈vodji, Hiromi Arai, Olivier Fortineau, Sébastien Gambs, Satoshi Hara, and Alain Tapp.
Fairwashing: the risk of rationalization. In International Conference on Machine Learning, pp.
161–170. PMLR, 2019.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Robi Bhattacharjee and Ulrike von Luxburg. Auditing local explanations is hard. arXiv preprint
arXiv:2407.13281, 2024.

Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems. ACM SIGACT
News, 15(1):23–27, 1983.

Sebastian Bordt, Michèle Finck, Eric Raidl, and Ulrike von Luxburg. Post-hoc explanations fail to
achieve their purpose in adversarial contexts. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, pp. 891–905, 2022.

Lukas Burkhalter, Hidde Lycklama, Alexander Viand, Nicolas Küchler, and Anwar Hithnawi. Rofl:
Attestable robustness for secure federated learning. arXiv preprint arXiv:2107.03311, 21, 2021.

Bing-Jyue Chen, Suppakit Waiwitlikhit, Ion Stoica, and Daniel Kang. Zkml: An optimizing system
for ml inference in zero-knowledge proofs. In Proceedings of the Nineteenth European Confer-
ence on Computer Systems, pp. 560–574, 2024.

Sanjoy Dasgupta, Nave Frost, and Michal Moshkovitz. Framework for evaluating faithfulness of
local explanations. In International Conference on Machine Learning, pp. 4794–4815. PMLR,
2022.

Yongkai Fan, Binyuan Xu, Linlin Zhang, Jinbao Song, Albert Zomaya, and Kuan-Ching Li. Vali-
dating the integrity of convolutional neural network predictions based on zero-knowledge proof.
Information Sciences, 625:125–140, 2023.

Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. Zen: Efficient zero-
knowledge proofs for neural networks. IACR Cryptol. ePrint Arch., 2021:87, 2021. URL
https://api.semanticscholar.org/CorpusID:231731893.

Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-Vamsi
Policharla, and Mingyuan Wang. Experimenting with zero-knowledge proofs of training. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1880–1894, 2023.

Damien Garreau and Ulrike Luxburg. Explaining the explainer: A first theoretical analysis of lime.
In International conference on artificial intelligence and statistics, pp. 1287–1296. PMLR, 2020.

Damien Garreau and Ulrike von Luxburg. Looking deeper into tabular lime. arXiv preprint
arXiv:2008.11092, 2020.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or
all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–728, jul 1991. ISSN
0004-5411. doi: 10.1145/116825.116852. URL https://doi.org/10.1145/116825.
116852.

S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, pp.
291–304, New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911512.
doi: 10.1145/22145.22178. URL https://doi.org/10.1145/22145.22178.

11

https://github.com/lyronctk/zator/tree/main
https://github.com/lyronctk/zator/tree/main
https://api.semanticscholar.org/CorpusID:231731893
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/22145.22178

Published at Building Trust Workshop at ICLR 2025

Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofneg-
ger. Poseidon: A new hash function for Zero-Knowledge proof systems. In 30th USENIX
Security Symposium (USENIX Security 21), pp. 519–535. USENIX Association, August
2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/grassi.

Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

Chenyu Huang, Jianzong Wang, Huangxun Chen, Shijing Si, Zhangcheng Huang, and Jing Xiao.
zkmlaas: a verifiable scheme for machine learning as a service. In GLOBECOM 2022-2022 IEEE
Global Communications Conference, pp. 5475–5480. IEEE, 2022.

Matt Jordan, Justin Lewis, and Alexandros G Dimakis. Provable certificates for adversarial exam-
ples: Fitting a ball in the union of polytopes. Advances in neural information processing systems,
32, 2019.

Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling up trustless dnn inference with
zero-knowledge proofs, 2022.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of
algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprint
arXiv:2010.04050, 2020.

Lena Kästner, Markus Langer, Veronika Lazar, Astrid Schomäcker, Timo Speith, and Sarah Sterz.
On the relation of trust and explainability: Why to engineer for trustworthiness. In 2021 IEEE
29th International Requirements Engineering Conference Workshops (REW), pp. 169–175. IEEE,
2021.

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polyno-
mials and their applications. In Advances in Cryptology-ASIACRYPT 2010: 16th International
Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings 16, pp. 177–194. Springer, 2010.

Seung-Jean Kim, K. Koh, M. Lustig, Stephen Boyd, and Dimitry Gorinevsky. An interior-point
method for large-scale ℓ1-regularized least squares. IEEE Journal of Selected Topics in Signal
Processing, 1(4):606–617, 2007. doi: 10.1109/JSTSP.2007.910971.

Konduit. ezkl: Efficient zero-knowledge machine learning. https://github.com/
zkonduit/ezkl, 2024. Accessed: 2025-01-21.

Markus Langer, Daniel Oster, Timo Speith, Holger Hermanns, Lena Kästner, Eva Schmidt, Andreas
Sesing, and Kevin Baum. What do we want from explainable artificial intelligence (xai)?–a
stakeholder perspective on xai and a conceptual model guiding interdisciplinary xai research.
Artificial Intelligence, 296:103473, 2021.

Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki.
Inverse classification for comparison-based interpretability in machine learning. arXiv preprint
arXiv:1712.08443, 2017.

Thibault Laugel, Xavier Renard, Marie-Jeanne Lesot, Christophe Marsala, and Marcin Detyniecki.
Defining locality for surrogates in post-hoc interpretablity. arXiv preprint arXiv:1806.07498,
2018.

Derek Leben. Explainable ai as evidence of fair decisions. Frontiers in Psychology, 14:1069426,
2023.

Seunghwan Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional
neural network. IACR Cryptol. ePrint Arch., 2020:584, 2020. URL https://api.
semanticscholar.org/CorpusID:218895602.

Q Vera Liao and Kush R Varshney. Human-centered explainable ai (xai): From algorithms to user
experiences. arXiv preprint arXiv:2110.10790, 2021.

12

https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://github.com/zkonduit/ezkl
https://github.com/zkonduit/ezkl
https://api.semanticscholar.org/CorpusID:218895602
https://api.semanticscholar.org/CorpusID:218895602

Published at Building Trust Workshop at ICLR 2025

Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convolutional neural
network predictions and accuracy. Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, 2021. URL https://api.semanticscholar.org/
CorpusID:235349006.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Timon Rückel, Johannes Sedlmeir, and Peter Hofmann. Fairness, integrity, and privacy in a scalable
blockchain-based federated learning system. Computer Networks, 202:108621, 2022.

Ali Shahin Shamsabadi, Mohammad Yaghini, Natalie Dullerud, Sierra Wyllie, Ulrich Aı̈vodji, Aisha
Alaagib, Sébastien Gambs, and Nicolas Papernot. Washing the unwashable: On the (im) possi-
bility of fairwashing detection. Advances in Neural Information Processing Systems, 35:14170–
14182, 2022.

Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas Franzese, Natalie Dullerud, Sébastien
Gambs, Nicolas Papernot, Xiao Wang, and Adrian Weller. Confidential proof of fair training
of trees. ICLR, 2023.

Nitin Singh, Pankaj Dayama, and Vinayaka Pandit. Zero knowledge proofs towards verifiable decen-
tralized ai pipelines. In International Conference on Financial Cryptography and Data Security,
pp. 248–275. Springer, 2022.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling lime
and shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pp. 180–186, 2020.

Dylan Slack, Anna Hilgard, Himabindu Lakkaraju, and Sameer Singh. Counterfactual explanations
can be manipulated. Advances in neural information processing systems, 34:62–75, 2021.

Nathalie A Smuha. The eu approach to ethics guidelines for trustworthy artificial intelligence.
Computer Law Review International, 20(4):97–106, 2019.

Haochen Sun and Hongyang Zhang. zkdl: Efficient zero-knowledge proofs of deep learning training,
2023.

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language
models. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 4405–4419, 2024.

Ehsan Toreini, Maryam Mehrnezhad, and Aad van Moorsel. Verifiable fairness: Privacy-
preserving computation of fairness for machine learning systems. 2023. URL https://api.
semanticscholar.org/CorpusID:261696588.

Warren J Von Eschenbach. Transparency and the black box problem: Why we do not trust ai.
Philosophy & Technology, 34(4):1607–1622, 2021.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming Li, and Jia-Nan Liu. Pvcnn: Privacy-preserving
and verifiable convolutional neural network testing. Trans. Info. For. Sec., 18:2218–2233, mar
2023. ISSN 1556-6013. doi: 10.1109/TIFS.2023.3262932. URL https://doi.org/10.
1109/TIFS.2023.3262932.

13

https://api.semanticscholar.org/CorpusID:235349006
https://api.semanticscholar.org/CorpusID:235349006
https://api.semanticscholar.org/CorpusID:261696588
https://api.semanticscholar.org/CorpusID:261696588
https://doi.org/10.1109/TIFS.2023.3262932
https://doi.org/10.1109/TIFS.2023.3262932

Published at Building Trust Workshop at ICLR 2025

Wikipedia contributors. Right to explanation, 2025. URL https://en.wikipedia.org/
wiki/Right_to_explanation. Accessed: 2025-01-14.

Chhavi Yadav, Michal Moshkovitz, and Kamalika Chaudhuri. Xaudit: A theoretical look at auditing
with explanations. arXiv preprint arXiv:2206.04740, 2022.

Chhavi Yadav, Amrita Roy Chowdhury, Dan Boneh, and Kamalika Chaudhuri. Fairproof : Confi-
dential and certifiable fairness for neural networks, 2024a. URL https://arxiv.org/abs/
2402.12572.

Chhavi Yadav, Ruihan Wu, and Kamalika Chaudhuri. Influence-based attributions can be manipu-
lated. arXiv preprint arXiv:2409.05208, 2024b.

Tom Yan and Chicheng Zhang. Active fairness auditing. In International Conference on Machine
Learning, pp. 24929–24962. PMLR, 2022.

I-Cheng Yeh. default of credit card clients. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C55S3H.

Zcash Foundation. Halo2: A Plonkish zk-SNARK implemented in Rust, 2023. URL https:
//github.com/zcash/halo2. Accessed: 2025-01-27.

Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs for decision
tree predictions and accuracy. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, pp. 2039–2053, New York, NY, USA, 2020a. Associa-
tion for Computing Machinery. ISBN 9781450370899. doi: 10.1145/3372297.3417278. URL
https://doi.org/10.1145/3372297.3417278.

Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs for decision
tree predictions and accuracy. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2039–2053, 2020b.

14

https://en.wikipedia.org/wiki/Right_to_explanation
https://en.wikipedia.org/wiki/Right_to_explanation
https://arxiv.org/abs/2402.12572
https://arxiv.org/abs/2402.12572
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://doi.org/10.1145/3372297.3417278

Published at Building Trust Workshop at ICLR 2025

9 APPENDIX

10 ExpProof

Algorithm 5 ExpProof : Provable Explanation for Confidential Models

1: Public Configuration: ZK LIME configuration cc = (smpl type sampling type, LIME ker-
nel variant krnl type, whether to use border LIME border lime, standard deviation σ, model
architecture f , LIME ℓ1 penalty α, maximum dual gap ϵ)

2: Public Input: Input point x
3: Private Witness: Model weights W
4: Output: Output label o, Explanation e, Proof π that o = f(x) and that e is a valid LIME

explanation.
5: Pre-Processing Offline Phase
6: Sample randomness r ← F
7: Commit to the randomness comr and release it publicly
8: Commit to the model weights comW and release it publicly
9: Online Phase

10: o = f(W, x)
11: Compute hi = Poseidon(k, i)
12: Compute LIME perturbations z from samples s
13: y = f(W, z)
14: (e, ŵ)←LIME(f, y, z) ▷ Compute a LIME solution using perturbations z with labels y
15: Compute a feasible dual solution v̂ from ŵ
16: Π←zkLime(cc, x, o, rv, Cr, CW, e;W, y, h, ŵ, v̂)
17: return (o, e,Π)

15

Published at Building Trust Workshop at ICLR 2025

Algorithm 6 ZK LIME

1: Public Configuration: smpl type sampling type, LIME kernel variant krnl type, whether to
use border LIME border lime, standard deviation σ, model architecture f , LIME ℓ1 penalty α,
maximum dual gap ϵ, sampling bit-width b

2: Public Instance: input point x, model output o, randomness rv , commitment to the randomness
Cr, commitment to the weights CW, e top-k LIME features

3: Private Witness: Model weights W, labels of the LIME samples y, hash outputs h, LIME
model ŵ, LIME dual v̂

4: Output: ZK Proof of the computation Π
5: Check that Cr = Com(rp)
6: Check that CW = Com(W)
7: k ← rp + rv
8: ZK CHECK POSEIDON(h, k) ▷ Check that h is generated from Poseidon using key k
9: EZKL.CHECK INFERENCE(f,W, x, o) ▷ Check that o = f(W,x) using EZKL

10: if smpl type==‘uniform’ then
11: s←ZK UNIFORM SAMPLE(h, b) ▷ Check that s is uniform generated from the hashes h
12: else if smpl type==‘gaussian’ then
13: s←ZK GAUSSIAN SAMPLE(h, b) ▷ Check that s is Gaussian generated from the hashes h
14: else
15: return ⊥
16: end if
17: if border lime == true then
18: x←ZK FIND OPP POINT(x, s, num vectors, vector length)
19: s← s[m× d...] ▷ Skip samples used for opposite point for fresh randomness
20: end if
21: for i ∈ |z| do
22: j ← i mod |x|
23: z ← xj + si − 2b−1 ▷ Perturb x with samples s
24: end for
25: if krnl type==‘exponential’ then
26: π ←ZK EXPONENTIAL KERNEL(x, z, σ, π)
27: else
28: π ← 1
29: end if
30: for i ∈ {1, 2, 3, . . . , n} do
31: EZKL.CHECK INFERENCE(f,W, zi, yi) ▷ Check that yi = f(W, zi) using EZKL
32: end for
33: ZK LASSO(z, y, π, ŵ, v̂, α)
34: e =ZK TOP K(ŵ)
35: Generate proof Π of the above computation

Algorithm 7 ZK CHECK POSEIDON

1: Input: hashes h, key k
2: Output: True if each hi generated from Poseidon with key k and input i
3: for hi ∈ h do
4: EZKL.CHECK POSEIDON(hi, k, i) ▷ Check that hi = Poseidon(k, i) using EZKL
5: end for
6: return xborder

16

Published at Building Trust Workshop at ICLR 2025

Algorithm 8 ZK FIND OPP POINT

1: Input: input x, samples s, number of vectors num vectors, maximum length of each vector
vector length

2: Output: Border point xborder if one exists, otherwise x
3: d← |x|
4: step← z[0..d×m].reshape(m, d) ▷ Get m× d samples as m randomly sampled vectors
5: for i ∈ {1, 2, 3, ..., num vectors} do
6: stepi ← stepi × LOOKUP RECIPROCAL SQRT(stepi · stepi) ▷ Normalize each step vector

using a lookup table for 1/
√
∥(stepi)∥2

7: end for
8: for i ∈ {1, 2, 3, ..., num vectors} do
9: for i ∈ {1, 2, ..., vector length do

10: vi ← i× step size× stepi
11: end for
12: end for
13: y = f(W, v)
14: xborder ← x
15: for i ∈ {vector length, vector length− 1, ..., 2, 1} do
16: for i ∈ {1, 2, ..., num vectors} do
17: if yi ̸= x label then
18: xborder ← vi
19: end if
20: end for
21: end for
22: return xborder

Algorithm 9 ZK LASSO

1: Input: Samples z, labels y, weights π, Lasso solution ŵ, Lasso dual solution v̂, Lasso parameter
α, maximum dual gap ϵ

2: Output: True if the dual solution is feasible and the dual gap is less than ϵ, and False otherwise.
3: for i ∈ {1, 2, 3, . . . , n} do
4: z′i ←

√
πi × zi

5: y′i ←
√
πi × yi

6: end for
7: p← 1

2n∥y
′ − b− wT z′i∥2 + α∥w∥1

8: d← −n
2 ∥v∥

2 + vT (y′ − b)
9: Check p− d ≤ ϵ

10: Let m be the length of each sample zi
11: for i ∈ {1, 2, 3, . . . ,m} do
12: fi ← (XT)iv
13: Check −α ≤ fi ≤ α
14: end for

Algorithm 10 ZK TOP K

1: Input: Lasso solution ŵ, top-k values e
2: Output: True if e contains the top-k values of ŵ, and False otherwise
3: ŵ′ = Sort(ŵ)
4: for i ∈ {1, 2, 3, . . . , k} do
5: (v, j)← ei
6: Check ŵ′

i = v
7: Check ŵj = v
8: end for

17

Published at Building Trust Workshop at ICLR 2025

Algorithm 11 ZK EXPONENTIAL KERNEL

1: Input: Input point x, LIME samples z, standard deviation σ
2: Output:
3: for i ∈ {1, 2, 3, . . . , N} do
4: square distance = x · zi
5: πi ← LOOKUP EXPONENTIAL(−square distance/σ2) ▷ Check exponential function using

a lookup table
6: end for
7: return π

Algorithm 12 ZK UNIFORM SAMPLE

1: Input: Poseidon hashes h, sampling bit-width b
2: Output: Uniform samples z
3: B = ⌊W/b⌋
4: N = ⌈(|x| ∗ n)/B⌉
5: j = 0
6: for i ∈ {1, 2, 3, . . . , N} do
7: Compute z such that zj + zj+12

b + . . .+ zj+B2
B∗b + rem = hi

8: Check that zj + zj+12
b + . . .+ zj+B2

B∗b + rem = hi ▷ Check that the samples are a
decomposition of hi

9: for k ∈ {1, 2, 3, . . . , B} do
10: Check that 0 ≤ zi+k < 2B

11: end for
12: Check that 0 ≤ rem < 2B

13: j ← j +B
14: end for
15: return z

Algorithm 13 ZK GAUSSIAN SAMPLE

1: Input: Poseidon hashes h, sampling bit-width b
2: Output: Gaussian samples z
3: z =ZK UNIFORM SAMPLE(h, b)
4: z = LOOKUP GAUSSIAN INVERSE CDF(z)
5: return z

18

Published at Building Trust Workshop at ICLR 2025

10.1 SECURITY OF ExpProof

Completeness ∀ ZK LIME configurations cc, input points x, and model weights W

Pr


pp← ExpProof.Setup(1k)

(pk, vk)← ExpProof.KeyGen(pp)
(comW, comr)← ExpProof.Commit(pp,W, r)

(o, e, π)← ExpProof.Prove(pp, pk, cc, x, comW,W, comr, rp, rv)
ExpProof.Verify(pp, vk, cc, x, o, e, comW, comr, π) = 1

 = 1.

Proof Sketch. Completeness. The completeness proof mostly follows from the completeness of the
underlying proof system (in our case, Halo2). We must also show that for any set of parameters
there exists a LIME solution ŵ and a feasible dual solution v such that the dual gap between ŵ and
v̂ is less than ϵ. We know from the strong duality of Lasso that there exists a solution w∗ and v∗
such that the dual gap is 0 for any input points and labels, therefore such a solution exists. However,
we also note that the circuit operates on fixed-point, discrete values (not real numbers), and it is not
necessarily true that there are valid solutions in fixed-point. To solve this, the prover can use a larger
number of fractional bits until the approximation is precise enough.

Knowledge-Soundness We define the relationRlime as:

Rlime =



(cc, x, o, e, rv, comW, comr;W, rp, y, h, ŵ, v̂)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

comW = Com(W)
comr = Com(rp)
o← cc.f(W, x)

hi = Poseidon(rp + rv, i)
z ← SAMPLE AROUND(x, cc.σ)

y ← cc.f(W, z)
π ← LIME KERNEL(x)

y = cc.f(W, z)
z′ ←

√
π × z

y′ ←
√
π × y

p← 1
2n∥y

′ − b− ŵT z′∥2 + cc.α∥ŵ∥1
d← −n

2 ∥v̂∥
2 + v̂T (y′ − b)

p− d ≤ cc.ϵ
f ← (XT)v

−cc.α ≤ f ≤ cc.α


There exists an extractor E such that for all probabilistic polynomial time provers P∗

Pr


pp← ExpProof.Setup(1k)

(pk, vk)← ExpProof.KeyGen(pp)
(cc, x, o, e, rv, comW, comr, π)← P(1λ,pk)

ExpProof.Verify(pp, vk, cc, x, o, e, rv, comW, comr) = 1
(W, rp, y, h, ŵ, v̂)← EP (...)

(cc, x, o, e, rv, comW, comr;W, rp, y, h, ŵ, v̂) ̸∈ Rlime

 ≤ negl(λ).

Proof Sketch. Knowledge Soundness. Knowledge-soundness follows directly from the knowledge-
soundness of the underlying proof system Halo2. The extractor runs the Halo2 extractor and outputs
the Halo2 witness. By the construction of the circuit ZK LIME, the extracted Halo2 witness satisfies
theRlime relation.

Zero-Knowledge We say a protocol Π is zero-knolwedge if there exists a polynomial time, ran-
domized simulator S such that for all (pk, vk) = Setup(pp), for all (x,w) ∈ R, for all verifiers
V

{P (pk, x, w)} ≈ {S(pk, x)}

Proof Sketch. Zero-Knowledge. Let the simulator S be the Halo2 simulator. For any
(cc, x, o, e, rv, comW, comr,W, rp, y, h, ŵ, v̂) ∈ Rlime, we know that

{ExpProof.P rove(cc, x, o, e, rv;W, rp, y, h, ŵ, v̂)} ≈ {S(cc, x, o, e, rv)}
by zero-knowledge of Halo2.

19

Published at Building Trust Workshop at ICLR 2025

10.2 LASSO PRIMAL AND DUAL

Notation: Let X ∈ Rn×m denote the data inputs, y ∈ Rn denote the labels and α > 0 denote
the regularization parameter or the LASSO constant. Let w ∈ Rm denote the primal variable and
v ∈ Rn denote the dual variable.

The primal LASSO objective is given as, 1
2n∥Xw− y∥22 +α∥w∥1 while the dual objective function

is given as −n
2 ∥v∥

2
2 − v⊤y with the feasibility constraint 0 ≤ L∞

(
X⊤v

)
≤ α Kim et al. (2007).

From a LASSO primal feasible w, it is possible to compute a dual feasible v as Kim et al. (2007):

v = 2s(Xw − y)

s = min
{
α/ | 2

((
WTWx

)
i
− 2yi)| |i = 1, . . . , n

}
We find that this dual is close enough to the dual optimal to get a good duality gap, however, in
the worst case it is possible to apply traditional optimization methods to find a dual feasible with a
smaller duality gap.

20

Published at Building Trust Workshop at ICLR 2025

11 EXPERIMENTAL DETAILS

11.1 NN RESULTS

Next in Fig.4 we show results for using uniform sampling in the ‘prediction similarity’ evaluation,
keeping rest of the parameters same. We observe similar numbers as before with very slight differ-
ences from Fig.2.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E x1
G+N x1
U+E x1
U+N x1
U+E x3
U+N x3

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 4: Results for NNs for n = 300 neighboring points and uniform sampling in the evaluation. Left: Fidelity of different variants of
Standard LIME, Mid: Fidelity of different variants of BorderLIME, Right: Fidelity of Standard vs. BorderLIME.

Next we increase the neighborhood size, n, in LIME from 300 to 5000 samples and present the
results in Fig.5. As expected the fidelity increases across the board due to better model fitting with a
larger number of points. The size of the error bars only reduces significantly for the German dataset,
showing that for more input points the explanations are faithful to the original decision boundaries.
Additionally, the German dataset also has the highest fidelity explanations. Both these points hints
towards smoother or more well-behaved decision boundaries learnt using the German dataset. Fur-
thermore, BorderLIME consistently outperforms standard LIME pointing to better explanations.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 5: Results for NNs for n = 5000 neighboring points and gaussian sampling in the evaluation. Left: Fidelity of different variants of
Standard LIME, Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

21

Published at Building Trust Workshop at ICLR 2025

11.2 RF RESULTS

Next in Fig.6 and Fig.7 we show results for fidelity of explanations for Random Forests using gaus-
sian and uniform sampling in the ‘prediction similarity’ evaluation respectively, keeping rest of the
parameters same. We observe results as for NNs.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 6: Results for RFs for n = 300 neighboring points and gaussian sampling in the evaluation. Left: Fidelity of different variants of
Standard LIME, Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 7: Results for RFs for n = 300 neighboring points and uniform sampling in the evaluation. Left: Fidelity of different variants of
Standard LIME, Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

Next we show the ZKP overheads for RFs in Fig.8 and Table 2. Trends and observations are similar
as for NNs.

Adult Credit German
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
oo

f G
en

er
at

io
n

Ti
m

e
(m

in
s)

G + E
G + N
U + E
U + N

Adult Credit German
0

5

10

15

20

25

Pr
oo

f S
ize

 (K
B)

G + E
G + N
U + E
U + N

Adult Credit German
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ve
rif

ica
tio

n
Ti

m
e

(s
ec

s)

G + E
G + N
U + E
U + N

Figure 8: Results for RFs for n = 300 neighboring points. Left: Proof Generation Time (in mins), Mid: Proof Size (in KBs), Right:
Verification times (in secs) for different variants of Standard LIME. All configurations use the same number of Halo2 rows, 218, and lookup
tables of size 200k.

ZKP Overhead Type BorderLIME LIME
Proof Generation Time (mins) 8.46± 10−1 2.02± 10−2

Verification Time (secs) 0.44± 10−2 0.14± 10−3

Proof Size (KB) 17.25± 0 16.20± 10−2

Table 2: ZKP Overhead of BorderLIME and Standard LIME (both G+N variant) for RFs for 300 neighboring points. Overhead for Border-
LIME is larger than that for LIME. Results are consistent across all datasets.

Next we increase the neighborhood size, n, in LIME from 300 to 5000 samples and present the
results in Fig.9. As expected the fidelity increases across the board due to better model fitting with

22

Published at Building Trust Workshop at ICLR 2025

a larger number of points. We see slight reduction in error bars for German dataset. BorderLIME
equals or outperforms standard LIME.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 9: Results for RFs for neighboring points n = 5000 and gaussian sampling in the evaluation. Left: Fidelity of different variants of
Standard LIME, Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

23

	Introduction
	Preliminaries
	Problem Setting & Desiderata for Solution
	Variants of LIME
	ExpProof: Verification of Explanations
	Experiments
	Standard LIME Variants
	BorderLIME

	Discussion & Related Work
	Conclusion & Future Work
	Appendix
	ExpProof
	Security of ExpProof
	LASSO Primal and Dual

	Experimental Details
	NN results
	RF results

