Learning Kronecker-Structured Graphs from Smooth Signals

Changhao Shi Gal Mishne
University of California San Diego University of California San Diego
cshi@ucsd.edu gmishne@ucsd.edu
Abstract

Graph learning, or network inference, is a prominent problem in graph signal
processing (GSP). GSP generalizes the Fourier transform to non-Euclidean
domains, and graph learning is pivotal to applying GSP when these domains
are unknown. With the recent prevalence of multi-way data, there has been
growing interest in product graphs that naturally factorize dependencies across
different ways. However, the types of graph products that can be learned are
still limited for modeling diverse dependency structures. In this paper, we study
the problem of learning a Kronecker-structured product graph from smooth
signals. Unlike the more commonly used Cartesian product, the Kronecker
product models dependencies in a more intricate, non-separable way, but posits
harder constraints on the graph learning problem. To tackle this non-convex
problem, we propose an alternating scheme to optimize each factor graph in
turn and provide theoretical guarantees for its asymptotic convergence. The
proposed algorithm is also modified to learn factor graphs of the strong product.
We conduct experiments on synthetic and real-world graphs and demonstrate our
approach’s efficacy and superior performance compared to existing methods.

1 Introduction

GSP is a fast-growing field that extends classical signal processing (SP) to non-Euclidean domains
[1, 2]. For a complex system, GSP studies the matrix representation of its graph abstraction. The
spectral decomposition of these graph representations carries important geometric information, from
which the Graph Fourier Transform (GFT) is established to analyze and process data on the graph.

GSP finds its applications in plenty of fields [3—6], but a prominent problem even before applying GSP
is that the graph abstraction of the studied system is frequently unobserved. Although constructing ad
hoc graphs for specific applications may not be difficult, GSP resorts to a more principled method for
learning these graphs from the nodal observations (signals). This data-driven methodology is called
graph learning or network topology inference [7].

Graph learning imposes various prior assumptions on the observed data and solves for the graph that
fits the best. Here, we focus on the smoothness assumption, which implies that the observed signals
are smooth with respect to the graph of interest. The smoothness measurement is usually defined as a
form of total variation of the graph signals and is related to the combinatorial graph Laplacian. One
can then pose graph learning as an optimization problem regarding the Laplacian matrix.

With the prevalence of multi-way signals or tensors, there has been growing interest in extending
GSP to these higher-order structures. The graph product prevails as a convenient tool since the factor
graphs naturally capture the mode-wise dependencies of the data [8]. For example, the Cartesian
graph product models a non-interactive, parallel composition of factor graphs and serves as the
foundation of multi-way GSP [9]. However, other graph products are still under-explored in GSP.

The Kronecker graph product is a powerful model to simulate realistic graphs [10]. Fig. 1c shows
an example of the Kronecker graph product. Unlike the Cartesian product, the Kronecker product
wires factor graphs recursively to create a hierarchy with self-similarity. This model is shown to be
useful for mimicking the network characteristics, such as degree distributions of real-world graphs.

, Learning Kronecker-Structured Graphs from Smooth Signals. Proceedings of the Fourth Learning on Graphs
Conference (LoG 2025), PMLR 269, Hybrid Event, December 10-12, 2025.

e B

(a) Factor graphs. (b) Cartesian product. (¢) Kronecker product. (d) Strong product

Figure 1: An example that compares the Cartesian, Kronecker, and strong graph products.

These beneficial properties make the Kronecker graph product a worthy candidate for modeling
multi-dimensional structures in GSP [8]. Subsequently, how to learn rigorous Kronecker product
graphs from the data emerges naturally as an interesting problem.

In this paper, we study the problem of learning the Kronecker product graph Laplacian from smooth
multi-dimensional data. GSP has a probabilistic interpretation using the language of graphical models
(GM), and graph learning from smooth signals boils down to the parameter estimation of the improper
Gaussian Markov random field IGMRF). We follow a similar route and formulate our problem as
the penalized MLE of an IGMRF with Kronecker product constraints. As the problem is not jointly
convex, we propose an algorithm that alternates between the optimization of each factor graph. We
also provide theoretical results for the asymptotic convergence of the alternating algorithm, showing
an improved convergence rate compared to when the product structure is not accounted for. Given
that the strong graph product also bears a similar Kronecker product form, we also propose a variant
of our algorithm to learn strong product graphs from smooth signals. We conduct experiments on
synthetic and real-world graphs and demonstrate our approach’s efficacy and superior performance
compared to existing methods. The connections and differences between our method and related GSP
and GM methods will also be discussed. To summarize our contributions:

* We are the first to consider the penalized MLE of Kronecker product graph Laplacian learning,
and gain theoretical results on its asymptotic consistency, to the best of our knowledge.

* We propose a new algorithm to solve the penalized MLE and a variant of it to solve strong
product graph Laplacian learning.

* We demonstrate that our approach outperforms existing GSP and GM methods on synthetic and
real-world datasets.

Notations: We use the following notations throughout the paper. Lower-case and upper-case bold
letters denote vectors and matrices respectively, and lower-case bold italic letters denote random
vectors. Let 1 and O denote the all 1 and all O vectors, and let O denote the all 0 matrix. Let eé € RP

denote a unit vector that has 1 in its [-th entry. T denotes the Moore-Penrose pseudo-inverse and det'
denotes the pseudo-determinant. o denotes the Hadamard product. ® and & denote the Kronecker
product and the Kronecker sum of two matrices, respectively. X, L1, and X are used to denote
the Kronecker product, the Cartesian product, and the strong product of two graphs, respectively.
With abuse of notation, x also denotes the Cartesian product of two sets. For a node pair (v,), ~
denotes an edge connects them, and o denotes non-connection. For matrix norms, || - || » denotes
the Frobenius norm, || - ||, the operator norm, and || - ||, ,¢ the sum of the absolute values of all
off-diagonal elements. For random variables, || - ||, denotes the sub-Gaussian norm. (-), denotes

the non-negative projection. [- |7, 7 denotes the sub-matrix of a n X m matrix at a subset of indices
(I,J),where I C {1,2,...,n}and J C {1,2,...,m}.

2 Background
2.1 Graph Representations

Consider an undirected, connected graph G with |V| = p vertices and |€| edges. A graph represen-
tation of GG is a matrix that fully determines the topology of G. One of the most common graph
representations is the weighted symmetric adjacency matrix W € SP. Each entry of the weight
matrix [W];, = [W],; > 0 encodes the weight of a node pair (i, j), and [W],; = [W];, > 0iff
e;; € £. We assume there are no self-loops, i.e. W;; = 0. Another important graph representation is
the combinatorial graph Laplacian matrix L. The Laplacian of the graph G is defined as L = D — W,

where D denotes the diagonal degree matrix where [D];; = > . [W],.. The Laplacian matrix is

positive semi-definite by definition, i.e. L € S, with the number of zero eigenvalues equal to the
number of connected components in the graph. The Laplacian matrix plays a vital role in spectral
graph theory, graph machine learning, and many other scientific fields [11].

Let w € RP(P=1)/2 denote the vectorization of the graph weights, where [W]Fﬂ%(jfl)(zpfj) =
(W], > V1 < j <14 < p. By definition, w is also a graph representation. We then define the linear
maps from this non-negative weight vector to its corresponding weighted adjacency matrix and
combinatorial graph Laplacian, following [12]. These linear maps pave the way for our derivation
since we will use different graph representations throughout the paper.

Definition 2.1. Define A : RP(?~1)/2 _ RP*P w — Aw as the following linear operator

“WiiiG-nee 120
[Aw]ij =4 [Aw]; <7,
0 i=j.
Definition 2.2. Define £ : RP(P=1)/2 _ RPXP w s Lw as the following linear operator
~WhisriG-neEe-n >0
['CW]Z‘]‘ = [‘Cw]ji P < J,
=Dk [LW]y =]

It is obvious that W = Aw. One can verify that Lw is a combinatorial graph Laplacian with weights
w. We then define their adjoint operators.
Definition 2.3. Define A* : RP*? — RP(P—1)/2 Q — A*Q as the following
" 1 R N
(A*Q], = 5([Q]m + [sz)v l=i—-j+ 5(] -1(2p—j), i>J.
Definition 2.4. Define £* : RP*? — RP(P—1)/2 Q s £*Q as the following

Q) = QL — [Qly — Qe + QL0 L= i~ 5+ 5~ D), i > 5

2.2 Smoothness Prior in GSP and GM

We consider a vector-valued function f : V — RP, which assigns a scalar value to each vertex
of the graph. The combinatorial graph Laplacian induces a quadratic f TLf, also known as the
Dirichlet energy. The Laplacian quadratic term measures the smoothness (variation) of f with respect
to G, as fTLf = > (W1 (F1 = [f]j)2 can be shown. Given n graph signals {fi,fs,...,f,},
the inner product (L,S) = Tr (LS) of the Laplacian and the sample covariance matrix (SCM)
S = % ZZZI fkfkT measures the overall smoothness of these signals with respect to the graph. GSP
tackles graph learning by solving the penalized objective function

in {(L,S) + ah(L)}, ¢))
where)y, is the space of all combinatorial graph Laplacians:
Q= {Les? |L1=0,[L], = [L],, <0,Yi # j},

where h(L) is a penalty term, and « > 0 is a trade-off parameter. Minimizing (L, S) ensures signals
{fi} to vary smoothly on the inferred graph L. The penalty term h(L) prevents trivial solutions such
as L = O, and it often encourages other structural properties such as sparsity.

GM approaches the graph learning problem from a different path. Consider an IGMRF f ~ N(0, L),
the penalized MLE is reminiscent of the graphical lasso
min {<L, S) — log det'(L) +a||LH10ff}. @)
LeQy)
The additional ¢; penalization promotes sparsity, and « > 0 controls its strength. The Laplacian
constraint is what makes (2) substantially different from covariance selection, since the solution
spaces of these two problems are disjoint. Laplacian matrices in {2y, are singular with constant
0-eigenvectors. They are also attractive, only allowing positive conditional dependencies. Covariance
selection solves for ordinary precision matrices which are non-singular and have both positive and
negative dependencies. Also notice that one obtains (1) by substituting the penalization in (2) with
—log det' (L) +al|L|| 1o~ This demonstrates the connection between the GSP and GM formulations.

3 Kironecker Structured Graph Learning
3.1 Product Graph Learning

Consider two factor graphs G7 = {V1, &1, W1} and Go = {Vs, &2, Wi}, with cardinality |V;| = p;
and [V3| = po. A graph product takes G; and G5 and produces a larger graph G of [V| = |V1 x Vo| =
p1pe vertices. Two vertices (v1,v2) and (uq, uz) in the product graph G are connected iff some
product-specific conditions are satisfied. An example is the Cartesian product G = G10G2, where
(v1,v2) ~ (u1,us) holds iff v = vy A uy ~ ug or v1 ~ vy A u; = ug. The weighted adjacency
matrix of G is W1 & Wo,.

Although the Cartesian graph product is widely used for modeling non-interactive dependency
structures, many applications desire more intricate, interactive structures [8]. As an example, in
a time-vertex structure in which nodes ‘interact’ across time, such as the ones in neuroscience,
communication, and traffic flows, there exist clear dependencies between neighboring nodes at
adjacent time points. In this setting, the Cartesian product structure is over-simplified and incapable
of modeling such dependencies, so we turn to other graph products.

We focus on the Kronecker and strong products, which are two other common options for modeling
product graphs. The Kronecker product of G and G5 is denoted as G = G x Go, where (vy,v3) ~
(u1,ug) iff v1 ~ vy A ug ~ ug. The weighted adjacency matrix of G is the Kronecker product of the
factor weights W1 ® Ws. Another graph product that produces even denser connectivity is the strong
product. The strong product G = G X G5 is defined as the union of the Kronecker and the Cartesian
products. Thus the weighted adjacency matrix of the strong product graph is W; @ Wy + W1 G Wo.
Fig. 1 illustrates the aforementioned three graph products.

We now formulate the product graph learning problem using the Kronecker graph product. This
formulation also enlightens strong product graph learning, as discussed later. Let the random matrix
X € RPr*P2 represent a two-way graph signal that lives on the product graph G. [X] ir iy 18 the
signal on node (i1, %2). Given n instantiations {Xy, Xo, ..., X, }, our goal is to learn the factor graphs
G1, G2 and their Kronecker product G from these nodal observations on GG. Note that our argument
can be generalized to more factors naturally, though not presented here.

Let the random vector x be the vectorization of X and S = % ZZ:1 x,X; . be the SCM. Since for
G = G X G2 we have A = A; ® Ay, we derive the non-penalized product graph learning objective

min {(L7 S) — logdetT(L)}7 st L=D; Dy — W; @ Wy 3)

w1, W2 EQw

It is worth emphasizing that L # L; ® Lo and thus log det’(L) # log det'(L;) + log det'(Ly).
This differentiates our problem from the MLE of matrix normal distributions [13]. Interestingly,
except for the GSP merits, the Laplacian constraints also endow total positivity [14], a GM property
that is not compatible with other Kronecker structured graphical models.

3.2 Kronecker Product Graphs

We propose the Kronecker Sructured Graph (Laplacian) Learning (KSGL) algorithm for solving (3).
We formulate the penalized MLE (3) as

min>0{<AW1 ® Awz, K) + a1wT1 + apsw?'1 — log det' (LA* (Aw, AWQ))},)
Wi1,W22

with ¢; penalization. Here K = AL*S denotes the pairwise square Euclidean distances of the
signals. The absolute sign of the #; norm of the sparsity penalty is redundant due to the non-negative
constraints. KSGL then operates in an alternating scheme to solve w; and wo. The algorithm starts

with initialization w; = p% 1,,p,-1 and wo = p%l pa(po—1) - 1t then uses projected gradient descent
2 2

to solve for one variable while keeping the other fixed until the stopping criteria are met. The update
of wy and w is given by

[W5t+1)]7n1 :([Wgt)]ml - 77(<Awét)7 [K}117J1>_ ©)

« ¢ —1
<.Awét), [AL (L<f) +J)]117J1> + al))+,

Algorithm 1 KSGL

Input: graph signals {X}, }, parameters «, n
Output: factor graph weights w1, wa
Compute S and K. Initialize w; and wo.
repeat
repeat
Update w as in (5) for the Kronecker product or (8) for the strong product
until convergence.
repeat
Update wy as in (6) for the Kronecker product or (9) for the strong product
until wo convergence.
until w; and wo converge or maximum iterations.

[Wét—i-l)] Z([Wét)]m — 77(<.Awgt+1), (Klp,.0)— (6)

ma

’ —1
(AW (AL L +3)],)+ 012)) .

Here my = i —j+ 2(j — 1)(2p1 — j) and my = i — j + 2(j — 1)(2p2 — j). The subsets
L={(=p2+1, (= Dpa+2,... ipo} and Jy = {(j—D)p2+1,(j = 1)pa+2,..., jpa} specify
node pairs associated with [w], , and similarly for the subsets Iy = {i,pa +4,...,(p1 — 1)p2 +1i}

and Jo = {j,p2 + J,...,(p1 — 1)p2 + j}. Alg. 1 summarizes the algorithm.

3.3 Strong Product Graphs

An alternative graph product with broad applications is the strong graph product. We now demonstrate
how the strong product relates to the Kronecker product and how we can easily modify KSGL to
learn strong product graphs. For factor graphs G; and G2, consider adding self-loops to them and
then taking the Kronecker product. The new product graph is also self-looped and its weighted
adjacency matrix is (W1 + I,) ® (Wao+1,,) =W; 9 Wo+ W, @1, +I,, @ Wa + 1, =
(W1 ®@ Wy + W1 & Ws) + I,. Removing the self-loops, we obtain exactly the strong product of
G and G. This relation helps us formulate the penalized MLE for learning strong product graphs
based on (4)

min_ {(Aw +1,,) @ (Awa + 1,,), K) -

W1,W220
log det! (LA*((Aw; +1,,) @ (Awz 4+ 1,,,))) + arwl 1 + agwgl}. @)

Here we plug in the self-looped strong product adjacency matrix since the pairwise distances are all 0
on the K diagonal and .A* is also agnostic to its input diagonal values. Similarly, we use projected
gradient descent to solve for w; or wy and then alternate between these two steps. The update of w
and wy is

wi], =], = (AW + 1, 1K, ,)—

(Awg) L, [ALY L0 +.3) 7])+ o)) ®)

[Wgt+1)

= (., — (AW 4, K],)

Jm,

(Aw{ ™) L1, ALY L) £ 3) 7,)+ az)) ©

4 Theoretical Results

Here we establish the statistical consistency and convergence rates for the penalized Kronecker
product graph Laplacian estimator as in (4). We first make assumptions regarding the true underlying
graph we were to estimate:

(A1) Let S; and S; be the support set of the true factor graphs. We assume the graphs are sparse and
the cardinality of their supports is upper bounded by |S1| < s1p; and [Sz| < sops.

(A2) Let (d1 min, d1,max) and (d2 min, d2,max) be the minimum and maximum degrees of the true
factor graphs. We assume these degrees are bounded away from 0 and co by a constant d > 1,
such that % < dl,min < dl,max < d and % < dQ,min < d2,max < d.

(A3) Let {0, A2, ..., A\, } be the eigenvalues of the true product graph Laplacian in a non-decreasing
order. We assume these eigenvalues are bounded away from 0 and oo by a constant z > 1, such
that% <A <Ay <z

These assumptions are common in high-dimensional statistics. They also imply that the product
and factor graphs are connected graphs. With the above assumptions, our first theorem states that a
solution to the MLE problem always exists. Proofs of all the theorems can be found in the supplement.
Theorem 4.1 (Existence of MLE). The penalized negative log-likelihood of Kronecker product graph
Laplacian learning as in (4) is lower-bounded, and there exists at least one global minimizer as the
solution of the penalized MLE.

Our proof largely follows [15, 16], which shows that the objective function is lower-bounded and
the minimizer is achievable. However, note that since the original problem is not jointly convex, the
solution is not unique. In fact, a set of solution (w7, w3) is not identifiable to the Kronecker graph
product Aw; ® Aws since Va > 0, aw?, %w; is also a solution. Nevertheless, our Theorem 4.2
states that the alternating optimization enjoys a unique solution in each sub-problem.

Theorem 4.2 (Uniqueness of MLE). The objective function of the penalized MLE is bi-convex with
respect to each factor graph, and a global minimizer for each sub-problem uniquely exists.

The proof shows that when one of the factors is held fixed, optimizing the other factor becomes a
convex problem. We then show that the Kronecker product graph Laplacian learned by KSGL is
asymptotically consistent.

Corollary 4.3. Suppose assumptions (Al)-(A3) hold for the true factor graphs. Then with sufficiently
large n and proper penalty oy and o, the Frobenius errors of the minimizers Ly = L(W1) and
Lo = L(Wa2) are bounded by

~ . s1p1 lo -~ . Sopo lo
1Ty = L[l < e ZEEE o) IBs = Ll < ey [ZE220E
np2 np1

with high probability.

Corollary 4.3 proves that the solution of a sub-problem converges to the ground truth when the other
factor is bounded. This helps use induction to prove the consistency of (4).

Theorem 4.4 (High-dimensional consistency). Suppose assumptions (Al)-(A3) hold for the true
factor grap/l\zs. Then with sufficiently large n, proper penalty oy and as, and Corollary 4.3 the
minimizer L = L(W) of the penalized MLE as in (4) is asymptotically consistent to the true
Laplacian L*, and the Frobenius error is bounded by

(p1 + p2)logp

L-L*,<c
B -1 < -

(12)

with high probability.

Theorem 4.4 shows that the learned product graph Laplacian converges to the true Laplacian asymp-
totically under mild conditions. The final error depends on the norms of initialization. Compared

with the IGMREF convergence rate from [15], KSGL converges faster by a factor of p’; f; with

similar probability. This shows how leveraging the product structure prior benefits graph learning.
The improvement of the convergence rate is similar to the ones in [17].

5 Related Work

Smooth Graph Learning. Learning graph Laplacian matrices from smooth signals has been studied
extensively in GSP [18-23]. These papers focus on the Laplacian quadratic terms, which correspond
to the Dirichlet energy of the signals. Thanou et al. [24] model the smoothness differently, using the

heat diffusion process. Pasdeloup et al. [25] propose to learn the normalized graph Laplacian matrix
instead of the combinatorial Laplacian. The weighted adjacency matrix has also been widely studied
as a different graph representation [26, 27].

Product Graph Learning. Learning product graphs amounts to posing structural constraints on
graph learning. Previous work mainly focuses on Cartesian product graphs [28-32]; few have studied
other products such as the Kronecker [28, 31]. Lodhi and Bajwa [28] proposed to learn the factor
graphs under the trace constraints; Einizade and Sardouie [31] posited that an accurate eigenbasis
estimation of the factor graph shift operator (GSO) is known and solved for the eigenvalues. However,
these methods either do not learn the combinatorial graph Laplacian, rely on different assumptions,
or fall short of their theoretical properties.

Matrix Variate Distributions. It is well-known that the generative process of smooth graph signals
can be modeled as a GMRF with a Laplacian precision matrix [33]. Therefore, methods for covariance
selection [34-37] that aim to learn sparse precision matrices, such as the graphical lasso [38], often
serve as additional baselines of graph learning methods. However, these methods do not learn a
rigorous combinatorial graph Laplacian. The matrix variate normal distribution [39, 40] can be
seen as a generalization of the GMREF to multi-way signals. The covariance matrices, and thus the
precision matrices, are endowed with a Kronecker product structure, and the graphical lasso algorithm
has been extended to learn these Kronecker graphical models [13, 17, 41-43]. Other matrix variate
distributions replace the Kronecker product structure with the Kronecker sum [44—47], leading to
Cartesian product graphs. While these graphical lasso methods endow various forms of the Kronecker
product, none of these learn precision matrices are Laplacian, thus not appropriate for use in GSP.

6 Experiments
6.1 Synthetic Graphs

1
oonf T 5P zsaald
OISV%/E{ g 5 Lii/%éfiff— iﬁ‘}{—{” = i a1 - f /3'\@}%}%%&7% -
T T m\i\i"i &4

i
5 | 5 T
=
w
g o2 N
0 V*M?_A
08
S S
o' 06 e .
E o4
& 02

S

T,

O 10 ® 2O . ® 00 O . 0 ® 000 80 .® 0 D p0 0 O O a0 O a0
> A QY s @ Y A QY s @ Y A s @ Y A 5
Erdos-Rényi Barabasi-Albert Small-World Regular Grid
[—F—PST —5—FF —— KGLasso —¥— KSGL (ours) |

Figure 2: Comparison of different methods on various synthetic Kronecker product graphs and
signals. Each sub-figure shows the trend of Rel-Err of the product (top row) or factor (middle and
bottom rows) Laplacian matrices as n increases. Black dash lines fit the theory in (12) to KSGL.

Since the ground truth graphs are often unavailable or not defined in real-world problems, we first
evaluate our methods on synthetic signals where the underlying graph to be estimated is known. We
follow [32] to generate factor graphs using the graph models below

(1) Erd6s-Rényi model with probability p = 0.3;

(2) Barabasi-Albert model with preferential attachment m = 2 and m(= 2 initial nodes;

0.8

o 0.6

=t
fr 0.4

e
© o

Rel-Err - G,
o o
> o

o
[N}

o
© o

Rel-Err - G,
° Qo
» o

-

o
N

O 0 nﬁ@o \,Q,LD‘Q O 00 ® @O 1&:&7}0 O 0 @O 7,660 @7}0 O 0 O 7,660 Xglmo

Erdds-Rényi Barabasi-Albert Small-World Regular Grid

[—F—PsT —5—PGL 5 FF KGLasso —f — Teralasso —F— MWGL —#— KSGL (ours) |

Figure 3: Comparison of different methods on various synthetic strong product graphs and signals.
Each sub-figure shows the trend of Rel-Err of the product (top row) or factor (middle and bottom
rows) Laplacian matrices as n increases. Black dash lines fit the theory in (12) to KSGL.

(3) Watts-Strogatz small-world model, where a chain graph of d = 2 is rewired with p = 0.1;
(4) and regular grids.

We set the number of nodes to p; = 20 and po = 25 for each factor, and the dimensions of the
regular grids are 4 x 5 and 5 x 5. To obtain weighted graphs, we randomly sample a weight from a
uniform distribution ¢/ (0.1, 2) for each edge. We then generate the signals from the IGMRF process
f ~ N(0,L"), where L is the Laplacian of the Kronecker product graph or the strong product graph.
The goal of graph learning is to recover the underlying weighted graphs from the signals, where we
vary the number of the signals n = 10 x 2", r € {0,1,...,10}.

We create 50 realizations for each graph and dataset size and report the mean and standard deviation
of the selected metrics: the relative error (Rel-Err) of the Laplacian and the area under the precision-
recall curve (PR-AUC) of edge prediction. The former Rel-Err computes the relative Frobenius error
of the learned factor and product graph Laplacian matrices to their ground truth counterparts. To
eliminate the ambiguity of the learned factor graphs, we normalize the graph Laplacian matrices by
their cardinality #Ii) before computing the relative error. The latter PR-AUC considers the binary

prediction of the ground truth edge patterns. We choose PR-AUC over ROC-AUC since the two
classes are highly imbalanced (edge versus no edge).

We evaluate KSGL against three competing methods that model the Kronecker structures: the
PST (Product Spectral Template) method [31], the FF (Flip-Flop) method [13], and the Kronecker
Graphical Lasso (KGLasso) method [17]. PST is a GSP method that extracts the eigenvectors of
factor GSOs from the signal covariance. FF solves the MLE of matrix normal distributions and
KGLasso adds sparsity constraints to that, both of which fall into the GM category. For the strong
product experiments, since the strong graph product is the union of the Kronecker and Cartesian
graph product, we add Cartesian product graph learning methods for comparison: the PGL (Product
Graph Learning) method [30], the TeralLasso (Tensor Graphical Lasso) method [45], and the MWGL
(Multi-Way Graph Learning) method [16]. We follow the common grid-search procedure in each
setting to select the best-performing hyper-parameters for each method.

Fig. 2 shows the trend of Rel-Err as the number of signals increases in different settings. We provide
the PR-AUC results in Appendix C. As we can see, KSGL outperforms the competing methods in
every setting. The Rel-Err of KSGL converges to 0 as the number of signals increases and its trend
validates our theoretical results (black dash lines, top row). PST does not perform well because the
spectral templates cannot be estimated accurately but only roughly approximated even with a large

number of signals (see more details in Appendix B). FF and KGLasso also underperform KSGL
because of the inherent model mismatch, which is that the Laplacian of a Kronecker product graph
is not the Kronecker product of the factor Laplacians. Another reason is that the precision matrices
learned by FF and KGLasso are not Laplacian. Their similar performance also shows that adding
sparsity constraints to the wrong assumption does not benefit Kronecker product graph learning.

Fig. 3 shows the Rel-Err results of strong product graph learning. Again KSGL behaves advanta-
geously in almost every setting. The only exception is that PGL performs better in low data regimes
on Erdds-Rényi and Watts-Strogatz small-world graphs, but it fails to deliver as the number of
signals increases due to the model mismatch. Among other competing methods, TeralLasso and
MWGL perform well, but they still fall behind KSGL by a margin. Note that we do not include PGL,
TeraLasso, and MWGL in the Kronecker product experiments since these Cartesian product methods
are expected to fail in these settings. We verify this using Erd6s-Rényi graphs in Appendix C.

6.2 EEG Data

We now evaluate KSGL on real EEG recordings [48]. The EEG data are collected from epileptic
patients using the 10-20 electrode system. The signals from 21 scalp electrodes are divided into
1-second segments, and we sub-sample the signals to get 50 samples per segment. Each segment is
also annotated to indicate the occurrence and the types of seizures. This results in 21 x50 multi-way
signals of different categories from multiple patients. Our goal is to learn a graph of brain regions
(electrodes) and a graph of time from these multi-way signals.

(a) MWGL - normal (b) MWGL - seizure (¢) KSGL - normal (d) KSGL - seizure

Figure 4: The brain connectivity inferred by MWGL and KSGL. Nodes reflect the actual electrode
positions in the 10-20 system. The background color shows the mean EEG activity of each status.

Because brain connectivity varies dramatically across individuals, we pick the EEG of a single patient
to evaluate KSGL. This 7-year-old male patient had several complex partial seizures in the central
cortical area (Cz, C3, C4), but also went through multiple seizures that are not visible on EEG. We
apply KSGL to learn strong product graphs from his normal EEGs and deceptive epileptic EEGs
then compare the results with those of MWGL. Fig. 4 shows the brain connectivity graphs learned
by MWGL and KSGL. As we can see, although the seizures are not obvious from the mean signal
amplitude as expected, KSGL learns different connectivity patterns for these 2 statuses. In particular,
KSGL learns denser connectivity around the central cortical area, matching the known lesion. On
the other hand, MWGL learns similar brain connectivity patterns from normal and epileptic EEGs.
Also note that the brain connectivity graphs learned by KSGL are sparser than those by MWGL,
suggesting that the strong product suits this dataset better than the Cartesian product. Additional
results of this patient and other patients are shown in Appendix D.

7 Conclusions

In this paper, we focus on graph learning, a classical problem in GSP, and extend it to learning
Kronecker product structures from multi-way signals. We propose new algorithms for learning
Kronecker and strong product graphs from smooth graph signals and evaluate their performance on
both synthetic and real-world datasets. Our experiments show that the proposed KSGL methods
outperform competing GSP and GM methods. We also investigate the theoretical aspects of the
Kronecker algorithm and show that the solution of the penalized MLE converges to the true graph
Laplacian asymptotically. Our results also prove that KSGL converges faster than general graph
learning where the product structures are ignored. In the future, we intend to complete the theory for
the strong product and improve the scalability of KSGL.

References

[1] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE signal processing magazine, 30(3):83-98, 2013. 1

[2] Antonio Ortega, Pascal Frossard, Jelena Kovacevi¢, Jos¢ MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808-828, 2018. 1

[3] Stephen P Borgatti, Ajay Mehra, Daniel J Brass, and Giuseppe Labianca. Network analysis in
the social sciences. science, 323(5916):892-895, 2009. 1

[4] Georgios A Pavlopoulos, Maria Secrier, Charalampos N Moschopoulos, Theodoros G Soldatos,
Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G Bagos. Using graph theory to
analyze biological networks. BioData mining, 4:1-27, 2011.

[5] Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature neuroscience, 20(3):
353-364, 2017.

[6] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4-24, 2020. 1

[7] Gonzalo Mateos, Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Connecting
the dots: Identifying network structure via graph signal processing. IEEE Signal Process. Mag.,
36(3):16-43, 2019. 1

[8] Aliaksei Sandryhaila and Jose MF Moura. Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure. IEEE signal
processing magazine, 31(5):80-90, 2014. 1,2, 4

[9] Jay S Stanley, Eric C Chi, and Gal Mishne. Multiway graph signal processing on tensors:
Integrative analysis of irregular geometries. IEEE signal processing magazine, 37(6):160-173,
2020. 1

[10] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahra-
mani. Kronecker graphs: an approach to modeling networks. Journal of Machine Learning
Research, 11(2), 2010. 1

[11] Russell Merris. Laplacian matrices of graphs: a survey. Linear algebra and its applications,
197:143-176, 1994. 3

[12] Sandeep Kumar, Jiaxi Ying, José Vinicius de Miranda Cardoso, and Daniel P Palomar. A unified
framework for structured graph learning via spectral constraints. JMLR, 21(22):1-60, 2020. 3

[13] Pierre Dutilleul. The mle algorithm for the matrix normal distribution. Journal of statistical
computation and simulation, 64(2):105-123, 1999. 4,7, 8

[14] Steffen Lauritzen, Caroline Uhler, and Piotr Zwiernik. Maximum likelihood estimation in
gaussian models under total positivity. 2019. 4

[15] Jiaxi Ying, José Vinicius de Miranda Cardoso, and Daniel Palomar. Minimax estimation of
laplacian constrained precision matrices. In International Conference on Artificial Intelligence
and Statistics, pages 3736-3744. PMLR, 2021. 6

[16] Changhao Shi and Gal Mishne. Graph laplacian learning with exponential family noise. arXiv
preprint arXiv:2306.08201, 2023. 6, 8

[17] Theodoros Tsiligkaridis, Alfred O Hero III, and Shuheng Zhou. On convergence of kronecker
graphical lasso algorithms. IEEE transactions on signal processing, 61(7):1743-1755, 2013. 6,
7,8

[18] Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning Laplacian
matrix in smooth graph signal representations. IEEE Trans. Signal Process., 64(23):6160-6173,
2016. 6

[19] Vassilis Kalofolias. How to learn a graph from smooth signals. In AISTATS, pages 920-929.
PMLR, 2016.

[20] Sundeep Prabhakar Chepuri, Sijia Liu, Geert Leus, and Alfred O Hero. Learning sparse graphs
under smoothness prior. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6508-6512. IEEE, 2017.

10

[21] Hilmi E Egilmez, Eduardo Pavez, and Antonio Ortega. Graph learning from data under
Laplacian and structural constraints. IEEE J. Sel. Topics Signal Process., 11(6):825-841, 2017.

[22] Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P Palomar. Optimization algorithms
for graph laplacian estimation via admm and mm. IEEE Transactions on Signal Processing, 67
(16):4231-4244, 2019.

[23] Andrei Buciulea, Samuel Rey, and Antonio G Marques. Learning graphs from smooth and
graph-stationary signals with hidden variables. IEEE Transactions on Signal and Information
Processing over Networks, 8:273-287, 2022. 6

[24] Dorina Thanou, Xiaowen Dong, Daniel Kressner, and Pascal Frossard. Learning heat diffusion
graphs. IEEE Trans. Signal Inf. Process, 3(3):484-499, 2017. 6

[25] Bastien Pasdeloup, Vincent Gripon, Grégoire Mercier, Dominique Pastor, and Michael G Rabbat.
Characterization and inference of graph diffusion processes from observations of stationary
signals. IEEE Trans. Signal Inf. Process, 4(3):481-496, 2017. 7

[26] Santiago Segarra, Antonio G Marques, Gonzalo Mateos, and Alejandro Ribeiro. Network
topology inference from spectral templates. IEEE Trans. Signal Inf. Process, 3(3):467—483,
2017. 7

[27] Rasoul Shafipour, Santiago Segarra, Antonio G Marques, and Gonzalo Mateos. Identifying
the topology of undirected networks from diffused non-stationary graph signals. IEEE Open
Journal of Signal Processing, 2:171-189, 2021. 7

[28] Muhammad Asad Lodhi and Waheed U Bajwa. Learning product graphs underlying smooth
graph signals. arXiv preprint arXiv:2002.11277, 2020. 7

[29] Sai Kiran Kadambari and Sundeep Prabhakar Chepuri. Learning product graphs from multido-
main signals. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5665-5669, 2020. doi: 10.1109/ICASSP40776.2020.
9054679.

[30] Sai Kiran Kadambari and Sundeep Prabhakar Chepuri. Product graph learning from multi-
domain data with sparsity and rank constraints. IEEE Transactions on Signal Processing, 69:
5665-5680, 2021. §, 21

[31] Aref Einizade and Sepideh Hajipour Sardouie. Learning product graphs from spectral templates.
IEEE Transactions on Signal and Information Processing over Networks, 2023. 7, 8, 21

[32] Changhao Shi and Gal Mishne. Learning cartesian product graphs with laplacian constraints.
In International Conference on Artificial Intelligence and Statistics, pages 2521-2529. PMLR,
2024. 7,21

[33] Cha Zhang, Dinei Floréncio, and Philip A Chou. Graph signal processing-a probabilistic
framework. Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2015-31, 2015. 7

[34] Arthur P Dempster. Covariance selection. Biometrics, pages 157-175, 1972. 7

[35] Onureena Banerjee, Laurent El Ghaoui, Alexandre d’ Aspremont, and Georges Natsoulis. Con-
vex optimization techniques for fitting sparse gaussian graphical models. In Proceedings of the
23rd international conference on Machine learning, pages 89-96, 2006.

[36] Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graphical model.
Biometrika, 94(1):19-35, 2007.

[37] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’ Aspremont. Model selection through
sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of
Machine Learning Research, 9:485-516, 2008. 7

[38] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432-441, 2008. 7

[39] A Philip Dawid. Some matrix-variate distribution theory: notational considerations and a
bayesian application. Biometrika, 68(1):265-274, 1981. 7

[40] Arjun K Gupta and Daya K Nagar. Matrix variate distributions, volume 104. CRC Press, 1999.
7

[41] Karl Werner, Magnus Jansson, and Petre Stoica. On estimation of covariance matrices with
kronecker product structure. IEEE Transactions on Signal Processing, 56(2):478-491, 2008. 7

11

[42] Yi Zhang and Jeff Schneider. Learning multiple tasks with a sparse matrix-normal penalty.
Advances in neural information processing systems, 23, 2010.

[43] Chenlei Leng and Cheng Yong Tang. Sparse matrix graphical models. Journal of the American
Statistical Association, 107(499):1187-1200, 2012. 7

[44] Alfredo Kalaitzis, John Lafferty, Neil D Lawrence, and Shuheng Zhou. The bigraphical lasso.
In International Conference on Machine Learning, pages 1229-1237. PMLR, 2013. 7

[45] Kristjan Greenewald, Shuheng Zhou, and Alfred Hero III. Tensor graphical lasso (teralasso).
Journal of the Royal Statistical Society Series B: Statistical Methodology, 81(5):901-931, 2019.
8,21

[46] Yu Wang, Byoungwook Jang, and Alfred Hero. The sylvester graphical lasso (syglasso). In
International Conference on Artificial Intelligence and Statistics, pages 1943—-1953. PMLR,
2020.

[47] Jun Ho Yoon and Seyoung Kim. Eiglasso for scalable sparse kronecker-sum inverse covariance
estimation. The Journal of Machine Learning Research, 23(1):4733—4771, 2022. 7

[48] Wassim Nasreddine. Epileptic eeg dataset. https://data.mendeley.com/datasets/
5pc2j46cbce, 2021. 9

[49] Jiaxi Ying, José Vinicius de Miranda Cardoso, and Daniel Palomar. Nonconvex sparse graph
learning under laplacian constrained graphical model. Advances in Neural Information Process-
ing Systems, 33:7101-7113, 2020. 15

[50] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms in
independent random variables. The Annals of Mathematical Statistics, 42(3):1079-1083, 1971.
16

[51] Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentra-
tion. 2013. 16

[52] Hiroki Sayama. Estimation of laplacian spectra of direct and strong product graphs. Discrete
Applied Mathematics, 205:160-170, 2016. 21

[53] Milan Basi¢, Branko Arsi¢, and Zoran Obradovi¢. Another estimation of laplacian spectrum of
the kronecker product of graphs. Information Sciences, 609:605-625, 2022. 21

12

https://data.mendeley.com/datasets/5pc2j46cbc
https://data.mendeley.com/datasets/5pc2j46cbc

A Proof of Main Theorems
A.1 Proof of Theorem 4.1
Proof. Given Aw = Aw; ® Awsg, we now prove that the global minimizer of the penalized MLE

w Ir£n>0 {(EW, S) — log detT(EW) + o ||wl|; + a2||W2H1} , (13)
exists. Provided that both the product and factor graphs are connected, the feasible set over w; and
wo, is defined as

le,wQ = {(W17W2)|W1 > O,EWl + ‘]pl € Sg_z_,’_,WQ > 0,£W2 + Jp2 € Slf+}, (14)

where J, = £1,17 and we have log det(Lw) = log det(Lw + J,,). The conditions Lw; + J,, €

SP', and Lwy+Jp,, € S, constrain that G; and G are connected. Let {0 = A\; < Ay < -+ < A}
be the eigenvalues of L = Lw. We first consider the original MLE and bound the negative log-
likelihood Q (w1, wso) when oy = ae = 0

(Lw,S) — log det' (Lw) (15)
P
=(Lw,S) — log(H k) (16)
k=2
P
>(Lw,S) — (p— 1)1og(D>_ M) + (p — 1) log(p — 1) (17)
k=1
% p—1
=(L"S,w) — (p— Dlog(p[wl,) + (p — 1) log(=—) (18)
. *Q pP— 1
2 min(LS)pllwll; — (p — 1) log(pllwll;) + (p — 1) log(=—), (19)
where [SL ;= %[SL: - (18) is attributed to the fact that the summation of eigenvalues equals the
trace of the Laplacian. Define the function
RS -1
a(t) = min(£*8)t — (p — 1) log(t) + (p — 1) log(F=). 0)
This function is lower-bounded at ¢ = mi:(;té)’ so long as min([ﬂ*g) > (. Therefore, we have that
the negative log-likelihood is also lower-bounded
min(L*S
QUwr,w2) > a(plwly) = (p — 1)1+ log(2ES))) e

We then notice that ¢(t) — oo when ¢ — oo. This is followed by Q(w1, w2) being coercive.

Now consider the penalized MLE. When the penalization o; > 0 and oy > 0, the penalized MLE
Q (w1, wy) is still lower-bounded. Since

W1 — 00| Wy =00 v Q(W,Wa) = 00, (22)
the penalized MLE Q (w1, w2) is also coercive. Note that this only holds when we penalize the factor
graphs. The penalized MLE wouldn’t be coercive if the ¢-1 penalization is on the product graph.

The above argument indicates that a global minimizer exists in cl(Qw, w,), and now we show that
it exist in Qy, w,. Since the open boundaries cl(Qw, w,) \ Qw, ,w, are results of the connectivity
constraint Lwy + J,, > O and Lws + J,, > O, we have that c1(Qw, w,) \ Qw, w, is a subset of
disconnected w; and wy. The set of disconnected w; and wy is written as
{(w1,wa)|det(Lwy + Jp,) =0V det(Lwa +Jp,) = 0}. (23)
Since for the Kronecker product, any factor graph being disconnected leads to the product graph
being disconnected. Therefore,
(w1, w2) € cl(Qwy ws) \ Qwywy ~ logdet(Lw +J,) = —00 ~» Q(wy,Wa) 00, (24)
This shows that any global minimizer over cl(2w, w,) do not lie on those open boundaries, therefore

(13) has at least a global minimizer in Qy,, v, so long as min(C*S) > 0, which almost surely holds
with probability 1. O

13

A.2 Proof of Theorem 4.2

Proof. Q(w1,ws) is not jointly convex on w; and wy, but it is bi-convex with respect to each
separate variable. This means the MLE objective is convex with respect to w; when wy, is fixed, and
also convex with respect to wo when w1 is fixed. Define the feasible set of wy and wo as

Qw, == {wi|wy > 0,Lw;, +J,, €S}, } (25)

Qw, = {walwz > 0,Lwy +J, € ST_,_ . (26)

and we have Oy, w, = (w, X Q,. To see that both (2, and €, are convex sets, we check that
Vwl wieQy, andVwi,wi € Qy,

Lwi+ T, =a(lw) +J,)+(1—a)(Lw]+J,)eSH,, VO<a<l1 (27)

Lwh + T, = b(Lwh +Tp,) + (1= b)(Lwy +J,,) €S2, VO<b< 1, (28)

where w¢ = aw{ + (1 — a)w} > 0 and wh = bw3 + (1 — b)wi > 0. The set of positive definite

matrices forms a convex cone. Now to prove Q (w1, ws) is bi-convex, we again first consider the case

where a1 = aig = 0. The negative log-likelihood (15) is convex with respect to w. Because either

w1 or wo maps linearly to w when the other factor is fixed, (15) is bi-convex. The penalized MLE is

then also bi-convex because both cv; ||w1 ||, and ca||w2||; are convex. Thus each sub-problem of the
penalized MLE has a unique solution. O

A.3 Proof of Corollary 4.3

Proof. We prove the first half of the corollary, then obtain the other half by symmetry. Let L* be the
Laplacian of the true Kronecker product graph to be estimated and Lw* = L*. By the properties of
Kronecker graph product, L* = D* — W* = D] ® D5 — W] ® W3. Let L] and L be the true
factor Laplacian, where Lw] = Lj and Lw3 = L3. Although the factor Laplacians do not appear in
the original problem formulation, they come in handy for deriving the consistency results.

Let’s define a set of perturbations around L}

T = {ALl |AL1 € K-, |AL1 ”F = Cl""n,p}, (29)
where 7, , = ,/% for p = (p, p1, p2) and
’CL*{ = {AL1 ‘LT + ALl S QL1}~ (30)

If we can show that
F(Ar,) = Q(Lj + Ar,, Ly™) — Q(L{, L") > 0, VAy, € Ti, (31)

then we will have R
[L1 — Lil[p < crnp, (32)

following that Q(Ly,Ls) is bi-convex, F(O;) = 0, and F(il - L) = Q(il,Lg‘it) -
Q(L}, Ly™) < 0.

Let A, = Ap, ® DIP* — Ay, ® Wil Then we can write
F(Av,) = (AL, S)—(logdet(L” + Ap, + Jp) —logdet(L* + J,))+au([|wi + Aw, [y —[wil[,)-
(33)

Using Taylor’s expansion of log det(L* + vAy, + J,) with the integral remainder
log det(L* + Ar, + Jp,) — logdet(L* + J)) (34)
1
=Tr((L* + Jp)_lAL) +/ (1 —v)VZlogdet(L* + vAyg + J,)dv,
0
and further the remainder

1
/ (1 —v)V2logdet(L* + vAyL + J,)dv (35)
0

= —vee(Ar)” (/0 (1—v)(L*+vAL+J,) ' @ (L* + vAL + Jp)ldu> vec(Ar).

14

Therefore we have
F(Ap,) =6 + I + I, (36)
where
I =(Ar,S — (L +3,)7Y, 37)

I, = vec(Ar)" (/01(1 —)(L* +vAL +J,) ' @ (L +vAL + Jp)ldu) vec(Ar), (38)
I3 = ar([wi + Aw, [l = lwilly)- (39)

Bound /;: The observations X are the samples from the improper GMRF [49]
i:x—%llTx x ~N(0,(L* +J,)7). (40)

Let¥ = (L*4+J p)_1 be the covariance matrix of the original proper GMRF. Let m; = ¢ — j +
LG -12p1 —j), V1 <j <i<pand LA, = Ar, we have

L=ATCc(S— @ +3,) Y (41)
1 - _
= S(Aw, @ W ALY(S — (L7 +7,) 7)) “2)
- Z (A,], (Aem, @ WH ALY(S — X)) (43)
1<j<i<pa
= Z [Awl]m1<wi2nit» [K]Il,Jl - [A‘C*E]Il,,h) (44)
1<j<i<pr
= Y B, (WK,) — (W [ALTS,), 45)
1<j<i<p1

(p1-1) . . .
where e,,,, € R™3 has 1 in the m-th entry and Os otherwise. Also, notice that

E[[£*S],,] =E l; Z ([%k]; — [x;f]j)ﬂ (46)
= LS B[, —)] @)
k=1
= % > Ellxel;’] — 2E[xal;xe],] + Elfxal,”] (48)
k=1
= [E]i,i - [E]i,j - [E]j,i + [Z]j,j (49)
=[L£*%],,, (50)
which leads to
EKWiznitv [K]II,J1>] = <W12nit7EHK]Il,J1]> = <Wi2nit» [A‘C*E]Il,Jl>' (5D
Therefore,
L= 0 A, (WS K],) —E(WE™ (K], 1) (52)

Now we bound the perturbation term. Let xj, = >3z, where z, ~ N (0,1I,) is the source signal of
the GSP system. From (43) we know

. 1 <& . .
(WHH K],) =~) X0 (LA" (Aem, © WEM))x, (53)
k=1
1 & ; i .
= 7l B2 (LA (Ae,,, @ WHit)) 32z, (54)
k=1

15

Let M; ; = £7 (LA*(Ae,,, © WiMt))X 3. We then apply the Hanson-Wright inequality [50, 51]
to the quadratic

1 n
{ sz 0,2k — E [nsz ”zk] >h} (55)
nh
<2exp |—) (56)
(K HMZ]||2 K2||Mi~,j2>‘|
nh
<2exp |—c]| min , (57)
1 <K4M”||2 K2||Mi,jF>]
nh
<2exp |—c;m , (58)
<2K4II£W‘““||F||2|§ \szEW‘““llFlﬁllrz)
nh
<2exp —c1 (59)
I <32II~CW”‘”IIFIIE 4f|ﬁW‘mtllF|2||2>
where from (57) to (58) we use
* inity |2 1.2 init 12 2
IM 2 < 22 lCA" (Aen, © WE)[RIIE [, = 2] w522, (60)
and from (58) to (59) we use K < 2 for the sub-Gaussian norm of z;. Let ¢ = and

Hﬁwm“\l =1,
plug (54) into (59), we arrive at

/ 2
(61)

P {IOWE (K],)~ BWE K],] > w21, } < 20 (-
The union bound indicates that

P {m [|OWE K],)~ BUWE KL, o 1] > dlowd =,) 6

mi

p1(p1—1)
-2 12 2
< Y 2ewp (Cl??;) (63)
mi=1
' ne?
<piexp (— =) (64)

SO
P i [IOWE, K],) — BUOWE™ (K,)] < w1121,

o (65)
S 1 p2exp [C7E
= by exp 39)
Thus with the above probability and € < 4/2
L= 3 B, (WP K],) - E(WE K],) (66)
1<j<i<py
> —max [[(W5™, (K], , = [AL"S],,)] 18wl (67)
> *GHZZW‘““IIFHEIIQIIAM||1 (68)
> —ey/Pal LW 1 Z]| Avw Il (69)

Bound /5: From the min-max theorem, we have

1
I > || AL % Amin (/ (1—)(L* +vAL+J,) " © (L* + vAy + Jp)_ldu) . (70
0

16

Then given the convexity of Apax () and concavity of Apin(+)

1
Amin (/ (1-v)(L* +vAL +3,) " @ (L* + vAL + Jp)ldu> (71)
0
1
2/ (1= v)\2 (L + vAL +J,) dy (72)
0
1
> s 2) * —1 _
1 1 2
= mi 74
2 elon] LL*HALHPJ 74
1
- - (75)
2max,ep [[L°+ VAL + 3]
1
> (76)
2maxie[0,1] [IL* + Ty, + [[vAL]l,]
! (77

= . 2
2([[L + Jpll, + [1AL]l,)
Let d; denotes the diagonal of D;. The Gershgorin circle theorem implies that
||AL||2 < 2HAd1 ||Ood2,rnax < 2d2,max||ALl ”F = 2Cd2,max'rn,p (78)

4c? d;maxslpl logp

Then with n sufficiently large n > such that ||Apll, < 2cdomaxnp <

p2|L*+J, 13
|L* 4 J,]|,, we obtain
Ar |2
5 > % (79)
8IIL* + Jpll;
To factor Ar,, out, note that
init |2 init |2
IALIE = [[Aw, ® W55 + [|Ap, @ DYl (80)
2 init |2 2 init (|2
= [[Aw, [FIW3* [+ 1A, [7D5" = (81)
2 init |2
> [Aw, e W™ I, (82)

and that ||[W1t|| is lower and upper bounded

,/Z—zdz,min < WY < /Bada max (83)

Thus)
p2d%,min ||AL1 ||F

. (84)
8s2|[L* + J,|I3

2 Z

Bound 735: With the triangle inequality
Wi+ Aw, Iy = Iwilly = W7 + Al s, + 1AWl se = (WDl s, = [[Aw |

1,88 — ”Awl”lev

(85)
we can lower-bound /3
I > 201 A, [59 — 201 A, [, - (86)
Bound 1 + I + I3: Overall,
ini 1AL
F(AvL,) 2 = ey/p2l| LW [Sl [Aw, | + ————5 + 201 | Aw, ||, ag — 201 [[Aw, |11 4,
8||L* + Jpll;
87
- MBele S, - 200 1Aw g (58)
= N 2 2 l2 2 wi 1, 48
8IIL* + Jpll;

= (VP2 LWE 1By + 200) [Aww, [l g, -

17

logp
n

Lete = ¢f with sufficiently large

c?logp

>
"=

(89)

so that € < 4+/2 is satisfied. Then choose

. ca'HcW;“;nQHEHQ W (90)

so that e,/pa || Lws|[,[|X||, — 2a0 < 0 and

1AL 7 ini
F(Avr,) > Es — (VP2 LW5™ [125 + 200) | Aw, 11 4, ©On
8IIL + Jply
We can also bound [|Ay, ||, 4, by
Pi151
Aw, ||1,51 < Vpisi|Aw, ||2731 < VPt Aw, Iy < D) AL, [p- 92)

Now, to prove F(Ar,) > 0, define a ratio factor 4 > 1 that controls the ¢; penalty % =

A ILws], 12,

Pz I;L)gp . We obtain

2
P > e w1 P A ©3)
8|L* +J, 7 n S
> psl|An, % d%’—“‘i“?—<1+m>c’1’||cw;“it||2nzu2 L08R A !
8so||L* + Jp 5 2pan
(94)
A3 N Lwii]l, | S
2 2,min 1 2 2 2
=po| A, 5 | —220 (14) (95)
LIE 832||L*+Jp||§ V2
>0, (96)
for sufficiently large c
C”SQ ini *
€1 2 4V2(1+71) 5 LEWE B[, IL7 + T, ©7)
2,min

This happens with probability

P {%X (Wi, K]y, ,) — ELWES K],)] < e||cw;““|F||z||2} 98)

cine?
>1—p? -1 99
21 = pyexp (=) (99)
c C//2
=1 —exp [2 log p; — 1321 log p (100)
c C//2
21— exp (=(Zg5— = 2)logp). (101)
We have proved that the w; estimation is consistent when fixing wo. O

A.4 Proof of Theorem 4.4

Proof. The algorithm starts with fixing wy = wi'* and updating w1, whose error is obtained by

Corollary 4.3. Now we move forward to prove the consistency of wo when fixing w; = w%l).

Similarly, we aim to show

G(Ar,) = QLY. Ly + Ar,) — QLYY LY) > 0, VAL, € T, (102)

18

T2 = {Ar,|Ar, € K+, [|AL, || = c2rnp}, (103)
where 1, p = 1/%. By symmetry, with high probability, for € = ¢} 4/ 10% and n > (‘1/2/231#
2

G(Ar,) > w1, A 0 FAPIN 20|| A

(AL,) = — ey/pil[Lwy 7 [L1Z]3| Aw, | + 5 202 Aw, [} a0 = 202(|Aw, [l 4,
8IL* + Jyll5 :
(104)
2
~ Nele (e mlewP LIS, - 20 Awall i (105)
8I[L* + Jpll; o

1
— (ev/PLlILwW VLIS, + 200) | A, |1y 4,

where Ayp, = Dgl) ® Ap, — ng) ® Aw,. Different from the previous derivation, Lgl) and ng)
are now variables and we use ||Lgl) —Li|lp < ¢y % to bound them. First, we have

a2 . 1
TPl o1 dy axpr | 2B (106)

np2

WO > (W2 — 2 W W — W >
[Willp > Wil = 2[[Wi W) illp =

Then, let d'V) be the maximum degree of W(l), by the Gershgorin circle theorem

1,max
1
LSV, < 24, < 21 max + 21 \/@. (107)
' npa

Similar to (90), we choose a large enough o with a ratio factor v > 1

[s1p11 1
Q2 _ (dl,max Y 2 ng> [[Ryaaa=tts (108)
72 nps n

Similar to (82) and (92), we have

2
IALIZ > AL, [Z W), (109)
and
D252
w2 1,5, = 292 wall2,8, = 252 wallo = — Lallp-
|Awllys, < VPzsallAwly.s, < VP2allAw, < /5 1AL (110)

Plugging in € = ¢ o8P (108), (109), and (110), we obtain

n

(1))2
2 Wil sap2 logp 1 -1
G(Bwa) 280l | Grm e — () [ZEr et LBl Ac
P2
(111)
1 A s1logp
> A 2 ,min —92¢cd i
2p1[|Ar, Ir <8||L*+Jp||2 (51 c1dy, -
2
cy [s1p1lo
_\/5(1 +72)72 <d17max + 1 1plgp> ||E||2>
C2 np2
(112)
(1= Q)d? chd
>pi[| AL, 5 | 2 V21 4 y2) (1 4 ¢) 2R 5 (113)
Zp1l|AL, [|x <8sl||L*+J,,||§ (L4 7)(A +9)=—>=—I%l,
>0, (114)

19

for sufficiently large n

2¢1d1 max 2] 2 I
n > max | 22 21 TLOBP Go1P 08P (115)
C 1 minP2 L dl,maxp2
and co
14+9)(1+)y di maxs .
e > 82D DG dmas o ey 32 (116)

(C)d% min

where 0 < ¢ < 1and 0 < ¢ are additional ratio factors. We have now proved that the second iteration
of the alternating optimization is consistent. With induction, one can show that

_ 1
LY L[, < ey | L08R (117)
np2
1
ILEY — L3 < cpy | 222 28E (118)
np1
Finally, to show the convergence of the product graphs, we decompose the error as
Awen = WH D o WP - Wi o W3 (119)
= WI ® Awg2t) + AW?“” ® W; + AW§2t—l) ® Awgzt), (120)
from which we obtain
[Awen | p < [[WT® Awé2t) HF + HAW§2¢71) ® W;“F + ||Awg2t—1) ® Awé2t) ”F (121)
= WillplAweoll + Aweenll Wz + [Agenll [[Ageoll - (122)

[sap2 1o s1p1 lo lo
S Cldl,max 227;777@ + CQdQ,max M + C1C24/5182 gp (123)

cid cad lo
< 8182m3X|: ! 1::“, 2\/2%&)(} (v/P1 +/p2) +C1€2m ep

(124)

Cldl max 62d2 max Ing
< (1 : : VD2)A/ 12
< (14 K)y/8182 max [N] (vP1 ++/p2) (125)

(p1 + p2)logp

<c (126)
n
Here again for « the ratio factor
n> cicslogp (127)
- 2/{;2 maX2 |:Cllf/lsirax cada, maxi| (\/7 + r)
and
Cldl max C2d2 max
- (1 J J 128
(14 k) slsgmax[NCENG] (128)
Since the above also holds for ||Ayycze+1) || 7, we have proved
1
1wl < o/ BLEPDIBP oy sy (129)
n
with a high probability for sufficiently large n. O

20

B Competing Methods

PST is a GSP method that extracts the eigenvectors of factor GSOs from the signal covariance.
In [31], the GSO is set to be the weighted adjacency matrix of the product graph, which is the
Kronecker product of the weighted adjacency matrices of the factor graphs A = A; ® As. In this
case, the eigenvectors of the factor-wise covariance matrices converge to the eigenvectors of the
factor-weighted adjacency matrices. PST uses these eigenvectors, i.e. spectral templates, as a proxy,
and solves for the eigenvalues that render a sparse graph. Although this is generally not feasible
when the GSO is Laplacian as L # L; ® Lo, it has been shown that for L = UAU, L; = U;A; Uy,
and Lo, = UsA5U,, the Kronecker product of factor Laplacian eigenvectors can approximate the
eigenvectors of the product Laplacian U ~ U; ® Uy [52, 53]. Let ¥ = vec(¥) be the spectral
representation of the smooth graph signals, we have

vec(X) =z =U¢ ~ (U; ® Uy)tp = vec(Uy #UT). (130)
Therefore the factor-wise covariance

E[X XT) = E[U,oUTU, 7 U] = U,E[w w7]UT, (131)

EX?X]=E[U, ¢"UTU,wUT] = UTE[9T 9]U,. (132)

Following Theorem 2 in [31], one can show that E[@ @7 and E[@” @] are both diagonal matrices.
This means that the eigenvectors of the factor-wise covariance matrices approximate the eigenvectors
of factor Laplacians.

FF is an alternating algorithm for estimating the Kronecker structured covariance matrices 3 = A®B
in matrix normal distributions. By the property of the Kronecker product, det (A~! @ B~!) =
det(A~1)P2 det(B~1)P1. Therefore, the MLE of the matrix normal distribution simplifies to a
concise form

min _ {(A”'®@B7!,S) — palogdet(A™") — p logdet(B™1)}, (133)
Aestt Besh?

and FF alternates between closed-form updates of A and B to solve the problem. KGLasso adds
-1 sparsity penalization to the problem and uses graphical lasso to solve each sub-problem. Note
that this MLE differs from our Kronecker graph learning problem, because the Laplacian of the
Kronecker product graph cannot factor L # L; ® Ly. This poses more difficulties in solving our
penalized MLE as closed-form solutions no longer exist. Therefore, using these GM methods to solve
our problem causes a model mismatch. PGL [30], TeraLasso [45], and MWGL [32] are Cartesian
graph learning methods. These methods are not appropriate for Kronecker product graph learning
but serve as baselines for strong product graph learning. Please refer to their original papers for the
details.

C Additional Simulation Results

Here we provide additional results from synthetic experiments. Fig. 5 shows the PR-AUC of
Kronecker product graph learning and Fig. 6 shows the PR-AUC of strong product graph learning.
KSGL outperforms all competing methods on both Kronecker and strong product graph learning. For
Kronecker product graphs, only KSGL perfectly learns the true underlying graphs as the number of
signals increases. For strong product graphs, KSGL requires fewer graph signals to fully reconstruct
the edge pattern. Fig. 7 shows the results of applying Cartesian product methods TeralLasso and
MWGL to Kronecker product graph learning. As we can see, these methods under-perform KSGL
due to model mismatch as expected.

D Additional EEG Results

In Sec. 6.2, we apply KSGL to the EEG signals of a patient whose seizures are not visible on EEG.
Although the signal amplitude does not manifest the ongoing seizures, the brain graph learned from
epileptic signals shows increased connectivity compared with the normal one. In Fig. 8, we also show
that KSGL learns more distinct temporal connectivity than MWGL, while the epileptic signals are
more knitted than the normal signals for both methods. Additionally, we select another type of patient
whose seizures are visible on the EEG. These patients all suffer from complex partial seizures, and we
apply KSGL to their normal and epileptic EEG signals. Fig. 9 shows the node degree distributions of
the learned brain graphs. We observe that KSGL learns denser connectivity from the normal EEG and
sparser connectivity from the abnormal EEG, and this pattern is consistent across all four patients.

21

PR-AUC - G

- F -

.
(U] -
o 06 z %
2 04 = :

D B - o ¥ L JO 4

£ oaf R e e

4
i
y

o2 o R

F———=

Q N Q N Q N0 A0 N Q N Q 8O A0 N Q N Q nO A0 N Q N Q N
> A QY s @ Y A Y s @ Y AN s @ Y A s

Erdos-Rényi Barabasi-Albert Small-World Regular Grid

[—#—PST —4—FF — i KGLasso —#— KSGL (ours) |

Figure 5: Comparison of different methods on various synthetic Kronecker product graphs and
signals. Each sub-figure shows the trend of PR-AUC of the product or factor edge prediction as n
increases.

PR-AUC - G

PR-AUC - G,

PR-AUC - G,

A0 0 P ,Lc)ﬁQ \’07)«0 O 0 P w0 ,Lc)ﬁQ @1@ A SN N 166“ @1@ A SN S 1660 \’0159
Erdos-Rényi Barabasi-Albert Small-World Regular Grid
[+PST —#—PGL —4—FF 3 KGlasso —i— Teralasso —F— MWGL —#— KSGL (ours)]

Figure 6: Comparison of different methods on various synthetic strong product graphs and signals.
Each sub-figure shows the trend of PR-AUC of the product or factor edge prediction as n increases.

22

Rel-Err - G,

Rel-Err - G Rel-Err - G

553 3 33
h

0.25 \\ 0.2
0 : i o == SRS
SRR o
10 B0 O R 20
[—&—psT 2 FF KGLasso Teralasso —F— MWGL —3%— KSGL (ours) |

Figure 7: Applying Cartesian product graph learning methods to learn Kronecker product graphs.

(@) MWGL - normal (b) MWGL - seizure (¢) KSGL - normal (d) KSGL - seizure

Figure 8: The time adjacency matrices inferred by MWGL and KSGL.

20 Patient 1 20 Patient 2 20 Patient 3 20 Patient 4
15 15 15 15
©
€10 10 10 10
o
=z
5 5 5 5
0 an .= olm m | 0 ma_[l olLm
0 10 20 0 10 20 0 10 20 0 10 20
degree degree degree degree
20 20 20 20
15 15 15 15
2
S
Q
@10 10 10 10
‘S
w
5 rﬂmww 5 5 5
ol—m 0 ol [m mm [l 0 0 m_m
0 10 20 0 10 20 0 10 20 0 10 20
degree degree degree degree

Figure 9: Degree distributions of the learned brain graphs from normal and epileptic EEG of different
patients. The red vertical lines indicate the average node degree of the distributions.

23

	1 Introduction
	2 Background
	2.1 Graph Representations
	2.2 Smoothness Prior in GSP and GM

	3 Kronecker Structured Graph Learning
	3.1 Product Graph Learning
	3.2 Kronecker Product Graphs
	3.3 Strong Product Graphs

	4 Theoretical Results
	5 Related Work
	6 Experiments
	6.1 Synthetic Graphs
	6.2 EEG Data

	7 Conclusions
	A Proof of Main Theorems
	A.1 Proof of Theorem 4.1
	A.2 Proof of Theorem 4.2
	A.3 Proof of Corollary 4.3
	A.4 Proof of Theorem 4.4

	B Competing Methods
	C Additional Simulation Results
	D Additional EEG Results

