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Abstract
The ability to design novel proteins with higher
fitness on a given task would be revolutionary for
many fields of medicine. However, brute-force
search through the combinatorially large space
of sequences is infeasible. Prior methods con-
strain search to a small mutational radius from
a reference sequence, but such heuristics dras-
tically limit the design space. Our work seeks
to remove the restriction on mutational distance
while enabling efficient exploration. We propose
Gibbs sampling with Graph-based Smoothing
(GGS) which iteratively applies Gibbs with gra-
dients to propose advantageous mutations using
graph-based smoothing to remove noisy gradi-
ents that lead to false positives. Our method is
state-of-the-art in discovering high-fitness pro-
teins with up to 8 mutations from the training
set. We study the GFP and AAV design problems,
ablations, and baselines to elucidate the results.
Code: https://github.com/kirjner/GGS

1. Introduction
In protein design, fitness is loosely defined as performance
on a desired property or function. Examples of fitness in-
clude catalytic activity for enzymes (Anderson et al., 2021;
Mazurenko et al., 2019) and fluorescence for biomarkers
(Remington, 2011). Protein engineering seeks to design pro-
teins with high fitness by altering the underlying sequences
of amino acids. However, the number of possible proteins
increases exponentially with sequence length, rendering it
infeasible to perform brute-force search to engineer novel
functions which often requires many mutations (i.e. at least
3 (Ghafari & Weissman, 2019)). Directed evolution (Arnold,
1998) has been successful in improving protein fitness, but
it requires substantial labor and time to gradually explore
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many mutations.

Our work proposes a sequence-based method that can opti-
mize over a noisy fitness landscape and efficiently sample
large mutational edits. We introduce two methodological
advances summarized in Figure 1. The first is Graph-based
Smoothing (GS) that regularizes the noisy landscape. We
formulate the landscape as a noisy graph signal and apply
L1 graph Laplacian regularization. This encourages sparsity
and local consistency (Zhou et al., 2003) in the landscape:
most protein sequences have zero fitness, and similar se-
quences have similar fitness. The effect is a smooth fitness
landscape learned by the ML model on which gradients
accurately approximate the direction towards high-fitness
sequences. We utilize the improved gradients to reach high-
fitness sequences requiring many mutations, by combining
Gibbs With Gradients (GWG) sampling (Grathwohl et al.,
2021) and a directed evolution-based procedure we call It-
erative Extrapolation (IE), which applies multiple rounds
of sampling over clustered sequences. Local improvements
from the gradients on the smoothed landscape help select
beneficial mutations to guide low-fitness sequences towards
higher fitness, while multiple iterations of sampling allows
exploration across many mutations.

We find GS and GWG sampling with IE are synergistic in
enabling long-range exploration while avoiding the pitfalls
of a noisy fitness landscape; the combination of both is
referred to as GGS. We introduce a set of tasks using the
Green Fluorescent Proteins (GFP) dataset (Sarkisyan et al.,
2016) to simulate challenging protein design scenarios by
starting with low-fitness sequences that require many (5 or
more) mutations to the best fitness. We primarily study GFP
because of (1) its difficulty as one of the longest proteins in
fitness datasets and (2) its comprehensive fitness measure-
ments of up to 15 mutations. To assess the generalizability
of our method, we additionally study the Adeno-Associated
Virus (AAV) dataset (Bryant et al., 2021) based on gene
delivery fitness. We evaluate GGS and prior works on our
proposed benchmarks to show that GGS is state-of-the-art
in GFP and AAV fitness optimization.

2. Method
We begin with the problem formulation in Section 2.1. Our
method utilizes Gibbs With Gradients (Section 2.2) sam-
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pling over a fitness landscape that has been smoothed with
graph-based smoothing (Section 2.3). It then uses itera-
tive extrapolation (Section 2.4) as a way to progressively
extrapolate towards novel sequences. The full algorithm,
Gibbs with Graph-based Smoothing (GGS), is presented in
Algorithm 1.

2.1. Problem formulation

Let the starting set of length L protein sequences and their
fitness measurements be denoted as D0 = (X0,Y0) where
X0 ⊂ VL with vocabulary V = {1, . . . , 20} and Y0 ⊂
R. We use subscripts to distinguish sequences, xi ∈ VL,
while a paranthetical subscript denotes the token, (xi)j ∈ V
where j ∈ {1, . . . , L}. Note that our method can readily be
extended to other modalities, e.g. nucleic acids.

For in-silico evaluation, we denote the set of all known
sequences and fitness measurements as D∗ = (X ∗,Y∗).
We assume there exists a black-box function g : VL →
R such that g(x∗) = y∗, which is approximated by an
oracle gϕ. In practice, the oracle is a model trained with
weights ϕ to minimize prediction error on D∗. The starting
dataset only includes low fitness sequences and is a strict
subset of the oracle dataset D0 ⊂ D∗ to simulate fitness
optimization scenarios. Given D0, our task is to generate a
set of sequences X̂ = {x̂i}

Nsamples
i=1 with higher fitness than

the starting set.

2.2. GWG: Gibbs With Gradients

To generate initial candidates, we apply Gibbs With
Graduents (GWG) (Grathwohl et al., 2021) to the protein
sequences inD0. In this section, we provide the background
from Grathwohl et al. (2021) tailored to protein fitness opti-
mization. We first train a fitness predictor, fθ : VL → R, us-
ing D0, which acts as the learned unnormalized probability
(i.e. negative energy) from sequence to fitness. We use the
Mean-Squared Error (MSE) loss to train the predictor which
we parameterize as a deep neural network. When training,
we found it beneficial to employ negative data augmenta-
tion since both the dataset and the range of fitness values
are small. Specifically, we double the size of the dataset
by sampling random sequences, xneg

i ∼ Uniform(VL), and
assigning them the lowest possible fitness value, µ.

Our goal is to sample from log p(x) = fθ(x) − logZ
where Z is the normalization constant. Higher fitness se-
quences will be more likely under this distribution while
sampling over many mutations will induce diversity and
novelty. GWG uses Gibbs sampling with gradient-based ap-
proximations of locally informed proposals (Zanella, 2020):

q∇(x′|x) ∝ e
(x′)⊤dθ(x)

2 1(x′ ∈ H(x)),

dθ(x)ij = ∇xfθ(x)ij − xT
i ∇fθ(x)i, (1)

where dθ(x)ij is a first order Taylor approximation of
the log-likelihood ratio of mutating the ith index of x to
token j. Treating x and x′ as one-hot, (x′)⊤dθ(x) =∑

i(x
′
i)

⊤dθ(x)i is the sum over the local differences where
x′ differs from x. The proposal q(x′|x) can be efficiently
computed when H(·) is the 1-Hamming ball1: a single back-
ward pass is needed to compute the Jacobian in Equation (1).
A proposal mutation includes a sequence location, iloc, and
substitution, jsub, that is sampled from a categorical distri-
bution over the L× |V| possibilities:

(iloc, jsub) ∼ q(·|x) =

Cat

(
Softmax

({
dθ(x)i,j

τ

}(L,|V|)

(i,j)=(1,1)

))
(2)

where τ is a temperature hyperparameter. The proposal
sequence x′ is constructed by setting xiloc to Vjsub . Each
proposed sequence is accepted or rejected using Metropolis-
Hastings (MH)

min

(
exp(fθ(x

′)− fθ(x))
q(iloc, jsub|x′)

q(iloc, jsub|x)
, 1

)
. (3)

To summarize, our application of GWG first constructs
Nprop sequences by sampling from Equation (2) then returns
a set of accepted sequences, X ′, according to Equation (3).
The full algorithm is provided in Algorithm 2.

Grathwohl et al. (2021) note that in GWG, the quality of
the approximation in Equation (1) relies on the smoothness
of the log-probability function (Theorem 1 in (Grathwohl
et al., 2021)), which in our case is fθ. We next describe a
novel graph-based smoothing scheme used to satisfy this
criterion in Section 2.3.

2.3. GS: Graph-based Smoothing

Given a predictor, fθ : VL → R, gradient-based methods
for mutating towards high fitness sequences depend on the
smoothness of the learned sequence-to-fitness mapping. Un-
fortunately, the high-dimensional sequence space coupled
with few data points and noisy labels results in a noisy pre-
dictor that is prone to sampling false positives (Madry et al.,
2017) or getting stuck in local optima (Brookes et al., 2019).
To address this, we use techniques from graph signal pro-
cessing to smooth the learned mapping by promoting similar
sequences to have similar fitness (Zhou et al., 2003) while
penalizing noisy predictions (Lu et al., 2016).

Suppose we have trained a noisy predictor with weights
θ0 on the initial dataset D0. To construct our graph
G = (V,E), we first construct the nodes V by iteratively
applying pointwise mutations to each sequence in the ini-
tial set X0 to simulate a local landscape around each se-

1Defined as a ball using the Hamming distance.
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quence. We call this routine Perturb with a hyperpa-
rameter Nperturb for the number of perturbations per se-
quence (see Algorithm 5). The edges, E, are a nearest
neighbor graph with Nneigh neighbors where edge weights
are inversely proportional to their Levenshtein distance,
ωij = ω((vi, vj)) = 1/dist(vi, vj); edge weights are
stored in a similarity matrix W = {ωij ∀vi, vj ∈ V }.

The normalized Laplacian matrix of G is L = I −
D−1/2WD−1/2 where I is the identity and D is a diag-
onal matrix with i-th diagonal element Dii =

∑
j ωij . An

eigendecomposition of L gives L = UΣUT where Σ is a
diagonal matrix with sorted eigenvalues along the diagonal
and U is a matrix of corresponding eigenvectors along the
columns. An equivalent eigendecomposition with symmet-
ric matrix B is

L = (Σ1/2UT )TΣ1/2UT = BTB, B = Σ1/2UT .

Next, we formulate smoothing as an optimization problem.
For each node, we predict its fitness S = {fθ0(v) ∀v ∈
V }, also called the graph signal, which we assume to have
noisy values. Our goal is to solve the following where S is
arranged as a vector and S∗ is the smoothed signal,

S∗ = argmin
Ŝ

∥BŜ∥1 + γ∥Ŝ − S∥1 (4)

Equation (4) is a form of graph Laplacian regularization
that has been studied for image segmentation with weak
labels (Lu et al., 2016). B has eigenvalue weighted eigen-
vectors as rows. Due to the L1-norm ∥BŜ∥1 is small if Ŝ is
primarily aligned with slowly varying eigenvectors whose
eigenvalues are small. This term penalizes large jumps in
fitness between neighboring nodes hence we call it smooth-
ness sparsity constraint. The second term, ∥Ŝ − S∥1, is
the signal sparsity constraint that remove noisy predictions
with hyperparameter γ. The L1-norm is applied to reflect
that most sequences have zero fitness.

At a high level, Equation (4) is solved by introducing auxil-
iary variables which allows for an approximate solution by
solving multiple LASSO regularization problems (Tibshi-
rani, 1996). Technical details and algorithm are described in
Appendix C. Once we have S∗, we retrain our predictor with
the smoothed dataset D = (V,S∗) on which the learned
predictor is smoother with gradients much more amenable
for gradient-based sampling, which we describe in the fol-
lowing section. We refer to our smoothing algorithm as
Graph-based Smoothing (GS).

Even with a smoothed fitness landscape, GWG alone can
only generate candidates that are a single mutation away
from sequences in D0. The next section (Section 2.4) fo-
cuses on the development of an iterative framework to com-
bine with GWG in order to improve the approximations for
sequences that are multiple mutations away from the parent
sequence.

2.4. IE: Iterative Extrapolation

The 1st order Taylor approximation of Equation (1) deterio-
rates the more we mutate from the parent sequence. Inspired
by directed evolution (Arnold, 1998), we propose to allevi-
ate this by performing multiple rounds of sampling where
successive rounds use sequences from the previous round.
Each round re-centers the Taylor approximation and extrap-
olates from the previous round. We first train a predictor fθ
using GS (Section 2.3). Prior to sampling, we observe the
number of sequences may be large and redundant. To reduce
the number of sequences, we perform hierarchical clustering
(Müllner, 2011) and take the sequence of each cluster with
the highest fitness using fθ. Let C be the number of clusters.

Reduce( {X c}Cc=1; θ) =

C⋃
c=1

{argmax
x∈X c

fθ(x)}

where {X c}Cc=1 = Cluster(X ; C).

Each round r reduces the sequences from the previous round
and performs GWG sampling.

X ′
r+1 =

⋃
x∈X̃r

GWG(x; θ), X̃r = Reduce({X c
r }Cc=1; θ),

{X c
r }Cc=1 = Cluster(X ′

r; C).

One cycle of clustering, reducing, and sampling is a round
of extrapolation,

X ′
r+1 = Extrapolate(X ′

r; θ, C) (5)

where the initial round r = 0 starts with X ′
0 = X0. After

R rounds, we select our candidate sequences by taking the
Top-Nsamples sequences based on ranking with fθ. We call
this procedure Iterative Extrapolation (IE). While IE is re-
lated to previous directed evolution methods (Sinai et al.,
2020), it differs by taking larger mutational edits on each
round with GWG and encouraging diversity by mutating
the best sequence of each cluster. The full candidate genera-
tion, Gibbs with Graph-based Smoothing (GGS), with IE is
presented in Algorithm 1.

3. Experiments
We study the performance of GGS on optimizing fluores-
cence of Green Fluorescent Proteins (GFP) (Sarkisyan et al.,
2016). We construct three difficulties of optimizing GFP
based on the starting set of sequences. “Easy” difficulty
is taken from a prior benchmark (Trabucco et al., 2021)
which requires few mutations to achieve 99th percentile
fitness while “medium” and “hard” requires 6 or more mu-
tations. Description of each difficulty and analysis of the
GFP dataset is provided in Appendix B. We train a ora-
cle on the full dataset for in-silico evaluation of median
fitness, diversity, and novelty. Training details, hyperpa-
rameters, descriptions of our metrics, and baselines are



Optimizing protein fitness using GGS

Table 1. GFP optimization results (our oracle).

GFP Task Method

Difficulty Metric GFN-AL CbAS AdaLead BO-qei CoMs PEX GGS

Easy
Fit. 0.31 (0.1) 0.81 (0.0) 0.92 (0.0) 0.77 (0.0) 0.06 (0.3) 0.72 (0.0) 0.93 (0.0)
Div. 19.1 (2.8) 4.5 (0.4) 2.0 (0.0) 5.9 (0.0) 129 (16) 2.0 (0.0) 2.0 (0.0)
Nov. 215 (1.4) 1.4 (0.5) 1.0 (0.0) 0.0 (0.0) 164 (80) 1.0 (0.0) 1.0 (0.0)

Medium
Fit. 0.21 (0.1) 0.21 (0.0) 0.50 (0.0) 0.17 (0.0) -0.1 (0.0) 0.50 (0.0) 0.90 (0.0)
Div. 20.1 (4.2) 9.2 (1.5) 8.7 (0.1) 20.1 (7.1) 142 (16) 2.0 (0.0) 2.7 (0.0)
Nov. 214 (4.6) 7.0 (0.7) 1.0 (0.0) 0.0 (0.0) 190 (11) 1.0 (0.0) 5.4 (0.4)

Hard
Fit. 0.19 (0.1) -0.08 (0.0) -0.04 (0.0) 0.01 (0.0) -0.1 (0.2) -0.11 (0.0) 0.81 (0.0)
Div. 31.6 (2.4) 98.7 (16) 10.6 (0.3) 84.0 (7.1) 140 (7.1) 2.0 (0.0) 2.6 (0.0)
Nov. 217 (3.9) 46.2 (9.4) 1.0 (0.0) 0.0 (0.0) 198 (2.9) 1.0 (0.0) 7.0 (0.0)

provided in Appendix D. Related works is provided in Ap-
pendix F. To demonstrate generalization to other fitness and
proteins, we benchmark GGS on gene delivery using the
Adeno-Associated Virus (AAV) (Bryant et al., 2021) dataset
in Appendix E. Section 3.1 compares the performance of
GGS on GFP to a representative set of baselines while Ap-
pendix E performs ablations on components of GGS.

3.1. Results

All methods are evaluated on 128 generated candidates, as
done in design-bench. We run 5 seeds and report the average
metric across all seeds including the standard deviation in
parentheses. Results using our GFP oracle are summarized
in Table 1. Results using the DB oracle are in Appendix E.

GGS substantially outperforms other baselines on the
medium and hard difficulties, consistently navigating the
mutational to achieve high fitness, while maintaining diver-
sity and novelty from the training set. The unique extrap-
olation capabilities of GGS on the hardest difficulty level
warranted additional analysis, and we investigate this further
in Appendix G.

Adalead overall performed second-best, matching the perfor-
mance of GGS on the easy difficulty with PEX only slightly
worse. Notably, both Adalead and PEX suffer from a low
novelty on all settings. GFN-AL exhibits subpar perfor-
mance across all difficulty levels. Its performance notably
deteriorates on medium and hard difficulty levels, a trend
common amongst all baselines. CbAS explores very far,
making on average 46 mutations, resulting in poor fitness.
BO-qei is unable to extrapolate beyond the training set, and
CoMs presents instability, as indicated by their high stan-
dard deviations, and collapse.2

2CoMs managed to generate only between 7 and 65 unique
sequences.

We further analyze the distribution of novelty and fitness
among CbAS, Adalead, and our method, GGS, in Figure 5.
Adalead tends to be conservative, while CbAS is exces-
sively liberal. GGS, on the other hand, manages to find the
middle ground, displaying high fitness in its samples while
also effectively exploring across the mutational gap at each
difficulty level.

4. Discussion
We presented GGS, a method for optimizing protein fit-
ness by incorporating ideas from MCMC, graph Laplacian
regularization, and directed evolution. We outlined a new
benchmark on GFP that introduces the challenge of start-
ing with poor-fitness sequences requiring many edits to
achieve high fitness. GGS discovered higher fitness se-
quences than in the starting set, even in the hard difficulty
of our benchmark where prior methods struggled. We ana-
lyzed the two methodological advancements, Graph-based
Smoothing (GS) and combining GWG with IE, as well as
ablations to conclude each of these techniques aided GGS’s
performance.

There are multiple extensions of GGS. The first is to improve
the application of GWG to proteins by removing the inde-
pendence assumption across residues and instead modeling
joint probabilities of epistatic interactions. One possibil-
ity for learning epistatic interactions is to incorporate 3D
structure information (if available) to bias the sampling dis-
tribution. Secondly, the effectiveness of GS in our ablations
warrants additional exploration into better regularization
techniques for protein fitness predictors. Our formulation of
GS is slow due to the nearest neighbor graph construction
and its L1 optimization. Lastly, investigating GGS to handle
variable length sequences, multiple objectives, and multiple
rounds of optimization is of high importance towards real
protein engineering problems.
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A. Figures and algorithms.

Figure 1. GGS overview. (A) Protein engineering is often challenging due to a noisy fitness landscape on which the starting dataset
(unblurred) is a fraction of landscape with the highest fitness sequences hidden (blurred). (B) We develop Graph-based Smoothing (GS)
to estimate a smoothed fitness landscape from the starting data. Intuitively, the gradients allow extrapolation towards higher fitness
sequences. (C) A fitness predictor is trained on the smoothed fitness landscape. (D) Gradients from the fitness predictor are used in an
iterative sampling procedure called Iterative Extrapolation (IE) where Gibbs With Gradients (GWG) is performed on each step with
renewed gradient computations. (E) Each step of IE samples mutations towards higher fitness.

Algorithm 1 GGS: Gibbs sampling with Graph-based Smoothing
Require: Starting dataset: D0 = (X0,Y0)
Require: GWG hyperparameters: Nprop, τ , M
Require: GS hyperparameters: Nneigh, Nperturb, γ
Require: IE hyperparameters: Nsamples, R, C

1: # Construct negative data.
2: D ← D0 ∪ {(xneg

i , µ)}|D0|
i=1

3: # Initial training.
4: θ0 ← argmaxθ̃ E(x,y)∼D

[
(y − fθ̃(x))

2
]

5: # GS Algorithm 3.
6: θ ← Smooth(X0; θ0)
7: # Initial round of IE
8: {X0}Cc=1 ← Cluster(X0; C)
9: X̃ c

0 ← Reduce({X0}Cc=1; θ)
10: X ′

0 ← ∪x∈X̃ c
0
GWG(x; θ)

11: # GWG Algorithm 2
12: for r = 1, . . . , R do
13: # Remaining rounds of IE Equation (5)
14: X ′

r ← Extrapolate(X ′
r−1; θ)

15: end for
16: # Return Top-Nsamples sequences based on predicted fitness fθ.
17: X̂ ← TopK(∪Rr=1X ′

r)
18: Return X̂



Optimizing protein fitness using GGS

Algorithm 2 GWG: Gibbs With Gradients
Require: Parent sequence: x
Require: Predictor weights: θ
Require: Sampling temperature: τ
Require: Number of sequences to sample: Nprop
Require: Amino acid vocabulary: V

1: X ′ ← ∅
2: for i = 1, . . . , Nprop do
3: # Enumerate number of Gibbs samples
4: x′ ← x
5: # Sample index and token Equation (2)
6: (iloc, jsub) ∼ q(·|x)
7: # Construct proposed candidate
8: x′iloc ← Vjsub
9: if accept using Equation (3) then

10: X ′ ← X ′ ∪ {x′}
11: end if
12: end for
13: # Return accepted sequences.
14: Return X ′

Algorithm 3 GS: Graph-based Smoothing
Require: Sequences: X
Require: Predictor weights: θ0
Require: Number of perturbations: Nperturb
Require: Number of neighbors: Nneigh
Require: Sparsity weight: γ

1: # Construct graph nodes Algorithm 5.
2: V ← Perturb(X , Nperturb)
3: # Construct similarity matrix.
4: W ← {ωij = 1/dist(vi, vj) : vi, vj ∈ V }
5: # Nneigh nearest neighbor graph edges based on W .
6: E ← NearestNeighbor(X ;W,Nneigh)
7: # Node attributes
8: S ← {fθ0(v) ∀v ∈ V }
9: # Solves Equation (4) with Algorithm 4

10: S∗ ← NoiseReduction(V,E,S, γ)
11: D ← (V,S∗)
12: # Train on smoothed dataset.
13: θ ← argmaxθ̃ E(x,y)∼D

[
(y − fθ̃(x))

2
]

14: Return θ
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Algorithm 4 NoiseReduction: follows Algorithm 1 in Lu et al. (2016)
Require: Nodes: V
Require: Edges: E
Require: Noisy labels: S
Require: Sparsity weight: γ

1: L ← Compute normalized Laplacian on graph G = (V,E).
2: VE ← Find 50 smallest eigenvectors* of L.
3: Ŝ ← S
4: for i = 1 . . . 1000 optimization rounds do
5: A∗ ← Solution in Equation (9) using off-the-shelf solvers.
6: F ∗ ← UV A

∗

7: Ŝ∗ ← SoftThreshold(F ∗,S, γ)
8: end for
9: Return Ŝ∗

Algorithm 5 Perturb
Require: Sequences: X
Require: Number of perturbations: Nperturb

1: V ← X
2: while |V | < (|X | ·Nperturb) do
3: x ∼ Uniform(V )
4: x′ ←Random point mutation to x
5: V ← V ∪ {x′}
6: end while
7: Return V

B. Benchmark and dataset
We use the Green Fluoresent Protein (GFP) dataset from Sarkisyan et al. (2016) containing over 56,806 log fluorescent
fitness measurements, with 51,715 unique amino-acid sequences due to sequences having multiple measurements. We
quantify the difficulty of a protein fitness optimization task by introducing the concept of a mutational gap, which we define
as the minimum Levenshtein distance between any sequence in the training set to any sequence in the 99th percentile:

Gap(X0;X 99th) = min({dist(x, x̃) : x ∈ X , x̃ ∈ X 99th})

A mutational gap of 0 means that the training set, D0, may contain sequences that are in the 99th percentile of fitness.
Solving such tasks is easy because methods may sample high-fitness sequences from the training set. Prior work commonly
uses the GFP task introduced by design-bench (DB) evaluation framework (Trabucco et al., 2022) which has a mutational
gap of 0 (discussed later). To compare to previous work, we include the DB task as ”easy” difficulty in our experiments,
but we introduce ”medium” and ”hard” optimization tasks which have lower starting fitness ranges in the 20-40th and
10-30th percentile of known fitness measurements alongside much higher mutational gaps. Our proposed difficulties are
summarized in Table 2 and visualized in Figure 3.

Table 2. Proposed GFP tasks

Difficulty Range (%) |D0| Gap

Medium 20th-40th 2828 6
Hard 10th-30th 1636 7

The oracle in design-bench (DB) uses a Transformer-based architecture from Rao et al. (2019). When using this oracle,
we noticed a concerning degree of false positives and a thresholding effect of its predictions. We propose a simpler CNN
architecture as the oracle that achieves superior performance in terms of Spearman correlation and fewer false positives
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as seen in Figure 4. Our CNN consists of a 1D convolutional layer that takes in a one-hot encoded sequence, followed by
max-pooling and a dense layer to a single node that outputs a scalar value. It uses 256 channels throughout for a total of
157,000 parameters – 15 fold fewer than DB oracle.

Our experiments in Section 3 benchmark on GFP easy, medium, and hard with our CNN oracle. In Appendix E we
summarize an additional benchmark using Adeno-Associated Virus (AAV) dataset (Bryant et al., 2021) which focuses on
optimizing a 28-amino acid segment for DNA delivery. We use the same task set-up and train our CNN oracle on AAV.

Design-bench difficulty. Prior works have used the GFP task introduced by design-bench (DB), a suite of model-based
reinforcement learning tasks (Trabucco et al., 2022), which samples a starting set of 5,000 sequences from the 50-60th
percentile fitness range. The wild-type (WT) sequences have 534 fluorescence measurements ranging from the 58th to the
100th percentile (Figure 2) which implies it may be in the training set depending on the random seed3 and allow strong
performance by memorization. Even if there is no data leakage (due to the random seed), the 50-60th percentile fitness
starting range includes sequences that require 1 mutation to reach the 99th percentile (see Figure 3). The task is overly
simplified in this sense and does not provide accurate evaluation of different methods.

Figure 2. GFP wild-type multiplicity. The same wildtype sequence is measured a total of 534 times in the Sarkisyan et al. (2016) dataset
with a wide range of fitness measurements from the 58th to 100 percentile. As a result, it is possible for the wild-type or other sequences
with multiple measurements to contaminate the training set when filtering only on fitness range.

3We confirmed this to be the case in the design-bench codebase.
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Figure 3. GFP task difficulty comparisons. Easy difficulty is taken from design-bench. We take all GFP sequences between the 50-60th
percentile regardless of distance to sequences in the 99th percentile of GFP sequences resulting in 5609 sequences the method has access
to. Data leakage is present due to the multiplicity of GFP measurements that allows the wild-type sequence and other top sequences to be
present in the 50-60th percentile. Medium difficulty filters the starting dataset to have sequences in the 20-40th percentile and be 6 or
more mutations away from anything in the top 99th percentile resulting in 2628 sequences in the starting dataset. Hard difficulty filters
the starting dataset to have sequences in the 10-30th percentile and be 7 or more mutations away from anything in the top 99th percentile
resulting in 1636 sequences.

Figure 4. Design-bench (DB) and our CNN oracle Comparison. DB oracle exhibits strange behaviour of predictions being thresholded at
min/max values. Yet the Spearman correlation (rho) is high and closely matches the reported rho in (Trabucco et al., 2021). Our simpler
CNN oracle on the other hand is able to fit the ground truth data more accurately (higher rho) and has less false positives. We perform
experiments with both oracles in our work.
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C. Additional methods
In this section, we provide additional details of Graph-based Smoothing (GS) and algorithms. Algorithm 2 describes pseudo
code for Gibbs With Gradients (GWG) sampling introduced in Section 2.2. Algorithm 3 describes pseudo code for GS
described in Section 2.3 with Algorithm 4 and Algorithm 5 as sub-routines used in GS.

We now describe remaining details of GS. We use the same optimization algorithm from Lu et al. (2016) to solve Equation (4)
which is reproduced here. As a reminder, Equation (4) is

S∗ = argmin
Ŝ

∥BŜ∥1 + γ∥Ŝ − S∥1.

Solving the above, a combination of L1-optimization problems, is notoriously difficult therefore we introduce an auxiliary
variable F with same dimensions as S and instead solve the following,

min
Ŝ≥0,U

1

2
∥Ŝ − F∥2F + λ∥BF∥1 + γ∥Ŝ − S∥1 (6)

where ∥ · ∥F is the Frobenius norm. The purpose of F is to disentangle Ŝ from being part of two L1-norm terms such that
we can solve smaller sub-problems. The new term ∥Ŝ − F∥2F enforces F to be close to Ŝ . Equation (6) can be solved with
two easier sub-problems.

F ∗ = argmin
F

1

2
∥F − Ŝ∗∥2F + λ∥BF∥1 (7)

Ŝ∗ = argmin
Ŝ≥0

1

2
∥Ŝ − F ∗∥2F + γ∥Ŝ − S∥1 = SoftThreshold(F ∗,S, γ) (8)

where Ŝ∗ = S initially and λ is a Lagrange multiplier. Equation (8) has a closed-form solution using the soft-threshold
function (SoftThreshold) which is defined in eq. (9) of Lu et al. (2016) (we omit it here for ease of exposition). Equation
(7) requires iterative optimization due to the computational intractability of B. This is overcome by a dimensionality
reduction,

F = UV A, UV = [u1| . . . |u50]

where UV is a matrix whose columns are the 50 smallest eigenvectors of L and A = {aij} is the reconstruction coefficients.
Lu et al. (2016) let the number of projected eigenvectors be a hyperparameter but we found 50 to work well. Equation (7)
can be reformulated as,

F ∗ = argmin
A

1

2
∥UV A− Ŝ∗∥2F + λ∥BUV A∥1

= argmin
A

∑
j

1

2
∥UV A·j − Ŝ∗·j∥2F + λ∥BUV A·j∥1︸ ︷︷ ︸

(∗)

(9)

where Ŝ∗·j and A·j denotes the j-th column of Ŝ∗ and A respectively. Lu et al. (2016) proved solving Equation (9) is
equivalent to solving Equation (8) under certain conditions but is a good approximation otherwise. Each (*) can be solved
independently,

(∗) = argmin
A·j

1

2
∥UV A·j − Ŝ∗·j∥22 + λ∥BUV A·j∥1

= argmin
A·j

1

2
∥UV A·j − Ŝ∗·j∥22 + λ

∑
i

Σ
1
2
ii|aij | (10)

See Lu et al. (2016) for derivation. Recall Σii is the ith eigenvalue. Equation (10) can be solved using off-the-shelf
solvers. We can now solve Equation (7) and Equation (8) in iterative fashion. We set a number of rounds (1000 in our case)
and alternate between solving Equation (8) and Equation (7). The full algorithm is provided as NoiseReduction in
Algorithm 4 which follows Algorithm 1 of Lu et al. (2016).
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D. Experiment details
GGS training and sampling. Following the oracle discussion in Appendix B, we use the oracle CNN architecture for our
predictor (but trained on different data). To ensure a fair comparison, we use the same predictor across all model-based
baselines. We use the following hyperparameters as input to Algorithm 1 across all tasks: Nprop = 100, τ = 0.01, M = 5,
Nneigh = 500, Nperturb = 1000 Nsamples = 128 R = 10, C = 500. We were unable to perform extensive exploration of
hyperparameters. Reducing the number of hyperparameters and finding optimal values is an important future direction.
Training is performed with batch size 1024, ADAM optimizer (Kingma & Ba, 2014) (with β1 = 0.9, β2 = 0.999), learning
rate 0.0001, and 1000 epochs using a single A6000 Nvidia GPU. Initial predictor training takes 10 minutes while graph-based
smoothing takes around 30 minutes depending on convergence of the numerical solvers. Training with the smoothed data
takes 4 to 8 hours. Sampling takes under 30 minutes and can be parallelized.

Baselines. We choose a representative set of prior works with publicly available code: GFlowNets (GFN-AL) (Jain
et al., 2022), model-based adaptive sampling (CbAS) (Brookes et al., 2019), greedy search (AdaLead) (Sinai et al., 2020),
bayesian optimization with quasi-expected improvement acquisition function (BO-qei) (Wilson et al., 2017), conservative
model-based optimization (CoMs) (Trabucco et al., 2021), and proximal exploration (PEX) (Ren et al., 2022).

Metrics. Each method generates Nsamples = 128 samples X̂ = {x̂i}
Nsamples
i=1 to evaluate. Here, dist is the Levenshtein

distance. We report three metrics:

• (Normalized) Fitness = median({ξ(x̂i;Y∗)}Nsamples
i=1 ) where ξ(x̂;Y∗) =

gϕ(x̂i)−min(Y∗)
max(Y∗)−min(Y∗) is the min-max normalized

fitness.

• Diversity = mean({dist(x, x̃) : x, x̃ ∈ X̂ , x ̸= x̃}) is the average sample similarity.

• Novelty = median({η(x̂i;X0)}
Nsamples
i=1 ) where η(x;X0) = min({dist(x, x̃) : x̃ ∈ X ∗, x̃ ̸= x}) is the minimum

distance of sample x to any of the starting sequences X0.

We use median for outlier robustness. Diversity and novelty were introduced in Jain et al. (2022). We emphasize that higher
diversity and novelty is not equivalent to better performance. For instance, a random algorithm would achieve maximum
diversity and novelty.

E. Additional results
AAV evaluation. Our experiments use GFP (Appendix B) due to its long sequence length (237 residues) resulting in a large
search space and wide coverage of fitness measurements (56,806 data points). The proposed medium and hard difficulties
were possible because of GFP’s measurements up to 15 mutations. We sought to experiment on a different fitness landscape
to see if (1) mutational gap is a valid criterion for task difficulty and (2) our method isn’t over-optimized for fluorescence
fitness in GFP.

A second commonly studied protein fitness dataset is the Adeno-Associated Virus (AAV) (Bryant et al., 2021). The fitness
of the AAV capsid protein is its ability to package a DNA payload, i.e. gene delivery. This dataset encompasses 201,426
subsequences of the AAV2 wild-type known to be immportant for gene delivery based on the structure. Of these, we
consider 44,156 subsequences of length 28 and consist solely of substitutions4. The benchmark difficulties on AAV are
defined the same way in the GFP task. The same oracle architecture is used to train on all 44,156 sequences while GGS uses
the same hyperparameters as in GFP.

Results from evaluating GGS and baselines on AAV is presented in Table 3. GGS outperforms all baselines on this dataset
as well, demonstrating its robustness across another protein fitness landscapes. The improvement using GGS over baselines
is lower for AAV compared to GFP. This could be explained due to the smaller search space (28 residues) than GFP (237
residues) suggesting AAV is easier. We observe a decrease in fitness performance across all methods to suggest mutational
gap is a valid criterion for task difficulty.

Results with DB oracle. Table 4 shows results of using the design-bench (DB) oracle compared against our CNN oracle.
We find GGS is still state-of-the-art on all fitness metrics.

4AAV contains sequences of varying length with insertions and deletions. We excluded these since our method and the majority of our
baselines cannot handle insertion and deletions.
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Table 3. AAV optimization results (our oracle).

AAV Task Method

Difficulty Metric GFN-AL CbAS Adalead BO-qei CoMs PEX GGS

Easy
Fit. -0.01 (0.0) 0.53 (0.0) 0.53 (0.0) 0.42 (0.2) 0.31 (0.1) 0.45 (0.0) 0.62 (0.0)
Div. 11.8 (1.7) 6.7 (0.6) 3.7 (0.1) 10.1 (7.2) 4.3 (1.71) 2.1 (0.1) 2.7 (0.0)
Nov. 20.4 (0.8) 5.6 (0.6) 1.0 (0.0) 8.4 (7.6) 5.7 (0.6) 1.0 (0.0) 1.0 (0.0)

Medium
Fit. 0.03 (0.0) 0.35 (0.0) 0.46 (0.0) 0.30 (0.1) 0.32 (0.1) 0.34 (0.0) 0.62 (0.0)
Div. 14.6 (1.6) 13.7 (0.4) 7.9 (0.1) 17.3 (3.6) 10.2 (3.7) 2.4 (0.2) 2.5 (0.0)
Nov. 21.4 (0.9) 7.8 (0.5) 1.0 (0.0) 4.2 (9.4) 9.0 (2.0) 1.1 (0.2) 5.0 (0.0)

Hard
Fit. 0.02 (0.0) 0.31 (0.0) 0.37 (0.0) 0.28 (0.0) 0.31 (0.2) 0.27 (0.0) 0.43 (0.0)
Div. 17.8 (1.0) 15.1 (0.7) 11.1 (0.1) 20.8 (1.6) 9.2 (4.2) 2.0 (0.0) 8.3 (0.5)
Nov. 20.8 (1.0) 8.4 (0.5) 1.0 (0.0) 0.0 (0.0) 8.2 (2.6) 1.0 (0.0) 8.0 (0.0)

Table 4. GFP optimization results with design-bench (DB) oracle. Note that diversity and novelty

GFP Task Method

Difficulty Metric GFN-AL CbAS AdaLead BO-qei CoMs PEX GGS

Easy

Fit. 0.05 (0.0) 0.84 (0.0) 0.86 (0.0) 0.84 (0.0) 0.05 (0.1) 0.71 (0.2) 0.86 (0.0)
Div. 19.1 (2.8) 4.5 (0.4) 2.0 (0.0) 5.9 (0.0) 129 (16) 2.0 (0.0) 2.0 (0.0)
Nov. 215 (1.4) 1.4 (0.5) 1.0 (0.0) 0.0 (0.0) 164 (80) 1.0 (0.0) 1.0 (0.0)

Med.

Fit. 0.05 (0.0) 0.0 (0.0) 0.56 (0.2) 0.0 (0.0) 0.05 (0.1) 0.60 (0.3) 0.84 (0.1)
Div. 20.1 (4.2) 9.2 (1.5) 8.7 (0.1) 20.1 (7.1) 142 (16) 2.0 (0.0) 2.7 (0.0)
Nov. 214 (4.6) 7.0 (0.7) 1.0 (0.0) 0.0 (0.0) 190 (11) 1.0 (0.0) 5.4 (0.4)

Hard

Fit. 0.05 (0.0) 0.0 (0.0) 0.05 (0.1) 0.0 (0.0) 0.05 (0.2) 0.0 (0.0) 0.72 (0.3)
Div. 31.6 (2.4) 98.7 (16) 10.6 (0.3) 84.0 (7.1) 140 (7.1) 2.0 (0.0) 2.6 (0.0)
Nov. 217 (3.9) 46.2 (9.4) 1.0 (0.0) 0.0 (0.0) 198 (2.9) 1.0 (0.0) 7.0 (0.0)

Ablations. We perform ablations on the two stages of GGS on the hard difficulty task. In the first ablation, we remove GS
and start sampling after initial predictor training. The second ablation runs IE for fewer that 15 iterations (1, 5, and 10).

Our results are shown in Table 5. We see GS is crucial for GGS on the hard difficulty level. When IE is run for 1 or 5
iterations there is also a large decrease in performance. Running IE for 10 iterations achieves equivalent fitness, but slightly
worse diversity and novelty. We conclude each component of GGS contributes to its performance.

Table 5. Ablation results (our oracle).

Difficulty Metric GGS without GS IE10 IE5 IE1

Hard
Fitness 0.81 (0.0) -0.03 (0.0) 0.81 (0.0) 0.40 (0.0) 0.07 (0.0)
Diversity 2.6 (0.0) 22.7 (1.6) 2.5 (0.0) 5.7 (0.0) 13.5 (0.0)
Novelty 7.0 (0.0) 13.4 (0.5) 6.7 (0.4) 5.0 (0.0) 1.0 (0.0)
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Figure 5. Comparison of GFP novelty and fitness on samples from AdaLead, GGS, and CbAS. From left to right, we observe increasing
exploration behaviour from the respective methods. However, only GGS maintains high fitness while exploring the novel sequences.
Nearly all samples from CbAS on hard are beyond 10 novelty and have very low fitness.

F. Related work
Optimization in protein design. Approaches in protein design can broadly be categorized in using sequence, structure or
both (Ding et al., 2022). Advances in structure-based protein design have been driven by a combination of geometric deep
learning and generative models (Watson et al., 2022; Ingraham et al., 2022; Yim et al., 2023; Dauparas et al., 2022; Trippe
et al., 2022). Sequence-based protein design has been explored through the lens of reinforcement learning (Angermueller
et al., 2020; Lee et al.), latent space optimization (Stanton et al., 2022; Lee et al.; Maus et al., 2022), GFlowNets (Jain et al.,
2022), Bayesian optimization (Wilson et al., 2017), generative models (Brookes et al., 2019; Biswas et al., 2021; Notin
et al., 2022; Meier et al., 2021), and model-based directed evolution (Sinai et al., 2020; Arnold, 2018; Padmakumar et al.,
2023; Ren et al., 2022; Trabucco et al., 2021). Together they face the common issue of a noisy landscape to optimize over.
Moreover, fitness labels are problem-dependent and scarce, apart from well-studied proteins (Biswas et al., 2021). Our
method addresses small amounts of starting data and noisy landscape by regularization with GS. We focus on sequence-based
methods where we use locally informed Markov Chain Monte Carlo (MCMC) (Zanella, 2020) with Gibbs With Gradients
(GWG) (Grathwohl et al., 2021) which requires a smooth energy function for strong performance guarantees. Concurrently,
Emami et al. (2023) used GWG to sample higher fitness sequences by optimizing over a product of experts distribution, a
mixture of a protein language model and a fitness predictor. However, they eschewed the need for a smooth energy function
which we address with GS.

Discrete MCMC. High-dimensional discrete MCMC can be inefficient with slow mixing times. GWG showed discrete
MCMC becomes practical by utilizing learned gradients in the sampling distribution, but GWG in its published form was
limited to sampling in a proposal window of size 1. Zhang et al. (2022) proposed to modify GWG with Langevin dynamics
to allow for the whole sequence to mutate on every step while Sun et al. (2022) augmented GWG with a path auxiliary
proposal distribution to propose a series of local moves before accepting or rejecting. We find that GGS, which combines
GWG with IE is simpler and effective in achieving a proposal window size beyond 1 by using multiple iterations.
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Figure 6. Analysis of GGS for GFP hard Task. (A, B) Proposed mutation probability of WT residue vs. non-WT residues for subsequently
accepted mutations with and without GS. The non-smoothed predictor gives the WT residue only slightly higher probability than other
residues. (C) Un-normalized median fitness scores for the smoothed predictor and CNN oracle vs. number of IE iterations. Larger points
correspond to higher median novelty, with the smallest point having median novelty 5. Median fitness increases until about 7 iterations of
IE, while median novelty increases until 12 iterations of IE.

G. Analysis
We analyze GGS to understand its ability in sampling higher fitness sequences. Focusing on the hard GFP task, we
investigated (1) if GS results in higher probability towards higher fitness mutations and (2) how GWG with IE produces
sequences with improved fitness across large mutational distances over multiple iterations.

To answer (1), we analyze the probability of the GFP wild-type (WT) which is representative of high-fitness sequences in the
99th percentile. Figure 6A plots the probability density function of sampling mutations on residues (line 4 of Algorithm 2)
different from the WT vs. the background distribution of all other residues using GS. Comparing this with Figure 6B, which
does not use GS, we observe GS is crucial for sampling towards high fitness sequences in the form of the WT.

Next, we consider how the performance and novelty of GGS change as the number of IE iterations increases. Figure 6C
shows that the smoothed predictor and oracle fitness predictions of the same sequences both plateau around 7 iterations,
while novelty peaks later. Running IE for a suitably large number of iterations is therefore necessary to achieve both
high fitness and high novelty. Furthermore, the correlation between oracle and predictor performance suggests that using
predicted fitness to choose the number of IE iterations is warranted in our GFP benchmark. We expect different behaviours
for different proteins and fitnesses. Overall the use of smoothing and iterative refinement with IE is promising in our
experiments.


