
Under review as submission to TMLR

SparseDiff: Sparse Discrete Diffusion for Scalable Graph
Generation

Anonymous authors
Paper under double-blind review

Abstract

Graph generative models encounter significant scaling challenges due to the need to pre-
dict the presence or type of edges for every node pair, resulting in quadratic complexity.
While some models attempt to support large graph generation, they often impose restrictive
assumptions, such as enforcing cluster or hierarchical structures, which can limit generaliz-
ability and result in unstable generation quality across various graph types. To address this,
we introduce SparseDiff, a novel diffusion framework that leverages the inherent sparsity in
large graphs - a highly relaxed assumption that enables efficient sparse modeling without
sacrificing generation quality for different datasets. Based on that, SparseDiff reduces the
complexity of the three core components in graph diffusion models. It first introduces an
efficient noising process that samples sparse noisy graphs with linear complexity relative to
the number of edges. During training, SparseDiff combines query edge-based random atten-
tion with edge-based graph attention mechanisms, matching graph transformer performance
while reducing space complexity. Finally, for inference, at each denoising step, SparseDiff
maintains sparsity by incrementally reconstructing the adjacency matrix via adding edge
subsets defined by query edges. SparseDiff achieves state-of-the-art results on both small
and large datasets, showing its robustness across varying graph sizes and its scalability.
Additionally, it ensures faster convergence for large graphs, achieving a fourfold speedup
on the large-scale Ego dataset compared to dense models. SparseDiff’s efficiency, combined
with its effective control over space complexity, positions it as a powerful solution for scaling
applications involving large graphs. 1

1 Introduction

Graph generation plays a pivotal role in various fields, such as molecular chemistry (Vignac et al., 2023b),
neural architecture search (Asthana et al., 2024) and social network analysis (Schweimer et al., 2022), for its
ability to model complex relationships and create realistic structured data. Over the past decades, random
graph models have played a foundational role in graph generation (Erdős et al., 1960; Barabási, 2013).
However, their limitations in capturing complex dependencies in real-world data have shifted research toward
machine learning based graph generative models. Traditional frameworks like generative adversarial networks
(De Cao & Kipf, 2018) and variational autoencoders (Simonovsky & Komodakis, 2018) have primarily focused
on small graphs. Recently, denoising diffusion models (Jo et al., 2022; Niu et al., 2020), especially those
employing discrete modeling to better capture graph structure (Vignac et al., 2023a), have emerged, setting
new benchmarks in graph generation tasks and improving scalability by generating graphs with up to 200
nodes. Nonetheless, scaling to even larger graphs remains challenging, restricting application in fields such
as protein generation (Yim et al., 2023), histopathology (Madeira et al., 2023), transportation (Rong et al.,
2023) or anomaly detection in financial systems (Li et al., 2023).

The primary complexity constraint in these diffusion models stems from the need to predict interactions for
all node pairs, naturally leading to the use of full attention layers and resulting in quadratic computational
complexity with respect to the number of nodes. Efforts to mitigate this limitation include strategies such

1Codes available at https://anonymous.4open.science/r/SparseDiff-18EE/.

1

https://anonymous.4open.science/r/SparseDiff-18EE/

Under review as submission to TMLR

Sparse noise Cross-entropy

G

Gt Ĝq = (X̂, ̂Yq, Eq)

Gq

Query edges Eq

Predicted distribution

True labels

1. Efficient noise model 2. Sparse denoising network 3. Iterative inference

E1
q

E2
q

E3
q

Figure 1: SparseDiff employs three key components for efficiency: (1) a noise model that constructs a sparse
noisy graph Gt with linear space complexity relative to the existing edges, (2) a denoising network trained
over all nodes and a sparse subset of query edges, Eq, which serve a role similar to random batches of
all node pairs in stochastic gradient descent, and (3) an iterative inference step that, at each time step t,
progressively fills the adjacency matrix using sparse inputs given by Ei

q.

as imposing node ordering (Dai et al., 2020), assembling sub-graphs (Limnios et al., 2023), hierarchical
generation (Karami, 2023; Jang et al., 2023; Bergmeister et al., 2023), and conditioning on a sampled degree
distribution (Chen et al., 2023). While these approaches are designed specifically for large graphs, they rely
on additional assumptions such as cluster structures or dependencies on node degrees which can hinder their
generalizability. For instance, their suboptimal performance in applications involving smaller graphs, such
as molecule generation (Chen et al., 2023; Kong et al., 2023), further raises concerns about the robustness
of these assumptions.

Motivated by these limitations and recognizing that most real-world graphs are inherently sparse — for
instance, cells in digital pathology connect only with immediate neighbors (Madeira et al., 2023), and con-
nections in social networks are sparse (McCallum et al., 2000) — we propose SparseDiff. SparseDiff is a
discrete diffusion framework that leverages graph sparsity without additional assumptions. Unlike previous
diffusion models that encode all node pairs, SparseDiff employs a sparse edge list representation, avoiding
the quadratic space complexity of adjacency matrices. This enables an efficient realization of the three core
components of diffusion models (detailed in Section 2.1) as illustrated in Fig. 1: (1) the noise model to
generate noisy data, (2) training of the denoising network, and (3) the inference process.

First, the efficient noise model (Section 3.1) preserves the sparsity of noisy graphs throughout the forward
trajectory, supported by theoretical guarantees, and also enables efficient sampling with linear space com-
plexity proportional to the number of edges. For denoising, the sparse denoising neural network (Section 3.2)
applies attention to existing edges, maintaining the computational efficiency of message-passing layers. Cru-
cially, it also incorporates a random subset of node pairs, referred to as query edges, to sparsely approximate
full attention. This design bridges the gap between message-passing and full attention, providing a scalable
alternative that retains rich interactions granted by full attention mechanisms. The model is trained on
random query edges at each step, where query edges serve similarly to random batches in stochastic gradient
descent (SGD), enabling efficient training with controlled space complexity while approximately optimizing
the same objective. Lastly, SparseDiff introduces an iterative inference (Section 3.3) procedure that, at
each diffusion step, incrementally fills the dense adjacency matrix with edge subsets defined by query edges,
maintaining the same sparsity pattern as in training.

Our experiments demonstrate that SparseDiff consistently achieves state-of-the-art performance on both
small graphs, including those with complex priors like molecular graphs, and large graph datasets, includ-
ing those with over 2,000 nodes. Specifically, SparseDiff outperforms both dense models like SPECTRE
(Martinkus et al., 2022) and DiGress (Vignac et al., 2023a), as well as other scalable models like EDGE

2

Under review as submission to TMLR

(Chen et al., 2023) and HGGT (Jang et al., 2023). Moreover, SparseDiff converges four times faster than
dense diffusion models on large graphs, such as social networks (Ego). These results empirically demonstrate
the effectiveness of our sparse modeling approach and confirm its robustness through consistently high per-
formance across a diverse range of datasets. In summary, SparseDiff is able to match the performance of
dense diffusion models without restrictive assumptions, pioneering the use of sparse representations in graph
diffusion and distinguishing it from hierarchical and autoregressive methods.

2 Related Work

2.1 Denoising Diffusion Models for Graphs

Diffusion models have gained increasing popularity due to their impressive performance across various gen-
erative tasks in fields such as computer vision (Dhariwal & Nichol, 2021; Ho et al., 2022), protein generation
(Baek et al., 2021; Ingraham et al., 2022), and audio synthesis (Kong et al., 2020). These models are char-
acterized by three core components. The first is a Markovian noise model, which progressively corrupts
a data point x to a noisy sample zt over iterative steps t from 1 to T , until it conforms to a simple pre-
defined prior distribution at step T . The second component is a denoising network, parametrized by θ,
which is trained to restore the corrupted data back to its less noisy state. Typically, this network aims
to predict the original data x given the noisy sample xt. The third component is the reverse process for
data generation, where a fully noisy data point zT is first sampled from a prior distribution. The denoising
network then operates at each time step t ∈ [T, ..., 1] to predict the less noisy distribution according to
pθ(zt−1|zt) =

∫
x

q(zt−1|zt, x) dpθ(x|zt), from which a new data point zt−1 is sampled. While this integral is
generally difficult to evaluate, two prominent frameworks, Gaussian diffusion (Ho et al., 2020) and discrete
diffusion (Austin et al., 2021), facilitate its efficient computation.

Initial graph diffusion models employed Gaussian noise directly on adjacency matrices (Niu et al., 2020; Jo
et al., 2022). These models use a graph attention network to regress the added noise ϵ, where ϵ = zt − z,
effectively regressing the noise up to an affine transformation, akin to regressing the discrete clean graph. To
preserve the inherent discreteness of graphical data, subsequent models (Vignac et al., 2023a; Haefeli et al.,
2022) have leveraged discrete diffusion, reformulating graph generation as a series of classification tasks, and
achieving top-tier results. However, these models require predictions for all pairs of nodes, which implies a
quadratic space complexity and thus restricts their scalability.

2.2 Scalable Graph Generation

Efforts to enhance the scalability of graph generative models mainly follow two paradigms: hierarchical re-
finement and subgraph aggregation. The hierarchical refinement approach initially generates a low-resolution
graph, which undergoes successive refinements for enhanced detail (Yang et al., 2021; Karami, 2023). For
instance, the HGGT model (Jang et al., 2023) employs a hierarchical K2-tree representation. For molecule
generation, fragment-based models (Jin et al., 2018; 2020; Maziarz et al., 2022) adeptly assemble compounds
using pre-defined molecular fragments. Recently, Bergmeister et al. (2023) proposes a hierarchical diffusion
model based on spectrum-preserving local expansion algorithms, enabling the generation of non-attributed
large graphs. On the other side, the subgraph aggregation approach divides larger graphs into smaller
subgraphs, which are subsequently combined. For instance, SnapButton (Yang et al., 2021) enhances au-
toregressive models (Liu et al., 2018; Liao et al., 2019; Mercado et al., 2021) by merging subgraphs, and
SaGess (Limnios et al., 2023) trains a dense diffusion model to generate subgraphs sampled from a large
graph that are then merged.

Additionally, some approaches predict all node pairs in an auto-regressive manner. Kong et al. (2023) in-
tegrated diffusion with autoregressive models, suggesting learning the node ordering, which is theoretically
as difficult as isomorphism testing. Alternatively, EDGE (Chen et al., 2023) uses absorbing states to create
sparse diffusion by first generating a node degree distribution d0 and gradually constructing the adjacency
matrix A based on node degree changes during inference. While this factorization is universally applicable,
the feasibility of learning the conditional distribution pθ(A|d0) remains uncertain, as not all degree distribu-
tions can be achieved by undirected graphs. Besides, while latent diffusion is commonly used for scalability

3

Under review as submission to TMLR

in vision tasks, applying it to graphs is more challenging due to permutation equivariance, where the decoded
graph can appear in any permutation, necessitating graph matching. Current latent graph diffusion models
either use predefined orderings (Evdaimon et al., 2024), or perform diffusion on node features followed by
link prediction (Yang et al., 2024), with the latter underperforming SparseDiff or other dense models.

Overall, scalable generation models typically either introduce a dependence on node orderings or rely heavily
on extra assumptions on data distribution which can hinder their performance for small graph datasets, while
latent graph diffusion faces challenges for graph matching. In contrast, the SparseDiff model described in the
next section aims at making no assumption besides graph sparsity, while showing competitive performance
compared to other sparse and dense models across a wide range of graphs with different sizes.

3 SparseDiff: Sparse Discrete Diffusion for Graph Generation

We now introduce SparseDiff, a Sparse Denoising Diffusion Model that matches the performance of dense
models while significantly enhancing the scalability of graph diffusion to graphs with over 2, 000 nodes, a
significant improvement over previous dense models limited to around 200 nodes.

Unlike previous graph diffusion models, SparseDiff builds on a sparse representation of graphs. A graph G,
consisting of n nodes and m edges, is represented as a triplet (E, X, Y). Here, E ∈ N2×m indicates the edge
list with the indices of endpoints. Node and edge attributes are considered to be discrete and are encoded in
a one-hot format as X ∈ {0, 1}n×a and Y ∈ {0, 1}m×b, where a and b are the number of classes, respectively.
In particular, non-existing edges are considered an additional edge type, while edges in E are referred to as
existing edges. This sparse representation is widely supported by standard graph processing packages such
as Pytorch Geometric (Fey & Lenssen, 2019).

This work focuses solely on undirected graphs with discrete attributes, although continuous labels can be
seamlessly integrated, in a similar way to Vignac et al. (2023b). All considered graphs are free of self-loops.
Figure 1 provides an overview of the SparseDiff framework. Further details on the training and sampling
processes are provided in Algorithms 1 and 2, respectively. In the following parts, we specifically focus on
three critical components of the diffusion model as detailed in Section 2.1: the noise model, the denoising
network, and the sampling algorithm.

3.1 Efficient Noise Model

To improve memory efficiency, SparseDiff employs a dedicated noise model that maintains a similar sparsity
level of the noisy graph Gt throughout the noising trajectory under theoretical guarantee, as detailed in
Section 3.1.1. This model also reduces the space complexity for computing noisy graph distribution from
O(n2) to O(m) as detailed in Section 3.1.2.

3.1.1 Sparse Trajectory

Given that Gaussian noise applied to the adjacency matrix typically results in dense noisy graphs, where all
edge entries in the adjacency matrix acquire continuous values (Niu et al., 2020; Jo et al., 2022) — we opt for
a discrete diffusion framework. In this framework, we sample a graph structure from the noisy distribution,
allowing us to focus only on existing edges within the noisy graph, thereby reducing the number of edges
necessary for computation. In the discrete graph diffusion model, the noisy trajectory at each step is defined
by q(Gt|Gt−1) = (XQt

X , Y Qt
Y), where Qt represents the Markov transition matrix for that step t, which

transforms Gt−1 into a noisier distribution until reaching GT , which follows a predefined prior distribution
that is easy to sample. Different types of Markov transition matrices are employed to corrupt the graphs into
various prior distributions, including uniform distributions, a special absorbing state (Austin et al., 2021),
or marginal distributions (Vignac et al., 2023a).

In this work, we employ the marginal transition model, which favors transitions towards the dominant class
in the marginal distribution of the data. This strategy is particularly effective for preserving graph sparsity
by naturally biasing toward non-existing edges, which is the dominant edge class for large graphs. Formally,
considering the marginal distribution vectors pX for node types and pE for edge types, and denoting their

4

Under review as submission to TMLR

transposes by p′, the noise level at each step t is regulated by βt, with αt = 1− βt. Formally, the marginal
transition matrices are defined as follows:

Qt
X = αtI + βt1ap′

X , Qt
Y = αtI + βt1bp′

Y .

Here, 1a and 1b are column vectors of ones with dimensions equal to the number of classes a for nodes and
b for edges. These matrices incorporate a first term, the identity matrix I, to preserve the distribution from
Gt−1, and a second term to introduce noise aligned with the marginal distributions, namely pX and pE .

By employing continuous multiplication, we can derive the distribution at step t directly from the initial
clean graph using q(Gt|G) = (XQ̄t

X , Y Q̄t
Y), facilitating an immediate transition to the noisy state without

the need for iterative step-by-step calculations. For instance, the cumulative transition matrix Q̄t for nodes
X is as follows: Q̄t

X = Q1
XQ2

X . . . Qt
X = ᾱtI + (1 − ᾱt)1ap′

X , where ᾱt = α1α2 . . . αt. The parameter ᾱt

starts very close to 1 at ᾱ1 and approaches 0 by ᾱT , reflecting a gradual increase in noise influence over
diffusion process.

We note that this choice of marginal noise model does not guarantee that the noisy graph is always sparse.
However, it is the case with high probability, as stated by the following lemma, which is an application of
Desolneux et al. (2008) (detailed in Appendix A).

Lemma 3.1. (Probability Bound for Sparsity in Noisy Graphs) Consider an undirected graph with n nodes,
m edges, and no self-loops. If the edge ratio given by m/

(
n(n−1)

2

)
is denoted as r, and the edge ratio in the

noisy graph sampled from the marginal transition noise model is given by rt, then for n sufficiently large and
r < 1

4 , for any r < k < 1, we have:

log(P[rt ≥ k]) ∼ −n(n− 1)
2

(
k log k

r
+ (1− r) log 1− k

1− r

)
(1)

This lemma demonstrates that, in large and sparse graphs, the probability of the edge ratio rt in the noisy
graph exceeding a threshold k (where k > r) declines exponentially with graph size. For instance, in graphs
with a low edge ratio r and setting the edge threshold at k = 2r, the probability that the noisy graph exceeds
k edges is approximately c1e−c2n2r, where c1 and c2 are constants. This probability decreases substantially
as the graph size n grows.

3.1.2 Sparse Computation

The second requirement for the noise model is to achieve subquadratic space complexity in computing the
noisy distribution. Standard discrete diffusion models encode all edges using Y ∈ Rn×n×b and calculate
transition probabilities with Y Q̄t

Y ∈ Rn×n×b, incurring O(n2) space complexity. To enable sparse sampling,
we distinguish between existing and non-existing edges, as the latter are the main contributors to quadratic
complexity in sparse graphs.

Specifically, we compute Y Q̄t
Y ∈ Rm×b for existing edges, sampling their new labels directly from this

distribution, while edges transitioning to non-existing are removed to preserve sparsity in Gt. For non-
existing edges, which typically drive quadratic complexity, we introduce a novel three-step approach to
sample efficiently without dense adjacency matrices. This process includes:

1. Sampling the number of new existing edges emerging from current non-existing edges.

2. Sampling positions for those new edges, uniformly from non-occupied positions (c.f. Fig. 2).

3. Sampling the edge attributes for those new edges from all existing edge types.

Intuitively, this process decomposes a multinomial distribution for m states into a binomial distribution to
firstly filter out non-existing edges, followed by a narrower multinomial distribution over m−1 states for only
existing edges. Specifically, in Step 1, the number of new edges follows a Binomial distribution B(m̄t, qt),

5

Under review as submission to TMLR

A (0,2) (0,3)

B C

D

(0,1) (0,2) (0,3)

(1,3)

A B C D

A B C D

2. sample A B
(0, 2)

C
(0, 3) D E F

3. insert
existing edges new edges

1. flatten

4. convert back

Figure 2: Efficient sampling of new edge positions among non-existing positions is achieved using only
the edge list, avoiding the quadratic space complexity of an adjacency matrix. The process involves: 1)
Conceptually flattening the pair representations into a linear array, 2) Sampling uniformly 2 positions
from 4 non-occupied positions, selecting A (1st) and C (3rd), 3) Inserting offsets of 0 and 2 to the positions
of A and C to account for the count of existing edges before the selected positions, resulting in positions A
(1st) and E (5th), and 4) Converting these positions back to index pairs (0, 1) and (1, 3).

where m̄t = n(n−1)
2 − mt represents the total number of non-existing edges in Gt, and qt = 1 − Qt[0, 0]

denotes the transition probability from non-existing to existing edge types, which remains low for sparse
graphs. In Step 3, new edge labels are sampled from the Multinomial distribution as specified by Qt[0, 1 :].

However, Step 2—sampling new edge positions—presents additional challenges, as it requires efficiently
sampling a certain number of edges from a batch of graphs with varying sizes. Moreover, the sampling must
only occur from non-occupied positions, and we must only rely on the edge list rather than the adjacency
matrix to avoid high space complexity. As illustrated in Figure 2, we propose an algorithm to efficiently
handle this sparse sampling. The method begins by conceptually flattening all vacant positions. Simple
random sampling is then performed on these positions using randint to select 2 elements from 4. Crucially,
after sampling, the indices have to be adjusted by adding offsets to account for existing edges through a
specially designed algorithm, before remapping them back to index pairs.

3.2 Efficient Denoising Neural Network

The traditional model for graph diffusion typically outputs the probabilities for all edges and nodes, which
aligns closely with attention layers. These layers explicitly encode edge features with a computational
complexity of O(ln2de), where l is the number of layers and de represents the edge feature dimension. In
contrast, message-passing methods only account for existing edges, significantly reducing the complexity to
O(lmde), where m is the number of existing edges.

However, as discussed in Appendix D.6.1, relying solely on message-passing and link prediction using node
features tends to perform worse on both small and large datasets. This may be due to the inability to capture
long-term and complex interactions between distant nodes, resulting in degraded performance in practice.
To address this, we propose bridging the gap between a fully connected attention layer and message-passing
with a random attention mechanism. Specifically, we first integrate a convolutional transformer layer (Shi
et al., 2020), which leverages attention based only on existing edges. Additionally, we incorporate random
attention by sampling query edges randomly from all possible node pairs. By expectation, the model learns
the full attention map between nodes, enabling it to capture more complex interactions.

3.2.1 Edge Prediction Module using Sparse Attention

As previously discussed, relying solely on message-passing layers for edge prediction yields limited results. To
enhance the performance, we propose a random attention mechanism through a randomly selected subset of
node pairs, referred to as query edges. As indicated in Figure 3, the input to the denoising network, referred
to as message-passing edges denoted by (Em, Ym), thus includes two sets of edges: ‘noisy edges’ (Et, Y t),
representing existing edges in the noisy graph Gt, and query edges (Eq, Yq), which are random edges selected
for random attention and for loss computation. Noisy edges preserve the topological information of the noisy
graph, while query edges, sampled randomly from all node pairs, include both existing and non-existing edges,

6

Under review as submission to TMLR

noisy edge list query edge list message-passing edge list Et Eq Em

Gt

Figure 3: The sparse attention map used in the sparse denoising network is based on the message-passing
edge list Em. This edge list consists of noisy edges for graph attention Et (shown in blue) and uniformly
sampled query edges for random attention Eq (shown in red).

enabling the model to predict all edge types. To provide an unbiased estimator of the loss relative to dense
diffusion models, query edges are uniformly sampled from all node pairs of each graph.

Additionally, the query edges included in Eq are used for random attention but can also serve as shortcuts
within the message-passing network, enabling graph rewiring. This mechanism enhances information prop-
agation and helps mitigate over-squashing issues, as noted in studies such as (Alon & Yahav, 2020; Topping
et al., 2021; Di Giovanni et al., 2023).

To control the number of query edges, we define the ‘sparsity parameter’ λ as the ratio of query edges
to all node pairs. Given that query edges may overlap with noisy edges and the number of noisy edges
mt approximates the number of edges m in the clean graph according to Lemma 3.1, the total number of
message-passing edges is approximately upper bounded by (m+λn2). By setting λ = m

n2 , the computational
complexity of SparseDiff practically aligns linearly with the number of edges m in the clean graph G. In our
experiments, λ is chosen to enable an effective batch size for training, as detailed in Appendix C.2. This
parameter provides flexibility under varying computational conditions and maintains robust performance
across different values, as shown in Table 13.

3.2.2 Model Training

Our sparse denoising network adopts a graph transformer architecture featuring normalization, feed-forward,
and attention layers (Veličković et al., 2017). It incorporates a sparse attention mechanism for handling sparse
data (Shi et al., 2020), and integrates advanced features such as PNA pooling layers (Corso et al., 2020) and
FiLM layers (Perez et al., 2018), which are designed to enhance predictive accuracy and effectively manage
computational complexity. A detailed discussion of the model architecture is provided in Appendix B.

Training of the network involves predicting query edges Eq, and the loss is minimized using the cross-entropy
(CE) loss between the predicted distribution P̂ G

q = (P̂ X , P̂ Y
q) and the clean graph G. The loss function is

computed as follows: ∑
1≤i≤n

CE(Xi, P̂ X
i) + c

λ

∑
(i,j)∈Eq

CE(Yij , P̂ Y
ij), (2)

Here, the constant c weights nodes and edges in the loss calculation. It is rescaled by dividing by λ to
maintain a consistent edge-to-node weight ratio across different λ values.

Conceptually, the training process of SparseDiff is analogous to stochastic gradient descent compared to
gradient descent, with query edges serving as the random batches during training. This design ensures
alignment with dense models while maintaining controllable space complexity.

3.3 Iterative Inference

SparseDiff also remains memory-efficient during the inference stage, as visualized in Part (3) of Fig. 1.
We start by sampling the number of nodes n of the generated graph from the node distribution of the

7

Under review as submission to TMLR

Algorithm 1 Sparse training at step t with the sparsity parameter λ (Section 3.1 & 3.2)
1: Given the clean graph G = (E0, X0, Y 0);
2: Sample the noisy graph Gt = (Et, Xt, Y t);
3: Sample query edges Eq of size ⌈λn2⌉ ;
4: Em ← Et ∪Eq, Ym ← Y t ∪ Yq; ▷ Construct message-passing edges
5: Gm ← (Em, Xt, Ym); ▷ Construct the message-passing graph
6: (P̂ X , P̂ Y

q) = ϕθ(Gm, Eq); ▷ Predict the distribution of nodes and query edges
7: optimizer. step(CE(X̂0, P̂ X) + CE(Y 0

q , P̂ Y
q)); ▷ Loss calculation

Algorithm 2 Iterative inference at step t with the sparsity parameter λ (Section 3.3)
1: Initialize an empty graph Gt−1 with unlabeled nodes Xt−1 and no edges;
2: Randomly divide all node pairs into K = ⌈ 1

λ⌉ equal-sized chunks {C0, · · · , CK−1};
3: for k in range(K) do
4: Eq ← Ck; ▷ Set query edges
5: Em ← Et ∪Eq; ▷ Construct message-passing edges and its attributes Ym

6: Gm ← (Em, Xt, Ym); ▷ Construct the message-passing graph
7: (P̂ X , P̂ Y

q) = ϕθ(Gm, Eq); ▷ Predict the distribution of nodes and query edges
8: X̂ = Multinomial(P̂ X), Ŷq = Multinomial(P̂ Y

q); ▷ Sample labels
9: Xt−1 ← X̂; ▷ Assign node new labels

10: Y t−1 ← Y t−1 ∪ Ŷq[Ŷq! = 0], Et−1 ← Et−1 ∪ Êq[Ŷq! = 0]; ▷ Add existing edges

training set, which remains constant during the reverse process. Next, we sample a random graph from the
prior distribution GT ∼

∏n
i=1 Cate(pX) ×

∏
1≤i<j≤n Cate(pY), where pX and pY represent the marginal

probabilities of node and edge classes, respectively. The categorical distribution Cate(p) is used for both
nodes and edges. The sparse denoising network ϕθ is then recursively applied to predict the clean graph
from the noisy one. The denoising processes of SparseDiff are further visualized in Fig. 6.

Directly predicting the entire graph at each diffusion step t is impractical due to quadratic memory re-
quirements. Moreover, using dense graphs during inference could lead to a distribution shift compared to
the training stage, due to changes in the number of edges used for message-passing. To mitigate this, we
implement an iterative procedure to progressively cover all node pairs in Gt−1. As detailed in Algorithm 2
and in Part (3) of Fig. 1, we divide all node pairs randomly into K = ⌈ 1

λ⌉ equally-sized sets, representing
the query edges for each prediction step2. During each iteration k, the noisy graph Gt remains identical, and
a message-passing edge list Em is constructed using noisy edges and query edges from the kth set denoted
by Ek

q . SparseDiff then predicts the distributions for these query edges, samples labels, and integrates edges
classified as existing into Gt−1.

This iterative approach allows SparseDiff to maintain favorable memory complexity, albeit at the cost of
increased sampling time due to iterations at each diffusion step. However, unlike many scalable models,
SparseDiff does not impose additional assumptions about data distribution, such as clustering or degree
distribution. Despite the increased sampling time, the generation time for SparseDiff remains efficient due
to its ability to utilize larger batch sizes and to accelerate model computations using sparse inputs, as
reported in Table 12 of Appendix D.4.

Besides, drawing inspiration from D3PM (Austin et al., 2021) and DDIM (Song et al., 2020), we propose
a method to accelerate inference by reducing the inference steps by a factor k. In particular, at each step
t, the model predicts q(Gt−k|Gt, G) ∝ Gt(Qt)′ ⊙GQ̄t−k instead of q(Gt−1|Gt, G) ∝ Gt(Qt)′ ⊙GQ̄t−1. The
results for acceleration are reported in Table 5.

2When n(n−1)
2 is not divisible by K, we adjust by slightly overlapping the last set with the previous one.

8

Under review as submission to TMLR

(a) (b)

(c) (d)
Figure 4: Samples from SparseDiff trained on large graphs. (a) Ego training set (50 to 399 nodes); (b)
Generated Ego graphs; (c) Protein training set (100 to 500 nodes); (d) Generated Protein graphs.

4 Experiments

We conducted comprehensive experiments to evaluate the performance of SparseDiff across a diverse set of
graphs comparing against a comprehensive range of models. These include GraphRNN (You et al., 2018),
GRAN (Liao et al., 2019), GraphNVP (Madhawa et al., 2019), SPECTRE (Martinkus et al., 2022), GDSS
(Jo et al., 2022), DiGress (Vignac et al., 2023a), DruM (Jo et al., 2023), and several scalable models such as
BiGG (Dai et al., 2020), GraphARM (Kong et al., 2023), EDGE (Chen et al., 2023), HiGen (Karami, 2023),
and HGGT (Jang et al., 2023). For clarity, we refer to the local expansion method proposed by Bergmeister
et al. (2023) as GraphLE.

To ensure reliability, SparseDiff’s performance metrics are reported as mean ± standard deviation, derived
from five samples. This approach accounts for the instability caused by the small test set sizes in certain
datasets, specifically the SBM and Planar datasets. We bold the best-performing method for each metric.
The results underscore SparseDiff’s significant competitive advantage on datasets containing larger graphs,
such as Planar, SBM, Protein, Ego, Facebook and CORA, alongside its state-of-the-art performance on
datasets with small molecules, including QM9 and Moses (as detailed in Appendix D.3). Notably, SparseDiff
is the only model that demonstrates competitive performance across both large and small graphs, handling
both attributed and unattributed graphs effectively.

4.1 Large Graph Generation

Dataset We evaluate SparseDiff on diverse graph datasets to demonstrate its scalability and versatility.
First, we test its ability to generate edge-crossing-free planar graphs with 64 nodes. Next, we assess its
capacity to generate graphs with 2 to 5 communities using Stochastic Block Model (SBM) graphs, scaling
up to 200 nodes—the largest size seen in models like DiGress (Vignac et al., 2023a). We also evaluate
Ego and Protein datasets, with graphs up to 500 nodes, representing citation relationships and amino acid
interactions within 6 Angstroms. The largest edge ratio for these datasets is 8.8%, confirming their sparsity.
Detailed dataset statistics are in Appendix C.2. To further highlight our model’s scalability, we include the
generation of a large graph with 1,045 nodes in Table 8, and a large graph with 2,485 nodes in Table 9, both
thoroughly discussed in Appendix D.1.

Metrics For evaluation, we use maximum mean discrepancy (MMD) metrics, standard in graph generation
tasks. We report the validity of SBM graphs as the fraction passing a stochastic block model test, and for
Planar graphs, the fraction that are planar and connected. For larger datasets, we also use the Radial
Basis Function (RBF) MMD metric to assess fidelity and diversity using a randomly parametrized GNN
(Thompson et al., 2022). Since MMD metrics often yield small values that are difficult to compare directly,
we report Degree, Cluster, Orbit, Spectre and RBF MMD metrics in units of 10−3, 10−2, 10−2, 10−3

and 10−2, respectively. The theoretical optimal metrics, computed with MMD(train, test)2, are used as

9

Under review as submission to TMLR

Table 1: Sample quality on large graphs. The mean ratios to the reference of the Degree, Cluster, Orbit,
and Spectre MMD metrics are reported to enable a comprehensive comparison.

Class Model Degree(10−3)↓ Cluster (10−2)↓ Orbit (10−2)↓ Spectre (10−3)↓ Ratio ↓ RBF (10−2)↓

Protein Reference 0.3 0.7 0.3 0.5 1.0 1.4
Dense GRAN 2.0 4.9 13 5.1 17 –

DiGress 5.9±0.1 10±1.4 5.1±1.8 2.9±0.5 14±2.3 7.1±1.5
Sparse DruM 1.9 6.6 3.5 3.0 8.4 –

BiGG 1.0 2.6 2.3 4.5 5.9 –
HiGen 1.2 4.4 2.3 2.5 5.7 –
GraphLE 3.0 3.1 0.5 1.3 4.7 –
SparseDiff 1.5±0.3 3.4±0.3 0.5±0.8 1.4±0.2 3.6±1.1 3.8±0.7

Ego Reference 0.2 0.7 0.7 1.0 1.0 0.9
Dense DiGress 8.9±1.6 5.4±0.4 3.0±0.3 19±3.2 19±3.1 3.4±0.8
Sparse EDGE 58 18 5.2 – 107 6.6

HiGen 47 0.3 3.9 – 81 4.5
SparseDiff 3.7±0.4 3.2±0.1 2.0±0.4 5.6±0.8 7.9±0.9 2.6±0.3

Table 2: Sample quality on synthetic graphs. The mean ratios to the reference of the Degree, Cluster and
Orbit MMD metrics are reported to enable a comprehensive comparison.

Dataset Stochastic block model Planar

Model Degree↓ Cluster↓ Orbit↓ Ratio ↓ V.U.N.↑ Degree ↓ Cluster ↓ Orbit↓ Ratio ↓ V.U.N.↑
Reference 0.9 3.3 2.6 1.0 100% 0.2 3.1 0.1 1.0 100%
GRAN 5.5 5.8 7.9 3.6 25% 0.7 4.3 0.1 2.0 0%
GG-GAN 3.5 7.0 5.9 2.8 25% 63 118 123 528 0%
SPECTRE 1.5 5.2 4.1 1.6 53% 0.5 7.9 0.1 2.0 25%
DruM 0.7 4.9 4.5 3.6 85% 0.5 3.5 0.1 1.5 90%
HiGen 5.5 5.8 7.9 3.6 – – – – – –
GraphLE 12 5.2 6.7 5.8 45% 0.5 6.3 0.2 2.2 95%
DiGress 1.7±0.1 5.0±0.1 3.6±0.4 1.6±0.1 74%±4 0.8±0.0 4.1±0.3 0.5±0.0 1.2±0.4 76%±1
SparseDiff 1.6±0.9 5.0±0.1 4.5±0.9 1.7±0.5 75%±10 0.3±0.0 3.2±0.3 0.1±0.1 1.2±0.4 85%±9

the reference and represented by a light gray line. Detailed results with higher precision are available in
Appendix C.3 for facilitating comparison.

Results The results of large and synthetic graph generation are depicted in Tables 1 and 2, where SparseD-
iff consistently achieves top scores on aggregated average ratio metrics, trailing DiGress by only 0.1 on SBM.
Notably, SparseDiff reaches DiGress’s best performance within its variance, indicating that it could achieve
this benchmark with an optimal random seed, further underscoring its superior global performance. Specifi-
cally, while dense models like DiGress (Vignac et al., 2023a) excel on SBM and planar graphs, they struggle
significantly with larger datasets such as Ego and Protein due to their quadratic space complexity. For
graphs with over 1,000 nodes, as shown in Tables 8 and 9, these dense models fail immediately due to out-
of-memory issues. In contrast, SparseDiff efficiently supports graphs of all sizes, leveraging the controllable
sparsity parameter λ. Its performance on mid-sized datasets like SBM and Planar matches both dense and
sparse models, due to its robustness without relying on restrictive assumptions. SparseDiff also shows highly
competitive with scalable models across various metrics on larger datasets such as Ego and Protein.

4.2 Molecule Generation

Dataset and Metrics Given that our method behaves like dense models in the limit case where λ = 1,
it is expected to align with their performance on small graph datasets. We evaluate our approach using the
QM9 and Moses molecular datasets, anticipating its performance comparable to that of dense models. The
QM9 dataset (Wu et al., 2018) features molecules with up to 9 heavy atoms, while the Moses benchmark
(Polykovskiy et al., 2020), derived from ZINC Clean Leads, includes drug-sized molecules with extensive
assessment tools. In QM9, we add formal charges as discrete node features during diffusion, similar to

10

Under review as submission to TMLR

Table 3: Molecule generation on QM9 with implicit hydrogens. Validity, uniqueness, and connectivity metrics
are reported as percentages.

Dense Models | Sparse Models
Model Valid ↑ Unique ↑ Conn. ↑ FCD ↓ Model Valid ↑ Unique ↑ Conn. ↑ FCD ↓
SPECTRE 87.3 35.7 - - GraphARM 90.3 - - 1.22
GraphNVP 83.1 99.2 - - EDGE 99.1 100 - 0.46
GDSS 95.7 98.5 - 2.9 HGGT 99.2 95.7 - 0.40
DiGress 99.3±0.0 95.9±0.2 99.4±0.2 0.15±0.01 SparseDiff 99.2±0.1 96.4±0.1 99.8±0.1 0.12±0.00

Vignac et al. (2023b), and apply the same to DiGress for consistency. We assess molecular performance
by the proportion of connected graphs, validity of the largest connected component verified by RDKit, and
uniqueness of over 10,000 molecules. Additionally, we use the Frechet ChemNet Distance (FCD) (Preuer
et al., 2018) to measure molecular similarity, excluding 0.96% of invalid molecules for FCD analysis.

Results Table 3 demonstrates that SparseDiff consistently outperforms other scalable methods on the FCD
metric, highlighting its effectiveness for small, structured graphs even without significant sparsity advantages.
Additionally, SparseDiff achieves results comparable to the state-of-the-art dense model, DiGress, across
other metrics. Additional results for QM9 with explicit hydrogens and the Moses dataset (Tables 10 and 11
in Appendices D.2 and D.3) confirm that SparseDiff matches or exceeds the performance of the state-of-the-
art model across various molecular datasets We further validate the robust performance of SparseDiff under
different sparsity parameters λ to confirm its stability (Tables 13 in Appendix D.5).

4.3 Efficiency Analysis

Table 4: Convergence comparison of graph diffusion
models after 24 hours of training.

Model Deg.↓ Clust.↓ Orbit↓ Ratio ↓ RBF↓

EDP-GNN 22 36 9.9 59 -
DiGress 4.0 4.9 3.4 11 5.6
EDGE 46 18 4.5 87 3.6
GraphLE 58 23 4.2 110 -
SparseDiff 2.3 4.7 3.6 7.8 3.5

Figure 5: Convergence comparison between Di-
Gress and SparseDiff.

12 24 36 48
Training Time (h)

0.00

0.02

0.04

0.06

RB
F

M
M

D
(

) SparseDiff
DiGress

Training efficiency We compare SparseDiff’s performance on the Ego dataset against other diffusion
models, including dense models like EDP-GNN and DiGress, and sparse models such as EDGE and GraphLE.
Table 4 shows that after 24 hours of training on a V100-32G machine, SparseDiff outperforms all metrics
except for a minor increase in Orbit MMD compared to DiGress. The comparison of graph diffusion models’
sampling speeds is further presented in Table 12 in Appendix D.4. Figure 5 shows that SparseDiff has a
significantly faster convergence speed compared to DiGress, achieving satisfactory results within two days.
Notably, a SparseDiff model trained for 12 hours demonstrates an RBF MMD comparable to a DiGress
model trained for 48 hours.

Table 5: Inference acceleration results.
Dataset Steps Deg.↓ Clust.↓ Orbit ↓ Ratio ↓ RBF↓

Ego
1000 3.6 3.1 1.5 8.2 2.0
500 2.3 2.9 2.0 6.2 2.1
200 3.7 3.1 1.6 8.4 2.3

Dataset Steps Deg. Clust. Orbit Ratio V.U.N

Planar
1000 0.3 3.2 0.1 1.2 85%
500 0.3 3.4 0.2 1.5 80%
200 0.5 3.7 0.4 2.6 69%

Inference efficiency We test the Ego and Planar
datasets with different numbers of inference steps
(1000, 500, and 200) after training with T = 1, 000
steps. The results, presented in Table 5, sur-
prisingly demonstrate that even with a 5-fold in-
crease in generation speed (down to 200 steps), our
model keeps performing, and consistently outper-
forms most other dense and scalable models, high-
lighting its potential for more efficient generation.

11

Under review as submission to TMLR

5 Conclusion

In this work, we introduced SparseDiff, a scalable discrete denoising diffusion model for graph generation.
SparseDiff offers precise control over computational resources by predicting only a subset of edges at each
step. Experimental results highlight its superior and robust performance across graphs of varying sizes,
making it applicable to tasks such as generating large molecules and community graphs. Additionally, the
query edge design, sparse transformer architecture, and iterative sampling procedure of SparseDiff can be
seamlessly extended to other iterative graph generation models. Furthermore, the proposed efficient sampling
algorithm for non-existing edges is applicable for graph rewiring in various other domains. While SparseDiff
meets the demands of most scenarios, its scalability and ability to generate graphs with out-of-distribution
node counts could be further enhanced by incorporating a structured hierarchical approach, which is expected
for future work.

References
Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. arXiv

preprint arXiv:2006.05205, 2020.

Rohan Asthana, Joschua Conrad, Youssef Dawoud, Maurits Ortmanns, and Vasileios Belagiannis. Multi-
conditioned graph diffusion for neural architecture search. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=5VotySkajV.

Jacob Austin, Daniel Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured de-
noising diffusion models in discrete state-spaces. In Advances in Neural Information Processing Systems,
volume 34, 2021.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue
Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science, 373(6557):871–876, 2021.

Albert-László Barabási. Network science. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 371(1987), 2013.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient and scal-
able graph generation through iterative local expansion. arXiv preprint arXiv:2312.11529, 2023.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation via
discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count substructures?
In Advances in neural information processing systems, volume 33, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood
aggregation for graph nets. Advances in Neural Information Processing Systems, 2020.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative modeling for
sparse graphs. In International Conference on Machine Learning. PMLR, 2020.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. In
ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models, 2018.

Agnés Desolneux, Lionel Moisan, and Jean-Michel Morel. Estimating the binomial tail. From Gestalt Theory
to Image Analysis: A Probabilistic Approach, pp. 47–63, 2008.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances in
Neural Information Processing Systems, 2021.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M. Bronstein.
On over-squashing in message passing neural networks: The impact of width, depth, and topology. In
Proceedings of the 40th International Conference on Machine Learning, 2023.

12

https://openreview.net/forum?id=5VotySkajV

Under review as submission to TMLR

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci, 1960.

Iakovos Evdaimon, Giannis Nikolentzos, Michail Chatzianastasis, Hadi Abdine, and Michalis Vazirgian-
nis. Neural graph generator: Feature-conditioned graph generation using latent diffusion models. arXiv
preprint arXiv:2403.01535, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

John Ingraham, Max Baranov, Zak Costello, Vincent Frappier, Ahmed Ismail, Shan Tie, Wujie Wang,
Vincent Xue, Fritz Obermeyer, Andrew Beam, et al. Illuminating protein space with a programmable
generative model. bioRxiv, 2022.

Yunhui Jang, Dongwoo Kim, and Sungsoo Ahn. Hierarchical graph generation with k2-trees. arXiv preprint
arXiv:2305.19125, 2023.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International conference on machine learning. PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using
structural motifs. In International Conference on Machine Learning. PMLR, 2020.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system of
stochastic differential equations. arXiv preprint arXiv:2202.02514, 2022.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with destination-predicting diffusion
mixture. arXiv preprint arXiv:2302.03596, 2023.

Mahdi Karami. Higen: Hierarchical graph generative networks. arXiv preprint arXiv:2305.19337, 2023.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang. Autoregres-
sive diffusion model for graph generation, 2023. URL https://openreview.net/forum?id=98J48HZXxd5.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Xujia Li, Yuan Li, Xueying Mo, Hebing Xiao, Yanyan Shen, and Lei Chen. Diga: Guided diffusion model
for graph recovery in anti-money laundering. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David Duvenaud,
Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
In NeurIPS, 2019.

Stratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, and Andrew El-
liott. Sagess: Sampling graph denoising diffusion model for scalable graph generation. arXiv preprint
arXiv:2306.16827, 2023.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational
autoencoders for molecule design. Advances in neural information processing systems, 31, 2018.

13

https://openreview.net/forum?id=98J48HZXxd5

Under review as submission to TMLR

Manuel Madeira, Dorina Thanou, and Pascal Frossard. Tertiary lymphoid structures generation through
graph-based diffusion. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 37–53. Springer, 2023.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible flow
model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. arXiv preprint
arXiv:2204.01613, 2022.

Krzysztof Maziarz, Henry Richard Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider,
Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molecular scaffolds with
structural motifs. In International Conference on Learning Representations (ICLR), 2022.

Andrew McCallum, Kamal Nigam, Jason D. M. Rennie, and Kristie Seymore. Automating the construction
of internet portals with machine learning. Information Retrieval, 3, 2000.

Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming Chen, and
Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning: Science and Technology,
2021.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permutation
invariant graph generation via score-based generative modeling. In International Conference on Artificial
Intelligence and Statistics. PMLR, 2020.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai Tatanov,
Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark Veselov, et al. Molec-
ular sets (moses): a benchmarking platform for molecular generation models. In Frontiers in pharmacology.
Frontiers Media SA, 2020.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer. Fréchet
chemnet distance: a metric for generative models for molecules in drug discovery. Journal of chemical
information and modeling, 58(9):1736–1741, 2018.

Can Rong, Jingtao Ding, Zhicheng Liu, and Yong Li. City-wide origin-destination matrix generation via
graph denoising diffusion. arXiv preprint arXiv:2306.04873, 2023.

Christoph Schweimer, Christine Gfrerer, Florian Lugstein, David Pape, Jan A. Velimsky, Robert Elsässer,
and Bernhard C. Geiger. Generating simple directed social network graphs for information spreading. In
Proceedings of the ACM Web Conference 2022. ACM, 2022. URL http://dx.doi.org/10.1145/3485447.
3512194.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction:
Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509, 2020.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational
autoencoders. In International conference on artificial neural networks. Springer, 2018.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evaluation
metrics for graph generative models. arXiv preprint arXiv:2201.09871, 2022.

14

http://dx.doi.org/10.1145/3485447.3512194
http://dx.doi.org/10.1145/3485447.3512194

Under review as submission to TMLR

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In The Eleventh International Conference on
Learning Representations, 2023a.

Clément Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d denoising
diffusion for molecule generation. In ECML/PKDD, 2023b.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. In Chem.
Sci. The Royal Society of Chemistry, 2018.

Ling Yang, Zhilin Huang, Zhilong Zhang, Zhongyi Liu, Shenda Hong, Wentao Zhang, Wenming Yang,
Bin Cui, and Luxia Zhang. Graphusion: Latent diffusion for graph generation. IEEE Transactions on
Knowledge and Data Engineering, 2024.

Shuai Yang, Xipeng Shen, and Seung-Hwan Lim. Revisit the scalability of deep auto-regressive models for
graph generation. In 2021 International Joint Conference on Neural Networks (IJCNN), 2021.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay, and
Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation. arXiv preprint
arXiv:2302.02277, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine learning. PMLR, 2018.

15

Under review as submission to TMLR

A Proof of Lemma 3.1

The lemma for a noisy graph with guaranteed sparsity comes directly from the proposition regarding the
tail behavior of a binomial distribution (Desolneux et al., 2008) as follows:
Proposition A.1. (Tail behavior of a binomial distribution)

Let Xi, i = 1, ...l be independent Bernoulli random variables with parameter 0 < p < 1
4 and let Sl =

∑l
i=1 Xi.

Consider a constant p < r < 1 or a real function p < r(l) < 1. Then according to the Hoeffding inequality,
B(l, k, p) = P[Sl ≥ k] satisfies:

−1
l
logP[Sl ≥ rl] ≥ rlog

r

p
+ (1− p)log

1− r

1− p
(3)

For sparse graphs, the edge ratio r is clearly smaller than 1
4 . Consider then Bernoulli random variables with

the parameter r and a noised edge ratio r < k < 1 with l = n(n− 1)/2 (i.e. number of all node pairs in an
undirected graph without self-loops) draws, and note the sampled ‘existing’ edge number Sn(n−1)/2 as mt,
we have:

log(P[rt = mt

n(n− 1)/2 ≥ k]) ≤ −n(n− 1)
2 [k log k

r
+ (1− r) log 1− k

1− r
] (4)

B Model Architecture

Our sparse denoising network adopts the graph transformer architecture Veličković et al. (2017), featuring
normalization, feed-forward, and attention layers. To handle sparse data, it incorporates the sparse attention
mechanism (Shi et al., 2020) based on weighted message-passing layers and integrates enhancements from
Vignac et al. (2023a), such as PNA pooling layers (Corso et al., 2020) and FiLM layers (Perez et al., 2018).

Precisely, we introduce the FiLM layer and the PNA layer inside the model architecture to enhance its
performance. Precisely, the FiLM layer is used to combine features at different scales, such as node and edge
features. Specifically, given two features M1 and M2, and trainable parameters W1 and W2, the FiLM layer
output is calculated as FiLM(M1, M2) = M1W1+(M1W2)⊙M2+M2. As an illustration, within the convo-
lutional layer, the graph feature M2 is integrated with edge features M1 to enhance predictions. While PNA
layer is used as a specialized pooling layer to obtain information from different dimensions of a specific feature.
Given the feature X and trainable parameter W , PNA(X) = cat(max(X), min(X), mean(X), std(X)) W .
For example, node features X are forwarded to a PNA layer for extracting global information across different
scales, which is subsequently added to the graph feature to enhance its representation.

Finally, we enrich the message-passing graph with additional encodings, such as the graph Laplacian and
cycle counts, to enhance structural and positional information (detailed in Appendix B.1). These encodings
can only be computed effectively when the noisy graphs are sparse, which is another significant advantage
of discrete diffusion models using marginal transitions. It is worth noting that not all these encodings can
be computed in sub-quadratic time. However, in practice, this does not pose an issue as they are not
used for back-propagation, which arises as the primary complexity bottleneck during training. For instance,
for the large Protein dataset, computing these encodings is five times faster than the forward pass itself.
Nevertheless, on very larger graphs, expensive ones should not be computed.

B.1 Additional Encodings

During training, we augment model expressiveness with additional encodings. To make things clear, we
divide them into encodings for edges, nodes, and for graphs.

Encoding for graphs We first incorporate graph eigenvalues, known for their critical structural insights,
and cycle counts, addressing message-passing neural networks’ inability to detect cycles (Chen et al., 2020).

16

Under review as submission to TMLR

0 t1000 800 600 400 200

Figure 6: Visualization of iterative generation for Planar and SBM graphs.

The first requires n3 operations for matrix decomposition, the second requires n2 for matrix multiplication,
but both are optional in our model and do not significantly limit scalability even with graphs up to size
500. In addition to the previously mentioned structural encodings, we integrate the degree distribution to
enhance the positional information within the graph input, which is particularly advantageous for graphs
with central nodes or multiple communities. Furthermore, for graphs featuring attributed nodes and edges,
the inclusion of node type and edge type distributions also provides valuable benefits.

Encoding for nodes At the node level, we use graph eigenvectors, which are fundamental in graph theory,
offering valuable insights into centrality, connectivity, and diverse graph properties.

Encoding for edges To aid in edge label prediction, we introduce auxiliary structural encodings related
to edges. These include the shortest distance between nodes and the Adamic-Adar index. The former
enhances node interactions, while the latter focuses on local neighborhood information. Due to computational
constraints, we consider information within a 10-hop radius, categorizing it as local positional information.

Molecular information In molecular datasets, we augment node features by incorporating edge valency
and atom weights. Additionally, formal charge information is included as an additional node label for
diffusion and denoising during training, as formal charges have been experimentally validated as valuable
information (Vignac et al., 2023b).

C Experimental setup

In our experimental setup, we utilize a single V100-32G GPU machine, which is particularly prone to
scalability issues, to demonstrate that our method allows users with limited GPU resources to effectively
train on larger graphs. Detailed specifications regarding workers, memory allocation, execution time, and
optimizers are meticulously indicated in the configuration details provided in our code.

As for dataset splits, we adhere to the framework established by DiGress. Specifically, for the QM9 dataset,
we implement a split comprising 100k molecules for training, 20k for validation, and 13k for evaluating
likelihood on the test set. For the Planar, SBM, and Protein datasets, employing a seed of 1234, we randomly
assign 20% of the graphs to testing, while 80% of the remaining graphs are utilized for training, and 20%
for validation. For the Ego dataset, to ensure consistency with previous methods and a fair comparison, we
maintain a split of 80% for training and 20% for testing, with 20% of the training set additionally used for
validation purposes. All configuration details are comprehensively documented in the code provided.

C.1 MMD metrics

In our research, we carefully select specific metrics tailored to each dataset, with a primary focus on four
widely recognized Maximum Mean Discrepancy (MMD) metrics. These metrics use the total variation
(TV) distance, as detailed in Martinkus et al. (2022). They encompass node degree (Deg), clustering
coefficient (Clus), orbit count (Orb), and graph spectra (Spec). The first three local metrics compare

17

Under review as submission to TMLR

the degree distributions, clustering coefficient distributions, and the occurrence of all 4-node orbits within
graphs between the generated and training samples. Additionally, the comparison of graph spectra is realized
by computing the eigenvalues of the normalized graph Laplacian, providing complementary insights into the
global properties of the graphs.

C.2 Statistics of the datasets

Table 6: Statistics for the datasets employed in our experiments.

Name Graph number Node range Edge range Edge Ratio (%) λ (%)
QM9 133,885 [2,9] [2, 28] [20, 56] 100
QM9(H) 133,885 [3, 29] [4, 56] [7.7, 44] 50
Moses 1,936,962 [8, 27] [14, 62] [8.0, 22] 50
Planar 200 [64, 64] [346, 362] [8.4, 8.8] 50
SBM 200 [44, 187] [258, 2258] [6.0, 17] 25
Ego 757 [50, 399] [112, 2124] [1.2, 11] 10
Protein 918 [100, 500] [372, 3150] [8.9, 6.7] 10

To provide a more comprehensive overview of the various scales found in ‘existing’ graph datasets, we present
here key statistics for them. These statistics encompass the number of graphs, the range of node numbers,
the range of edge numbers, the edge ratio for ‘existing’ edges, and the sparsity parameter λ used for training,
i.e. the proportion of ‘existing’ edges among all node pairs. In our consideration, we focus on undirected
graphs. Therefore, when counting edges between nodes i and j, we include the edge in both directions.

C.3 Raw results

Table 7: Raw results on the SBM, Planar, Protein, and Ego datasets.

Model Deg. (e-3)↓ Clust. (e-2)↓ Orbit (e-2)↓ Spec. (e-3)↓ FID↓ RBF MMD (e-2)↓
SBM
Training set 0.85 3.32 2.55 2.74 1.37 3.23
SparseDiff 1.57±0.91 5.04±0.06 4.51±0.90 6.68±2.04 4.55±2.01 4.98±0.06
Planar
Training set 0.19 3.10 0.05 3.82 1.57 8.89
SparseDiff 0.32±0.01 3.25±0.35 0.09±0.08 6.99±0.92 2.94±3.15 9.84±0.91
Protein
Training set 0.32 0.68 0.32 0.49 1.36 1.37
SparseDiff 1.45±0.30 3.35±0.33 0.53±0.78 1.35±0.16 5.97±1.07 3.77±0.65
Ego
Training set 0.16 0.71 0.69 0.98 0.07 0.86
SparseDiff 3.70±0.44 3.18±0.10 1.98±0.42 5.63±0.80 4.84±1.56 2.60±0.31

To ease comparison with other methods, Table 7 provides the raw numbers (not presented as ratios) for the
SBM, Planar, Ego, and Protein datasets. Note that this table contains the FID metrics from Thompson
et al. (2022), which we did not include in the main text. The reason is that we found this metric to be very
brittle, with some evaluations giving a very large value that would dominate the mean results. Besides, we
have identified a discrepancy in the Spectre metrics reported in the study by Martinkus et al. (2022) when
computed under non-parallel computation. We thus provide the updated values for reference and use the
updated value for ratio calculation in Table 2 and in Table 1.

18

Under review as submission to TMLR

D Additional experiments

D.1 Training with larger graphs

However, using the same graph for both training and evaluation poses potential risks, as high performance
metrics could merely reflect overfitting to the training graph. Therefore, we report results on only the two
relevant datasets in the appendix.

Table 8: Large graph generation on the Facebook dataset. Triangles and squares are abbreviated as ‘tri’ and
‘squ’ in the table, while PLE represents power law exp.

Model Num Nodes Num Edges Num Triangles Num Squares Max Deg Clust Assort PLE CPL
Ref 1045 27,755 446,846 34,098,662 1044 0.57579 -0.02543 1.28698 1.94911
SAGESS-Uni 1043 27,758 429,428 35,261,545 999 0.52098 -0.01607 1.29003 2.00800
SAGESS-RW 1009 27,764 490,844 43,006,252 1001 0.56138 -0.02266 1.29398 1.96014
SAGESS-Ego 1005 27,761 515,928 45,421,130 295 0.43074 0.34074 1.29381 2.65926
NetGAN 1045 27,755 262,574 15,635,626 849 0.39773 -0.01821 1.27429 2.13730
CELL 1045 27,755 250,968 14,855,676 474 0.30854 0.12788 1.27490 2.38650
DCSBM 1041 27,092 339,448 26,714,948 733 0.37549 0.07125 1.28845 2.33021
SaGess 1043 27,758 429,428 35,261,545 999 0.52098 -0.01607 1.29003 2.00800
SparseDiff 1045 27,763 446,819 34,095,513 1044 0.43310 -0.02536 1.28687 1.94921

We first train on the large graph with 1045 nodes from the Facebook dataset, following the SaGess (Limnios
et al., 2023) setting. SparseDiff was evaluated using SaGess metrics as a reference. In the provided table,
we present SaGess-RW, demonstrating the best results among the three proposed SaGess models. Notably,
SaGess generates small graphs and concatenates them to meet the required number of edges, while SparseDiff
generates a single large graph based on the specified node count. This explains SparseDiff’s advantage in
the ‘num nodes’ metric and SaGess’s advantage in the ‘num edges’ metric. Furthermore, SparseDiff closely
aligns with real data statistics, except for the clustering coefficient, showcasing not only its scalability up to
1000 nodes but also its strong performance on such single-graph datasets.

Table 9: Large graph generation on the CORA dataset.

Model EO PLE NTC CC CPL AC
Ref 100 1.885 1 0.090 6.311 -0.071
OPB 10.9 1.852 0.097 0.008 4.476 -0.037
HDOP 0.9 1.849 0.113 0.009 4.770 -0.030
CELL 10.3 1.774 0.009 0.002 5.799 -0.018
CO 9.7 1.776 0.009 0.002 5.653 0.010
TSVD 6.7 1.858 0.349 0.082 4.908 -0.006
VGAE 1.5 1.717 0.120 0.220 4.934 0.002
GRNN 0.4 1.822 0.043 0.011 6.146 0.043
EDGE 1.1 1.755 0.446 0.034 4.995 -0.046
SparseDiff (pos) 0.3 1.896 1.434 0.075 4.747 -0.043

We evaluate our model on the CORA dataset (McCallum et al., 2000), as used in EDGE (Chen et al.,
2023). The CORA graph consists of 2,485 nodes. Our model is trained with positional encoding for a fair
comparison of the edge overlap ratio (EO), with the sparsity parameter set to 0.05. The performance results,
after just one day of training, are presented in the table below. As shown, SparseDiff outperforms EDGE
in 3 out of 5 metrics and remains competitive in the AC metric, further validating the scalability of our
method.

19

Under review as submission to TMLR

D.2 QM9 with explicit hydrogens

Table 10: Unconditional generation on QM9 with explicit hydrogens. On small graphs such as QM9, sparse
models are not beneficial, but SparseDiff still achieves very good performance.

Model Connected Valid↑ Unique↑ Atom stable↑ Mol stable↑
DiGress – 95.4 97.6 98.1 79.8
DiGress + charges 98.6 97.7 96.9 99.8 97.0
SparseDiff(ours) 98.3±.08 97.9±.13 97.4±.10 - -

We additionally report the results for QM9 with explicit hydrogens in Table 10. Having explicit hydrogens
makes the problem more complex because the resulting graphs are larger. We observe that SparseDiff
achieves better validity than DiGress and has comparable results on other metrics when both are utilizing
charges.

D.3 Moses benchmark evaluation

Table 11: Mean and standard deviation across 5 samplings on the Moses benchmark. SparseDiff has a similar
performance to DiGress, despite a shorter training time.

Model Connected ↑ Valid (%) ↑ Unique (%) ↑ Novel (%) ↑ Filters (%) ↑
GraphINVENT – 96.4 99.8 – 95.0
DiGress – 85.7 100.0 95.0 97.1
SparseDiff 94.8±.1 84.7±.2 100.0±.0 95.1±.1 97.0±.2
Model FCD ↓ SNN (%) ↑ Scaf (%) ↑ Frag (%) ↑ IntDiv (%) ↑
GraphINVENT 1.22 53.9 12.7 98.6 85.7
DiGress 1.19 52.2 14.8 99.6 85.3
SparseDiff 1.28±.01 52.2±.0 15.5±1.3 99.8±.0 85.4±.0
Model IntDiv2 (%) ↑ logP (e−2) ↓ SA(e−2) ↓ QED (e−3) ↓ Weight (%) ↓
GraphINVENT 85.1 0.67 4.5 0.25 16.1
DiGress − 3.4 3.6 2.91 1.42
SparseDiff 84.8±.0 3.0±.3 5.4±.2 1.21±.21 5.58±.15

Moses is an extensive molecular dataset with larger molecular graphs than QM9, offering a much more com-
prehensive set of metrics. While autoregressive models such as GraphINVENT are recognized for achieving
higher validity on this dataset, both SparseDiff and DiGress exhibit advantages across most other metrics.
Notably, SparseDiff closely aligns with the results achieved by DiGress, affirming the robustness of our
method on complex datasets.

D.4 Sampling Speed Comparison

Table 12: Sampling speed for generating 8 Ego graphs.

Model EDP-GNN DiGress EDGE GraphLE SparseDiff SparseDiff (200 steps)
Time (min) 5 32 2 20 28 5

The speed of generating 8 Ego graphs is demonstrated in Table 12. Notably, for GraphLE, the batch size
is constrained to 2 due to its substantial memory requirements. An additional column labeled “SparseDiff

20

Under review as submission to TMLR

(200 steps)” represents the sampling time after reducing the inference steps from 1,000 to 200 through
acceleration strategies. The table illustrates that SparseDiff maintains comparable speed to dense models
without significant compromise on space efficiency and can be significantly accelerated during sampling.

D.5 Influence of the sparsity parameter

Table 13: Unconditional generation on QM9 under different sparsity parameters λ.

λ Valid↑ Unique↑ Connected↑ FCD↓
100% 99.23±0.06 96.37±0.13 99.76±0.06 0.117±0.004
50% 99.12±0.05 96.80±0.18 99.61±0.05 0.107±0.007
25% 99.16±0.06 96.54±0.19 99.59±0.06 0.119±0.006
10% 99.11±0.09 96.89±0.15 99.61±0.01 0.105±0.004

Table 13 above shows the results of unconditional generation on the QM9 dataset under different sparsity
parameters (λ). The performance of SparseDiff remains consistent across various λ values, with metrics
for connectivity, validity, uniqueness, and Frechet ChemNet Distance (FCD) showing minimal changes from
100% to 10% λ. For example, the validity metric stays between 99.12% and 99.23%, and uniqueness ranges
from 96.37% to 96.89%. We remark that, for λ values of 10% and 25%, the model was trained for twice
as many epochs since the cross-entropy loss considers fewer edges per epoch, necessitating more epochs
for convergence. Despite this, all models exhibit consistent performance across different λ values after
convergence, which highlights the robustness and stability of SparseDiff in generating high-quality molecular
graphs.

D.6 Ablations

This part presents 2 ablation experiments that motivate our approach. SparseDiff builds upon an experimen-
tal observation and a hypothesis. Firstly, our experiments demonstrate that relying solely on node features
for link prediction yields unsatisfactory results. This observation encouraged us to design the message-passing
graph that contains all edges to be predicted (i.e. query edges) as the message-passing graph to directly
obtain their edge features. Secondly, we hypothesized that preserving the same distribution of edge types
as observed in dense graphs for loss calculation is advantageous for training. This hypothesis necessitates
the sampling of query edges within each graph in a batch of graphs with varying sizes, thereby introducing
increased complexity to the algorithm design process.

D.6.1 Link Prediction

Table 14: Influence of including edges features for edge prediction.

Model Deg ↓ Clus ↓ Orb↓ Spec↓ FID↓ RBF MMD↓
Link Pred 0.0043 0.0721 0.0275 0.0344 1.51e6 0.0315
SparseDiff 0.0019±.00 0.0537±.00 0.0299±.00 0.0050±.00 16.1±12.9 0.0483±.01

Table 15: Influence of including edges features for edge prediction on the QM9 dataset.

Model Valid↑ Unique↑ Connected↑ FCD↓
Link Pred 98.12 96.25 99.58 0.310
SparseDiff 99.23±0.06 96.37±0.13 99.76±0.06 0.117±0.004

In Table 14, the model that does not explicitly incorporate edge features for edge prediction underperforms
across all metrics, except for RBF MMD and orbit. Similarly, in Table 15, the link prediction-based method

21

Under review as submission to TMLR

fails to achieve comparable validity, even though QM9 is widely recognized as an easy dataset to learn.
Both experiments highlight a subtle yet challenging gap between message-passing and transformer-based
architectures for graph generation, as the latter provides richer topological interactions. While, in our case,
this ablation proves detrimental, developing a more robust link prediction module could simplify the task to
link prediction and significantly reduce space complexity.

D.6.2 Query edges with proper distribution

Table 16: Influence of edge loss distribution on EGO dataset.

Loss based on Deg ↓ Clus ↓ Orb↓ Spec↓ FID↓ RBF MMD↓
Comp graph 0.0021 0.0566 0.0270 0.0100 28.2 0.0396
Query graph 0.0019±.00 0.0537±.00 0.0299±.00 0.0050±.00 16.1±12.9 0.0483±.01

In order to emphasize the importance of preserving the edge distribution when computing losses, we conduct
an experiment where we assess the performance of a model trained using all message-passing edges as opposed
to solely using query edges. The former results in an increased emphasis on ‘existing’ edges during training
compared to SparseDiff. Similarly, we use the Ego dataset for initial experiments. Table 16 shows that using
edges of the message-passing graph Gm results in worse performance on most of the metrics, which indicates
the importance of keeping a balanced edge distribution for loss calculation.

22

Under review as submission to TMLR

E Visualization

(a) Training graphs.

(b) Generated graphs.
Figure 9: Visualization for Moses dataset.

23

Under review as submission to TMLR

(a) Training graphs.

(b) Generated graphs.
Figure 10: Visualization for Planar dataset.

24

Under review as submission to TMLR

(a) Training graphs.

(b) Generated graphs.
Figure 11: Visualization for SBM dataset.

25

Under review as submission to TMLR

(a) Training graphs.

(b) Generated graphs.
Figure 12: Visualization for Ego dataset.

26

Under review as submission to TMLR

(a) Training graphs.

(b) Generated graphs.
Figure 13: Visualization for Protein dataset.

27

	Introduction
	Related Work
	Denoising Diffusion Models for Graphs
	Scalable Graph Generation

	SparseDiff: Sparse Discrete Diffusion for Graph Generation
	Efficient Noise Model
	Sparse Trajectory
	Sparse Computation

	Efficient Denoising Neural Network
	Edge Prediction Module using Sparse Attention
	Model Training

	Iterative Inference

	Experiments
	Large Graph Generation
	Molecule Generation
	Efficiency Analysis

	Conclusion
	Proof of Lemma 3.1
	Model Architecture
	Additional Encodings

	Experimental setup
	MMD metrics
	Statistics of the datasets
	Raw results

	Additional experiments
	Training with larger graphs
	QM9 with explicit hydrogens
	Moses benchmark evaluation
	Sampling Speed Comparison
	Influence of the sparsity parameter
	Ablations
	Link Prediction
	Query edges with proper distribution

	Visualization

