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Abstract

Pre-trained generative language models have achieved impressive performances on1

dialogue generation tasks. However, when generating responses for a conversation2

that requires complicated factual knowledge, they are far from perfect, due to the3

lack of mechanisms to retrieve, encode, and reflect the knowledge in the generated4

responses. Unlike the methods working with unstructured text that are ineffi-5

cient in retrieving and encoding the knowledge, some of the knowledge-grounded6

dialogue generation methods tackle this problem by leveraging the structured7

knowledge from the Knowledge Graphs (KGs). However, existing methods do8

not guarantee that the language model utilizes a relevant piece of knowledge9

for the given dialogue, and that the model generates dialogues which are consis-10

tent with the knowledge, from the KG. To overcome this limitation, we propose11

SUbgraph Retrieval-augmented GEneration (SURGE), a framework for generat-12

ing knowledge-consistent, context-relevant dialogues with a KG. Specifically, our13

method first retrieves the relevant subgraph from the given KG, and then enforces14

consistency across the facts by perturbing their word embeddings conditioned15

on the retrieved subgraph. Then, it learns the latent representation space using16

graph-text multi-modal contrastive learning which ensures that the generated texts17

have high similarity to the retrieved subgraphs. We validate the performance of18

our SURGE framework on the OpendialKG dataset and show that our method does19

generate high-quality dialogues that faithfully reflect the knowledge from the KG.20

1 Introduction21

Dialogue systems aim at conversing with humans by generating human-like responses, considering22

the context and history of the dialogue. Recently, thanks to the development of pre-trained language23

models (PLMs) for text generation [32, 34], neural dialogue agents are able to generate fluent re-24

sponses. However, despite their satisfactory fluency, they often generate factually incorrect responses25

due to a lack of explicit knowledge. The problem can become worse, when the conversation requires26

accurate knowledge about certain subjects. Thus, to overcome such limitations, some of the recent27

methods access the external knowledge sources, for example, Wikipedia [7] or Web [21], and then28

retrieve the documents containing the relevant knowledge for ongoing conversations.29

While retrieving the relevant documents from a large-scale text corpus with information retrieval30

techniques significantly boosts the performance of dialogue agents [18, 24], the computational burden31

of searching for the relevant documents and embedding them on the fly could be high, which may32

compromise the responsiveness of the conversation agent. Thus, we instead consider the approach33

that utilizes the pre-compiled Knowledge Graph (KG) [2, 43] consisting of symbolic facts, which34

represent the entities as nodes and their relations as edges, in the form of a triplet, e.g., (Pride &35

Prejudice, written by, Jane Austen). Such KG-augmented dialogue generation models are highly36

efficient compared to retrieving from and augmenting with unstructured texts. This is because we37
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Figure 1: Motivation. Existing knowledge-grounded dialogue generation models with KG utilize the multi-hop
subgraph for entities in the dialogue context (Jane Austen). However, they suffer from the following two
problems: (1) irrelevant knowledge where only 12.6% of facts from 1-hop KG are useful to generate the target
responses given a dialogue context, and (2) inconsistent generation including the factually wrong statement.

can directly retrieve entities from the context without searching for all candidate documents from a38

large text corpus (e.g. Wikipedia), and the retrieved facts succinctly encode the required knowledge39

in the most compact and effective form. Figure 1 shows an example which illustrates how the KG40

represents facts as relations among entities, that help generate a knowledge-grounded response.41

Few recent works [41, 9, 50] use the KG to provide facts associated with the entities in the dialogue42

context to the conversation agents. However, they utilize all the triplets associated to the given entity,43

whose facts are mostly irrelevant to the dialogue context (e.g., Jane Austen was born in Steventon in44

Figure 1), which could mislead the model into generating factually incorrect responses. We found45

that about 87% of facts from 1-hop KG are irrelevant to the context in the OpendialKG dataset [29].46

Moreover, encoding all the facts including the unnecessary ones is computationally inefficient [9].47

Even after correctly retrieving the relevant facts from the KG, it is not straightforward to combine48

the representations from two heterogeneous modalities: the dialogue context is represented as a text,49

meanwhile, the knowledge is represented as a graph. Moreover, since the PLMs already have tons of50

pre-trained parameters trained on the unstructured texts, properly conditioning the structured graph to51

the PLM is highly important. If not done so, PLMs may generate inconsistent responses with regard52

to the knowledge from the retrieved subgraph, whose phenomenon is known as hallucination [37, 8]53

where PLMs generate responses with their own memorized yet incorrect knowledge.54

In this work, we tackle such challenging and fundamental issues of knowledge-consistent dialogue55

generation with KG1. In particular, at the first step, we propose a context-relevant subgraph retrieval56

that retrieves only the relevant triplets from a large KG to prevent the model from generating context-57

irrelevant responses. Notably, our subgraph retrieval method is end-to-end trainable jointly with58

the generation objective by marginalizing the likelihood of the generated sentences over the latent59

variable of the retrieved subgraph [24]. Then, to encode the retrieved subgraph along with the input60

text sequence, we propose a graph encoding that is permutation and relation inversion invariant yet61

efficient. Furthermore, to ensure that the model does make use of the encoded knowledge when62

generating responses, we propose a multi-modal contrastive learning objective between the two63

different graph-text modalities to enforce the consistency across the retrieved facts and the generated64

texts. We refer to our framework as SUbgraph Retrieval-augmented GEneration (SURGE).65

We validate our SURGE framework on the OpendialKG [29] dataset against relevant baselines, with66

the T5-small [34] model as the base PLM. When evaluating the generated responses from the dialogue67

agents, the conventional metrics (e.g. BLEU [31], Rouge [27]) can not measure how faithfully the68

generated responses reflect the world knowledge. Thus, we introduce an additional performance69

metric, referred to as Knowledge-verifying Question Answering (KQA), which evaluates whether70

generated responses contain the correct knowledge with an extractive question answering model.71

The experimental results show that SURGE generates responses that not only agree with the gold72

knowledge but are also consistent with the retrieved knowledge from the KG.73

Our main contributions can be summarized as follows:74

• We propose a context-relevant subgraph retrieval method for knowledge graph-augmented dialogue75

generation, to extract only the relevant piece of the knowledge for the given context from the entire76

knowledge graph, for generating more appropriate responses to the ongoing conversation.77

• We propose an invariant yet efficient graph encoder and a multi-modal graph-text contrastive78

learning objective to ensure that the generated responses faithfully reflect the retrieved knowledge.79

• We validate SURGE against relevant baselines, demonstrating its efficacy in generating responses80

that are more informative by retrieving and reflecting the relevant knowledge from the KG.81

1In this work, we denote the knowledge as facts (i.e., a set of triplets) in the knowledge graph.
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2 Related Work82

Pre-trained Language Model Large Pre-trained Language Models (PLMs) [32, 23, 34] that use the83

encoder-decoder architecture based on Transformers [42] have achieved great successes on language84

generation tasks. As they can accurately contextualize the given context and then generate human-like85

sentences, they are often used as the base architecture for the neural dialogue systems [49, 15].86

Moreover, when the PLMs become larger, dialogue generation models have shown to generate87

high-quality responses [1], suggesting that pre-trained parameters do contain certain knowledge.88

However, despite the fluency of such PLM-based dialogue agents, they often generate factually89

incorrect responses that are unfaithful to the dialogue context but look plausible – widely known90

as a hallucination problem [28]. Thus, generating responses requiring specific and valid factual91

knowledge is still challenging. To tackle this, recent works propose to retrieve knowledge from92

external sources, and then use it to augment the neural dialogue agents [37, 40], discussed below.93

Knowledge-Grounded Dialogue The sources of external knowledge can be categorized into two94

types: documents from large unstructured corpora such as Wikipedia [7] or Web [30], and symbolic95

facts from Knowledge Graphs (KGs) [2, 43]. Firstly, Dinan et al. [7] propose a retrieval-based96

dialogue generation model, which links the pre-compiled documents retrieved from Wikipedia articles97

with the given dialogue context using the information retrieval [3]. Further, several works [19, 25, 40]98

propose to learn the document retrievers in an end-to-end fashion, to generate the knowledge-grounded99

responses for the given dialogue. However, KG-augmented dialogue generation models, which use100

structured KGs, are more efficient than the previous methods utilizing unstructured texts thanks to the101

efficacy of KG for encoding knowledge, and consequently thus more preferable when responsiveness102

is important [26]. Regarding the dialogue generation with the KG, Moon et al. [29] introduce a103

knowledge-grounded dialogue dataset where each dialogue comes with the large-scale KG. Before104

the era of pre-trained language models, several works [41, 45, 48, 5, 50] have suggested sequence-105

to-sequence models that generate dialogue by conditioning the output word distribution with the106

entities from the KG. Further, Galetzka et al. [9] propose an efficient way to encode all of the facts107

in the 1-hop neighbors of the entities that appear in the dialogue history in the given KG, in order108

to reduce the number of input tokens used in the pre-trained language model [32]. However, all of109

these methods simply match and retrieve all the facts for entities including irrelevant ones that appear110

in the dialogue history, which may mislead the agent into generating out-of-context responses. Our111

work differs from these existing works, since we aim at retrieving only the context-relevant subgraph112

among the 1-hop facts with a novel subgraph retriever, which is end-to-end trainable along with the113

dialogue generation model.114

3 Method115

We first discuss the basic ingredients: graph neural networks and transformers. We then formalize the116

dialogue generation problem and describe the key components for our SUbgraph Retrieval-augmented117

GEneration (SURGE) framework: context-relevant subgraph retrieval, invariant graph encoding, and118

graph-text contrastive learning. Figure 2 illustrates the overview of our framework.119

3.1 Preliminaries120

As we use two different modalities, namely text and graph, we first define them, and then describe121

the neural networks to encode them. In particular, a text is defined as a sequence of tokens x =122

[x1, ..., xN ],∀xi ∈ V , where xi is a token and V is a pre-defined vocabulary formed with specific123

tokenization algorithms [39]. On the other hand, a knowledge graph (KG) is a type of multi-relational124

graphs G = {(eh, r, et)} ∈ E ×R× E , where eh and et are head and tail entities along with their125

relation r, and E and R are sets of entities and relations, respectively, i.e., eh, et ∈ E and r ∈ R.126

To easily access different modalities in the same framework, we define the mapping function that maps127

entities and relations in the KG to the tokens in the text as follows: qe : E → V l and qr : R → V l. In128

other words, any entity e ∈ E and relation r ∈ R can be mapped to a sequence of l tokens x ∈ V l:129

qe(e) = xe and qr(r) = xr. Such functions enable us to associate the KG symbol with the text.130

Transformer A Transformer [42] is a neural architecture that embeds a sequence of tokens while131

taking their relationships into account. It is a basic building block of recent PLMs [6, 32]. Formally,132

assume that we have a sequence of tokens x = [x1, ..., xN ],∀xi ∈ V , then a goal of generative133

transformers is to generate a sequence of tokens y<t = [y1, ..., yt−1],∀yi ∈ V , with encoder Enc,134

decoder Dec and tokens’ embedding function f . Thus, a hidden state at time t for generating135
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Figure 2: Framework Overview. Our framework, SURGE, consists of three parts. First, a context-relevant
subgraph retriever pϕ(Z|x) retrieves the subgraph Z relevant to the given dialogue history x from a knowledge
graph G (e.g., 1-hop KG from entity Jane Austen; a). Specifically, we measure the similarity of a context
and triplet embedding to compose the retrieval distribution pϕ(z|x) (§ 3.3). Then, we encode the retrieved
subgraph Z into the input of the generator, using the graph encoding function ψ(x,Z) (§ 3.4). Finally, we use a
contrastive learning to enforce the model to generate a consistent response with the retrieved subgraph (§ 3.5).

yt is ht = Dec(Enc(X),Y<t), where X = f(x) = [f(x1), ..., f(xN )] and Y<t = f(y<t) =136

[f(y1), ..., f(yt−1)]. We note that both Enc and Dec functions are permutation sensitive with137

positional encodings as in generic Transformer architecture [42, 46].138

Graph Neural Network A Graph Neural Network (GNN) represents a node with its neighboring139

nodes over the graph structure [12], which is formalized as follows:140

e
(k+1)
t = GNN(k)(e(k)t ;G) = UPD(k)(e(k)t , AGG(k)({e(k)h | ∀eh ∈ N (et;G)})), (1)

where et and eh are embeddings of entities (nodes) et and eh, respectively, N (et;G) = {eh |141

(eh, r, et) ∈ G} is a set of neighboring entities of et, AGG is a function that aggregates embeddings of142

et’s neighboring entities, and UPD is a function that updates a representation of et with the aggregated143

messages from AGG, at each iteration k.144

3.2 Problem Statement145

Here we formalize the problem of context-relevant subgraph retrieval for knowledge-grounded146

dialogue generation. Given a dialogue history x = [x1, . . . , xN ], a model with generative PLMs first147

encodes the input tokens, and then models a probabilistic distribution p(y|x) to generate an output148

response y = [y1, . . . , yT ]. This problem requires a piece of specific knowledge for a conversation.149

To that end, given a dialogue history x, we aim at retrieving a subgraph Z ⊆ G consisting of a set of150

triplets z ∈ Z where z = (eh, r, et), which encodes relevant knowledge for ongoing conversation.151

Thus, the distribution of the context-relevant facts Z is p(Z|x), and our final likelihood of generating152

responses then becomes p(y|x,Z). Then, to jointly optimize the objective of graph retrieval with153

response generation, we treat Z as a latent variable and then marginalize the likelihood of the154

generative model over all possible latent variables for retrieved subgraphs Z , formalized as follows:155

p(y|x) =
∑
Z⊆G

pϕ(Z|x) pθ(y|x,Z) =
∑
Z⊆G

pϕ(Z|x)
T∏
t

pθ(yt|x,Z,y1:t−1), (2)

where pϕ(Z|x) is an output distribution of the context-relevant subgraph retriever, and pθ(y|x,Z) is156

the target distribution of a knowledge-augmented generator, parameterized as ϕ and θ, respectively.157

3.3 Context-Relevant Subgraph Retriever158

We now provide a concrete description of our context-relevant subgraph retriever formalized in Eq. 2.159

We assume that a retrieval probability of each triplet in Z = {z1, . . . , zn} is independent. Then, for160

simplicity, we decompose the probability of retrieving a set of triplets p(Z|x) into the product of161

individual triplet retrieval probabilities, as follows: p(Z|x) = p(z1|x)p(z2|x) . . . p(zn|x).162

From the aforementioned Eq. about p(Z|x), we can now focus on retrieving the only one triplet.163

Therefore, we define the retrieval of one triplet with an inner product of dense vectors between the164

dialogue history x and the candidate triplet z, similarly to a dense retrieval model [11], as follows:165

pϕ(z|x) ∝ exp(d(z)⊤q(x)), (3)
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where d is a triplet embedding function and q is a dialogue context embedding function. We can use166

a PLM for implementing q, but we need another effective method for d that can reflect the property167

of the graph. Therefore, we propose the GNN-based triplet embedding method for realizing d.168

Let consider a set of triplets associated to the entities that appear in the given dialogue context169

{(e, r, et) or (eh, r, e) | qe(e) ⊆ x}, as the retrieval candidates. To effectively represent the triplets170

consisting of entities and their relations as items, we use GNNs described in Section 3.1 for the triplet171

embedding function d. In our triplet retrieval, representing both nodes and edges, which are equally172

essential components for the multi-relational graph, is worthwhile to represent an entire triplet. To173

do so, we adopt the existing edge message passing framework [17] that transforms edges of the174

original graph to nodes of the dual hypergraph [38] (i.e., transforming G to G∗), which allows us to175

use existing node-level GNNs for representing edges of the original graph (See Section D.1 of the176

Supplementary File for more details). Formally, our triplet embedding function is denoted as follows:177

d(z) = MLP([eh ∥ r ∥ et]), eh = GNN(eh;G), r = GNN(r;G∗), et = GNN(et;G), (4)

where z = (eh, r, et), and ∥ is the concatenation operator.178

3.4 Invariant Graph Encoding179

In this subsection, we then now specify the remaining operations for pθ(y|x,Z), which generates y180

conditioned on the two different modalities, namely text x and graph Z . Before doing so, we first181

define the notion of graph encoding, whose goal is to leverage the retrieved subgraph information182

along with the dialogue history for response generation, which is formalized in Definition 3.1.183

Definition 3.1. (Graph Encoding) Let ψ(x,Z) be a graph encoding function. Then, given184

a sequence of tokens x = [x1, ..., xN ] and a subgraph Z , it first yields a new sequence185

x′ = [x′
1, ..., x

′
m, x1, ..., xN ] where [x′

1, ..., x
′
m] comes from qe(e) = x′

e and qr(r) = x′
r186

∀ (e, r, ∗) ∈ Z . Then, it embeds a sequence X ′ = [f(x′
1), ..., f(x

′
m), f(x1), ..., f(xN )] =187

f([x′
1, ..., x

′
m, x1, ..., xN ]), where f is the token embedding function. Consequently,X ′ = ψ(x,Z).188

For instance, given a sequence x = [x1, . . . , xN ] and a subgraph Z = {(a, d, b), (b, e, a), (a, d, c)}189

from the retriever, ψ(x,Z) = f([a, d, b, b, e, a, a, d, c, x1, ..., xN ]) with a = qe(a), b = qe(b),190

c = qe(c), d = qr(d), e = qr(e), which we term as the naïve encoding. Due to its simplicity, it is191

widely used for a text-conditioned generation [24]. However, for graph encoding, it violates two192

important invariance properties: permutation invariance [47] and relation-inversion invariance, which193

are formalized in Definition 3.2, 3.3.194

Definition 3.2. (Permutation Invariance) For any set permutation π, ψ(x,Z) = ψ(x, π · Z), i.e.,195

an order of elements in a subgraph does not affect a representation.196

Definition 3.3. (Relation Inversion Invariance) Let a relation ¬d be an inverse relation to d, if197

(a, d, b) = (b,¬d, a) ∀a, b ∈ E . Then, ψ(x,Z ∪ {(a, d, b)}) = ψ(x,Z ∪ {(b,¬d, a)}) for any198

subgraph Z .199

Invariant Graph Encoding To meet both properties, we consider two additional operations on a200

set of triplets up to the naïve encoding. We first define a SORT operator that returns the same output201

regardless of the order of input set elements, as follows:202

SORT(π · Z) = SORT(π′ · Z), ∀π, π′ ∈ Sn, (5)

where Sn is a set of all possible permutations for n elements. Moreover, we define a INV operator203

that adds the inverse triplet of each triplet in the subgraph Z , as follows:204

INV(Z) = Z ∪ {(et,¬r, eh) | (eh, r, et) ∈ Z}. (6)

With above operations, we now define a more solid graph encoding function: ψ(x, SORT(INV(Z))),205

which satisfies both permutation and relation inversion invariance.206

Invariant and Efficient Graph Encoding However, above encoding is not efficient since it requires207

the O(n) space complexity for encoding a graph with n triplets. To be more efficient, we newly208

define ψ̃ that only encodes the unique nodes (entities) along the sequence, formalized as follows:209

ψ̃(x, SORT(ENT(Z))) = f([a, b, c, x1, . . . , xN ]),

where ENT(Z) returns the set of unique nodes in Z and SORT is used to preserve the permutation210

invariance. This encoding is thus invariant but efficient since it only costs O(k), for a k-entity211
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sequence where k < n. However, as it does not consider the relational information in Z , we further212

perturb the entities’ token embeddings with respect to their representations in Z . Specifically, for213

each entity a ∈ ENT(Z), we apply affine transformations from learnable Multi-Layer Perceptrons214

(MLP) on the token embedding of a as follows:215

β(f(a),Z) = (1 + γ) ∗ f(a) + δ, (7)
γ = MLP1(η), δ = MLP2(η), η = UPD(f(a), AGGR({f(b), r | ∀b ∈ N (a;Z)})),

where β : Rd → Rd perturbs the embedding according to Z , AGGR is the relation-aware aggregation216

function for triplet (b, r, a) ∈ Z with a = qe(a) and b = qe(b). In sum, we denote a relation-aware217

invariant and efficient encoder ψ∗, formally represented as follows:218

ψ∗(x,Z) = β(ψ̃(x, SORT(ENT(Z))), INV(Z)),

where β can be applied to the sequence of representations, β : Rn×d → Rn×d. We conclude that our219

graph encoding satisfies both properties. For proofs, please see Section C of the Supplementary File.220

3.5 Consistent Generation with Graph-Text Contrastive Learning221

Although the previous schemes allow retrieving and encoding subgraphs that are relevant to the222

input dialogue history, the consistent generation with the given subgraph is further required, when223

generating responses with the factual knowledge. In other words, the model should be able to generate224

different sequences given different graphs with the same dialogue history.225

However, we only access the single ground-truth response regardless of the retrieved knowledge,226

while the generative model is trained with a teacher forcing. Thus, this setting can give rise to227

the problem of exposure bias [35]: the model is never exposed to other generated tokens during228

training. To overcome such limitations, we introduce a novel graph-text contrastive learning method229

motivated by multi-modal contrastive learning [33]. Formally, for a single pair of a graph and text,230

the contrastive learning objective is defined as follows:231

Lcont =
1

2
log

exp(sim(ζ(z), ξ(h))/τ)∑
h′ exp(sim(ζ(z), ξ(h′))/τ)

+
1

2
log

exp(sim(ζ(z), ξ(h))/τ)∑
z′ exp(sim(ζ(z′), ξ(h))/τ)

, (8)

where z = 1
m

∑m
i=1 z

′
i is the mean of graph representations from [z′1, . . . ,z

′
m, z1, . . . ,zN ] =232

Enc(ψ∗(x,Z)), h = 1
T

∑T
t=1 ht is the mean of decoder representations, sim is the cosine similarity,233

ζ and ξ are learnable linear projection layers, and τ is a learnable temperature parameter. Furthermore,234 ∑
h′ and

∑
z′ indicate the summation over negative samples, which are other texts or graphs within235

a same mini-batch as in previous contrastive literature [4, 10, 13, 20, 22, 33]. With Eq. 8, the model236

can embed the correlated pairs closer together in order to generate a consistent response to a given237

graph, i.e., given a different graph, the model would generate different tokens for the same text.238

3.6 Training239

We train the entire model by maximizing the log-likelihood log p(y|x) defined in Eq. 2 with respect240

to parameters of the retriever ϕ and the generator θ. However, computing the marginal probability241

over all possible subgraphs
∑

Z⊆G pϕ(Z|x)pθ(y|x,Z) is impractical. Therefore, as in existing242

works [11, 24], we approximate this by instead summing over k sampled subgraphs. Moreover,243

for each subgraph, we samples n triplets without replacement from the categorical distribution,244

parameterized by ϕ: z1, . . . , zn ∼ Cat(|G|, pϕ(z|x)), which results in Z = {z1, . . . , zn}.245

Our whole end-to-end training objective for retrieval-augmented generation is then defined as follows:246

247

Lret = log

k∑
i=1

pϕ(Zi|x)pθ(y|x,Zi), Zi∼pϕ(Z|x), (9)

where we simplify the sampling over n triplets as the sampling over the subgraph distribution248

pϕ(Z|x). We assume that we can access the gold subgraph for some data in training. Thus, we249

further add the supervised retrieval loss to introduce a semi-supervised retriever learning as follows:250

Lsup = log pϕ(Z∗|x), (10)

where Z∗ is the available ground-truth subgraph. Combining all objectives in Eq. 8, 9, and 10, our251

final training objective is then defined as follows: L = Lret + Lsup + Lcont.252

6



Could you recommend a book written
by Jane Austen?

User

(a) Dialogue History

Sure,  Lady Susan.    

Jane Austen

Lady Susan

Jane Austen Lady Susan

write

(b) Corresponding Fact

(c) Candidates in KG

Jane Austen

write

Emma

Sense & 
Sensibility

QA Context: Could you recommend 
a book written by Jane Austen? 
<Generated Response>
Question: (Jane Austen  , write, ?)Jane Austen
Answer Candidates:

(d) KQA example

Lady Susan
Sense & Sensibility Emma

Candidate Searching
write ?

Jane Austen
How about  Sense & Sensibility?

She wrote   EmmaEmma

Sense & Sensibility

Gold Response

Acceptable Responses

Figure 3: KQA. (Left) An example where multiple responses are acceptable but the gold response cannot
reflect all of them. (Middle) We first find the fact from the KG that reflects the relation between entities within
the user input and gold response (b), and then search candidate facts from the KG (c). (Right) Corresponding
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4 A Novel Metric: Knowledge-verifying QA253

Existing automatic evaluation metrics, namely BLEU and ROUGE [31, 27], are limited in that they254

only consider the lexical overlaps of words without measuring the factual correctness of the generated255

responses. As shown in Figure 3 (a), there could be multiple correct responses, but existing metrics256

score them lower due to the lexical mismatch. To solve this issue, we propose Knowledge-verifying257

Question Answering (KQA) which measures whether generated responses contain factually correct258

knowledge given the dialogue history. Compared to the existing metrics using question generation259

methods [14, 44], we automatically derive QA pairs for evaluation from the dialogue and the large-260

scale KG [2]. In particular, at first, the ground truth is an entity mentioned in the gold response, and a261

question is composed of an entity in a dialogue and the existing relation between two entities. Once262

the question is determined, more answer candidates can be found through the searching in KG, which263

allows more acceptable responses that contain the correct knowledge as in Figure 3 (d).264

5 Experiment265

5.1 Experimental Setup266

We conduct experiments on the OpendialKG dataset [29], which is a dialogue corpus associated267

with a large-scale Knowledge Graph (KG), namely Freebase [2] with 100k entities and 1M facts.268

This dataset has 15K dialogues with 91K utterances. We note that 49% of the responses come with269

the gold knowledge, whereas others are not. Since the dataset does not provide a predefined data split,270

we randomly split it into train (70%), validation (15%), and test sets (15%). We use T5-small [34] for271

all experiments. We also conduct experiments on another dataset and language model and present the272

results in Section E of the Supplementary File. For details, see Section D of the Supplementary File.273

5.2 Baselines and Our Models274

We compare different variants of our SURGE framework against various KG-augmented dialogue275

generation models. No Knowledge. This model is only provided with the dialog history, thus no276

external knowledge is used. All Knowledge. This model is provided with entire facts within a 1-hop277

subgraph of entities associated with the dialog history. Gold Knowledge. This model is provided278

with the exact gold knowledge, even in the test time if the gold knowledge exists. Space Efficient279

Encoding. This model takes all facts from the 1-hop subgraph of the entities as input. We use two280

different encoding methods introduced in [9], namely Space Efficient (series) and Space Efficient281

(parallel). EARL. This is an RNN-based model, where the entities are conditioned in response282

generation [50]. Random/Sparse Retrieval. These models are provided with selected facts from a283

1-hop subgraph, via the random sampling or the sparse retrieval – BM25 [36]. Text-based Retrieval.284

This model is a variant of our framework where T5 encoder [34] is used for d in Eq. 4 instead of285

GNNs similar to [16]. SURGE (unsupervised). Ours with retrieved context-relevant facts from286

1-hop subgraph, where the retrieval is trained without any supervision. SURGE (semi-supervised).287

Ours but the retriever is trained with supervision if the data has a gold fact. SURGE (contrastive).288

Our full model jointly trains the retriever in a semi-supervised manner with the contrastive learning289

term. By default, all our models are trained with an invariant and efficient graph encoding.290

5.3 Evaluation Metrics291

We evaluate the generated responses using BLEU [31], ROUGE [27] and unigram overlap (F1) with292

the gold response. Along with these conventional text evaluation metrics, we also evaluate the results293

7



Table 1: Experimental results on OpendialKG dataset. † indicates the model under the oracle setting using the
gold facts even in the test time.

KQA BLEU ROUGE Unigram
Method EM F1 B-1 B-2 B-3 B-4 R-1 R-2 R-L F1

Baselines

No Knowledge 7.62 13.2 15.79 9.19 5.61 3.43 19.67 7.13 19.02 22.21
All Knowledge 30.06 34.95 15.95 9.98 6.72 4.65 20.96 8.50 20.21 24.34
Space Efficient (series) 26.88 31.15 16.15 10.03 6.66 4.50 21.15 8.56 20.44 24.55
Space Efficient (parallel) 28.90 33.19 16.33 10.22 6.81 4.64 21.42 8.85 20.68 24.87
EARL 24.52 27.09 11.49 6.34 4.06 2.75 15.36 4.37 14.61 16.88

Retrieval
variants

Random Retrieval 21.05 26.09 15.70 9.52 6.12 3.99 20.21 7.88 19.55 23.28
Sparse Retrieval (BM25) 19.32 24.55 15.63 9.44 6.05 3.96 20.05 7.67 19.37 23.10
Text-based Retrieval 31.00 35.95 16.87 10.64 7.23 5.07 20.63 8.53 19.89 24.16

Ours
SURGE (unsupervised) 37.35 42.24 18.10 11.65 7.99 5.59 22.14 9.50 21.23 25.91
SURGE (semi-supervised) 39.57 44.13 18.21 11.74 8.08 5.68 22.11 9.41 21.22 25.91
SURGE (contrastive) 39.52 43.96 17.72 11.53 7.96 5.61 22.19 9.77 21.34 25.94

Oracle Gold Knowledge† 49.76 53.41 18.47 12.79 9.32 6.92 24.93 11.97 24.03 28.82
Gold Response 83.88 86.22 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Know O Know X
20

25

30

35

40

45
Unigram - F1

No Knowledge
Gold Knowledge
SURGE (Unsupervised)
SURGE (Supervised)

Know O Know X
10
20
30
40
50
60
70

KQA - EM

Figure 4: Results of whether gold knowl-
edge exists (Know O) or not (Know X)
for the dialogue history. We note that T5
+ Gold Knowledge exactly uses the gold
knowledge for generating responses.

MRR Hits@3
0

10

20

30

40
Random
BM25
SURGE (Unsupervised)
SURGE (Supervised)

Retrieval Results

Figure 5: Knowl-
edge retrieval results
on the OpendialKG
dataset, with MRR
and Hits@3.

Table 2: Results on knowledge-consistent
response generation, where we compare
three variants of our SURGE – unsuper-
vised, semi-supervised and contrastive, on
F1 and KF1 as metrics.

Method F1 KF1

SURGE (unsupervised) 27.78 24.09
SURGE (semi-supervised) 28.30 26.38
SURGE (contrastive) 28.17 27.58

using our new metric, KQA (Section 4), which measures whether the generated responses contain294

proper knowledge. Lastly, we compute the Knowledge F1 (KF1) similarly as in Shuster et al. [40],295

which is a measure of unigram overlap between the retrieved knowledge and generated response.296

5.4 Experimental Results and Analysis297

In Table 1, we report the knowledge-grounded response generation performances of baselines and our298

SURGE. As shown in Table 1, our models significantly outperform all the baseline models, excluding299

the upper bound measure, Gold Knowledge, in all evaluation metrics. The high BLEU, ROUGE, and300

F1 refer that ours sufficiently learns the syntactic and semantic structure of the responses. Our models301

also achieve high F1 and EM scores in KQA. The high KQA scores indicate that the generated302

responses are formed with the correct facts, which are relevant to the dialog context. Even the303

baseline models such as All Knowledge, Space Efficient Encoding [9], and EARL [50], which are304

provided with all of 1-hop facts, underperform than ours. The result demonstrates that selecting305

relevant knowledge is critical in knowledge-augmented response generation.306

Figure 4 examines the generation performance further by categorizing the dialogues into two groups:307

those with gold knowledge and those without. When there is no gold knowledge, the model using308

Gold Knowledge suffers a significant drop in all metrics and performs similarly to No Knowledge.309

On the contrary, ours significantly improves the unigram F1 and KQA scores even with the retrieved310

knowledge without using the exact gold knowledge.311

Knowledge Retrieval Figure 5 shows the performances of knowledge retrieval methods, where we312

only measure the retrieval performance on dialogues that contain the gold knowledge. We use Mean313

Reciprocal Rank (MRR) and Hits@k as metrics. Note that our SURGE is a differentiable retriever,314

which jointly learns to retrieve the context-relevant knowledge and then generate the corresponding315

responses, whereas Random and BM25 [36] retrieve the knowledge without learning. Therefore, our316

models outperform other retrieval approaches by a large margin (See Section G with Figure 4 of the317

Supplementary File for examples of baselines and ours). In addition, when our retriever is trained in318

a semi-supervised manner, we observe the substantial performance gains from unsupervised learning,319

as the model can learn to retrieve the ground truth knowledge during training.320

Knowledge-Consistent Generation We conduct an ablation study on our models to validate the321

knowledge consistency performance of the response generation by computing the Knowledge F1322

(KF1) score [40]. To focus solely on the case where a given knowledge is consistently reflected in the323

generated responses, we use the gold knowledge rather than the retrieved one. We randomly perturb324
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Context Baseline response SURGE response
(a) Moby Dick is a sailor. 

Do you like her work?
Moby Dick was written by Herman 
Melville. He also wrote The Whale.

I loved Moby Dick.  Can 
you recommend something 
similar?

(a) Retrieved Subgraph from SURGE
(Moby Dick; or, The Whale, written_by, Herman Melville)
(Moby Dick, written_by, Norman Corwin)
(Moby Dick, written_by, Ray Bradbury)

Gold response
It was written by Herman 
Melville in 1851. It's 
sometimes called The Whale.

(b) Adam Brown starred in 
King Kong. Have you 
seen it?

Adam Brown starred in The Hobbit: 
The Desolation of Smaug and The 
Hobbit: The Battle of the Five Armies.

Do you know anything 
the actor Adam Brown?

Yes, he was in the movie 
The Hobbit: An Unexpected 
Journey.

(b) Retrieved Subgraph from SURGE
(The Hobbit: The Battle of the Five Armies, starred_actors, Adam Brown)
(The Hobbit: An Unexpected Journey, starred_actors, Adam Brown)
(The Hobbit: The Desolation of Smaug, starred_actors, Adam Brown)

Figure 6: Examples of the baseline (Space Efficient, parallel) responses and SURGE responses. On both
examples, the baseline generates statements which are factually wrong while SURGE successfully retrieves
appropriate facts and generate the good response.
Table 3: Performance comparisons of
variants of graph encodings, described
in Section 3.4.

KQA Knowledge
Method EM F1 Length
Naïve 38.18 42.18 62
Invariant 39.54 43.28 117
Efficient (entity only) 38.80 43.06 39
Invariant & Efficient 39.57 44.13 39

Table 4: Human evaluation
on Consistency, Informativeness,
and Fluency.

Method Consis. Info. Fluency

All Knowledge 2.52 1.99 2.62
Space Efficient 2.47 1.75 2.46

SURGE (ours) 2.71 2.39 2.92

Figure 7: Visualization of the em-
bedding space from our graph(star)-
text(circle) contrastive learning.

the gold knowledge to ensure that responses are generated from the given knowledge rather than the325

trained knowledge. Table 2 shows that our model with a contrastive learning term outperforms all326

others in the KF1, implying that the generated responses accurately reflect the encoded knowledge.327

Sensitive Analysis on Graph Encoding We further conduct an analysis on graph encoding variants328

introduced in Section 3.4. The knowledge length in Table 3 indicates the average token length used329

for graph encoding. Our Invariant & Efficient ψ∗ performs the best against other variants, while330

using the lesser space at the graph encoding phase. Notably, simple Invariant achieves a comparable331

performance against Invariant & Efficient, but yields a longer sequence.332

Retrieval and Generation Examples Figure 6 shows the examples of generated responses along333

with the retrieved knowledge. In particular, we compare our SURGE against Space Efficient (parallel)334

baseline. In example (a), the baseline response contains an incorrect fact distracted by the contextually335

irrelevant entity ‘sailor’. Contrarily, SURGE successfully retrieves relevant facts from the KG then336

generates the factually correct response. This tendency is similar in example (b), where the baseline337

incorrectly generates the response with a wrong fact containing ‘King Kong’, meanwhile our SURGE338

retrieves context-relevant facts and generates a informative response.339

Human Evaluation We sample 30 responses of SURGE, All Knowledge, and Space Efficient on340

the OpendialKG test dataset [29], then conduct a human study of them. We recruit 46 annotators, and341

ask them to evaluate the quality of the generated responses by the 3 models given in a random order,342

with 3 criteria – consistency, informativeness, and fluency – using a 3 point Likert-like scale. As343

shown in Table 4, ours obtains significantly (p-value < 0.05) higher scores than others in all criteria,344

which is another evidence that our framework generates consistent, informative, and fluent responses.345

346
Embedding Space Visualization We further visualize the multi-modal graph-text latent space in347

Figure 7. The visualization shows that, for the same dialogue with different subgraphs, our SURGE348

with graph-text contrastive learning (right) generates distinct response embeddings pertraining to349

different subgraphs, unlike the one without graph-text contrastive learning which shows less variety350

over responses for the same dialogue (left). We include zoomed Figure 7 in the Supplementary File.351

6 Conclusion352

We proposed a novel end-to-end framework for knowledge graph-augmented dialogue generation353

which retrieves context-relevant subgraph, encodes a subgraph with the text, and generates knowledge-354

consistent responses, called as SUbgraph Retrieval-augmented GEneration (SURGE). Our results355

demonstrate the effectiveness of our framework in both quantitative and qualitative experiments in356

knowledge retrieval and response generation tasks. The analysis shows the contribution of each357

proposed component: retrieval, encoding, and graph-text representation learning. Our work suggests358

a new direction to generate informative responses for knowledge graph-based dialogue task by359

empirically showing the importance of retrieving the more relevant subgraph knowledge rather than360

using all the relevant knowledge graphs when generating knowledge-grounded responses.361
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