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ABSTRACT

Pearl’s Causal Hierarchy (PCH) is a central framework for reasoning about probabilistic, in-
terventional, and counterfactual statements, yet the satisfiability problem for PCH formulas is
computationally intractable in almost all classical settings. We revisit this challenge through
the lens of parameterized complexity and identify the first gateways to tractability. Our results
include fixed-parameter and XP-algorithms for satisfiability in key probabilistic and counter-
factual fragments, using parameters such as primal treewidth and the number of variables,
together with matching hardness results that map the limits of tractability. Technically, we
depart from the dynamic programming paradigm typically employed for treewidth-based al-
gorithms and instead exploit structural characterizations of well-formed causal models, pro-
viding a new algorithmic toolkit for causal reasoning.

1 INTRODUCTION

Pearl’s Causal Hierarchy (PCH) (Shpitser & Pearl, 2008; Pearl, 2009) is a central pillar of the modern the-
ory of causality that is employed in artificial intelligence and other reasoning tasks—see, e.g., the recent sur-
vey (Bareinboim et al., 2022) or book (Fenton et al., 2020) on the topic. The PCH is a framework that has three
basic layers of depth which capture three fundamental degrees of sophistication for analyzing causal effects and
relationships. All of these layers provide a means of formalizing statements via formulas capturing the behavior
of a set of probabilistic variables in a Structural Causal Model (SCM) (Glymour et al., 1987; Pearl, 2009; Koller
& Friedman, 2009; Elwert, 2013), which is a well-established representation of systems with observed as well
as hidden variables over a specified domain and their mutual dependencies. As a basic illustrative example, the
statement “the likelihood of having both diabetes (D = yes) and blood type B+ (1" = B+) is at most 1%” can
be expressed by the formula ¢) = Pr(D = yes AT = B+) < 0.01.

The formula 1) above belongs to the first, basic layer of the PCH—that is, the layer Ly, of probabilistic
reasoning that captures direct statements one can make about the probabilities of certain outcomes. The second
layer, Lcausal, €xpands on the basic probability terms in Lyop via the introduction of Pearl’s do-operator (Pearl,
2009) which captures interventional causal reasoning. A basic example of an event that can be captured on
this layer of the PCH is contracting a disease after being vaccinated against that disease; the probability of
this event can be expressed using the term Pr([Y = vaccinated] X = contracted)', where the square brackets
denote an intervention that is applied before observing the outcome.> Hence, the second layer of the PCH
allows us to make statements such as Pr([Y" = vaccinated] X = contracted) < Pr(X = contracted). The third
layer Lcounterfact Of the PCH expands on Lc,usa by allowing interventions to be chained, and enables complex
statements related to counterfactual situations. For instance, a third-layer term such as Pr (([M = yes| H =

no) | (M = no A H = yes)) can express the probability that a patient who did not take medication (}/) and

was hospitalized (H) would have avoided hospitalization if he had taken the medication. Formal definitions of
these as well as related notions are available in Section 2.

While the three layers of depth of the PCH focus on the expressivity inside the probability term Pr(+), there is
a second dimension to the PCH—specifically, the breadth of operations that can be applied to the probability
terms themselves. For ® € {prob, causal, counterfact}, we distinguish the following fragments of the PCH:

* £52¢: only simple probability terms are allowed, such as Pr(-) < Pr(o) or Pr(-) > 1;

"Equivalently, Pr(X = contracted | do(Y = vaccinated)). We follow recent publications in the area (van der Zander
et al., 2023; Dorfler et al., 2025) and primarily employ the square-bracket notation.

*Interventions are distinct from conditional probability statements such as Pr(X = contracted | Y = vaccinated). To
see this, consider a hypothetical world where the vaccine is ineffective, the disease only exists in a laboratory and an oracle
randomly determines whether a person will be infected without vaccination, or receive the vaccine and not come in contact
with the disease. In this world, Pr(X = contracted | Y = vaccinated) = 0 but Pr([Y" = vaccinated] X = contracted) > 0.
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« £!: linear combinations of probability terms are allowed, such as Pr(-) — Pr(o) > 3 Pr(e);

. Lg;ly: polynomials over probability terms are allowed, such as Pr(-)? < 2Pr(o) - Pr(e) + 0.1.

Crucially, the various combinations of depth and breadth give rise to a 3 X 3 expressivity matrix M for
PCH (Dorfler et al., 2025, Table 1), (van der Zander et al., 2023, Table 1).

A crucial and well-studied problem in the setting of causal reasoning is SATISFIABILITY—that is, determining
whether a given formula (consisting of a set of probability constraints) admits an SCM (Fagin et al., 1990;
Ibeling & Icard, 2020; van der Zander et al., 2023; Mossé et al., 2024; Ddorfler et al., 2025). We note that
there is a high-level parallel between this SATISFIABILITY problem in the causal setting and the well-known
BOOLEAN SATISFIABILITY (SAT) and CONSTRAINT SATISFACTION (CSP) problems; the distinction lies in
the types of constraints on the input and the nature of the sought-after model. However, solving SATISFIA-
BILITY in our causal reasoning setting is, in general, a much more daunting task. If we let SATg denote the
SATISFIABILITY problem for formulas from the fragment L3 of the PCH, then depending on the choice of
@® € {prob, causal, counterfact} and * € {base, lin, poly} the problem under consideration will be complete
for the complexity classes NP or IR—see also the detailed discussion of related work at the end of this section.

Crucially, while previous works have made significant strides towards mapping the classical complexity land-
scape of the SATISFIABILITY problem, even the “easiest” fragments of the expressivity matrix remain NP-hard.
The central aim of this article is to provide a counterweight to this pessimistic perspective and identify funda-
mental gateways to tractability for SATISFIABILITY, specifically by employing the more refined parameterized
complexity paradigm (Downey & Fellows, 2013; Cygan et al., 2015). There, one analyzes the running time of
algorithms not only in terms of the input size | /|, but also with respect to a specified numerical parameter k. The
standard notion of tractability used in this setting is then tied to algorithms which run in time f (k) - |I|°™" for
some computable function f; problems admitting such fixed-parameter algorithms are called fixed-parameter
tractable (FPT). A weaker—but nevertheless still useful—notion of tractability stems from the existence of a
so-called XP-algorithm, i.e., an algorithm running in time | 7|/ (k) (this gives rise to the complexity class XP).
Our main results include not only the first fixed-parameter and XP-algorithms for the problem, but also matching
lower bounds which allow us to identify the limits of parameterized tractability in the expressivity matrix.

Contributions. A loose inspiration for this work stems from the success stories in the aforementioned do-
mains of BOOLEAN SATISFIABILITY and CONSTRAINT SATISFACTION. The parameterized complexity of
these two problems is by now very well understood, and perhaps the most classical parameterized algorithms
use the primal treewidth as the parameter of choice. Essentially, this measures how “tree-like” the interactions
between the variables in the instance are—more precisely, this is captured by measuring the treewidth, a fun-
damental graph parameter (Robertson & Seymour, 1984), of the graph obtained by representing variables as
vertices and using edges to capture the property of lying in the same “term” (i.e., clause or constraint). In partic-
ular, it is known that BOOLEAN SATISFIABILITY is fixed-parameter tractable w.r.t. the primal treewidth (Biere
et al., 2009, Chapter 13), while CONSTRAINT SATISFACTION admits an XP-algorithm under the same parame-
terization (Samer & Szeider, 2010); the latter then becomes fixed-parameter tractable when the parameterization
also includes the domain size for the variables (Samer & Szeider, 2010).

Given the above, it is natural to ask whether one can use the primal treewidth to establish tractability for SATIS-
FIABILITY in the PCH setting. As our first set of contributions, we provide a complete answer to this question:

e 3

SATgfob is (1) in XP w.r.t. the primal treewidth alone, and
(2) fixed-parameter tractable w.r.t. the primal treewidth plus the domain size d.

Moreover, under well-established complexity assumptions one can neither
(3) improve the XP-tractability to FPT (not even for SAT?2), nor

prob
(4) lift any of these tractability results to SATzfcl,{) or SAT™ .

Furthermore, we remark that parameterizing by the domain size alone does not yield tractability under well-
established complexity assumptions (see Theorem 6).

While the above results are comprehensive, they only provide a gateway to tractability for the “shallow-
est” probabilistic fragment of the PCH. We hence ask whether one can achieve tractability for deeper frag-
ments of the PCH (that is, £, ., and L} ....c) if the primal treewidth is replaced with a more restrictive
parameterization—specifically the number n of variables in the formula. We note that the analogous question
in the BOOLEAN SATISFIABILITY and CONSTRAINT SATISFACTION setting is trivial: there, asymptotically
optimal (under well-established complexity assumptions) algorithms parameterized by n can merely enumerate
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all possible models (Impagliazzo et al., 2001; Karthik C. S. et al., 2024). Such an approach is doomed to fail
for the causal SATISFIABILITY problem: not only will an SCM contain (potentially many) auxiliary random
variables, but also variable dependencies and random distributions that cannot be exhaustively enumerated.

As our second set of contributions, we map the complexity landscape for deeper fragments of the PCH as well:

SATIN et IS (5) in XP w.r.t. n alone, and
(6) fixed-parameter tractable w.r.t. n plus the domain size d.

Moreover, under well-established complexity assumptions one can neither
(7) improve the XP-tractability to FPT (not even for SATSfj‘f;), nor
(8) lift any of these tractability results to SATPY

counterfact*

\. J

A schematic overview of our contributions is provided in the mind map below (Figure 1).

—( Breadth? ) at most lin Depth?
prob causal or counterfact

ol
poly T 1
dR-hard even FPT by d+tw, XP by tw (Thm. 5) FPT by d + n, XP by n (Thm. 10)
if d = 2 and G is edgeless, or no XP by d alone (Thm. 6) no XP by d alone (Thm. 6)
if n = 1 (Thm. 2) no FPT by tw alone (Thm. 7) no FPT by n alone (Thm. 7)
no FPT by d + tw (Thm. 8)

Figure 1: Parameterized complexity of SATISFIABILITY in the PCH based on the position (breadth/depth) in the
expressivity matrix M. All results hold under well-established complexity assumptions and refer to an instance
with n observed variables over a domain of size d such that the treewidth of the primal graph G4 is tw. We
note that the dR-hardness of the poly fragment was already established by Mossé et al. (2024), but not under
the stated restrictions which rule out tractability in the parameterized setting.

Extensions to Marginalization. In order to efficiently express marginalization, recent works (van der Zander

et al., 2023; Dorfler et al., 2025) have extended the classical fragments in M to LE;SE(E), ng(z), and EZ;I}'(E),
respectively; the only difference is that these classes additionally include the unary summation operator » .. De-
pending on the specific fragment considered, including these marginalization operators in the SATISFIABILITY
problem yields completeness for the complexity classes NPPP, PSPACE, NEXP or succ-IR—see Dorfler et al.
(2025, Table 1). Since the algorithm(s) underlying Results (§) and (6) can also be used to establish inclusion

in the complexity class EXPTIME while SAT!ZElftZerfact is NEXP-complete (Dorfler et al., 2025), under well-
established complexity assumptions it is not possible to lift our results towards full marginalization operators
as considered in the aforementioned works. Nevertheless, if one were to bound the nesting depth of the unary
summation operator Y . to any (arbitrary but fixed) constant, all of our results could be directly translated to the

marginalization setting by simply expanding on the respective sums.

Proof Techniques. The standard approach to establishing tractability for problems parameterized by treewidth
is to employ dynamic programming—this is the approach used not only for the aforementioned treewidth-based
algorithms solving BOOLEAN SATISFIABILITY and CONSTRAINT SATISFACTION, but also for almost every
algorithm parameterized by treewidth. From a technical standpoint, it is hence surprising that our results do not
employ dynamic programming at all; in fact, the SATISFIABILITY problem seems entirely incompatible with
the basic tenets of the usual “leaf-to-root” dynamic programming paradigm used for treewidth.

Instead, our proof of Results (1) and (2) relies on an entirely novel approach. We first prove that every YES-
instance of SATgfob with primal treewidth k& admits a “well-structured” SCM whose hidden variables and de-
pendencies can be neatly mapped onto the tree-like structure of the primal graph and determined in advance.
However, this step on its own cannot determine whether an SCM actually exists, as for that we need to compute
and verify the probability distributions for the hidden variables. In the second step, we use the tree-likeness of
the instance once again to construct a “fixed-parameter sized” linear program which either computes a viable
set of probability distributions, or determines that none exists. It is well-known that linear programs can be
solved in polynomial time (Papadimitriou & Steiglitz, 1998)—the difficult part lies in building a program that
provably verifies the existence of an SCM while avoiding an exponential dependency on the input size.

In order to apply the reduction technique to Results (5) and (6), we need to be able to deal with the presence

of interventions in the formula. Towards this, we argue that every YES-instance of SAT!" . . admits an
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SCM with different structural properties than those used for Results (5) and (6): in particular, the value of a
single hidden variable U determines not just the value of each observed variable but the function of how it is
determined from the other observed variables. We then define a suitable linear programming formulation that
targets the computation of such well-structured SCMs.

For establishing the lower-bound results, we develop three distinct reductions: one from k-MULTICOLORED-
CLIQUE which handles (3) and (7), one from a restricted variant of the Existential Theory of the Reals problem
for Results (4) and (8), and a separate reduction from 3-SAT for the remaining lin-causal case of (4).

Related Work. SAT'™ and SAT®* were shown to be NP-complete by Fagin et al. (1990), and analo-

prob . prob ;
gous results for the fragments SAT'"  SATP2e GATIN . and SAT?®¢ . were obtained by Mossé
et al. (2024). The IR-completeness of SATgfo'{), SATE;Lﬁal and SATE;’Lynterfact was also established in the latter

work (Mossé et al., 2024). As mentioned above, these complexity-theoretic studies were recently extended
to languages containing the summation operator » . (van der Zander et al., 2023; Dorfler et al., 2025). Other
related languages designed to express probabilistic reasoning were developed in the works of, e.g., Nilsson
(1986); Georgakopoulos et al. (1988); Ibeling & Icard (2020). Moreover, the existence of solutions to the
SATISFIABILITY problem with specific properties has very recently been studied by Bliser et al. (2025).

Beyond SATISFIABILITY, the parameterized complexity paradigm has been employed in several works studying
another central problem in the area of causality: BAYESTAN NETWORK STRUCTURE LEARNING. This line of
research was initiated by Ordyniak & Szeider (2013), with recent contributions considering a broad range of
parameterizations as well as variations of the problem (Ganian & Korchemna, 2021; Griittemeier et al., 2021a;b;
Griittemeier & Komusiewicz, 2022). The complexity of the related CAUSAL DISCOVERY problem was recently
studied by Ganian et al. (2024).

Beyond the aforementioned prominent applications in BOOLEAN SATISFIABILITY and CONSTRAINT SATIS-
FACTION, primal treewidth has been used as a natural means of capturing structural properties of inputs in a
variety of other settings as well. Examples of this in the broad Al area include its applications in INTEGER
LINEAR PROGRAMMING (Ganian et al., 2017; Ganian & Ordyniak, 2018), HEDONIC GAMES (Peters, 2016;
Hanaka & Lampis, 2022), MATRIX COMPLETION (Ganian et al., 2022), ANSWER SET PROGRAMMING (Fichte
& Hecher, 2018), and RESOURCE ALLOCATION (Eiben et al., 2023). We note that the treewidth-based algo-
rithms in all of the aforementioned works rely on dynamic programming, which is fundamentally different from
the technique employed to achieve our Results (1) and (2).

Full proofs and details deferred to the Appendix are marked with (&).

2 PRELIMINARIES

Forn € N, let [n] = {1,...,n}. Foriy, iz € R, let [i1,i2] = {j € R | i1 < j < is}. We follow established
notation as used in (Mossé et al., 2024; van der Zander et al., 2023). By V we refer to a contingent of random
variables and, without loss of generality, assume that each of these share a given domain D of size d.

Syntax of the languages of PCH. For V € V and v € D, a statement of the form V' = v is called an atom.
We can combine multiple atoms to obtain events over V by applying the following grammatical rules.
Eprop =V =0 | 2Eprop | Eprop A Eprops
Eint i=T | V=wv | Eint /\Sinta
gpost—int = [gint} 8pr0p7
gcounterfact o= gpost—int | _‘gcounterfact | gcounterfact A 5counterfact~
We call the events in Eyrop propositions and the events in &, interventions. Each event € can only occur within

a probabilistic statement Pr(e), which we call a term. The size of a term is the number of atoms it contains. For
E € {Eprop; Epostints Ecounterfact ; and € € &, we define the following valid ways of combining terms.

Thase(E) ::= Pr(e),
Tiin(E) 2= Pr(e) | Tin(E) + Tin (€),
Tooly (€) ::= Pr(e) | Tpoty(E) + Tpoly () | Tooly () * Tholy (€)-
Lastly, for x € {base, lin, poly} we define L, (L, e and L, erfaces TESPeCtively) to be the language that
contains all sets of inequalities over elements in T} (Eprop) (in Ti (Eposteint) and in T (Ecounterfact)» esp.). The

elements inside £* ., £ and L} are called formulas. Note that tautological and contradictory

*
prob® ~causal® counterfact
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events can be used to encode comparisons against 1 and 0, such as Pr(¢) < 0. Moreover, the grammars
of £'é” and £p®°|y support integer coefficients, which can be effectively constructed by summing up multiple
probabilities of the same type. Any inequality with rational coefficients can be encoded by multiplying both
sides with the smallest common multiple of all non-integer coefficients. At the beginning of the next section,
we will compare our syntax to the one used in related work.

Semantics of the Languages of PCH. We define the semantics of the aforementioned languages using the
notion of Structural Causal Models as popularized by Glymour et al. (1987) and Pearl (2009, Section 3.2).
A recursive Structural Causal Model (SCM, or simply model) over domain D is a tuple M = (V, U, F,P) with

* aset V of endogenous (observed) variables, implicitly well-ordered by <, that range over D,
* aset U of exogenous (hidden) variables,

» aset F = {fv }vev of functions where fy specifies how the value of V' can be computed given the
values of U and V v, that is, the subset of V that precedes V' € V in <,

e aprobability distribution P on U.

Note that any model M whose exogenous variables U have an infinite or continuous domain is (W.r.t. its
evaluation) equivalent to a model M’ where all exogenous variables have discrete and finite domains (Zhang
et al., 2022). Consequently, we assume throughout that each variable U € U has a discrete and finite domain
Val(U), and let Val(U) = Val(Uy) x ... x Val(Ujy) refer to their combined range.

Let V = v be an atom in &;,;. We denote by Fy —, the set of functions obtained from F by replacing fy with
the constant function v. We generalize this definition to arbitrary conjunctions of atoms y € &, in the natural
way and denote the set of resulting functions as F,. Let ¢ € Eyop and @ € Val(U). We write F, 7 = ¢ if
evaluating F on input u yields an assignment to V under which ¢ is satisfied. For [y] € € Eyost-int, We write
F,u =[] e if Fy,u [= €. Moreover, for all €,e1,€2 € Ecounterfact, We write (i) F, @ = —e if F, 7 }~ €, and
(ii)) F,@ | €1 Neg if both F,uw |= €1 and F,u = eo. For a given model M = (V,U, F,P), we denote
Spm = {u € Val(U) | F,u |= €}. The way M interprets an expression t € Ty, (£) is denoted by [t] »¢ and
recursively defined as follows: [Pr(e)[m = > zes,, (o) P(w). For two expressions t1, t2 € Thoy (€), we define
M E t1 < to if and only if t1]a < [t2] m- The semantics for negation and conjunction are defined in the

usual way, yielding the semantics for M = ¢ for any formula ¢ € £reY

counterfact*

Primal Treewidth. Let ¢ € £P° _  be a formula over variables V. By G4 = (V, E), we denote the
primal graph of ¢, where {V,V'} € F if and only if V' # V' and there is a term in ¢ that contains both V'
and V. The treewidih tw(G) of a graph G is a well-established measure of how “tree-like” it is; for instance,
trees have a treewidth of 1, while an s-vertex complete graph has treewidth s — 1. For a definition of treewidth,
including the notions of nice tree decompositions and bags which are used in the formal proof of Theorem 5,
we refer to the literature (Cygan et al., 2015, Subsection 7.2). (&) We let the (primal) treewidth of a formula ¢

denote the treewidth of its primal graph, that is, tw(¢) = tw(Gy).

3 SATISFIABILITY FOR LANGUAGES OF PCH AND STRUCTURAL INSIGHTS

In this paper, we examine several analogues of the well-known problem BOOLEAN SATISFIABILITY that cap-
ture various probabilistic, causal, and counterfactual statements. We denote these problems as SAT(, where
@ € {prob, causal, counterfact} and * € {base, lin, poly}, and define them as follows.

SAT; Imput: A set D of d domain values and a formula ¢ € L over variables V. = {V1,...,V,,}.
Task: Decide if there exists a recursive Structural Causal Model M over D such that M |= ¢.

The classical computational complexity of SAT{ has by now been studied extensively (Fagin et al., 1990;
Ibeling & Icard, 2020; van der Zander et al., 2023; Mossé et al., 2024; Dorfler et al., 2025). We remark that
our definition of SATy slightly deviates from the one established in previous works, in the sense that we
restrict our attention to input formulas ¢ that are sets of inequalities (that is, each inequality forms a constraint)
rather than allowing arbitrary Boolean combinations of inequalities. However, this restriction does not affect
any of the known complexity-theoretic results, since previous lower-bound proofs did not employ any Boolean
combinations beyond sets. However, the situation changes drastically when studying SAT¢, from the viewpoint
of parameterized complexity, as we show next.
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Let arbS ATﬁij denote the version of SATﬁij in which ¢ is an arbitrary Boolean combination of inequalities

base

over elements in Thase(Epron). We justify our restriction to SAT*® by showing that arbSATprOb remains NP-

complete in a very restricted setting, thus dashing any hope to exploit structural properties of ¢.

Theorem 1. arbSATEfOSE is NP-complete even if G is edgeless and d = 2.

Proof. Fagin et al. (1990) proved that arbSATEfjﬁ is NP-complete. In order to prove the NP-hardness of

arbSATgfgﬁ even for instances in which each constraint consists of only one variable and all variables have

domain D = {0, 1}, we perform a reduction from 3-SAT. Let @ := A\; C; with C; := \/ 3, ;; be a 3-SAT

formula over variables ). Define an instance ¢ of arbSATﬁij with V.= {V,, | v € V} over domain {0, 1} as

o= AV Prlg,) =1) A A\ (Pr(Vy =0) = 1V Pr(V, = 1) = 1),

i j€[3] veY
where g(¢;,) is replaced by V,, = 1if £;, = v, and by V,, = 0if ;, = —w.

We now argue that ® is satisfied if and only if ¢ admits an SCM. For the first direction, suppose there exists
an assignment « : V — {0,1}/V under which ® is satisfied. We construct a model M = (V, 0, F, () for
arbSATgfjﬁ as follows. For each v € V, define fy,, := «(v) as a constant function. To see that M satisfies all
constraints in ¢, recall that « satisfies at least one literal &-j in each clause C; € @, thatis, a(v) = 1 if &j =,

and «(v) = 0if ¢;, = —w. The reduction ensures that the i conjunct in ¢ contains the disjunct Pr(V,, = 1) = 1

in the first, and Pr(V,, = 0) = 1 in the latter case. Since [Pr(V, = a(v))]a = 1, this satisfies ¢.

For the other direction, suppose there exists a model M satisfying ¢. Therefore, either [Pr(V,, = 0)]Ja = 1 or
[Pr(V, = 1)]as = 1 for each v € V. We obtain an assignment o : V — {0, 1}V by defining a(v) = 0 if and
only if [Pr(V;, = 0)]am = 1 for each variable v € V. Since all conjuncts of ¢ are satisfied by M, it holds by
construction that « satisfies all clauses of P. O

Intractability of SATS:’;,YO. Our main contributions target the lin and base fragments of the expressivity matrix

and are provided in Sections 4 and 5. Here, we show that the tractability results obtained there cannot be lifted to
polynomial inequalities. The proof is based on a reduction from the 3R-complete problem ETRK8 {Zjlx/s] (Abra-

hamsen et al., 2017), where the probabilities of individual events are used to encode the values of the variables
in a way that conceptually resembles the construction used in van der Zander et al. (2023, Proposition 6.5).

Theorem 2 (&). SATE?;{) is IR-complete even if n =1, or if d = 2 and G, is edgeless.

Further Structural Insights in SAT. In order to facilitate our complexity-theoretic analysis, we emphasize
that a Structural Causal Model can be efficiently evaluated, that is, given the values of its hidden variables, it
can be decided in polynomial time, whether a certain event happens.

Observation 3 (&%). Given a model M = (U, V, F,P), an event € € Eounterfact, and some u € Val(U), let
|e| denote the number of atoms in €. Assuming that each function in F can be evaluated in time O(n), one can
decide whether F,u = ¢ in time in O(n? + |¢|).

The runtime of our algorithmic results often depends on the size d of the domain D. We remark that assuming
that d is not much larger than the size of ¢ does not reduce the generality of our results, as we can always reduce
to an equivalent instance where d is bounded from above by |¢| + 1.

Observation 4 (&). Consider an instance of SAT consisting of a domain D and a formula ¢ € L. Let Dy,
be the set of values in D that are explicitly mentioned in at least one atom in ¢ and choose some v ¢ Dg. Then,
it holds that ¢ over domain Dy U {~} is a YES-instance of SAT, if and only if so is ¢ over D.

4 LINEAR INEQUALITIES OVER PROBABILISTIC EXPRESSIONS

*

This section is dedicated to the complexity-theoretic analysis of SAT,,,, that is, the satisfiability problem for
the layer of the PCH that does not allow any interventions. First, we establish the main tractability result of this
section, and then proceed by showing that it is tight as outlined in Figure 1.

Theorem 5. SATg?Ob is in FPT w.r.t. the combined parameter d + tw(¢), and in XP w.r.t. tw(¢).

lin
prob
ously by describing an algorithm that runs in time d/("(#))||9(1) for a computable function f. Consider a

Proof. Consider an instance of SAT |, with formula ¢ and domain D. We prove both statements simultane-
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nice tree decomposition of G4 consisting of O(n) nodes with maximum size w = tw(¢) + 1 computed by,
e.g., the algorithm of Bodlaender (1996). Without loss of generality, assume that only the bags of leaf nodes
are empty and ignore them in the following procedure. For the remaining tree decomposition T, let D!Z! be
the combined domain of the variables of bag B in T. We construct the following Linear Program (LP). For
each bag B and 7 € D!Z!, construct an LP-variable p_y; this will capture the probability of the event B = 7,
that is, each variable in B takes the respective value in ©. To ensure a valid probability distribution over the
LP-variables in each bag B, add the LP-constraints

pp—z > 0 for each LP-variable pp—5, and Zfemm pp=5 = 1 for each bag B.

For every pair of bags B, B’ whose nodes are adjacent in T and B # B’, note that there is some V' € V such
that, without loss of generality, B’ = B U {V'}. To guarantee consistency between the probability distributions
of B and B’, we add for each such pair and each v € D!Bl the LP-constraint

pp=zs = sum{pp 7 | = DBl and 7’ sets B to v}

Next, for each constraint C' in ¢, consider each of its terms Pr(¢) and define V. C 'V to be the set of variables
that occur in Pr(e). By construction, for each ¢, all variables in V. form a clique in G ;. Consequently, there is at
least one bag B, in T such that V. C B,.. Consider an arbitrary choice of such B, and obtain an LP-constraint
from C by replacing each occurrence of term Pr(e) by a sum over all LP-variables pp_—7 such that B, = T
satisfies the event €. Then the LP consists of O(n - d*) LP-variables and O(|¢| + n - d’) LP-constraints.

We can find a solution of an LP (or decide that there is none) in polynomial time with respect to its size, that is,
the number of its variables plus constraints. Crucially, if ¢ is a YES-instance witnessed by a model M which
induces a probability distribution over V, then the LP admits a solution; indeed, we can satisfy all constraints
by setting each LP-variable pp_ to the probability of the event B = v within that distribution.

For the converse, assume the LP has a solution. We construct a model for ¢ by passing through T in a breadth-
first-search manner, starting from an arbitrary leaf node with some bag B = {V'}. Let Uy be a hidden variable
with domain D such that P(Uy = v) = pp—(,) for all v € D. Whenever we transition from a bag B to a
bag B’ containing a variable V' which we have not yet described in our model, we have B’ = B U {V'}. For
each 7 € D!B! such that pg_s > 0, create a hidden variable Uy |p=v with domain Val(UV| B—v) = D and let

P(Uy|p—s = ) = ]% for each x € D,

where (v + 2) € DI I is such that it sets B to T and V' to . This describes a valid probability distribution of
Uy |p=v: As P(Uy|p—s = x) > 0 for all z, it remains to show that ), P(Uy|p—s = =) = 1. We have

Z IED(UV|B’:5 = 95) = Z PB=vie _ ! Z PB'=v+x = 1,
€D

xeD xeD PB=v PB=v T

as we ensured pp_z = Zwe p PB'=v4+2 by an LP-constraint. We now define the function fy, such that, for each
v DIBLif B=7thenV = Up/p_s.

It remains to argue that the model M obtained after visiting every node witnesses ¢ to be a YES-instance. To
this end, employ induction over the breadth-first search described above to prove that after visiting a node with
bag B, for each 7 € D!B! the value of pp_y describes the probability of B =  in the current model M’, that
is, [Pr(B = ©)|m/ = pp=5- As the bag of the first node contains just one variable, the base case is trivial. Now
assume that the claim holds for bag B of some node N and model M, and from N we are visiting a node N’
with bag B’. If B’ C B, then M is not changed and the claim follows immediately. Otherwise B’ = BU {V'}
for a variable V' and M is extended to a model M’ as described above. Consider any 7 € DIZ I, Letw equal 7
when restricted to the variables in B and let = be the value of variable V in 7. By the construction of M’ and
the induction hypothesis, we have that [Pr(B = 0)|ap = [Pr(B = v)|m = pp=35. If [Pr(B = 0)|m = 0,
then [Pr(B’ = v')|am = 0, which is correct by the consistency constraints pp/—z < pg—s = 0. Otherwise,

Pp=v
PB=v

[[PI'(B/ = ﬁl)]]M/ = [[PT(B = ﬁ)]]M/ : ]P)(UV|B:§ = 1’) = pB=7v = ppr=yp’-

Given a nice tree decomposition, the LP can be constructed and solved in time in (|¢| +n - d*)°(). In case of
a YES-instance, this time also suffices to construct a suitable model.

An illustrative example of the employed construction is provided in the appendix (). O
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Next, we show that under well-established complexity assumptions, parameterization by d alone cannot yield
tractability, even when the primal graph G4 has bounded degree.

Theorem 6 (&). SATE is NP-complete even if d = 2 and the maximum degree of G is 8.

prob

Proof Sketch. The containment in NP follows from arbSATgfjf; € NP (Fagin et al., 1990). To show hardness in
our restricted setting, we perform a reduction from 3-SAT. Note that 3-SAT remains NP-hard when restricted
to formulas in which each variable occurs exactly twice negated and twice non-negated (Darmann & Docker,

2021). Thus, w.l.o.g., we assume that our formula ® := A, C; with C; := \/je[S] ¢;; has this property. We

construct an instance ¢ of SATgfjﬁ with V. = {V,, | v € V} and D = {0, 1} such that for each C; € P, the
constraint Pr(\/ el g(£;;)) = 1is added to ¢, where g is defined as in Theorem 1. Since each variable occurs
in at most 4 clauses, there are at most 8 other variables it co-occurs with; consequently, G4 has a maximum
degree of 8. It remains to argue that ® is satisfied if and only if ¢ admits an SCM. For this, the crucial insight
is that the values of the endogenous variables in any SCM that satisfies ¢ correspond to a satisfying assignment
of the variables in ®. O

The following result complements Theorem 6 by ruling out fixed-parameter tractable algorithms for SATEfjﬁ

under a different parameterization, namely the number of variables n. Note that since tw(¢) < n, this implies
that we should not expect the primal treewidth of a graph to yield fixed-parameter tractability for SATP alone.

prob
Theorem 7 (&). SAT2 is W[1]-hard parameterized by n.

prob

Proof Sketch. We perform a reduction from k-MULTICOLORED-CLIQUE, which asks, given a properly vertex-

colored graph G with colors 1,. ..,k and vertices vy, ..., v,, whether GG contains a k-clique. Given G, we
construct an instance ¢ of SATgij as follows. Let V. = {V;,...,Vy} and D = {vq,...,v,}. Foreach i € [k]
and a € [r], add the constraint Pr(V; = v,) < 0, unless v, has color . For each non-adjacent v, v, with a < b
and colors i, 7, add the constraint Pr(V; = v, A Vi = vp) < 0. The construction takes polynomial time and sets

n = k. It remains to show that G contains a k-clique if and only if ¢ admits an SCM. O

5 LINEAR INEQUALITIES OVER CAUSAL OR COUNTERFACTUAL EXPRESSIONS

In this section, we turn our attention to interventional causal reasoning. We initiate our study by showing that
the FPT-tractability that was established in Theorem 5 does not carry over.

Theorem 8 (&). SAT™™ _ s NP-complete even if d = 2 and G 4 consists of vertex-disjoint paths of length 2.

causal

Proof Sketch. Fagin et al. (1990) showed that arbSAT'" | is NP-complete. To show NP-hardness even for

instances ¢ with d = 2 and for which G consists of vertex-disjoint paths of length 2, we reduce from 3-SAT.
Consider a 3-SAT formula ® with r variables. We define an instance ¢ of SAT!" __ with domain D = {0,1}

causal
as follows. For each variable x; € ®, we introduce endogenous variables V; and V';, as well as the constraints

Pr([V; =1)V;=1)=0, and Pr([V; =1 V; = 1) = 0.

Furthermore, for each clause ¢1 V {3 V {3 in ®, we add Pr(L; = 1) + Pr(Ly = 1) + Pr(Ls = 1) > 1to ¢,
where, L; = V;if {; = x;,and L; = Vv, if ¢; =T, for j € [3]. Note that G consists only of edges between V;
and V;, for i € [r]. For the proof of correctness, note that for every model M of ¢, either [Pr(V; = 1) = 0
or [Pr(V; = 1)] s = 0 holds, depending on the relative order of V; and V; in the well-order < in M. O

We contrast the hardness obtained in Theorem 8 by considering the number of variables in V as a new parameter.
Towards this goal, Lemma 9 establishes the existence of a well-structured model for every YES-instance.

Lemma 9. Let ¢ over domain D be a YES-instance of SATE:Lynterfact over variables V. There is an ordering

Vi,..., Vi of V such that the ¢ is satisfied by a model M = (V, U, F,P) with the following properties: for
each i € [n], let QQ; be the set of all possible functions mapping the values of V1, ..., V;_1 to a value of V;, that
is, the set of all functions from D*~1 to D (with Q1 simply being a set of constant functions). Then

o U= {U}withVal(U) = Q1 X ... x Qp, where Uli] € Q; denotes the i" entry in U; and
o F=A{fv, | i€ n]}with fv,(UV1,...,Vie1) = U[](V,..., Vic1).
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Proof. Let M = (V,U’, F',P’) be any model witnessing that ¢ is a YES-instance. Without loss of generality,
we assume U’ to consist of a single variable U’: If there were multiple variables Uy, Us, ..., U, in U’, we could
replace them by some U’ with Val(U’) = Val(U;) x Val(Uz) . .. x Val(Uy), and update P’ and F” accordingly.

Consider an ordering Vi, ..., V,, of V that respects the implicit well-order < of M’. Then, for each i € [n],
fy, € F describes the value of V; as a function of U’ and Vi, ..., V;_;. Partition Val(U’) such that there is a

class C, foreach ¢ = (q1,...,qn) € (Q1 X ... X Q) and let it contain v € Val(U’) if and only if for all i € [n]
ands € D'~', we have that f{, (u,5) = ¢;(5). Now each u € Val(U’) belongs to precisely one class Cq.

We construct the model M = (V, U, F,P) where U and F are defined as specified above and PP is such that
for each ¢ € Val(U) we have P(U = ¢q) = Zu'ecq P(U" = ') (with P(U = ¢q) = 0if C; = (). Note that this
yields a well-defined probability distribution over U. The model M satisfies ¢ since every term Pr(e) over V
has the same probability in M and M’. Indeed, for every class C, and each event &, we have that ', u |= ¢
either for all u € Cy or no u € Cy, as by definition all these u result in the exact same values for the variables
in V, even under interventions. Furthermore, F is such that F,q |= ¢ if and only if 7/, u }= ¢ forall u € C,.
For any event € € Eounterfact, recall that Sy C Val(U) and Spy € Val(U’) denote the sets of values of hidden
variables such that € happens in the respective model. We proved that Sy = | 4ES M C, and thus, by definition
of I, event ¢ happens in both models with the same probability, that is, [Pr(e)]am = [Pr(e)]ae. Hence, M
witnesses ¢ to be a YES-instance as well. O

Theorem 10. SAT'™" . isin FPT w.r.t. the combined parameter d + n, and in XP w.r.t. n.
Proof. Given an instance ¢ over domain D, we perform the following for each of the n! orders of variables. If
we do not find a model for any of these orders, we reject the instance. Consider a total order Vi,...,V,, of V
and let U, F, and the @); be defined as in Lemma 9. We test whether ¢ admits a model as described in Lemma 9
with respect to that order using the following LP. Create an LP-variable p, for each ¢ € Q1 x ... x @Q,. These
represent the probability distribution over U, so we add an LP-constraint > 5 . .o, Pq = 1 and, for each
such ¢, we add an LP-constraint p, > 0. Furthermore, using Observation 3, we transform each constraint in ¢
into an LP-constraint by replacing each term Pr(e) by a sum over all variables p, for which F, ¢ |= €. We accept
the instance ¢ if and only if there is at least one ordering of V for which the constructed LP has a solution. In
each constructed LP there are O(|¢| 4+ |Q1 X ... X @y|) LP-constraints and the number of variables is at most
n

Q1 % .. x Qul = [[1Qil < [ d* " -d<d.
i=1 i=1
As we can find a solution to an LP (or decide that there is none) in polynomial time with respect to its size (that
is, the number of variables plus constraints), the total runtime of the algorithm is n!(|¢| 01 + d©™*).

It remains to prove correctness. If one of the constructed LPs has a solution, let P be the probability distribution
over U as described by the variables p, in that solution. It is straight-forward to verify that (V,{U}, F,P) is
a model for ¢, so we correctly accept the instance. For the other direction, suppose ¢ is a YES-instance. Then
there is a well-structured model M = (V,{U}, F,P) for some ordering of V by Lemma 9. Observe that the
LP constructed for that ordering of the variables has a solution by setting p, := P(U = ¢) for each ¢ € Val(U),
so the algorithm correctly accepts the instance. O

6 CONCLUDING REMARKS

While previous works have focused on mapping the complexity lower bounds for SATISFIABILITY in Pearl’s
Causal Hierarchy, the parameterized paradigm allows us to identify islands of tractability for the problem.
Our contributions include not only these positive results, but also lower bounds which show that the obtained
complexity classifications are tight. The presented findings open up several avenues for future work, such as:

* The Impact of Marginalization. As mentioned in Section 1, recent works (van der Zander et al.,
2023; Dorfler et al., 2025) have proposed an enrichment of the classical fragments in the expressivity
matrix M via the summation operator > in order to capture marginalization. It would be interesting to
explore possible extensions of our approaches to this setting—in particular, can we obtain tractability
for these enriched fragments of the PCH without bounding the nesting depth of »?

* Treewidth-Guided Linear Programming. To the best of our knowledge, the proofs of Results (1)
and (2) rely on an entirely novel approach to establishing parameterized tractability with respect to
treewidth. Since this approach is particularly tailored to problems that combine discrete structures
(graphs) with non-discrete elements (e.g., probabilities), we would not be surprised to see further
applications of the technique in the domains of artificial intelligence and machine learning.
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ABSTRACT

Pearl’s Causal Hierarchy (PCH) is a central framework for reasoning about probabilistic, in-
terventional, and counterfactual statements, yet the satisfiability problem for PCH formulas is
computationally intractable in almost all classical settings. We revisit this challenge through
the lens of parameterized complexity and identify the first gateways to tractability. Our results
include fixed-parameter and XP-algorithms for satisfiability in key probabilistic and counter-
factual fragments, using parameters such as primal treewidth and the number of variables,
together with matching hardness results that map the limits of tractability. Technically, we
depart from the dynamic programming paradigm typically employed for treewidth-based al-
gorithms and instead exploit structural characterizations of well-formed causal models, pro-
viding a new algorithmic toolkit for causal reasoning.

1 INTRODUCTION

Pearl’s Causal Hierarchy (PCH) (Shpitser & Pearl, 2008; Pearl, 2009) is a central pillar of the modern the-
ory of causality that is employed in artificial intelligence and other reasoning tasks—see, e.g., the recent sur-
vey (Bareinboim et al., 2022) or book (Fenton et al., 2020) on the topic. The PCH is a framework that has three
basic layers of depth which capture three fundamental degrees of sophistication for analyzing causal effects and
relationships. All of these layers provide a means of formalizing statements via formulas capturing the behavior
of a set of probabilistic variables in a Structural Causal Model (SCM) (Glymour et al., 1987; Pearl, 2009; Koller
& Friedman, 2009; Elwert, 2013), which is a well-established representation of systems with observed as well
as hidden variables over a specified domain and their mutual dependencies. As a basic illustrative example, the
statement “the likelihood of having both diabetes (D = yes) and blood type B+ (1" = B+) is at most 1%” can
be expressed by the formula ¢ = Pr(D = yes AT = B+) < 0.01.

The formula 1) above belongs to the first, basic layer of the PCH—that is, the layer Ly, of probabilistic
reasoning that captures direct statements one can make about the probabilities of certain outcomes. The second
layer, Lcausal, €xpands on the basic probability terms in Lyop via the introduction of Pearl’s do-operator (Pearl,
2009) which captures interventional causal reasoning. A basic example of an event that can be captured on
this layer of the PCH is contracting a disease after being vaccinated against that disease; the probability of
this event can be expressed using the term Pr([Y = vaccinated] X = contracted)', where the square brackets
denote an intervention that is applied before observing the outcome.”> Hence, the second layer of the PCH
allows us to make statements such as Pr([Y" = vaccinated] X = contracted) < Pr(X = contracted). The third
layer Lcounterfact Of the PCH expands on L¢,usa1 by allowing interventions to be chained, and enables complex
statements related to counterfactual situations. For instance, a third-layer term such as Pr (([M =yes| H =

no) | (M =no A H = yes)) can express the probability that a patient who did not take medication (M) and

was hospitalized (H) would have avoided hospitalization if he had taken the medication. Formal definitions of
these as well as related notions are available in Section 2.

While the three layers of depth of the PCH focus on the expressivity inside the probability term Pr(-), there is
a second dimension to the PCH—specifically, the breadth of operations that can be applied to the probability
terms themselves. For ® € {prob, causal, counterfact}, we distinguish the following fragments of the PCH:

"Equivalently, Pr(X = contracted | do(Y = vaccinated)). We follow recent publications in the area (van der Zander
et al., 2023; Dorfler et al., 2025) and primarily employ the square-bracket notation.

*Interventions are distinct from conditional probability statements such as Pr(X = contracted | Y = vaccinated). To
see this, consider a hypothetical world where the vaccine is ineffective, the disease only exists in a laboratory and an oracle
randomly determines whether a person will be infected without vaccination, or receive the vaccine and not come in contact
with the disease. In this world, Pr(X = contracted | Y = vaccinated) = 0 but Pr([Y" = vaccinated] X = contracted) > 0.
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* £52¢: only simple probability terms are allowed, such as Pr(-) < Pr(o) or Pr() > 1;
* L linear combinations of probability terms are allowed, such as Pr(-) — Pr(o) > 3 Pr(e);

. EF@’;IY: polynomials over probability terms are allowed, such as Pr(-)? < 2Pr(o) - Pr(e) + 0.1.

Crucially, the various combinations of depth and breadth give rise to a 3 X 3 expressivity matrix M for
PCH (Dorfler et al., 2025, Table 1), (van der Zander et al., 2023, Table 1).

A crucial and well-studied problem in the setting of causal reasoning is SATISFIABILITY—that is, determining
whether a given formula (consisting of a set of probability constraints) admits an SCM (Fagin et al., 1990;
Ibeling & Icard, 2020; van der Zander et al., 2023; Mossé et al., 2024; Dorfler et al., 2025). We note that
there is a high-level parallel between this SATISFIABILITY problem in the causal setting and the well-known
BOOLEAN SATISFIABILITY (SAT) and CONSTRAINT SATISFACTION (CSP) problems; the distinction lies in
the types of constraints on the input and the nature of the sought-after model. However, solving SATISFIA-
BILITY in our causal reasoning setting is, in general, a much more daunting task. If we let SAT, denote the
SATISFIABILITY problem for formulas from the fragment L3, of the PCH, then depending on the choice of
® € {prob, causal, counterfact} and * € {base, lin, poly} the problem under consideration will be complete
for the complexity classes NP or IR—see also the detailed discussion of related work at the end of this section.

Crucially, while previous works have made significant strides towards mapping the classical complexity land-
scape of the SATISFIABILITY problem, even the “easiest” fragments of the expressivity matrix remain NP-hard.
The central aim of this article is to provide a counterweight to this pessimistic perspective and identify funda-
mental gateways to tractability for SATISFIABILITY, specifically by employing the more refined parameterized
complexity paradigm (Downey & Fellows, 2013; Cygan et al., 2015). There, one analyzes the running time of
algorithms not only in terms of the input size |I|, but also with respect to a specified numerical parameter k. The
standard notion of tractability used in this setting is then tied to algorithms which run in time f(k) - [I|®™") for
some computable function f; problems admitting such fixed-parameter algorithms are called fixed-parameter
tractable (FPT). A weaker—but nevertheless still useful—notion of tractability stems from the existence of a
so-called XP-algorithm, i.e., an algorithm running in time |I|/(¥) (this gives rise to the complexity class XP).
Our main results include not only the first fixed-parameter and XP-algorithms for the problem, but also matching
lower bounds which allow us to identify the limits of parameterized tractability in the expressivity matrix.

Contributions. A loose inspiration for this work stems from the success stories in the aforementioned do-
mains of BOOLEAN SATISFIABILITY and CONSTRAINT SATISFACTION. The parameterized complexity of
these two problems is by now very well understood, and perhaps the most classical parameterized algorithms
use the primal treewidth as the parameter of choice. Essentially, this measures how “tree-like” the interactions
between the variables in the instance are—more precisely, this is captured by measuring the treewidth, a fun-
damental graph parameter (Robertson & Seymour, 1984), of the graph obtained by representing variables as
vertices and using edges to capture the property of lying in the same “term” (i.e., clause or constraint). In partic-
ular, it is known that BOOLEAN SATISFIABILITY is fixed-parameter tractable w.r.t. the primal treewidth (Biere
et al., 2009, Chapter 13), while CONSTRAINT SATISFACTION admits an XP-algorithm under the same parame-
terization (Samer & Szeider, 2010); the latter then becomes fixed-parameter tractable when the parameterization
also includes the domain size for the variables (Samer & Szeider, 2010).

Given the above, it is natural to ask whether one can use the primal treewidth to establish tractability for SATIS-
FIABILITY in the PCH setting. As our first set of contributions, we provide a complete answer to this question:

e N

SAT';?Ob is (1) in XP w.r.t. the primal treewidth alone, and
(2) fixed-parameter tractable w.r.t. the primal treewidth plus the domain size d.

Moreover, under well-established complexity assumptions one can neither
(3) improve the XP-tractability to FPT (not even for SAT®¢) nor

prob
(4) lift any of these tractability results to SATS?O'{, or SAT! .

\

Furthermore, we remark that parameterizing by the domain size alone does not yield tractability under well-
established complexity assumptions (see Theorem 6).

While the above results are comprehensive, they only provide a gateway to tractability for the “shallow-
est” probabilistic fragment of the PCH. We hence ask whether one can achieve tractability for deeper frag-
ments of the PCH (that is, £}, ., and L, ierface) if the primal treewidth is replaced with a more restrictive
parameterization—specifically the number n of variables in the formula. We note that the analogous question
in the BOOLEAN SATISFIABILITY and CONSTRAINT SATISFACTION setting is trivial: there, asymptotically
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optimal (under well-established complexity assumptions) algorithms parameterized by n can merely enumerate
all possible models (Impagliazzo et al., 2001; Karthik C. S. et al., 2024). Such an approach is doomed to fail
for the causal SATISFIABILITY problem: not only will an SCM contain (potentially many) auxiliary random
variables, but also variable dependencies and random distributions that cannot be exhaustively enumerated.

As our second set of contributions, we map the complexity landscape for deeper fragments of the PCH as well:

e N

SAT!P is (5) in XP w.r.t. n alone, and

counterfact
(6) fixed-parameter tractable w.r.t. n plus the domain size d.
Moreover, under well-established complexity assumptions one can neither
(7) improve the XP-tractability to FPT (not even for SATﬁfj,e)), nor
(8) lift any of these tractability results to SATPY

counterfact*

A schematic overview of our contributions is provided in the mind map below (Figure 1).

Breadth? at most in Depth?
prob causal or counterfact

ol
poly T 1
dR-hard even FPT by d+tw, XP by tw (Thm. 5) FPT by d + n, XP by n (Thm. 10)
if d = 2 and G is edgeless, or no XP by d alone (Thm. 6) no XP by d alone (Thm. 6)
if n = 1 (Thm. 2) no FPT by tw alone (Thm. 7) no FPT by n alone (Thm. 7)

no FPT by d + tw (Thm. 8)

Figure 1: Parameterized complexity of SATISFIABILITY in the PCH based on the position (breadth/depth) in the
expressivity matrix M. All results hold under well-established complexity assumptions and refer to an instance
with n observed variables over a domain of size d such that the treewidth of the primal graph G4 is tw. We
note that the dR-hardness of the poly fragment was already established by Mossé et al. (2024), but not under
the stated restrictions which rule out tractability in the parameterized setting.

Extensions to Marginalization. In order to efficiently express marginalization, recent works (van der Zander

et al., 2023; Dorfler et al., 2025) have extended the classical fragments in M to ﬁggse(z) R Elén(m, and ,CPOIy(Z),
respectively; the only difference is that these classes additionally include the unary summation operator ) . De-
pending on the specific fragment considered, including these marginalization operators in the SATISFIABILITY
problem yields completeness for the complexity classes NPPP, PSPACE, NEXP or succ-IR—see Dorfler et al.
(2025, Table 1). Since the algorithm(s) underlying Results (5) and (6) can also be used to establish inclusion

in the complexity class EXPTIME while SAT!SSEgerfa ot 18 NEXP-complete (Darfler et al., 2025), under well-
established complexity assumptions it is not possible to lift our results towards full marginalization operators
as considered in the aforementioned works. Nevertheless, if one were to bound the nesting depth of the unary
summation operator y . to any (arbitrary but fixed) constant, all of our results could be directly translated to the

marginalization setting by simply expanding on the respective sums.

Proof Techniques. The standard approach to establishing tractability for problems parameterized by treewidth
is to employ dynamic programming—this is the approach used not only for the aforementioned treewidth-based
algorithms solving BOOLEAN SATISFIABILITY and CONSTRAINT SATISFACTION, but also for almost every
algorithm parameterized by treewidth. From a technical standpoint, it is hence surprising that our results do not
employ dynamic programming at all; in fact, the SATISFIABILITY problem seems entirely incompatible with
the basic tenets of the usual “leaf-to-root” dynamic programming paradigm used for treewidth.

Instead, our proof of Results (1) and (2) relies on an entirely novel approach. We first prove that every YES-
instance of SAT';?ob with primal treewidth k admits a “well-structured” SCM whose hidden variables and de-
pendencies can be neatly mapped onto the tree-like structure of the primal graph and determined in advance.
However, this step on its own cannot determine whether an SCM actually exists, as for that we need to compute
and verify the probability distributions for the hidden variables. In the second step, we use the tree-likeness of
the instance once again to construct a “fixed-parameter sized” linear program which either computes a viable
set of probability distributions, or determines that none exists. It is well-known that linear programs can be
solved in polynomial time (Papadimitriou & Steiglitz, 1998)—the difficult part lies in building a program that
provably verifies the existence of an SCM while avoiding an exponential dependency on the input size.
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In order to apply the reduction technique to Results (5) and (6), we need to be able to deal with the presence
of interventions in the formula. Towards this, we argue that every YES-instance of SAngunterfaCt admits an
SCM with different structural properties than those used for Results (5) and (6): in particular, the value of a
single hidden variable U determines not just the value of each observed variable but the function of how it is
determined from the other observed variables. We then define a suitable linear programming formulation that

targets the computation of such well-structured SCMs.

For establishing the lower-bound results, we develop three distinct reductions: one from k-MULTICOLORED-
CLIQUE which handles (3) and (7), one from a restricted variant of the Existential Theory of the Reals problem
for Results (4) and (8), and a separate reduction from 3-SAT for the remaining lin-causal case of (4).

Related Work. SAT'™ ~and SAT®2¢ were shown to be NP-complete by Fagin et al. (1990), and analo-

pro . prob )
gous results for the fragments SAT'" _ SATPae SATIN . and SATP2 . . were obtained by Mossé
et al. (2024). The IR-completeness of SATgf;{), SATE:Lysal and SATESL{]terfact was also established in the latter

work (Mossé et al., 2024). As mentioned above, these complexity-theoretic studies were recently extended
to languages containing the summation operator » , (van der Zander et al., 2023; Dorfler et al., 2025). Other
related languages designed to express probabilistic reasoning were developed in the works of, e.g., Nilsson
(1986); Georgakopoulos et al. (1988); Ibeling & Icard (2020). Moreover, the existence of solutions to the
SATISFIABILITY problem with specific properties has very recently been studied by Bliser et al. (2025).

Beyond SATISFIABILITY, the parameterized complexity paradigm has been employed in several works studying
another central problem in the area of causality: BAYESIAN NETWORK STRUCTURE LEARNING. This line of
research was initiated by Ordyniak & Szeider (2013), with recent contributions considering a broad range of
parameterizations as well as variations of the problem (Ganian & Korchemna, 2021; Griittemeier et al., 2021a;b;
Griittemeier & Komusiewicz, 2022). The complexity of the related CAUSAL DISCOVERY problem was recently
studied by Ganian et al. (2024).

Beyond the aforementioned prominent applications in BOOLEAN SATISFIABILITY and CONSTRAINT SATIS-
FACTION, primal treewidth has been used as a natural means of capturing structural properties of inputs in a
variety of other settings as well. Examples of this in the broad Al area include its applications in INTEGER
LINEAR PROGRAMMING (Ganian et al., 2017; Ganian & Ordyniak, 2018), HEDONIC GAMES (Peters, 2016;
Hanaka & Lampis, 2022), MATRIX COMPLETION (Ganian et al., 2022), ANSWER SET PROGRAMMING (Fichte
& Hecher, 2018), and RESOURCE ALLOCATION (Eiben et al., 2023). We note that the treewidth-based algo-
rithms in all of the aforementioned works rely on dynamic programming, which is fundamentally different from
the technique employed to achieve our Results (1) and (2).

2 PRELIMINARIES

Forn € N, let [n] = {1,...,n}. Foriy,is € R, let [i1,i2] = {j € R | i1 < j < ia}. We follow established
notation as used in (Mossé et al., 2024; van der Zander et al., 2023). By V we refer to a contingent of random
variables and, without loss of generality, assume that each of these share a given domain D of size d.

Syntax of the languages of PCH. For VV € V and v € D, a statement of the form V' = v is called an atom.
We can combine multiple atoms to obtain events over V by applying the following grammatical rules.
Eprop =V =0 | 2Eprop | Eprop A Eprops
gint =T | V=wv | gint /\ginta
gpost—int H= [ant} gprop7
gcounterfact o= gpost—int | _‘gcounterfact | gcounterfact A 5counterfact~
We call the events in Eqrop propositions and the events in &, interventions. Each event € can only occur within
a probabilistic statement Pr(e), which we call a term. The size of a term is the number of atoms it contains. For
E € {Eprop; Epostints Ecounterfact  and € € &, we define the following valid ways of combining terms.
Thase(€) ::= Pr(e),
Tlin(g) = Pr(e) | Tiin(g) + Tiin(g);
Tpoly(g) == Pr(e) | Tpoly(g) + Tpoly(g) ‘ Tpoly(g) 'Tpoly(5)~

*

Lastly, for x € {base, lin, poly} we define L, (L, e and LZ,,erfaces TESPeCtively) to be the language that

contains all sets of inequalities over elements in T} (Eprop) (in T4 (Eposteint) and in T (Ecounterfact)» resp.). The

elements inside £* ., £ and L} are called formulas. Note that tautological and contradictory

*
prob® ~causal® counterfact
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events can be used to encode comparisons against 1 and 0, such as Pr(¢) < 0. Moreover, the grammars
of £'é” and £p®°|y support integer coefficients, which can be effectively constructed by summing up multiple
probabilities of the same type. Any inequality with rational coefficients can be encoded by multiplying both
sides with the smallest common multiple of all non-integer coefficients. At the beginning of the next section,
we will compare our syntax to the one used in related work.

Semantics of the Languages of PCH. We define the semantics of the aforementioned languages using the
notion of Structural Causal Models as popularized by Glymour et al. (1987) and Pearl (2009, Section 3.2).
A recursive Structural Causal Model (SCM, or simply model) over domain D is a tuple M = (V, U, F,P) with

* aset V of endogenous (observed) variables, implicitly well-ordered by <, that range over D,
 aset U of exogenous (hidden) variables,

» aset F = {fv}vev of functions where fy specifies how the value of V' can be computed given the
values of U and V .y, that is, the subset of V that precedes V' € V in <,

* a probability distribution P on U.

Note that any model M whose exogenous variables U have an infinite or continuous domain is (w.r.t. its
evaluation) equivalent to a model M’ where all exogenous variables have discrete and finite domains (Zhang
et al., 2022). Consequently, we assume throughout that each variable U € U has a discrete and finite domain
Val(U), and let Val(U) = Val(Uy) x ... x Val(Ujy) refer to their combined range.

Let V' = v be an atom in &,;. We denote by Fy —, the set of functions obtained from F by replacing fi, with
the constant function v. We generalize this definition to arbitrary conjunctions of atoms vy € &, in the natural
way and denote the set of resulting functions as . Let ¢ € Eyop and u € Val(U). We write F,u |= € if
evaluating F on input @ yields an assignment to 'V under which ¢ is satisfied. For [y] ¢ € Epost-int, We write
F,u =[] e if F,, @ [= €. Moreover, for all €,e1,€2 € Ecounterfact, We write (i) F, T = —e if F, @ - ¢, and
(il) F,u = €1 Aeg if both F,u = &1 and F,u = e3. For a given model M = (V,U, F,P), we denote
Sy :={u € Val(U) | F,@ = ¢}. The way M interprets an expression t € T,q1,(€) is denoted by [t] ¢ and
recursively defined as follows: [Pr(e)[m = > zcs,, (o) P(W). For two expressions t1, t2 € Thoy (€), we define
M E t1 < tgif and only if [t1]ar < [t2]rm. The semantics for negation and conjunction are defined in the

usual way, yielding the semantics for M = ¢ for any formula ¢ € £P°”

counterfact*

Primal Treewidth. Let ¢ € £ be a formula over variables V. By G4 = (V, E), we denote the

counterfact

primal graph of ¢, where {V,V'} € E if and only if V' # V' and there is a term in ¢ that contains both V'
and V'. A nice tree decomposition of G is a pair (T, X), where T is a tree (whose vertices are called nodes)
rooted at a node Ny and X is a function that assigns to each node N a set X(N) C 'V such that:

* Forevery {V,V'} € E, there is a node N such that {V, V'} C X(N).

* For every vertex V' € 'V, the set of nodes N satisfying V' € X(N) forms a subtree of T.
IX(N)| =0if N isaleaf of T or N = Ny.

* There are only three kinds of non-leaf nodes in T*

— introduce: anode N with exactly one child N’ such that X(N) = X(N")U{V} foraV ¢ X(N’).
— forget: anode N with exactly one child N’ such that X(N) = X(N’) \ {V} foraV € X(N').
— join: anode N with two children Ny, Na such that X(N) = X(N7) = X(N3).

We call each set X(IV) a bag. The width of a nice tree decomposition (T, X) is the size of the largest bag X(N)
minus 1, and the treewidth of G 4, denoted by tw(Gy), is the minimum width of a nice tree decomposition of G .
We let the (primal) treewidth of a formula ¢ denote the treewidth of its primal graph, that is, tw(¢) = tw(G).

The Class JR. The Existential Theory of the Reals (ETR) contains all true sentences of the form
Jxq ... Jxpd(ze, ..., Tk),

where ¢ is a quantifier-free Boolean formula over the basis {A,V, -} and a signature consisting of constant
symbols (0 and 1), function symbols (+ and -), and predicates (<, <, and =). The sentence is interpreted
over the real numbers in the standard way. The closure of ETR under polynomial time many-one reductions
yields the complexity class 3R (Grigoriev & Jr., 1988; Canny, 1988). For a comprehensive compendium on R,
see Schaefer et al. (2024); here, we only require the class for the lower bound established in Theorem 2.
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3 SATISFIABILITY FOR LANGUAGES OF PCH AND STRUCTURAL INSIGHTS

In this paper, we examine several analogues of the well-known problem BOOLEAN SATISFIABILITY that cap-
ture various probabilistic, causal, and counterfactual statements. We denote these problems as SATZB’ where
® € {prob, causal, counterfact} and * € {base, lin, poly}, and define them as follows.

SATg Input: A set D of d domain values and a formula ¢ € L over variables V = {V1,...,V,,}.
Task: Decide if there exists a recursive Structural Causal Model M over D such that M |= ¢.

The classical computational complexity of SAT has by now been studied extensively (Fagin et al., 1990;
Ibeling & Icard, 2020; van der Zander et al., 2023; Mossé et al., 2024; Dorfler et al., 2025). We remark that
our definition of SATy slightly deviates from the one established in previous works, in the sense that we
restrict our attention to input formulas ¢ that are sets of inequalities (that is, each inequality forms a constraint)
rather than allowing arbitrary Boolean combinations of inequalities. However, this restriction does not affect
any of the known complexity-theoretic results, since previous lower-bound proofs did not employ any Boolean
combinations beyond sets. However, the situation changes drastically when studying SATF, from the viewpoint
of parameterized complexity, as we show next.

Let arbSATgfjﬁ denote the version of SATgfjﬁ in which ¢ is an arbitrary Boolean combination of inequalities

over elements in Thase(Eprob). We justify our restriction to SATy, by showing that arbSATgfjﬁ

complete in a very restricted setting, thus dashing any hope to exploit structural properties of ¢.

remains NP-

Theorem 1. arbSAT®E is NP-complete even if Gy is edgeless and d = 2.

pro

Proof. Fagin et al. (1990) proved that arbSATgfjﬁ is NP-complete. In order to prove the NP-hardness of

arbSATSij even for instances in which each constraint consists of only one variable and all variables have

domain D = {0, 1}, we perform a reduction from 3-SAT. Let @ := \; Cj with C; := \/ ;3 i, be a 3-SAT

formula over variables ). Define an instance ¢ of arbSATgfosﬁ with V = {V,, | v € V} over domain {0, 1} as

9= /\( V Pr(g(t;,)) = 1) A N\ (Pr(V, =0) =1V Pr(V, =1) = 1),
VISIE] veEV

where g(/;,) is replaced by V,, = 1if {;; = v, andby V,, = 0if {;; = —wv.

J

We now argue that ® is satisfied if and only if ¢ admits an SCM. For the first direction, suppose there exists
an assignment o : V — {0,1}/V! under which ® is satisfied. We construct a model M = (V, (), F, () for
arbSATgfjﬁ as follows. For each v € V, define fy;, := a(v) as a constant function. To see that M satisfies all
constraints in ¢, recall that « satisfies at least one literal Zij in each clause C; € O, thatis, a(v) = 1if &j =,
and a(v) = 0if ¢;; = —w. The reduction ensures that the i"" conjunct in ¢ contains the disjunct Pr(V,, = 1) =1
in the first, and Pr(V,, = 0) = 1 in the latter case. Since [Pr(V, = a(v))]am = 1, this satisfies ¢.

For the other direction, suppose there exists a model M satisfying ¢. Therefore, either [Pr(V,, = 0)]Ja = 1 or
[Pr(V, = 1)]a = 1 for each v € V. We obtain an assignment o : V — {0, 1}V by defining o(v) = 0 if and
only if [Pr(V;, = 0)]a = 1 for each variable v € V. Since all conjuncts of ¢ are satisfied by M, it holds by
construction that « satisfies all clauses of ®. O

Intractability of SATg:’;{). Our main contributions target the lin and base fragments of the expressivity matrix
and are provided in Sections 4 and 5. Here, we show that the tractability results obtained there cannot be lifted

to polynomial inequalities.

Theorem 2. SATg:’;{, is AR-complete even if n = 1, or if d = 2 and G is edgeless.

Proof. Mossé et al. (2024) proved that SATE?;{) is JR-complete. Using a different reduction, we first prove
our second statement by showing hardness on instances in which no two variables co-occur in a term and all
variables have a binary domain. Our proof conceptually resembles the construction used in van der Zander et al.

(2023, Proposition 6.5). Consider the following problem.
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ETREK8 {Z:f/s} Input: A set S of equations over real variables z1, ..., x, € [—%, %] in which each equa-

tion is of the form z; = § or @, +, = T, OF T, Ty, = T4y, and i, 41, iz, i3 € [n].
Task: Decide if S has a solution.

Note that ETRE{8 {Z’f/s] is known to be FR-complete (Abrahamsen et al., 2017). We show that every instance of
ETRE{S {;;jlx/s] can be reduced to an instance of SAT';?;{), in which all variables have a binary domain and each
term speaks about just one variable.

Let S be an instance of ETREf3 {Z’f/s} that contains variables x1,...,x, and let Vi, ..., V,, be binary random

variables. We obtain an instance ¢ over domain D = {0,1} of SATE:’;{) in time O(|¢|) by replacing for all

i € [n] each occurrence of z; in S by the expression e; :=  Pr(V; = 0) — £. Note that in ¢, no two random
variables co-occur in the same term and d = 2. We now argue that S is satisfiable if and only if ¢ has a
model. First, suppose there exists a solution for S, i.e., a function f that maps each variable z;,7 € [n] to a
value in [—%, é] such that all equations are satisfied under f. We obtain a model M for ¢ by introducing a
hidden variable U; for each binary random variable V; in ¢ and define fy, such that V; = U;. Then, letting
P(U; = 0) == 4f(x;) + % for all i € [n] will satisfy ¢, since it enforces 0 < [Pr(V; = 0)Ja« < 1 and
ensures that e; = f(x;). Likewise, if there exists a model M for ¢, then we can determine [Pr(V; = 0)}] M and
derive e;. Setting ; to the value ¢; for all i € [n] thus solves all equations in S and ensures z; € [—3, £].

The above construction is easily adapted to show hardness even if n = 1. To construct ¢, let V.= {V'} with
d =n+1. For each i € [n], add a constraint Pr(V = i) < L. Furthermore, add a constraint for each constraint

in S that, for i € [n], replaces each occurrence of z; by ¢; := 2 Pr(V = i) — &, which scales Pr(V = i) to be

in [—%7 %] This construction holds by the same arguments as employed above, where the value 0 in the range
of V serves as a buffer so that for i € [n] the probability Pr(V = i) can take arbitrary values in [0, 1]. O

Despite the hardness of sets of polynomial inequalities even in the absence of interventions, we remark that one
can still obtain exponential time algorithms by employing the constructions in Theorems 5 and 10. Using the
same approaches now requires solving systems of polynomial inequalities instead of LPs. These IR instances
can be solved, for example, by invoking Renegar’s Theorem (Renegar, 1992a;b;c).

Further Structural Insights in SAT(. In order to facilitate our complexity-theoretic analysis, we emphasize
that a Structural Causal Model can be efficiently evaluated, that is, given the values of its hidden variables, it
can be decided in polynomial time, whether a certain event happens.

Observation 3. Given a model M = (U, V,F P), an event € € Eounterfact> and some © € Val(U), let |¢|
denote the number of atoms in €. Assuming that each function in F can be evaluated in time O(n), one can
decide whether F,u = ¢ in time in O(n? + |¢|).

Proof. The only randomness in a model stems from the hidden variables U. Fixing their values thus determin-
istically settles whether € holds true or not. To decide which one is the case, it suffices to show how to evaluate
events from Epest-ints 85 Ecounterfact 1S Simply a Boolean formula over these events that—having evaluated each
event of type Epost-int—can be evaluated in time in O(|e]). To evaluate an event [y] €’ € Epost.int, We compute
the value of each variable V' € V following the implicit well-order < of the model. Note that the value of V
is either fixed by the intervention v or can be computed from u and the values of V<y-. Once the values of all
variables in V are determined, the probabilistic event ¢’ can be evaluated in time in O(|¢’]). O

The runtime of our algorithmic results often depends on the size d of the domain D. We remark that assuming
that d is not much larger than the size of ¢ does not reduce the generality of our results, as we can always reduce
to an equivalent instance where d is bounded from above by |¢| + 1.

Observation 4. Consider an instance of SAT consisting of a domain D and a formula ¢ € L. Let Dy be
the set of values in D that are explicitly mentioned in at least one atom in ¢ and choose some v ¢ Dy. Then, it
holds that ¢ over domain Dy U {~} is a YES-instance of SATy, if and only if so is ¢ over D.

Proof. To show this equivalence, intuitively, we contract all values in D \ Dy into .

Suppose there is a model M solving (¢, Dy U{~}). As ¢ does not differentiate between values in {y}UD\ Dy,
the model M also witnesses (¢, d) to be a YES-instance.

For the other direction, suppose there is a model M = (V, U, F,P) solving (¢, D) with an implicit well-
order <, and let V1, V5, ... denote V as ordered by <. Note that, without loss of generality, for each ¢ € [n] we
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can assume fy;, € F to be represented by a case distinction over the values of U and V 4y, where the result of
each case is stated as an element in D. Exhaustively repeat the following. Let ¢ be minimal such that there is
some function fy € F which has a condition V; = v in the case distinction with v ¢ D,,. Replace the condition
by fy, = v, where fy, denotes the term used to compute fy,. Rewrite the updated fy to once more be a case
distinction over the values of U and V <y . Note that this preserves the probability distribution over fy, even
under interventions: For every fixed u € U, the variables V1, ..., V;_; are computed the same way as before.
Further, by assumption there is no intervention with an atom setting V; to v. Hence, the only way that V; = v
happens is if fy, = v.

If at some point there is no ¢ satisfying the condition, we have an alternative but equivalent representation of the
functions in F which do not compare any variable V' € V to any value outside Dy. At this point, update the
functions once more such that whenever a function fy would output some value in D \ Dy, it now outputs .
As the functions computing the other variables do not compare such a variable V' to a value outside of D, all
variables are computed in the exact same way as before except that for each variable V" all outputs in D\ D, are
contracted into ~y. This yields an updated model M’ where the domain is restricted to Dy U {v}. This model
satisfies ¢ if so does M.

4 LINEAR INEQUALITIES OVER PROBABILISTIC EXPRESSIONS

This section is dedicated to the complexity-theoretic analysis of SAT;mb, that is, the satisfiability problem for
the layer of the PCH that does not allow any interventions. First, we establish the main tractability result of this
section, and then proceed by showing that it is tight as outlined in Figure 1.

Theorem 5. SATg?Ob is in FPT w.r.t. the combined parameter d + tw(¢), and in XP w.r.t. tw(¢).

lin
prob
ously by describing an algorithm that runs in time d/(*%(¢)) \¢|O(1), for a computable function f. Consider a
nice tree decomposition of G4 consisting of O(n) nodes with maximum size w = tw(¢) + 1 computed by,
e.g., the algorithm of Bodlaender (1996). Without loss of generality, assume that only the bags of leaf nodes
are empty and ignore them in the following procedure. For the remaining tree decomposition T, let D!B! be
the combined domain of the variables of bag B in T. We construct the following Linear Program (LP). For
each bag B and 7 € D!P!, construct an LP-variable p_s; this will capture the probability of the event B = 7,
that is, each variable in B takes the respective value in v. To ensure a valid probability distribution over the
LP-variables in each bag B, add the LP-constraints

Proof. Consider an instance of SAT with formula ¢ and domain D. We prove both statements simultane-

pp—z > 0 for each LP-variable pg—5, and ZieDlBl pp=—5 = 1 for each bag B.

For every pair of bags B, B’ whose nodes are adjacent in T and B # B’, note that there is some V' € V such
that, without loss of generality, B’ = B U {V'}. To guarantee consistency between the probability distributions
of B and B’, we add for each such pair and each © € DI!P| the LP-constraint

pB—z = sum{pp/—w | ¥ € D'P'l and ¥’ sets B to v}.

Next, for each constraint C' in ¢, consider each of its terms Pr(e) and define V. C 'V to be the set of variables
that occur in Pr(e). By construction, for each ¢, all variables in V, form a clique in G . Consequently, there is at
least one bag B, in T such that V. C B,.. Consider an arbitrary choice of such B, and obtain an LP-constraint
from C' by replacing each occurrence of term Pr(e) by a sum over all LP-variables pp__5 such that B, = T
satisfies the event €. Then the LP consists of O(n - d*’) LP-variables and O(|¢| + n - d*) LP-constraints. An
exemplary instance is constructed in Example 1.

We can find a solution of an LP (or decide that there is none) in polynomial time with respect to its size, that is,
the number of its variables plus constraints. Crucially, if ¢ is a YES-instance witnessed by a model M which
induces a probability distribution over V, then the LP admits a solution; indeed, we can satisfy all constraints
by setting each LP-variable pp_5 to the probability of the event B = v within that distribution.

For the converse, assume the LP has a solution. We construct a model for ¢ by passing through T in a breadth-
first-search manner, starting from an arbitrary leaf node with some bag B = {V'}. Let Uy be a hidden variable
with domain D such that P(Uy = v) = pp—(,) for all v € D. Whenever we transition from a bag B to a
bag B’ containing a variable V' which we have not yet described in our model, we have B’ = B U {V'}. For
each v € DIB! such that pg_3 > 0, create a hidden variable Uy | =y with domain Val(Uy|p—5) = D and let

_ PB'=v+x
PB=v

P(Uy|p—s = ) : foreachz € D,
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where (7 + x) € DIP 'I'is such that it sets B to 7 and V' to x. This describes a valid probability distribution of
Uy |p=z: As P(Uy|p—y = x) > 0 for all z, it remains to show that P(Uy|p—s = ) = 1. We have

zeD
PB' =v+z 1
S BUvipy =)= Y o = Y ppgis = 1,
z€D cep PB=v PB=v 1D

as we ensured pp_5 = Zl epPB'=v+z by an LP-constraint. We now define the function fy, such that, for each
v € DIBLif B=7vthenV = Up/|pp.

It remains to argue that the model M obtained after visiting every node witnesses ¢ to be a YES-instance. To
this end, employ induction over the breadth-first search described above to prove that after visiting a node with
bag B, for each 7 € D!P! the value of pp_y describes the probability of B =  in the current model M’, that
is, [Pr(B = v)| s = pp=3. As the bag of the first node contains just one variable, the base case is trivial. Now
assume that the claim holds for bag B of some node N and model M, and from N we are visiting a node N’
with bag B’. If B’ C B, then M is not changed and the claim follows immediately. Otherwise B’ = BU {V'}
for a variable V' and M is extended to a model M’ as described above. Consider any 7’ € DI? I, Letw equal v’
when restricted to the variables in B and let = be the value of variable V in v’. By the construction of M’ and
the induction hypothesis, we have that [Pr(B = 0)| s = [Pr(B = v)|m = pp=35. If [Pr(B =0)|m =0,
then [Pr(B’ = v)]pm/ = 0, which is correct by the consistency constraints pp/—z < pp—z = 0. Otherwise,

[[PI'(B/ = @I)]]M/ = [[PT(B = ﬁ)]]/\/l’ : ]P)(UV|B:5 = l’) = PB=7

PB/ =%
PB=v

= pB/=5/ .

Given a nice tree decomposition, the LP can be constructed and solved in time in (|¢| + n - d*)°(). In case of
a YES-instance, this time also suffices to construct a suitable model. O

Example 1 (Construction in Theorem 5). Consider the following instance ¢ of SATEZSe with endogenous vari-

ables V. = {V1, Va2, V3, V4 } over domain D = {0,1}.

Pr(Vi=1AVs=1)>1
Pr(Vo=1VvV3=1)—2Pr(V3=1VvV;=1)>0
Pr(Vy=1) >3

The corresponding primal graph G and a nice tree decomposition of G are as follows.

Vi O- -G
- Vo0, Vo~
Vs O- G~

We construct a linear program as follows. For each non-empty bag, we create one LP-variable for each possible
assignment of the variables in the bag. This yields variables py,—o and py,—1 for i € [3] as well as py,— v,—y
and pvy,—g Vy—y and py,—g v,—y for all pairs x,y € {0,1}. Note that for clarity we here write DPVi=x,V;=y
instead of pp— () with B = {V;, V;},i < j. We introduce the following LP-constraints
pri=0 >0, py=1 >0, py—o+py=1=1 foric[3],
PV,=2,V=y >0 for (aa b) € {(17 3)7 (27 3)7 (37 4)}7 T,y € {07 1}7
PV,=0,Vy=0 + PV, =0,Vs=1 + PV,=1,V=0 + Pv,=1,v,=1 = 1 for (a,b) € {(1,3),(2,3),(3,4)},
which we extend by the following LP-constraints that ensure consistency between bags
PV,=x = DV,=2,Vy=0 T DV,=z,Vy=1 for (aa b) S {(17 3)a (27 3)7 (3’ 4)}’ T e {07 1}7
PVi=z = PV,=0,Vo=z T PV,=1,Vi=x for (a’ b) € {(17 3)’ (27 3>}’ T e {O’ 1}'
Last, the following three LP-constraints encode the constraints in ¢:
PVi=1,Va=1 =

DVa=1,Va=0 + PVo=1,Va3=1 T PVp=0,Vs=1 — 2(pV3=17V4=0 + Pvs=1,vi=1 +pV3=07V4=1) >

wi~ O Nl

DVa=0,Va=1 T Pv3=1,v,=1 =

Here, ¢ is a YES-instance of SATyn., and satisfied by an SCM M = (V,{U}, F,P) such that P(U = 1) = 1

base
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holds 3 as well as

fV1 (U) = U7 sz = 17 ng(‘/l) = Vla and fV4(‘/1) = ‘/13

which corresponds to the LP-solution where all LP-variables have value O except for

Pvo=1 = 17 Pv;=0 = Pv;=1 = % fori S {153}5

Pvi=0,v3=0 = PVi=1,Va=1 = PVo=1,V3=0 = PVo=1,Va=1 = PV3=0,V4=0 = PVa=1,Vu=1 = %
Likewise, this solution to the LP yields a model M' = (V,U'F' ') witnessing ¢ to be a YES-instance, as
constructed by passing through the tree decomposition in order {V1 },{V1,V3}, {V5}, {V5, Vu}, {Va, V3}, {V2}.
We illustrate the first steps towards constructing M'. First, we introduce a hidden variable Uy, with
P(Uy, =1) = % and let fy, (Uv,) = Uy,. Next we construct hidden variables Uy,|y,—o and Uy,v,—1,

where P'(Uy,|v,—o = 1) = 0 and P'(Uy,|v,=1 = 1) = 1, and define

Uvslvi=0, V1 =0;
Uvyjvi=1, fVi =1

Defining the remaining observed variables analogously yields an SCM M’ which satisfies ¢.

Jvs V1, Uy vy =0, Uy vy =1) = {

Next, we show that under well-established complexity assumptions, parameterization by d alone cannot yield
tractability, even when the primal graph G4 has bounded degree.

Theorem 6. SATE?;E is NP-complete even if d = 2 and the maximum degree of G is 8.

Proof. The containment in NP follows from arbSATgfjﬁ € NP (Fagin et al., 1990). To show hardness in our
restricted setting, we perform a reduction from 3-SAT. Note that 3-SAT remains NP-hard when restricted
to formulas in which each variable occurs exactly twice negated and twice non-negated (Darmann & Docker,
2021). Thus, w.l.0.g., we assume that our formula  := /\i C; with C; = \/je[S] éij over variables V has this

property. We construct an instance ¢ of SAthfjﬁ with V.= {V, | v € V} and D = {0, 1} such that for each
C; € @, the constraint Pr(\/je[g] g(;;)) = 1is added to ¢, where g is defined as in Theorem 1. Since each

variable occurs in at most 4 clauses, there are at most 8 other variables it co-occurs with; consequently, G4 has
a maximum degree of 8. We now argue that  is satisfied if and only if ¢» admits an SCM.

Suppose there exists an assignment « : ¥V — {0, 1}“" that satisfies ®. We construct a model M satisfying ¢ as
in the proof of Theorem 1. The proof that M satisfies all constraints in ¢ is analogous.

For the other direction, suppose there exists a model M = (V,U, F,P) satisfying ¢. From the existence
of P, we conclude that there exists an assignment ay; to U that has a non-zero probability. Moreover, by
construction, fixing such an ays yields a full assignment ay to 'V of non-zero probability. We obtain an
assignment ag : V — {0,1}VI by enforcing ag(v) = 0 < ayv(V,) = 0 for each variable v € V. We claim
that g satisfies all clauses in ®. Suppose the contrary, that is, there exists a clause C; = \/ el {;; in @ that is
not satisfied by ag. Then \/ el g(£;;) is not satisfied by arv. However, since ary has non-zero probability, it
follows that [Pr(\/; ¢z 9(¢i;))]m < 1, thus, M fails to satisfy all constraints in ¢ which contradicts the fact
that it is a model. We can therefore conclude that ag is a satisfying assignment for ®. O
The following result complements Theorem 6 by ruling out fixed-parameter tractable algorithms for SATgfjﬁ
under a different parameterization, namely the number of variables n. Note that since tw(¢) < n, this implies
that we should not expect the primal treewidth of a graph to yield fixed-parameter tractability for SAT® alone.

prob
Theorem 7. SATP¢ is W[1]-hard parameterized by n.

pro

Proof. We perform a reduction from k-MULTICOLORED-CLIQUE, which asks, given a properly vertex-colored

graph G with colors 1, . .., k and vertices vy, . . . , v,, whether G contains a k-clique. Given (G, we construct an
instance ¢ of SATgfjﬁ as follows. Let V. = {V;,..., Vi } and D = {vy,...,v,}. Foreachi € [k] and a € [r],

add the constraint Pr(V; = v,) < 0, unless v, has color . For each non-adjacent v, v, with a < b and colors
i, j, add the constraint Pr(V; = v, A Vi = vp) < 0. The construction takes polynomial time and sets n = k.

Suppose G contains a clique of size k. Let a: [k] — {v1,...,v,} be such that for every i € [k] the clique
contains vertex (%) of color 7. Consider the model (V, (), F, (), where F is such that fy, := «(i) is a constant
function for each V; € V. Clearly, this satisfies each constraint of the form Pr(V; = v,) < 0. Assume this

3Here, for binary variables we just state the probability of one case; the probability for the other immediately follows.

10
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would not satisfy a constraint of the form Pr(V; = v, A V; = v) < 0. Then (i) = v, and a(j) = vs, s0
both v, and v;, are in the clique and thereby adjacent, which contradicts the existence of the constraint.

For the other direction, assume there is a model M satisfying the SATgfjf; instance. Then there is at least one

assignment ¥ € D* such that [Pr(V = ©)Ja > 0. Let a: [k] — {v1,...,v,} be such that for each i € [k]
we have V; = «(i) in this assignment. We argue that the vertices «(1), ..., a(k) form a clique. Towards a
contradiction, assume there are 4,j € [k],7 # j such that «(i) and «(j) are non-adjacent. Then there is a
constraint Pr(V; = (i) AV, = «(j)) < 0, which contradicts the model being a solution to the instance as
[Pr(Vi = a(i) A V; = a(i)a = [Pr(V = )] > 0. O

5 LINEAR INEQUALITIES OVER CAUSAL OR COUNTERFACTUAL EXPRESSIONS

In this section, we turn our attention to interventional causal reasoning. We initiate our study by showing that
the FPT-tractability that was established in Theorem 5 does not carry over.

Theorem 8. SAT'" _ is NP-complete even if d = 2 and G consists of vertex-disjoint paths of length 2.

causal

Proof. Fagin et al. (1990) showed that arbSAT!" _ is NP-complete. To show NP-hardness even for instances ¢

causal
with d = 2 and for which G4 consists of vertex-disjoint paths of length 2, we reduce from 3-SAT. Consider a
3-SAT formula & with r variables. We define an instance ¢ of SAT'" _ with domain D = {0, 1} as follows.

causal
For each variable z; € ®, we introduce endogenous variables V; and V';, as well as the constraints

Pr([V;=1V;=1)=0, and Pr([V; =1]V; =1) =0.

Furthermore, for each clause ¢1 V {3 V {3 in &, we add Pr(L; = 1) + Pr(Ly = 1)+ Pr(Ls = 1) > 1to ¢,
where, L; = V;if {; = x;,and L; = Vv, if ¢; =7, for j € [3]. Note that G consists only of edges between V;
and V;, for i € [r]. We now argue that ® is satisfiable if and only if there is a model for ¢. Suppose there exists
an assignment « : Var(®) — {0,1}" under which ® is satisfied. We construct a model M = (V,0, F, ()
for ¢ as follows: First, note that by construction, V. = {V;,V; | i € [r]}. Foreach i € [r], if a(z;) = 1 then
let F be such that fi; = 0, which satisfies Pr([V; = 1] V; = 1) = 0, and fy; == 1 — V;, which satisfies
Pr([V; = 1] V; = 1) = 0. If instead a(z;) = 0, let fy, == 0 and fi7, = 1=V, which analogously satisfies
both constraints. This yields an SCM M. It remains to show that each clause-constraint is satisfied. Consider a
clause ¢1 V £5 V £3 and let, without loss of generality, ¢, be TRUE in «. Assume that ¢; = x; for some i € [r]
(the case of /1 = Z; holds analogously). Then, in the model without interventions, it holds that V;=0and
V; = 1—0 = 1 with probability 1, in other words, [Pr(V; = 1)]a = 1. As Pr(V; = 1) is one of the summands
in the constraint for clause 7 and the other summands are non-negative, this satisfies the clause constraint.

For the other direction, suppose there exists a model M = (V, U, F ,E) for ¢ with an associated well-order <
over V. Consider the assignment « obtained by letting z; = 1if V,; < V; and z; = 0, otherwise. Note

that if V; < V; then [fi7, does not depend on V; and thus the constraint Pr([V; = 1] V; = 1) = 0 implies
[Pr(V; = 1)]Jam = 0. Vice versa, if V; < V;, we have [Pr(V; = 1)Jar = 0. As for each clause £1 V £y V £3
we have that Pr(L; = 1) + Pr(Ly = 1) + Pr(Ls = 1) > 1, there is j € [3] such that L; does not precede its
counterpart and thus /; is set to TRUE by «. O

We contrast the hardness obtained in Theorem 8 by considering the number of variables in V as a new parameter.
Towards this goal, Lemma 9 establishes the existence of a well-structured model for every YES-instance.

Lemma 9. Let ¢ over domain D be a YES-instance of SATEZL{\terfact over variables V. There is an ordering

Vi,..., Vi of V such that the ¢ is satisfied by a model M = (V, U, F,P) with the following properties: for
each i € [n], let Q; be the set of all possible functions mapping the values of V1, . .., V;_1 to a value of V;, that
is, the set of all functions from D' to D (with Q. simply being a set of constant functions). Then

e U= {U}withVal(U) = Q1 X ... X Qn, where U[i] € Q; denotes the i" entry in U; and
o F=A{fv, | i€ n]}with fv,(UV1,...,Vie1) =U[](V4,..., Vic1).

Proof. Let M" = (V,U’, F/,T”) be any model witnessing that ¢ is a YES-instance. Without loss of generality,
we assume U’ to consist of a single variable U’: If there were multiple variables Uy, U, . .., Uy in U’, we could
replace them by some U’ with Val(U’) = Val(U;) x Val(Us) . .. x Val(Up), and update P’ and F” accordingly.

Consider an ordering V4, ...,V of V that respects the implicit well-order < of M’. Then, for each i € [n],
f{/l € F describes the value of V; as a function of U’ and V3, ..., V;_;. Partition Val(U’) such that there is a

11
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class Cy foreach g = (q1,...,qn) € (Q1 %X ...x Q) and letit contain u € Val(U’) if and only if for all ¢ € [n]
and 5 € D', we have that f{, (u,5) = ¢;(5). Now each u € Val(U’) belongs to precisely one class C,.

We construct the model M = (V, U, F,P) where U and F are defined as specified above and PP is such that
foreach ¢ € Val(U) wehave P(U = q) = 3 cc, P'(U" = ') (With P(U = q) = 0if Cy = (). Note that this
yields a well-defined probability distribution over U. The model M satisfies ¢ since every term Pr(e) over V
has the same probability in M and M’. Indeed, for every class C, and each event ¢, we have that 7/, u |= ¢
either for all u € Cy or no u € Cy, as by definition all these w result in the exact same values for the variables
in V, even under interventions. Furthermore, F is such that F,q |= ¢ if and only if 7/, u |= ¢ forall u € C,.
For any event € € Ecounterfact, recall that Sy C Val(U) and Spq C Val(U’) denote the sets of values of hidden
variables such that ¢ happens in the respective model. We proved that Sy = | 4ES M C, and thus, by definition
of P, event ¢ happens in both models with the same probability, that is, [Pr(e)Jsm = [Pr(e)]m. Hence, M
witnesses ¢ to be a YES-instance as well. O
Theorem 10. SAT'" . Is in FPT w.rt. the combined parameter d 4+ n, and in XP w.r.t. n.

counterfac

Proof. Given an instance ¢ over domain D, we perform the following for each of the n! orders of variables. If
we do not find a model for any of these orders, we reject the instance. Consider a total order Vi,...,V,, of V
and let U, F, and the @); be defined as in Lemma 9. We test whether ¢ admits a model as described in Lemma 9
with respect to that order using the following LP. Create an LP-variable p, for each ¢ € Q1 X ... X Q. These
represent the probability distribution over U, so we add an LP-constraint | 4€Q1 x...xQ,, Pq = 1 and, for each
such ¢, we add an LP-constraint p, > 0. Furthermore, using Observation 3, we transform each constraint in ¢
into an LP-constraint by replacing each term Pr(e) by a sum over all variables p, for which F, g |= €. We accept
the instance ¢ if and only if there is at least one ordering of V for which the constructed LP has a solution. In
each constructed LP there are O(|¢| + |Q1 X ... X @p|) LP-constraints and the number of variables is at most

Q1 % .. x Qul = [[1Qil < [[a" - d <a.

i=1 i=1

As we can find a solution to an LP (or decide that there is none) in polynomial time with respect to its size (that
. . . . . . 2

is, the number of variables plus constraints), the total runtime of the algorithm is n!(|¢|©™1) + d©(")),

It remains to prove correctness. If one of the constructed LPs has a solution, let P be the probability distribution
over U as described by the variables p, in that solution. It is straight-forward to verify that (V,{U}, F,P) is
a model for ¢, so we correctly accept the instance. For the other direction, suppose ¢ is a YES-instance. Then
there is a well-structured model M = (V,{U}, F,P) for some ordering of V by Lemma 9. Observe that the
LP constructed for that ordering of the variables has a solution by setting p, := P(U = ¢) for each ¢ € Val(U),
so the algorithm correctly accepts the instance.

6 CONCLUDING REMARKS

While previous works have focused on mapping the complexity lower bounds for SATISFIABILITY in Pearl’s
Causal Hierarchy, the parameterized paradigm allows us to identify islands of tractability for the problem.
Our contributions include not only these positive results, but also lower bounds which show that the obtained
complexity classifications are tight. The presented findings open up several avenues for future work, such as:

¢ The Impact of Marginalization. As mentioned in Section 1, recent works (van der Zander et al.,
2023; Dorfler et al., 2025) have proposed an enrichment of the classical fragments in the expressivity
matrix M via the summation operator % in order to capture marginalization. It would be interesting to
explore possible extensions of our approaches to this setting—in particular, can we obtain tractability
for these enriched fragments of the PCH without bounding the nesting depth of > _?

* Treewidth-Guided Linear Programming. To the best of our knowledge, the proofs of Results (1)
and (2) rely on an entirely novel approach to establishing parameterized tractability with respect to
treewidth. Since this approach is particularly tailored to problems that combine discrete structures
(graphs) with non-discrete elements (e.g., probabilities), we would not be surprised to see further
applications of the technique in the domains of artificial intelligence and machine learning.

12
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