
NeurIPS Deep Reinforcement Learning Workshop 2022

THE BENEFITS OF MODEL-BASED GENERALIZATION
IN REINFORCEMENT LEARNING

Kenny Young1, Aditya Ramesh2, Louis Kirsch2, Jürgen Schmidhuber2 3

1 University of Alberta and the Alberta Machine Intelligence Institute
2 The Swiss AI Lab IDSIA/USI/SUPSI
3 AI Initiative, KAUST, Thuwal, Saudi Arabia
kjyoung@ualberta.ca, {louis, aditya, juergen}@idsia.ch

ABSTRACT

Model-Based Reinforcement Learning (RL) is widely believed to have the poten-
tial to improve sample efficiency by allowing an agent to synthesize large amounts
of imagined experience. Experience Replay (ER) can be considered a simple kind
of model, which has proved extremely effective at improving the stability and ef-
ficiency of deep RL. In principle, a learned parametric model could improve on
ER by generalizing from real experience to augment the dataset with additional
plausible experience. However, owing to the many design choices involved in em-
pirically successful algorithms, it can be very hard to establish where the benefits
are actually coming from. Here, we provide theoretical and empirical insight into
when, and how, we can expect data generated by a learned model to be useful.
First, we provide a general theorem motivating how learning a model as an inter-
mediate step can narrow down the set of possible value functions more than learn-
ing a value function directly from data using the Bellman equation. Second, we
provide an illustrative example showing empirically how a similar effect occurs in
a more concrete setting with neural network function approximation. Finally, we
provide extensive experiments showing the benefit of model-based learning for
online RL in environments with combinatorial complexity, but factored structure
that allows a learned model to generalize. In these experiments, we take care to
control for other factors in order to isolate, insofar as possible, the benefit of using
experience generated by a learned model relative to ER alone.

Model-based reinforcement learning (RL) refers to the class of RL algorithms which learn a model
of the world as an intermediate step to policy optimization. One important way such models can be
used, which will be the focus of this work, is to generate imagined experience for training an agent’s
policy (Werbos, 1987; Munro, 1987; Jordan, 1988; Sutton, 1990; Schmidhuber, 1990). Experience
Replay (ER) can be seen as a simple, nonparameteric, model (Lin, 1992; van Hasselt et al., 2019)
where experienced interactions are directly stored, and later replayed, for use in a learning update.

ER already captures many of the benefits associated with a learned model as compared to model-
free incremental online algorithms (i.e. model-free algorithms which perform a learning update
using each transition only at the time it is experienced). In particular, ER allows value to be rapidly
propagated from states to their predecessors along previously observed transitions, without the need
to actually revisit a particular transition for each step of value propagation. Propagating value only
at the time a transition is visited can make model-free incremental online algorithms extremely
wasteful of data, particularly in environments where the reward signal is sparse.

As Lin (1992) and van Hasselt et al. (2019) have discussed, it is often not obvious why we’d expect
experience generated by a learned model to improve upon ER, as a replay buffer is essentially a
perfect model of the world insofar as the agent has observed it. This is especially true in the tabular
case, where a model does not generalize from the observed transitions. It is also true for policy
evaluation in the case where the value function and model are linear (Sutton et al., 2012). In this case,
learning the least-squares linear model from the data, and then finding the TD(0) solution (Sutton,
1988) in the resulting linear MDP is identical to finding the TD(0) solution for the empirical MDP
induced by the observed data. Hence, if we expect to obtain a sample efficiency benefit by using
data generated by a learned model compared to ER, we should look beyond these cases.

1



NeurIPS Deep Reinforcement Learning Workshop 2022

Let’s now consider a situation where a model-free agent using ER will likely fail to generalize from
experience in a way that an intelligent agent should be able to. Imagine an agent has witnessed a
tree lying across a stream which allows it to cross in order to reach food on the other side. Imagine
the same agent has previously pushed against a decaying tree and knocked it over, but in that case
gained nothing by doing so. We may then expect that upon seeing a decaying tree standing near a
stream with food on the other side, the agent would be able to synthesize these two experiences to
decide to intentionally push the tree over to provide a bridge over the stream.

We argue that ER alone is unlikely to achieve the kind of generalization necessary to perform such
extrapolation. To understand why, let’s express the state as a combination of two abstract binary
factors (tree fallen, food across stream). The agent has observed state (1,1), and also observed
separately that from state (0,0) it can achieve state (1,0) through a certain action (call that action
push-tree). Now, the agent observes state (0,1). An agent using ER can easily learn that (1,1) is
valuable since it is followed by a food reward, but since it has never executed push-tree from (0,1)
to reach that valuable state, there is no reason to expect it will assign that action an elevated value.

On the other hand, a learned model that generalizes appropriately could guess, perhaps based on
some inductive bias toward factored dynamics1, that taking action push-tree in (0,1) would lead to
(1,1) in the next step. Having done so, we could then use the model in various ways to incorporate
this information into the value function and/or policy. One common way of using the model, that
we will focus on in this work, is to generate (potentially multi-step) rollouts of simulated experience
and train a value function or policy on the resulting trajectories as if they were real.

Having discussed how learned model generalization can provide a benefit over ER, it’s worth noting
that parametric value functions also generalize. Why should model generalization be inherently
better than value function generalization? This question was already raised in the work of Lin
(1992), which first introduced ER for RL. The next section gives a partial answer as a theorem
which shows how learning a model as an intermediate step can narrow the space of possible value
functions more than learning a value function directly from the data using the Bellman equation.

After motivating the benefit of model-based generalization theoretically, we will present an intuitive
case where learning a parametric model is empirically beneficial with NN function approximation.
Subsequently, we will present extensive experiments, in environments with factored structure, which
highlight the sample-efficiency benefits of model-based learning for online RL. We will also analyze
an interesting instance we came across during these experiments where an agent using a learned
model outperforms one using the perfect model due to smoothed reward and transition dynamics.

We use the MDP formalism throughout this paper. We refer the unfamiliar reader to Sutton & Barto
(2020) for an accessible discussion of MDPs and their usage in RL.

1 UNDERSTANDING THE BENEFIT OF MODEL-BASED GENERALIZATION

We now present a simple theorem that provides at least part of the answer to the question of how
model generalization can be considered more useful than value function generalization. We state the
theorem informally here, and formally with proof in Appendix A.

Theorem 1. Consider a class of deterministic, episodic, MDPs M with fixed reward function, and
transition function belonging to some known hypothesis class. Let HQ be the associated class
of optimal action-value functions for MDPs in M. Now consider a dataset D of transitions. Let
HB(D) be the subclass of action-value functions in HQ which obey the Bellman optimality equation
for the transitions in D and let HM (D) be the subclass of optimal action-value function of MDPs
in M which are consistent with D. Then the following are true:

1. HM (D) ⊆ HB(D).
2. For some choices of M and D, HM (D) ⊂ HB(D).
3. For a tabular transition function class, that is one that includes every possible mapping

from state-action pairs to next states, HM (D)=HB(D).

Intuitively Theorem 1 states that, if we want to narrow down the possible optimal action-value
functions from data, we can in general prune more if we narrow down the possible models first than

1Where the state consists of a set of state-variables such that the distribution of values of each variable at
the next time-steps depends on only a subset of the variables in the current state.

2



NeurIPS Deep Reinforcement Learning Workshop 2022

if we only demand that the value functions obey the Bellman optimality equation with respect to the
observed data. However, part 3 states that this is not the case for a tabular model class, but rather only
for models which have some additional structure. In such cases, even if a model-based and model-
free approach begin with the same hypothesis class, the model-free approach can fail to leverage
this structure and ultimately lose value-relevant information from the data in the process. While the
assumptions of Theorem 1 differ from the reality of training neural networks (NNs) with ER, this
theorem provides intuition for why learning a parametric model can improve sample efficiency. In
the next section, we will highlight a simple and intuitive case where similar intuition leads a learned
model to be empirically beneficial with NN function approximation.

2 A SIMPLE CASE WHERE MODEL-BASED GENERALIZATION IS USEFUL

In this section, we present an illustrative example where learning a parametric model from data,
and then learning an action-value function within that model, has a clear advantage over learning an
action-value function directly from the data. We also show that using multi-step model rollouts has
an advantage over single-step rollouts. To keep this example as simple and intuitive as possible, we
consider an offline RL setting with hand-selected datasets with varying coverage of the dynamics.

The environment in this section consists of a 3x3 grid world with a goal in the top left corner and
with arbitrary walls (the location of which is fixed within an episode). Reward is -1 at each step
until the goal is reached, at which point the episode terminates. Actions consist of standing still, or
moving in a cardinal direction. Observations are flat binary vectors consisting of one-hot-encodings
of the agent’s position and the goal position (though goal position is fixed here), and two binary
vectors indicating, respectively, the presence and absence of walls in each cell.

EXIT EXIT EXIT EXIT

EXIT EXIT EXIT EXIT

EXIT

EXIT

Basic 
configurations

Evaluation 
configurations

All-Evaluation Path-to-Goal Single-Cell No-Evaluation

DQN

1 Step 
Model

10 Step 
Model

Correct Action 
Frequency

Figure 1: Left: Maze layouts included in the basic and evaluation sets. All datasets include every
transition in each of the basic configurations, but different sets of transitions in the evaluation con-
figurations. Right: Frequency (over 30 random seeds) of trained agents’ greedy policy selecting the
correct action in cells of the displayed maze with different evaluation set coverage during training.
Length of green arrows indicate the frequency of greedy policies picking the corresponding action.

For explanatory purposes, we break the data in the training datasets provided to the agents into a
basic set and an evaluation set. The basic set consists of all possible transitions with wall layouts
having a single wall within one of the 8 non-goal cells. Every training dataset contains this entire
basic set, in addition to some limited data from the evaluation set. The evaluation set consists of
transitions with wall layouts of 2 walls in one of the configurations illustrated in Figure 1(left). We
consider training datasets with 4 different levels of evaluation set data coverage:

• All-Evaluation: All possible transitions within the evaluation wall layouts.
• Path-to-Goal: Only evaluation layout transitions which follow the path to the goal.
• Single-Cell: Only the transitions starting from the cell furthest from the goal (with respect

to the only open path).
• No-Evaluation: No transitions from the evaluation set.

We compare model-based and model-free algorithms in this setting. For the model-free approach,
we use a Deep Q-Network (DQN; Mnih et al. (2015)) with ER. For the model-based approach, we
use a simple feedforward NN model, and DQN trained on model generated transitions. The model
takes an observation as input and outputs a predicted reward, Bernoulli termination probability and
vector of Bernoulli probabilities that each feature is active in the next state. Note that this model
cannot capture correlation between features in the next observation given the current observation.

3



NeurIPS Deep Reinforcement Learning Workshop 2022

However, as the proposed environment has deterministic transitions, it is sufficient to capture the
true dynamics. We train the model on transitions from the dataset and subsequently train the action-
value function on model rollouts initialized from states in the dataset. We trained one model-based
agent with single-step rollouts and another with 10-step rollouts. We trained each agent for 1 million
training steps and controlled the total number of (real or imagined) transitions used in each DQN
update across all agents. See Appendix E for further detail on the experiment setup.

Each agent is evaluated by checking the frequency out of 30 independent runs with which the greedy
action under the learned value function is optimal in each cell of an evaluation layout. We say the
agent has failed if there exists any cell in which the majority of runs select the wrong greedy action.
We next discuss how we expect each agent to perform with each level of evaluation set coverage.

All-Evaluation: We expect that all agents will succeed in the case where data is given for all transi-
tions in the evaluation layouts. Here, a model-free agent has access to all the data needed to backup
value from the goal and determine the value of each state-action pair, and a model-based agent has
no opportunity to generate useful novel transitions which do not already appear in the dataset.

Path-to-Goal: We expect model-free DQN to fail in the Path-to-Goal case. Consider the lower
evaluation wall layout in Figure 1(left). For the bottom middle cell, there is no data in the Path-
to-Goal dataset for actions besides moving right. For every basic-set layout, moving right is worse
than any action which remain in the same cell. We predict the model-free agent will incorrectly
generalize from the basic set to conclude that the right action is also worse in this new configuration.

We expect both model-based agents to succeed with Path-to-Goal data. All missing transitions are
one step away from the available data, but require a different action selection. We predict that the
outcome of these missing actions can be learned by generalization from the basic set. As in the
simple situation described in the introduction, this environment has significant factored structure.
To determine the effect of an action, it suffices to look at the agent’s current location and whether
there is a wall in the cell it is attempting to enter. We predict the agent will be able to learn this basic
structure from the training data, even in the absence of specific data about the case where there are
two walls. Note that this hypothesis implies a nontrivial prediction about how this simple model will
generalize. Factored structure is not hard-coded in the model, thus it is also plausible that the model
predictions will be arbitrarily bad for the unobserved evaluation transitions.

Single-cell: We expect the single-step model to fail when only transitions from a single evaluation
cell are included in the dataset. In this case, the model rollouts have no chance to reconstruct
anything not already available explicitly in the dataset given all single step transitions from the far
cell are included and this is likely to be insufficient for reasons already explained. However, the
10-step model has the potential to succeed. If the model generalizes as expected, it can start in the
far cell available in the dataset and rollout a trajectory which discovers the full path to the goal.

No-Evaluation: Finally, all agents should fail in the case where there is no evaluation data available
at all. The models will have no opportunity to provide the learned value function with example tran-
sitions from the evaluation layout given model rollouts are initialized with states from the dataset.
Note that the situation may be different if we had used a generative start-state model to produce plau-
sible states for the start of rollouts which need not explicitly appear in the dataset.2 Using the model
to plan for immediate action selection at evaluation time, as in model predictive control, would also
help here, as the agent could directly plan a response for the previously unseen state.

In Figure 1(right), we observe that all the above predictions are confirmed. We reiterate that this is
a nontrivial empirical result. It relies on the simple model, a feedforward NN, with no explicit bias
toward factored solutions, generalizing in a particular way to state-action pairs that do not explicitly
appear in the dataset. At least in this case, the model indeed seems to generalize in a way that
provides a significant advantage over ER alone.3 This experiment also straightforwardly illustrates
how even a model with 1-step rollouts can be helpful, by sampling counterfactual actions or, in the
case of stochastic environments, counterfactual chance outcomes. However, multi-step rollouts can
succeed in situations where there is insufficient data for one-step rollouts to be helpful.

2However, this raises questions about how the start-state model should generalize, if trained to maximize
data likelihood, it could overfit and only generate states from the training set, rendering it unhelpful.

3We also verified that the model predictions in this case are near perfect with respect to predicting the agent
position after each state-action pair across all transitions in the evaluation configurations.

4



NeurIPS Deep Reinforcement Learning Workshop 2022

3 FAVORABLE ENVIRONMENTS FOR ONLINE MODEL-BASED LEARNING

We next describe three environments which exemplify properties that should make online learning
with a parametric model particularly useful. We aim for the following environment characteristics:

1. The state-space should have a simple factored structure that we expect should be easy to
learn for a model with reasonable generalization properties.

2. The return should depend sharply on the policy, such that a randomly behaving agent won’t
have much of a learning signal for policy improvement. This should make model generated
experience more useful, as Bellman backups alone will tend to be mostly uninformative.

3. To allow the model-based agent to learn about the reward function, the agent should occa-
sionally witness rewarding states even while behaving highly sub-optimally. Toward this,
we include occasional random transitions to rewarding states in our subsequent experi-
ments. The same is true for terminal states in environments where termination is desirable.
This does not contradict the previous point, as an agent may be able to occasionally obtain
some reward while behaving sub-optimally, but have difficulty obtaining more.

The last characteristic may seem contrived, but we argue that it is quite natural. For example, one
can imagine an agent gathering edible plants for a long time before working out how to grow their
own. It is often much harder to discover reward, without ever observing it, than to work out how
to reconstruct rewarding circumstances using general knowledge of the transition dynamics. On a
practical note, there is significant work on exploration with sparse (or no) reward (Schmidhuber,
1991a;b; Thrun, 1992; Schmidhuber, 2010; Amin et al., 2021) which is orthogonal to our focus.
Hence, we mitigate the issue by making it easier to learn the reward function. We ablate these
spontaneous transitions to rewarding states in Appendix I to test the impact of this choice.

In addition to the above, the environments we investigate allow scaling of problem complexity to
test the limitations of different approaches. The environments are also Markov, use binary features,
and are largely deterministic, so simple models can work well, though we also investigate more
sophisticated latent-space models. Next, we describe the environments (see Appendix B for details).

EXIT EXIT

EXIT

EXIT

a b c d e

R

ProcMaze ButtonGrid PanFlute

Figure 2: Left: Examples of states in the ProcMaze environment of size 4 with the agent shown
in orange. Middle: An example state of the ButtonGrid environment with 3 buttons. The agent is
shown in orange and the buttons in black (off) and white (on). Right: An instance of the PanFlute
environment with 5 pipes. The agent directly activates cells (a,b,c,d,e) through its actions after which
the activation propagates up the associated pipe, one step at a time, and dissipates at the end.

ProcMaze (Figure 2, left): Procedurally generated grid world mazes. The maze itself, along with
the start state and goal state are randomized in each episode. Complexity is scaled by increasing the
grid size. Negative reward is given for each step until the goal is reached.

ButtonGrid (Figure 2, middle): A 5 by 5 grid with randomly placed buttons. An agent can move
around and, if it hits a button, will toggle it on or off. If all buttons are on, a reward is given and
button locations are randomized. Random behavior will tend to randomly perturb the buttons, a
precise policy is required to set them all to on. Complexity scales with the number of buttons.

PanFlute (Figure 2, right): A minimal example of an environment with combinatorial complexity of
optimal behavior, but simple factored transition structure. PanFlute consists of n pipes of cells where
each pipe evolves independently. Each action directly activates the cell at the bottom of one pipe,
after which the activation will propagate up the pipe, one step at a time, and dissipate after reaching

5



NeurIPS Deep Reinforcement Learning Workshop 2022

the end cell of the pipe. A reward is received if the cells at the end of all pipes are simultaneously
active, which can only be achieved by choosing each of the n actions in a certain order, a probability
of 1/nn under random behavior. We scale the complexity by changing the number of pipes n.

We expect ER alone to be of limited utility in each of these environments as each of them require
precise control to obtain significantly more reward than random behavior, especially as the problem
complexity is scaled up in each case. Since we always include random transitions to rewarding
states, an agent can easily learn that these states are good, but until it reaches the rewarding state by
it’s own actions, it wont be able to learn much from the states which proceed rewarding states.

On the other hand, each environment has significant factored structure which a model-based agent
can learn, and subsequently use to imagine many novel, plausible, states in its rollouts. In ProcMaze,
an agent moving into a specific empty space will have the same effect regardless of the rest of the
maze layout, and attempting to move into a wall will always block it. In ButtonGrid, the connectivity
of the grid is independent of the button layout, and stepping on a specific button always has the same
effect regardless of the layout of the rest of the buttons. In PanFlute, each action always has the
same effect, and each pipe evolves according to dynamics which are unaffected by the other pipes.
In appendix C, we present an experiment in an environment without factored structure and find that
ER outperforms a learned model in this case, which helps to contextualize our other results.

4 BENEFICIAL MODEL-BASED GENERALIZATION FOR ONLINE RL
We now empirically evaluate the performance of model-based and model-free learning algorithms
on the environments described in Section 3. We experiment with variants of each environment with a
range of different complexities to test how different approaches scale to more complex environments.

All tested approaches use DQN for behavior learning, but vary in how training examples for DQN
are generated. Our model-free approach draws transitions randomly from an ER buffer for training.
We test several types of learned model. The first is the simple feedforward NN model introduced
in Section 2. The second is a latent-space model (Schmidhuber, 1997; Watter et al., 2015; Ha &
Schmidhuber, 2018) inspired by Dreamer (Hafner et al., 2019; 2020), but with two major differences
to simplify the approach and reduce confounding factors in our experiments. In particular, as noted,
we use DQN instead of actor-critic and, since our environments are Markov, we forgo the recurrent
network of Dreamer and model single-step stochastic transitions with no memory. We experiment
with Gaussian and Categorical latent variables. See Appendix D for further details of these models.
Finally, as a strong baseline, we include a perfect model, which uses the ground truth environment
dynamics instead of a learned model, but is otherwise the same as the simple-model agent.

As in Section 2, we control for the total number of updates, and the total number of (real or imag-
ined) transitions used in each update. In particular, model-free DQN is updated on a batch of 320
transitions from the replay buffer while all model-based approaches use 32 model rollouts of length
10, beginning in a state from the replay buffer. In Appendix I, we perform an ablation in which
1-step rollouts are used instead and find that longer rollouts are generally helpful. In each update,
the model is trained using the same batch of transitions which initialize the rollouts. All agents use
a softmax behavior policy, and are evaluated under the greedy policy. All Q-networks are trained on
discounted 1-step TD-error, with real or imagined transitions, using a discount factor of 0.9.

We experiment with 2 different data regimes to get a more complete picture of how each approach
scales with available data. In the high data regime, we use one update per real environment step and
train for a total of 1 million steps. In the low data regime, we use 10 updates per step and train for
100 thousand steps. Note that the total number of updates is the same in each case.

Experiment Design: For each combination of agent, environment, and data regime we performed an
extensive grid search over the Q-network step-size and softmax exploration temperature. We judged
these hyperparameters to be the most likely to impact the relative performance of different methods.
This grid search was performed for an intermediately complex version of each environment (size 4
ProcMaze, 4 button ButtonGrid, and 7 pipe PanFlute) and the same hyperparameters used for the
other complexity levels. We evaluated each hyperparameter setting based on mean final performance
of the greedy policy over 30 random seeds. We were able to run 30 seeds efficiently in parallel on
a single GPU using automatic batching in JAX (Bradbury et al., 2018). Other hyperparameters,
including model step-size, were fixed to reasonable defaults (see Appendix F), not tuned for any
specific approach. In Appendix G, we report hyperparameter sensitivity results from this grid search.

6



NeurIPS Deep Reinforcement Learning Workshop 2022

ProcMaze ButtonGrid PanFlute

High Data

Low Data

Final
Return/
Reward

Rate

Final
Return/
Reward

Rate

Grid Size Number of Buttons Number of Pipes

Experience Replay

Perfect Model

Simple Model

Categorical Latent

Gaussian Latent

Figure 3: Final performance of greedy policy for all environments in two different data regimes.
High data means 1 million environment interactions with 1 update per step, low data means 100
thousand interactions with 10 updates per step. Error bars show 95% confidence intervals.

Results: We present results for all environments in Figure 3 (see Appendix H for learning curves).
As the results for PanFlute differ substantially from the results for ButtonGrid and ProcMaze, we will
discuss them separately. For ButtonGrid and ProcMaze in the high data regime, the simple model
and categorical latent model both significantly outperform ER for sufficiently complex environment
instances. The Gaussian latent model generally performs quite poorly, which corroborates the results
of Hafner et al. (2020) that categorical latents tend to work better in the discrete control setting.
Oddly, the simple model also performs much worse for 1 and 3 buttons in ButtonGrid in the high
data regime. This may be because less buttons means less examples where a button occupies each
particular cell, which makes it harder for the simple model to learn the underlying dynamics.

In the low data regime, the simple model outperforms ER to a greater extent, while the performance
of the categorical latent model degrades significantly. This can perhaps be understood by noting that
the hypothesis class of the simple model is simpler (the latent-space model can model correlated
features, while the simple model cannot) and thus able to generalize well from less data when the
simple class is sufficient. Performance of the simple model for 1 and 3 buttons improves when mov-
ing to the low data regime. Likely, this indicates underfitting in the high data regime which is helped
by training more on each example. Overall, the results for the simple model and categorical latent
model in the high data regime, and simple model in the low data regime, show a clear indication of
the sample efficiency benefit that can be obtained by using a learned model in these environments.

Results for PanFlute are qualitatively different. Most surprisingly, the Gaussian-latent model and
the simple model outperform the perfect model in some of the harder problem instances. This is
intuitively strange, and seems to indicate that model errors somehow improve performance.

Why do Some Learned Models Outperform the Perfect Model on PanFlute? We hypothesize
that the smoother reward and dynamics learned by the model serves as a powerful exploration heuris-
tic. The true reward function is nonzero, and thus the agent receives a learning signal, only in the
rare event that every pipe-end is active. The model might instead learn a smoothed reward func-
tion, proportional to the number of pipe-ends activated. With this smoothed reward the agent could
incrementally learn to activate more pipe-ends, gradually improving toward the correct sequence.

To test this hypothesis, we looked at the models learned at 10,000 time-steps, in 9-pipe PanFlute
(high data). We generated a large amount of random trajectory data with a policy that selects actions
in alphabetical order with 80% probability and uniformly randomly otherwise to get a good mix of
different numbers of active pipe-ends. We bin this data by the number of active pipe-ends and then
look at the average model-predicted reward for each bin. Note that the ground truth reward is zero
for all expect the 9 active pipe-end bin. To test for favorable smoothing in the transition dynamics,
we used the same data. This time, we bin the data by the number of pipe-ends active at the next step
and look at probability under the model that all pipe-ends are active at the next time-step.

7



NeurIPS Deep Reinforcement Learning Workshop 2022

Gaussian LatentSimple Model
Predicted Reward

Predicted Probability
Of Rewarding
Next State

Figure 4: Left: Prediction, under simple model and Gaussian latent models, of reward and proba-
bility that all pipe-ends are active at the next time step as a function of true number of current and
next pipe-ends active respectively on 9-pipe PanFlute. Right: In orange, the number of steps to
reach near-optimal performance (95% of maximum possible reward rate) on 9-pipe PanFlute when
using a frozen simple model trained for a variable number of steps. Numbered arrows indicate the
number of seeds out of 30 which failed to reach near-optimal performance within 1 million training
steps (marked as black line). In green, the predicted reward for 6 active pipe-ends, displayed as a
surrogate for the amount of model smoothing. Error bars show 95% confidence intervals.

The results, for both predicted reward and predicted probability that all pipe-ends will be active at
the next time-step (“predicted probability of rewarding next state” in the figure) are displayed in
Figure 4(left). We observe that the models indeed tend to learn smoother rewards than the ground
truth in a way that might provide a useful exploration heuristic. The Gaussian latent model addi-
tionally learns smoothed transition dynamics, predicting all pipe-ends will activate with appreciable
probability when in reality only most will, this may provide additional benefit in this problem.

As an additional test of the benefit of model errors, we used simple models frozen at various points in
training to train a value function from scratch for 1,000,000 time-steps. We plot when near-optimal
performance of the greedy policy is first reached. The results, shown in Figure 4(right) clearly show
that a model trained for an intermediate amount of time is most useful for reaching good performance
quickly. We also plot the mean predicted reward for states with 6 active pipe-ends for each model
as an indication of smoothing, as expected, this decreases with more model training.

The smoothing effect highlighted in these results is interesting for two reasons. First, it may lead
model-based algorithms to perform better than expected, acting as a confounding variable when
interpreting results. Second, it may be genuinely useful. One could even design algorithms which
learn policies within relaxed versions of a model, as a way to drive exploration. However, as there
are surely other situations where model smoothing is harmful, this would need to be done with care.

5 RELATED WORK

There is a large body of empirical research showing the potential of learned models to improve sam-
ple efficiency (Deisenroth & Rasmussen, 2011; Buckman et al., 2018; Kaiser et al., 2019; Janner
et al., 2019; Curi et al., 2020; Hafner et al., 2020). A relatively small body of work directly com-
pares ER with learned models. Van Seijen & Sutton (2015) show an exact functional equivalence
between a variant of replay with linear TD(0), and linear Dyna (Sutton, 1990). Pan et al. (2018)
provide an empirical study comparing ER with learned models under a variety of search control
strategies, i.e. different methods for choosing which state-action pairs to update. Holland et al.
(2018) empirically compare ER with a parameteric model in the arcade learning environment (ALE;
Bellemare et al. (2013)) and highlight the benefits of the model in particular when multi-step roll-
outs are used. Relative to these works, we focus on understanding how a learned model provides a
benefit, and highlighting properties of environments where this benefit is most prominent.

Van Hasselt et al. (2019) make a strong case that ER provides many of the benefits of a learned para-
metric model, and argue that if a model is used only to generate experience starting from observed
states it is unlikely to provide additional benefit. We investigate the comparison between ER and
learned models further, and argue that there is good reason to believe a learned model can improve
sample efficiency over ER in environments with structure, such as factored dynamics. This is true
even if the model is used only to augment training data with rollouts starting from observed states.

8



NeurIPS Deep Reinforcement Learning Workshop 2022

Dong et al. (2020) share our focus on highlighting situations where model-based RL provides a sig-
nificant benefit. While we focus on the generalization benefits, they motivate the expressivity benefit
of model-based RL in continuous state spaces by showing there exist MDPs where the optimal pol-
icy is exponentially more complex to represent than the dynamics.

The benefit of model smoothing, observed in PanFlute, may shed light on some observations in the
literature. Hafner et al. (2020) suggest model smoothing as an explanation for why DreamerV2 can
achieve good performance on Montezuma’s Revenge without any sophisticated exploration mech-
anism, as is usually required. Holland et al. (2018) observe that their learned model sometimes
outperforms the ground-truth model in Seaquest, though they do not suggest a specific explanation.

Our work has implications for implicit model-based algorithms (as defined in the survey paper
of Moerland et al. (2020)) such as MuZero (Schrittwieser et al., 2020). In such algorithms, the
model is not trained to predict future observations, but only task relevant aspects of the future such
as policy, value and reward. In light of Theorem 1, and the example in Section 2, it is unclear whether
such techniques fully exploit the benefits of model-based learning due to the limited training signal
used to constrain the model.4 Indeed, there is empirical evidence suggesting that MuZero’s sample
efficiency can be improved by using additional training signals (Ye et al., 2021; Anand et al., 2022).

Our work is loosely inspired by the literature on exploiting factored structure in MDPs (Sallans &
Hinton, 2004; Strehl et al., 2007; Diuk et al., 2009; Osband & Van Roy, 2014; Sun et al., 2019; Xu &
Tewari, 2020). Theorem 1, in particular, is loosely related to Theorem 2 of Sun et al. (2019), which
shows that there exists a family of MDPs where a model-based approach can be exponentially more
efficient than any model-free approach. We focus on factored structure to motivate the benefit of
model generalization, but do not use algorithms explicitly designed to exploit this factored structure.

AIXI (Hutter, 2004) provides a particularly general approach to model-based RL. An AIXI agent
maximizes expected return over all computable world models with prior probability given by
Solomonoff’s universal prior (Solomonoff, 1978), which assigns higher probability to models with
lower Kolmogorov complexity. While AIXI is itself not computable, computable approximations
exist (Veness et al., 2011). Here, we take a step back from considering all computable models, and
highlight the benefit of model learning in general, relative to model-free learning with ER. We focus
on understanding how model-based learning can facilitate generalization, and thus improve sample
efficiency, in a way that model-free learning does not. Our empirical results suggest this applies
even for the practical subset of computable models representable by a simple NN architecture.

In this work, we focus on the advantages of using models to generate experience for policy improve-
ment. Learned models can also be useful in other ways, for example, local planning for immediate
action selection (Richalet et al., 1978; Chua et al., 2018; Byravan et al., 2021), improving credit as-
signment (Schmidhuber, 1990; Heess et al., 2015; Buesing et al., 2018), exploration (Schmidhuber,
1990; 1997; Pathak et al., 2017), representation learning (Lin & Mitchell, 1992; Gregor et al., 2019;
Hessel et al., 2021), and in answering learned queries (Schmidhuber, 2015).

6 CONCLUSION

In Theorem 1 we highlighted how, for a model class with some known structure, we can narrow
down the possible value functions more with a model-based approach than a model-free approach.
We provided empirical evidence that the intuition behind this theorem holds in practice when we
use NN function approximation in domains with factored structure. In such cases, we have verified
through extensive experiments that a model-based method can maintain strong performance as the
complexity of the environment increases beyond the point where an analogous model-free approach
fails. As an aside we demonstrated how, by smoothing the reward and/or transition dynamics, expe-
rience generated by a learned model can provide a useful signal for exploration that can sometimes
lead to better performance than even a perfect model. Overall, we believe that our work can help
to ground future work in model-based RL in a better understanding of how learned models can im-
prove sample efficiency. An interesting direction for future work lies in better understanding the
inductive biases that allow simple NN models to generalize in a way that allows them to efficiently
learn factored structure, and how more sophisticated architectures could improve on this.

4Though Gehring et al. (2021) suggest that the implicit model-based parameterization itself may yield fa-
vorable gradient dynamics.

9



NeurIPS Deep Reinforcement Learning Workshop 2022

ACKNOWLEDGMENTS

We thank Richard Sutton, Michael Bowling, Yi Wan, Arsalan Sharifnassab, and Tian Tian for use-
ful conversations. Funding for this work was provided by NSERC, Alberta Innovates, DeepMind,
CIFAR, Amii, ERC Advanced Grant (742870), and the Swiss National Science Foundation grant
(200021 192356). Computational resources for this work were provided by the Digital Research
Alliance of Canada as well as the Swiss National Supercomputing Centre (CSCS project s1127).

REFERENCES

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey of
exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

Ankesh Anand, Jacob C. Walker, Yazhe Li, Eszter Vértes, Julian Schrittwieser, Sherjil Ozair,
Theophane Weber, and Jessica B Hamrick. Procedural generalization by planning with self-
supervised world models. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=FmBegXJToY.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, jun 2013.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. Advances in neural
information processing systems, 31, 2018.

Lars Buesing, Theophane Weber, Yori Zwols, Sebastien Racaniere, Arthur Guez, Jean-Baptiste
Lespiau, and Nicolas Heess. Woulda, coulda, shoulda: Counterfactually-guided policy search.
arXiv preprint arXiv:1811.06272, 2018.

Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza, Alessandro Davide Ia-
longo, Yuval Tassa, Jost Tobias Springenberg, Abbas Abdolmaleki, Nicolas Heess, Josh Merel,
et al. Evaluating model-based planning and planner amortization for continuous control. arXiv
preprint arXiv:2110.03363, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement learn-
ing through optimistic policy search and planning. Advances in Neural Information Processing
Systems, 33:14156–14170, 2020.

Marc Deisenroth and Carl E. Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472. Citeseer, 2011.

Carlos Diuk, Lihong Li, and Bethany R. Leffler. The adaptive k-meteorologists problem and its
application to structure learning and feature selection in reinforcement learning. In Proceedings
of the 26th Annual International Conference on Machine Learning, pp. 249–256, 2009.

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity of neural
networks for deep reinforcement learning. In International Conference on Machine Learning, pp.
2627–2637. PMLR, 2020.

Clement Gehring, Kenji Kawaguchi, Jiaoyang Huang, and Leslie Kaelbling. Understanding end-
to-end model-based reinforcement learning methods as implicit parameterization. Advances in
Neural Information Processing Systems, 34:703–714, 2021.

10

https://openreview.net/forum?id=FmBegXJToY
http://github.com/google/jax
http://github.com/google/jax


NeurIPS Deep Reinforcement Learning Workshop 2022

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron van den
Oord. Shaping belief states with generative environment models for rl. Advances in Neural
Information Processing Systems, 32, 2019.

David Ha and Jürgen Schmidhuber. World models. Advances in Neural Information Processing
Systems, 31, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in neural information
processing systems, 28, 2015.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado van Hasselt. Muesli: Combining improvements in policy opti-
mization. In International Conference on Machine Learning, pp. 4214–4226. PMLR, 2021.

G Zacharias Holland, Erin J. Talvitie, and Michael Bowling. The effect of planning shape on dyna-
style planning in high-dimensional state spaces. arXiv preprint arXiv:1806.01825, 2018.

Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Prob-
ability. Springer, Berlin, 2004. (On J. Schmidhuber’s SNF grant 20-61847).

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems, 32, 2019.

Michael I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical
Report COINS TR 88-27, Massachusetts Institute of Technology, 1988.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3):293–321, 1992.

Long-Ji Lin and Tom M. Mitchell. Memory approaches to reinforcement learning in non-Markovian
domains. Citeseer, 1992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Model-based reinforcement learn-
ing: A survey. arXiv preprint arXiv:2006.16712, 2020.

P. W. Munro. A dual back-propagation scheme for scalar reinforcement learning. Proceedings of
the Ninth Annual Conference of the Cognitive Science Society, Seattle, WA, pp. 165–176, 1987.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. Ad-
vances in Neural Information Processing Systems, 27, 2014.

Yangchen Pan, Muhammad Zaheer, Adam White, Andrew Patterson, and Martha White. Organizing
experience: a deeper look at replay mechanisms for sample-based planning in continuous state
domains. arXiv preprint arXiv:1806.04624, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

11



NeurIPS Deep Reinforcement Learning Workshop 2022

Jacques Richalet, André Rault, J.L. Testud, and J Papon. Model predictive heuristic control: Appli-
cations to industrial processes. Automatica, 14(5):413–428, 1978.

Brian Sallans and Geoffrey E. Hinton. Reinforcement learning with factored states and actions. The
Journal of Machine Learning Research, 5:1063–1088, 2004.

J. Schmidhuber. Artificial curiosity based on discovering novel algorithmic predictability through
coevolution. In P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and Z. Zalzala (eds.),
Congress on Evolutionary Computation, pp. 1612–1618. IEEE Press, 1999.

Juergen Schmidhuber. On learning to think: Algorithmic information theory for novel com-
binations of reinforcement learning controllers and recurrent neural world models. Preprint
arXiv:1511.09249, 2015.

Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised
neural networks for dynamic reinforcement learning and planning in non-stationary environments.
Technical Report FKI-126-90, http://people.idsia.ch/˜juergen/FKI-126-90_
(revised)bw_ocr.pdf, Institut für Informatik, Technische Universität München, 1990.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In J. A. Meyer and S. W. Wilson (eds.), Proc. of the International Conference on
Simulation of Adaptive Behavior: From Animals to Animats, pp. 222–227. MIT Press/Bradford
Books, 1991a.

Jürgen Schmidhuber. Curious model-building control systems. In Proceedings of the International
Joint Conference on Neural Networks, Singapore, volume 2, pp. 1458–1463. IEEE press, 1991b.

Jürgen Schmidhuber. What’s interesting? Technical Report IDSIA-35-97, IDSIA, 1997.
ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz; extended abstract in Proc. Snowbird’98, Utah, 1998;
see also Schmidhuber (1999; 2002).

Jürgen Schmidhuber. Exploring the predictable. In A. Ghosh and S. Tsuitsui (eds.), Advances in
Evolutionary Computing, pp. 579–612. Springer, 2002.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010. ISSN 1943-0604. doi:
10.1109/TAMD.2010.2056368.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ray Solomonoff. Complexity-based induction systems: comparisons and convergence theorems.
IEEE transactions on Information Theory, 24(4):422–432, 1978.

Alexander L Strehl, Carlos Diuk, and Michael L. Littman. Efficient structure learning in factored-
state mdps. In AAAI, volume 7, pp. 645–650, 2007.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pp. 2898–2933. PMLR, 2019.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Machine learning proceedings 1990, pp. 216–224. Elsevier,
1990.

Richard S. Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
second edition, 2020.

Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael P. Bowling. Dyna-
style planning with linear function approximation and prioritized sweeping. arXiv preprint
arXiv:1206.3285, 2012.

12

http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf
http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf


NeurIPS Deep Reinforcement Learning Workshop 2022

Sebastian Thrun. Efficient exploration in reinforcement learning. Technical Report CMU-CS-92-
102, Carnegie-Mellon University, January 1992.

Hado P. van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in rein-
forcement learning? Advances in Neural Information Processing Systems, 32, 2019.

Harm van Seijen and Rich Sutton. A deeper look at planning as learning from replay. In International
conference on machine learning, pp. 2314–2322. PMLR, 2015.

Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. A monte-carlo aixi
approximation. Journal of Artificial Intelligence Research, 40:95–142, 2011.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

Paul J. Werbos. Building and understanding adaptive systems: A statistical/numerical approach to
factory automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics, 17,
1987.

Ziping Xu and Ambuj Tewari. Reinforcement learning in factored mdps: Oracle-efficient algorithms
and tighter regret bounds for the non-episodic setting. Advances in Neural Information Processing
Systems, 33:18226–18236, 2020.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34, 2021.

13


	Understanding the Benefit of Model-Based Generalization
	A Simple Case where Model-Based Generalization is Useful
	Favorable Environments for Online Model-Based Learning
	Beneficial Model-Based Generalization for Online RL
	Related Work
	Conclusion

