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ABSTRACT

Graph neural networks (GNNs) are limited by the Weisfeiler-Leman (WL) hier-
archy and cannot compute graph properties such as cycles. Topological descrip-
tors (TDs) such as the Euler characteristics (EC), persistent homology (PH), and
Laplacian spectrums have thus been employed to enhance the GNNs. However,
despite empirical successes, the theoretical underpinnings of these TDs remain
largely underexplored. We bridge this gap with a rigorous characterization of TDs
focusing on three key aspects: expressivity (representational power), stability (ro-
bustness to data perturbations), and computation (implementation cost). We eval-
uate the expressivity of different TDs, and design a novel scheme RePHINESpec

that is strictly more expressive. We also propose new metrics to assess the stability
of the state-of-the-art RePHINE method and the newly proposed RePHINESpec

method. To address computational costs, we introduce and analyze weaker vari-
ants for several descriptors. TDs find significant applications in molecular con-
texts, so we also explore new filtration functions on the molecular graphs. Finally,
we formalize the properties of filtration functions derived from graph products.
Overall, this work lays the foundation for the principled design and analysis of
new TDs that can be tailored to specific applications.

1 INTRODUCTION

Message-passing GNNs are prominent models for graph representation learning (Gilmer et al.,
2017). However, they are bounded in expressivity by the WL hierarchy (Xu et al., 2019; Morris
et al., 2019; Maron et al., 2019; Morris et al., 2024) and cannot compute fundamental graph prop-
erties such as cycles or connected components (Garg et al., 2020; Chen et al., 2020). TDs such as
those based on PH can provide such information and thus are being increasingly employed to aug-
ment GNNs, boosting their empirical performance (Carriere et al., 2020; Zhao et al., 2020; Chen
et al., 2021; Horn et al., 2022). However, barring a few notable exceptions such as Immonen et al.
(2023); Ballester & Rieck (2024), the expressivity analysis of TDs remain rather elusive.

In this work, we study three prominent types of topological descriptors based on PH (Edelsbrunner
& Harer, 2008), EC (Turner et al., 2014; Röell & Rieck, 2024), and the Laplacian spectrum (Wang
et al., 2020; Bakó et al., 2022) respectively. On a high level, PH keeps track of the birth and death
times of topological features (e.g., connected components and loops) in a (parameterized) graph
filtration. EC is a simpler, less expensive invariant that keeps track of the number of vertices minus
the number of edges in the filtration. The Laplacian spectrum keeps track of the eigenvalues of the
graph Laplacian through the filtration, which neither PH nor EC can account for.

Not much is known about the expressivity of TDs. Recently, Immonen et al. (2023) analyzed PH
under color filtrations, providing a complete characterization of 0-dimensional PH in vertex-level
and edge-level filtrations using graph-theoretic notions; and introduced RePHINE as a strictly more
powerful scheme than both. However, the expressivity of EC and spectrum TDs remains unexplored,
motivating our first set of investigations: how do different topological descriptors stack up against
each other, and can their strengths be unified to design even more expressive TDs than RePHINE?

Here, we offer a complete characterization for the expressivity of EC in terms of combinatorial data
on the colors of the graph. In particular, it turns out that EC is strictly less expressive than PH, ruling
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out any further efforts to combine the two for representational benefits. On the other hand, Laplacian
appears in several flavors: unlike graph Laplacian (the 0-th combinatorial Laplacian), rows in the 1-st
combinatorial Laplacian correspond to the edges of the graph (as opposed to vertices), and persistent
versions (Wang et al., 2020) have also been proposed for both. We show that, surprisingly, the
expressivity offered by the non-zero eigenvalues of all these spectral TDs can simply be replicated
by including the non-zero eigenvalues of graph Laplacians at all time steps (Appendix B). Armed
with this key insight, we introduce a new topological scheme called RePHINESpec that amalgamates
RePHINE and graph Laplacians to be strictly more expressive than all the existing TDs.

However, expressivity is not the only design consideration: in general, topological features are
expensive to compute. Unlike expressivity, EC compares favorably with other TDs in terms of
computation. This leads us to our next phase of analyses: can we design computationally cheaper
variants of TDs? We thus proceed to streamline RePHINE, RePHINESpec, and EC with what we
call their “max” versions. We show that max EC is even more cost-effective than EC, while still
retaining the latter’s expressivity. Interestingly, we show that this expressivity equivalence on graphs
extends to a more general equivalence for color filtrations on finite higher-dimensional simplicial
complexes (Appendix C). This immediately opens avenues for integrating max EC as an economical
alternative to PH-based TDs into topological neural networks, which generalize GNNs via higher
order message-passing (Papillon et al., 2024; Papamarkou et al., 2024; Eitan et al., 2024) and have
recently been shown to benefit from TDs both theoretically and empirically (Verma et al., 2024).

Besides expressivity and computation, stability is another important issue. A diagram-based TD
is stable if a small perturbation in filtration incurs only a small change in the diagram it produces.
Stability has been used, among others, to compare and classify geometric shapes (Cohen-Steiner
et al., 2006). Stability results are known for usual persistence diagrams in Cohen-Steiner et al.
(2006) and EC in Dłotko & Gurnari (2023); however, even defining a suitable metric to quantify
stability is challenging for RePHINE since it strictly generalizes PH with node-colors, but all known
metrics for the persistence diagrams in edge-level filtrations are node-color agnostic. We fill this gap
by motivating a novel metric for measuring stability and proving that RePHINE is globally stable
under this metric. We also prove RePHINESpec is locally stable under a similar metric.

From a practical micro-level perspective, the design of effective filtration functions is also
paramount. Typically, filtration functions are either fixed a priori or learned without any structural
considerations, obfuscating how they are about the corresponding diagrams. Instead, we initiate
here a formal analysis by characterizing filtrations on graph products: we establish that the product
of vertex filtrations is the max of vertex colors, and that the product of edge filtrations is the natural
edge coloring on the product. We also provide an algorithm to track the evolution of 0-dimensional
persistence diagram under the product filtration induced by edge filtrations.

Isomorphism invariance is another desiderata required to ensure that isomorphic graphs produce
identical diagrams. While PH and RePHINE were already shown to be isomorphic invariant
(Ballester & Rieck, 2024; Immonen et al., 2023), we establish the same for all the other afore-
mentioned TDs.

Finally, since TDs have been found to be particularly useful in the context of molecular data (Horn
et al., 2022; Immonen et al., 2023; Verma et al., 2024), we investigate whether there can be any
further benefits to viewing the edges (pertaining to the bonds between the nodes, i.e., atoms) as
topological objects themselves in place of their usual color-based representation. We establish that
there are no differences between the two on 0-th dimensional persistence diagrams or on EC in
edge-level filtrations, and they are incomparable in 1-dimensional diagrams.

In sum, we build a firm foundation for principled design and analysis of TDs. We summarize our
key contributions in Figure 1, and relegate all the proofs to Appendix A.

2 PRELIMINARIES AND SETUP

Unless mentioned otherwise, we will be considering graphs G = (V,E, c,X) with finite vertex set
V , edges E ⊆ V × V , and a vertex-coloring function c : V → X , where X is a finite set denoting
the space of available colors or features. All graphs are simple unless mentioned otherwise. Two
graphs G = (V,E, c,X) and G′ = (V ′, E′, c′, X ′) are isomorphic if there is a bijection h : V → V ′
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Main contributions of this work

Expressive Power of Filtration Methods (Section 3, Appendix B, C)
Construction of Spectral RePHINE Diagrams Definition 6
Graph of Expressivity Comparisons Theorem 1
EC Diagram ∼= max EC Diagram Theorem 2
The Expressive Power of EC Diagrams on Graphs Theorem 3
Sufficiency of Graph Laplacian in RePHINESpec Corollary 2
The Expressive Power of EC Diagrams on Simplicial Complexes Theorem 6

Stability of RePHINE and RePHINESpec Diagrams (Section 4):
Construction of a suitable metric dRB on RePHINE Definition 7
RePHINE is (globally) stable under dRB Theorem 4
Construction of a suitable metric dSpecRB on RePHINESpec Definition 8
RePHINESpec is locally stable under dSpecRB Theorem 5

Filtrations on Graph Products (Section 5):
Product of Vertex Filtrations ≃ Vertex Coloring on Product Proposition 3
Product of Edge Filtrations ≃ Edge Coloring on Product Proposition 4
Algorithm to Compute 0-th Persistence Pairs for Edge Filtrations Proposition 5

Well-Definedness of Filtration Methods (Section D):
RePHINESpec (and more) are Isomorphism Invariant Proposition 19
The Inconsistency of Death Time Filtrations Example 2

Filtrations on Molecular Graphs (Section 6):
Equivalence of 0-th Dimensional Persistence Diagram Proposition 6
Equivalence of EC in Edge Filtrations Proposition 7

Figure 1: Overview of our results.

of the vertices such that (1) the two coloring functions are related by c = c′ ◦ h and (2) the edge
(v, w) is in E if and only if (h(v), h(w)) is in E′.

We remark the first condition ensures that isomorphic graphs should share the same coloring set. For
example, the graph K3 with all vertices colored “red” will not be isomorphic to the graph K3 with
all vertices colored “blue”, as it fails the first condition. For the rest of this work, we will assume
that any two graphs G and H share the same coloring set X (we can always without loss take X to
be the union of their coloring sets). Since we will never talk about more than two graphs at a time,
we will also assume that all graphs that appear have the coloring set X .

Definition 1 (Coloring Filtrations). On a color set X , we consider the pair of functions (fv : X →
R, fe : X × X → R>0) where fe is symmetric (ie. fe(c, c

′) = fe(c
′, c)). On a graph G with a

vertex color set X , (fv, fe) induces the following pair of functions (Fv, Fe).

1. For all v ∈ V (G), Fv(v) := fv(c(v)). For all e ∈ E(G) with vertices v1, v2,
Fv(e) = max{Fv(v1), Fv(v2)}. Intuitively, we are assigning the edge e with the color
c(argmaxvi Fv(vi)) (the vertex color that has a higher value under fv).

2. For all v ∈ V (G), Fe(v) = 0. For all e ∈ e(G) with vertices v1, v2, Fe(e) :=
fe(c(v1), c(v2)). Intuitively, we are assigning the edge e with the color (c(v1), c(v2)).

For each t ∈ R, we write Gfv
t := F−1

v ((−∞, t]) and Gfe
t := F−1

e ((−∞, t]).

Note we used Gfv
t as opposed to GFv

t to emphasize that the function G 7→ ({Gfv
t }t∈R, {Gfe

t }R) is
well-defined for any graph G with the coloring set X . The lists {Gfv

t }t∈R and {Gfe
t }t∈R define a

vertex filtration of G by Fv and an edge filtration of G by Fe respectively. It is clear that Gfv
t can
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only change when t crosses a critical value in {fv(c) : c ∈ X}, and Gfe
t can only change when t

crosses a critical value in {fe(c1, c2) : (c1, c2) ∈ X ×X}. Hence, we can reduce both filtrations to
finite filtrations at those critical values.

We now review three prominent classes of topological descriptors (TDs), namely, persistent ho-
mology, Euler characteristic, and Laplacian spectrum. All methods we define in this section are
persistent versions of these TDs, that is, we want to keep track of how they evolve over time.

2.1 PERSISTENT HOMOLOGY

A vertex v (ie. 0-dimensional persistence information) is born when it appears in a given filtration
of a diagram. When we merge two connected components represented by two vertices v and w, we
use a decision rule to kill off one of the vertices and mark the remaining vertex to represent the new
connected component. A cycle (ie. 1-dimensional persistence information) is born when it appears
in a given filtration of a diagram, and it will never die. For color-based vertex and edge filtration,
there is a canonical way to calculate the persistence pairs of a graph with a given filtration. We
refer the reader to Appendix A of Immonen et al. (2023) for a precise introduction. We say a 0-th
dimensional persistence pair (b, d) is a real hole if d = ∞, is an almost hole if b ̸= d < ∞, and is
a trivial hole if b = d. Note that edge-based filtrations do not have any trivial holes.
Definition 2. Let f = (fv, fe) be on the coloring set X . The persistent homology (PH) diagram of
a graph G is a collection PH(G, f) composed of two lists PH(G, f)0,PH(G, f)1 where PH(G, f)0

are all the persistent pairs in the vertex filtration {Gfv
t }t∈R and PH(G, f)1 are all the persistent

pairs in the edge filtration {Gfe
t }t∈R.

PH is an isomorphism invariant (Theorem 2 of Ballester & Rieck (2024)) and can be used in GNNs.
However, PH alone does not account for sufficient local color information. Consequently, Immonen
et al. (2023) introduced the RePHINE diagram as a generalization of PH.
Definition 3. Let f = (fv, fe) be on X . The RePHINE diagram of a graph G is a multi-set
RePHINE(G, f) = RePHINE(G, f)0 ⊔ RePHINE(G, f)1 of cardinality |V (G)|+ β1

G where:

• 0-th dimensional component: RePHINE(G, f)0 consists of tuples of the form
(b(v), d(v), α(v), γ(v)) for each vertex v ∈ V (G). Here, b(v) and d(v) are the birth
and death times of v under the edge filtration {Gfe

t }t∈R, α(v) = fv(c(v)) and γ(v) =
minv∈N(w) fe(c(v), c(w)). Here, N(ω) denotes the neighboring vertices of ω.

The decision rule for which vertex to kill off is as follows - an almost hole (b, d) corresponds
to the merging of two connected components with vertex representatives v1 and v2. We kill
off the vertex that has a greater value under α. If there is a tie, we kill off the vertex that has
a lower value under γ. If there is a further tie, Theorem 4 of Immonen et al. (2023) shows
that the resulting diagram RePHINE(G, f)0 is independent of which choice we make here.

• 1-st dimensional component: RePHINE(G, f)1 consists of tuples of the form (1, d, 0, 0)
where each d indicates the birth time of a cycle in the same filtration. In the definition of
Immonen et al. (2023), the birth of a cycle corresponds to what is so-called the death of a
“missing hole”. This is why we use d to indicate the birth time instead.

Theorem 5 of Immonen et al. (2023) asserts that RePHINE diagrams are strictly more expressive
than PH diagrams. Here, we introduce a new variant of the RePHINE diagram with an added
constraint on fe.
Definition 4. Let fv : X → R be a vertex function such that fv > 0. The max RePHINE dia-
gram of a graph G is a multi-set RePHINEm(G, fv) = RePHINE(G, fv, fe) where fe(c1, c2) =
max(fv(c1), fv(c2)). Intuitively, for each edge e = (v1, v2) ∈ E(G), we assign e the color value of
whichever vertex vi that has a greater value under Fv .

Note that Definition 4 is a special case of Definition 3. The setting of max RePHINE is more suitable
for certain physics-informed systems where the vertex might have a strong influence on the attributes
of its neighboring edges. Another advantage is that the max RePHINE diagram only needs to keep
track of the vertex colors as it assigns each edge a color in X . This is in contrast to the more general
RePHINE diagram which assigns each edge a color in X × X . The usage of max RePHINE uses
less memory in the space of possible edge colors than the RePHINE diagram.
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2.2 EULER CHARACTERISTIC

Including topological features in graph representation learning using persistent homology or
RePHINE diagrams can be computationally expensive. The Euler characteristic (EC) provides a
weaker isomorphism invariant that is easier to compute (but typically less expressive). For a graph
G, the Euler characteristic χ(G) is given by χ(G) = #V (G) − #E(G). Given a filtration of a
graph G, we can track its Euler characteristic throughout the filtration.

Definition 5. Let f = (fv, fe) be on the coloring set X . Write a1 < ... < an as the list of values
fv can produce, and b1 < ... < bm as the list of values fe can produce. The EC diagram of a graph
G is two lists EC(G, f) = EC(G, f)0 ⊔ EC(G, f)1, where EC(G, f)0 is the list {χ(Gfv

ai
)}ni=1 and

EC(G, f)1 is the list {χ(Gfe
bi
)}mi=1. In the specific case where the pair f = (fv, fe) are given as in

Definition 4, we define the max EC diagram of G as ECm(G, fv) := EC(G, f).

2.3 LAPLACIAN SPECTRUM

Homology captures harmonic information (in the sense that the kernel of the graph Laplacian corre-
sponds to the 0-th homology), but there is some non-harmonic information we also want to account
for. One option is to account for colors, as we have done with RePHINE. Another option is to
augment RePHINE with spectral information. We therefore propose a new descriptor below.

Definition 6. Let f = (fv, fe) be on the coloring set X . The spectral RePHINE diagram of a
graph G is a multi-set RePHINESpec(G, f) = RePHINESpec(G, f)0 ⊔ RePHINESpec(G, f)1 of
cardinality |V (G)|+ β1

G where:

• 0-th dimensional component: RePHINESpec(G, f)0 consists of tuples of the form
(b(v), d(v), α(v), γ(v), ρ(v)) for each vertex v ∈ V (G). Here, b, d, α, γ are the same
as Definition 3, and ρ(v) is the list of non-zero eigenvalues of the graph Laplacian of the
connected component v is in when it dies at time d(v).

• 1-st dimensional component: RePHINESpec(G, f)1 consists of tuples of the form
(1, d(e), 0, 0, ρ(e)). Here, d(e) indicates the birth time of a cycle given by the edge e.
ρ(e) denotes the non-zero eigenvalues the graph Laplacian of the connected component e
is in when it is born at time d(e).

In the specific case where the pair f = (fv, fe) are given as in Definition 4, we also define the max
spectral RePHINE diagram of G as RePHINEmSpec(G, fv) := RePHINESpec(G, f).

An example that computes all the diagrams defined in this section can be found in Figure 2. In the
construction of the max versions, our choice of fe was based on the birth time of vertices under
fv . In Appendix D, we conjure a “death-time filtration” as dual to the “birth-time” filtrations and
discuss some of its implications.

3 THE EXPRESSIVE POWER OF FILTRATION METHODS

3.1 COMPARISON OF EXPRESSIVITY

Let X,Y be two graph isomorphism invariants. We say X has at least the same expressivity as Y
(denoted X ⪰ Y ) if for all non-isomorphic graphs G and H that Y can tell apart, X can also tell
them apart. We say X is strictly more expressive than Y (denoted X ≻ Y ) if, in addition, there
exist two non-isomorphic graphs G and H that Y cannot tell apart but X can. We say X and Y
have the same expressive power (denoted X = Y ) if X ⪰ Y and Y ⪰ X . We say X and Y are
incomparable if there are two non-isomorphic graphs G and H that X can tell apart but Y cannot,
and vice versa.
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1 1
G

3 3

1

2

2 2

1 1

t = 0

2 2

1 1

t = 1

1
2 2

1 1

t = 2

1

2

2 2

1 1

t = 3

3 3

1

2

RePHINESpec
(0, , , , ) (0, , , , )
(0, , , , ) (0, , , , )
(1, , 0, 0, )

(0, 1, 2, 1, {2}) (0, , 2, 1, )
(0, , , , ) (0, , , , )
(1, , 0, 0, )

(0, 1, 2, 1, {2}) (0, , 2, 1, )
(0, 2, 1, 2, {2}) (0, , 1, 2, )
(1, , 0, 0, )

(0, 1, 2, 1, {2}) (0, 3, 2, 1, {2, 2, 4})
(0, 2, 1, 2, {2}) (0,∞, 1, 2, {2, 2, 4})
(1, 3, 0, 0, {2, 2, 4})

RePHINE
(0, , , ) (0, , , )
(0, , , ) (0, , , )
(1, , 0, 0)

(0, 1, 2, 1) (0, , 2, 1)
(0, , , ) (0, , , )
(1, , 0, 0)

(0, 1, 2, 1) (0, , 2, 1)
(0, 2, 1, 2) (0, , 1, 2)
(1, , 0, 0)

(0, 1, 2, 1) (0, 3, 2, 1)
(0, 2, 1, 2) (0,∞, 1, 2)
(1, 3, 0, 0)

PH(f )1
0th: (0, ) (0, )
(0, ) (0, )
1st:

0th: (0, 1) (0, )
(0, ) (0, )
1st:

0th: (0, 1) (0, )
(0, 2) (0, )
1st:

0th: (0, 1) (0, 3)
(0, 2) (0,∞)
1st: (3,∞)

EC(f )1 4 3 2 0

2 2

1 1
G

3 3

1

2

t = 0 t = 1 t = 2
1 1

2

2 2

1 1
3 3

1

2

PH(f )0 0th:
1st:

0th: (1, 1) (1, )
1st:

0th: (1, 1) (1,∞) (2, 2) (2, 2)
1st: (2,∞)

EC(f )0 0 1 0

2 2

1 1
G

2 2

2

1

t = 0 t = 1 t = 2

2 2

1 1

2 2

1 1
1

2 2

1 1
2 2

2

1

RePHINEmSpec
(0, , , , ) (0, , , , )
(0, , , , ) (0, , , , )
(1, , 0, 0, )

(0, 1, 1, 1, {2}) (0, , 1, 1, )
(0, , , , ) (0, , , , )
(1, , 0, 0, )

(0, 1, 1, 1, {2}) (0,∞, 1, 1, {2, 2, 4})
(0, 2, 2, 2, {2, 2, 4}) (0, 2, 2, 2, {2, 2, 4})
(1, 2, 0, 0, {2, 2, 4})

RePHINEm
(0, , , ) (0, , , )
(0, , , ) (0, , , )
(1, , 0, 0)

(0, 1, 1, 1) (0, , 1, 1)
(0, , , ) (0, , , )
(1, , 0, 0)

(0, 1, 1, 1) (0,∞, 1, 1)
(0, 2, 2, 2) (0, 2, 2, 2)
(1, 2, 0, 0)

ECm(fv)
1 4 3 0

(A)

(B)

(C)

Figure 2: Example computing all the diagrams in Section 2 on a graph G with fv(blue) =
1, fv(red) = 2. (A) illustrates an edge filtration of G by fe(red) = 1, fe(blue) = 2, fe(red-blue) =
3. (B) illustrates a vertex filtration of G by fv . (C) illustrates an edge filtration of G induced by fv
in the setting of max diagrams (See Definition 4).

Theorem 1. We have the following graph comparing the expressivity of the diagrams defined
in Section 2. Here, a directed arrow X → Y indicates that X ≻ Y .

RePHINESpec RePHINE PH EC

RePHINEmSpec RePHINEm ECm

=incomparable

Theorem 1 shows that RePHINESpec is a strictly more powerful method than all other methods out-
lined in Section 2. Despite its power, there are still graphs that RePHINESpec cannot tell apart (see
Figure 3(c)). Figure 3(a) and Figure 3(b) also illustrate with explicit examples that RePHINEmSpec

and RePHINE are incomparable in terms of expressivity. Theorem 1 also implies the following
surprising equivalence between max EC diagrams and EC diagrams on graphs.

Theorem 2. EC and ECm have the same expressive power.
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G H G H

(a) (b) (c)

T1 T2

Figure 3: (a) Graphs that RePHINESpec and RePHINEmSpec can tell apart but RePHINE can-
not. (b) Graphs that RePHINESpec and RePHINE can tell apart but RePHINEmSpec cannot. (c)
Graphs that RePHINESpec cannot tell apart.

Unlike the other comparison results in Theorem 1, Theorem 2 will follow as an immediate corollary
of a complete characterization of the expressivity of EC diagrams on graphs.

3.2 EXPRESSIVITY OF EC ON GRAPHS AND HIGHER SIMPLICIAL COMPLEXES

In this subsection, we will first obtain two complete characterizations of the expressivity of EC with
respect to vertex filtrations and edge filtrations separately. Let G,H be two graphs on n vertices.

Notation: We use EG(a, b) to denote the set of edges in G with endpoints being a vertex of color
a and a vertex of color b, VG(a) to denote the set of vertices in G with color a, and G(c), H(c) to
denote the subgraphs of G,H generated by the vertices of color c.

In our next results, Proposition 1 and Proposition 2, we establish that the (max) EC diagrams of a
graph G may be completely interpreted in terms of the combinatorial data provided by the objects
EG(a, b), VG(a) and G(c) defined in the notations above.
Proposition 1 (Characterization of (max) EC Edge Filtrations). The following are equivalent:

1. For all (symmetric) edge color functions g : X ×X → R, EC(G, g)1 = EC(H, g)1.
2. For all vertex color functions f : X → R, ECm(G, f)1 = ECm(H, f)1.
3. #EG(a, b) = #EH(a, b) for all colors a, b ∈ X .

Proposition 2 (Characterization of (max) EC Vertex Filtrations). The following are equivalent:

1. For all vertex color functions f : X → R, EC(G, f)0 = EC(H, f)0.
2. For all vertex color functions f : X → R, ECm(G, f)0 = ECm(H, f)0.
3. For all a ̸= b, c ∈ X , χ(G(c)) = χ(H(c)) and #EG(a, b) = #EH(a, b).

Combining the statements of Proposition 1 and Proposition 2, we obtain the following theorem.

Theorem 3 (Characterization of (max) EC Diagrams). The following are equivalent:
1. G and H have the same EC diagram for any choice of coloring functions.
2. G and H have the same max EC diagram for any choice of coloring functions.
3. #VG(c) = #VH(c) for all c ∈ X and #EG(a, b) = #EH(a, b) for any a, b ∈ X .

Theorem 3 gives a complete characterization for the expressivity of EC and max EC. The equiva-
lence of (1) and (2) in particular proves Theorem 2.

While the majority of our work is focused on graphs, we remark that the equivalence of EC and max
EC is a special case of a more general equivalence between the two that occurs in the color-based
filtrations of a finite simplicial complex (see Appendix C).

4 THE STABILITY OF REPHINE AND RePHINESpec DIAGRAMS

Let f = (fv : X → R, fe : X × X → R>0) and g = (gv : X → R, ge : X × X → R>0)
be two pairs of functions on X . For a graph G with the coloring set X , we would ideally like a
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way to measure how much the diagrams we constructed in Section 2 differ with respect to f and g.
One way to measure this is to impose a suitable metric on the space of diagrams and obtain a stable
bound. For PH diagrams on G, this suitable metric is called the bottleneck distance and has been
classically shown to be bounded by ||fv − gv||∞ + ||fe − ge||∞ (Cohen-Steiner et al., 2006). In this
section, we will discuss a generalization of this result to RePHINE and RePHINESpec diagrams.

Let us examine RePHINE first. One naive proposal for a suitable “metric” on RePHINE diagrams
would be to restrict only to the first two components (b and d) of the multi-set and use the classical
bottleneck distance for persistence diagrams. However, this approach ignores any information from
the α and γ components and will fail the non-degeneracy axioms for a metric. Thus, we need to
modify the metric on RePHINE diagrams to take into account of its α and γ components.
Definition 7. Let RePHINE(G, f) and RePHINE(G, g) be the two associated RePHINE diagrams
for G respectively. We define the bottleneck distance as dRB(RePHINE(G, f),RePHINE(G, g)) :=

dR,0
B (RePHINE(G, f)0,RePHINE(G, g)0) + dR,1

B (RePHINE(G, f)1,RePHINE(G, g)1).

Here, dR,0
B (resp.dR,1

B ) is the infimum of distances for which there is a bijection between the two
RePHINE0 (resp.RePHINE1) diagrams. The distance is given by

d((b0, d0, α0, γ0), (b1, d1, α1, γ1)) = max{|b1 − b0|, |d1 − d0|}+ |α1 − α0|+ |γ1 − γ0|.

Similarly, we define a metric between RePHINESpec diagrams as follows.
Definition 8. We define the bottleneck distance between RePHINESpec diagrams as

dSpecRB (RePHINESpec(G, f),RePHINESpec(G, g)) :=

dSpecR,0
B (RePHINESpec(G, f)0,RePHINESpec(G, g)0)

+dSpecR,1
B (RePHINESpec(G, f)1,RePHINESpec(G, g)1)

Here, dSpecR,0
B (resp. dSpecR,0

B ) is the infimum of distances for which there is a bijection between
the two diagrams. The distance is given by
d′((b0, d0, α0, γ0, ρ0), (b1, d1, α1, γ1, ρ1)) = d((b0, d0, α0, γ0), (b1, d1, α1, γ1)) + dSpec(ρ0, ρ1),

where d is given in Definition 7 and dSpec is given by embedding γ0 and γ1 as sorted lists (followed
by zeroes) into ℓ1(N) and taking their ℓ1-distance in ℓ1(N).

We verify in Appendix A.3 that Definition 7 and Definition 8 are indeed metrics. We also prove that
the bottleneck distances of two RePHINE diagrams may be explicitly bounded in terms of the ℓ∞

norms of the input functions, and hence RePHINE diagrams are stable in the following sense.

Theorem 4. dRB(RePHINE(G, f),RePHINE(G, g)) ≤ 3||fe − ge||∞ + ||fv − gv||∞

As a corollary of Theorem 4, we also obtain an explicit bound on the max RePHINE diagrams.
Corollary 1. dRB(RePHINEm(G, fv),RePHINEm(G, gv)) ≤ 4||fv − gv||∞.

RePHINE diagrams are regarded as globally stable in the sense that no matter what f and g we
choose, their respective RePHINE diagrams are bounded by a suitable norm on f and g. Spectral
RePHINE diagrams, in contrast, only satisfy a local form of stability. We make precise what local
means by introducing a suitable topology on the possible space of filtration functions.

After fixing a canonical ordering on X and X × X/ ∼ separately, we may view fv (resp. fe)
as an element of Rnv (resp. (R>0)

ne ). Furthermore, if fv (resp. fe) is injective, it may viewed
as an element in Confnv

(R) (resp. Confne
(R>0)), where Confnv

(R) (resp. Confne
(R>0)) is the

subspace of Rnv (resp. Rne ) composing of points whose coordinates have no repeated entries. From
here we obtain the following theorem.

Theorem 5. If fv and fe are injective, then f = (fv, fe) is locally stable on Confnv (R)×
Confne(R>0) under dSpecRB . That is, over a graph G with the coloring set X , we have:

dSpecRB (RePHINESpec(G, f),RePHINESpec(G, g)) ≤ 3||fe − ge||∞ + ||fv − gv||∞,

for all g = (gv, ge) sufficiently close to f in Confnv
(R)× Confne

(R>0).
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Note that the injectivity assumption is necessary, and RePHINESpec is not globally stable in general
(see Example 1).

5 PRODUCT OF GRAPHS

When dealing with large or complex graphs that have the structural property of being some prod-
uct, it is often easier to work with the components of the graph product rather than the graph as a
whole. From a machine learning perspective, filtration functions are also typically learned without
any structural considerations, and we are thus motivated to investigate product as a special kind of
structure. Given graphs G and H , we seek to investigate what kinds of information about the graph
product G□H can be recovered from analyzing filtrations on G and H alone.

Definition 9. Let G,H be graphs, the box product (Cartesian product) of G and H is the graph
G□H , where the vertex set of G□H is the set {(g, h) | g ∈ V (G), h ∈ V (H)} and the edge set
is constructed as follows. For vertices (g1, h1) and (g2, h2), we draw an edge if (1) g1 = g2 and
h1 ∼ h2 in H or (2) h1 = h2 and g1 ∼ g2 in G. Here, by h1 ∼ h2, we mean that h1 and h2 are
related by an edge in H (and similarly for g1 ∼ g2). Note that if one of G and H is empty, then the
box product is empty.

Note that we have not assigned a coloring on G□H yet. Intuitively, we want to assign a convenient
coloring so that we can decompose filtration of G□H into filtrations on G and H respectively.
Formally, we want to be considering filtrations of the following form.

Definition 10. Let G and H be graphs with filtrations functions fG and fH respectively. We can
define a product filtration of G□H with respect to the two filtration functions as the following - let
t ∈ R, then the subgraph (G□H)t is exactly GfG

t □HfH
t .

From here, we obtain the following two propositions that relate the product filtrations of G□H to
vertex and edge filtrations of G and H respectively.

Proposition 3. Suppose fG and fH are injective vertex color functions whose images do not over-
lap. The product filtration with respect to fG and fH is equivalent to the filtration on G□H given
by the vertex coloring function F , where

F ((g, h)) = max(fG(c(g)), fH(c(h))), for all (g, h) ∈ V (G□H).

In particular, this implies that the persistence diagrams of this product filtration are well-defined.

Proposition 4. Suppose fG > 0 and fH > 0 are injective edge color functions whose images do
not overlap. The product filtration with respect to fG and fH is equivalent to the filtration on G□H
given by the function F , constructed as follows:

• F sends all vertices to 0.
• Let e ∈ E(G□H) be an edge with vertices (g1, h1) and (g2, h2). If g1 = g2, F (e) =
fH(c(h1), c(h2)). If h1 = h2, F (e) = fG(c(g1), c(g2)).

Note that g1 = g2 and h1 = h2 cannot both be satisfied on a simple graph. In particular, F is
permutation equivariant, so the persistence diagrams of this product filtration are well-defined.

Following Proposition 4, we can in fact obtain an algorithmic procedure to keep track of how the
0-th dimensional persistence diagram of G□H changes under the product of edge filtrations.

Proposition 5. Continuing the set-up of Proposition 4, for each t > 0, let gbt (resp. hb
t) be

the number of vertices still alive in Gt (resp. Ht) at time t and gdt (resp. hd
t ) be the number

of vertices in Gt (resp. Ht) that died on time t. The 0-dimensional persistence diagram of
(G□H)t = Gt□Ht with respect to f is described as follows:

1. All vertices are born at time 0.
2. Let t be a time where Gt changes (ie. t is a critical value), then the number of

vertices that will die at time t is exactly hb
tg

d
t .

3. Let t be a time where Ht changes, then the number of vertices that will die at time
t is exactly gbth

d
t .

9
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6 COLORING AND COUNTING REPRESENTATIONS FOR MOLECULES

Let M be a molecule. The standard representation of M as a graph, which we call hereafter as the
Bond Coloring Representation (BColor), views the atoms of M as nodes; and adds an edge of
color “triple bond”, “double bond”, or “single bond” to indicate covalent bonds between the atoms.
We also consider here a different representation, which we call Bond Counting Representation
(BCount): the nodes denote the atoms as before; however, we add 3 edges to denote a triple bond,
2 edges to denote a double bond, and 1 edge to denote a single bond.

BColor is the conventional choice to represent a molecule (Hoogeboom et al., 2022; Xu et al.,
2022; Verma et al., 2022; Xu et al., 2023; Song et al., 2024). A molecule with this topological
representation (BCount) is not a simple graph - it is rather a graph with multiple edges between the
same vertex. This is an example of what is called a delta complex (Section 2.1 of Hatcher (2002)).
In contrast, the counting representation is much less common (Kvasničk & Pospı́chal, 1989).

One may consider using BCount since it might be able to capture more accurately the strength of the
underlying electrostatic interactions. We seek to investigate whether this alternate topological rep-
resentation would allow topological methods to better differentiate non-isomorphic molecules. For
a molecule M , we use M(c),M(t) to denote the BColor representation and BCount representation
of M respectively. The coloring set of a vertex filtration of M(c) vs. M(t) will be the type of all
atoms, and the coloring set of an edge filtration of M(c) vs. M(t) will be the bond type.
Proposition 6. For any vertex color filtration fv of M(c) and M(t), fv will produce the same 0-
dimensional persistence diagram. For any edge color filtration fe of M(c) and M(t), fe will also
produce the same 0-th dimensional persistence diagram.
Proposition 7. Let M,N be molecules. The EC diagram of M(t) and N(t) with respect to all
possible fe are the same if and only if the EC diagram of M(c) and N(c) with respect to all possible
fe are the same.

We remark that there are examples of graphs M , N whose vertex filtration can be told apart by EC
with BCount but not BColor (e.g., consider M with 2 atoms of same type A and a double bond
between them; and N with 2 atoms of A and a single bond between them). Conversely, there exist
examples that can be separated by EC with BColor but not BCount (e.g., consider M with 3 A
atoms and 2 single bonds; and N with 3 A atoms but only 1 double bond). This means that the
two representations are incomparable under vertex filtrations with EC as well as with 1-dimensional
persistence diagrams (using Proposition 6).

7 CONCLUSION

We unraveled the theoretical underpinnings of topological descriptors associated with EC, PH,
and the Laplacian spectrum focusing on expressivity, stability, and computation. For expressiv-
ity, we amalgamated spectral features with RePHINE to craft a strictly more expressive scheme
RePHINESpec. For stability, we constructed a notion of bottleneck distance on RePHINE and
RePHINESpec. From here, we showed the former is globally stable, and the latter is locally stable.
For computation, we introduced and analyzed several new schemes, including a more economical,
but equally expressive, variant of EC. We also examined these methods in the context of graph prod-
ucts and molecules. In particular, our results for molecules imply that we can provably augment
expressivity of existing color-based schemes with the counting-based features, opening fascinating
avenues for applications in synthesis chemistry and drug discovery.

Our work focused on color-based filtrations, and it may be interesting to study these descriptors
under other types of filtrations (e.g., based on the degree of vertices). Exploring suitable metrics for
assessing the stability of RePHINESpec is another interesting direction.
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Ernst Röell and Bastian Rieck. Differentiable euler characteristic transforms for shape classification.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=MO632iPq3I.

Primoz Skraba and Katharine Turner. Notes on an elementary proof for the stability of persistence
diagrams, 2021.

Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma. Unified
generative modeling of 3d molecules with bayesian flow networks. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=NSVtmmzeRB.

Katharine Turner, Sayan Mukherjee, and Doug M. Boyer. Persistent homology transform for mod-
eling shapes and surfaces. Information and Inference: A Journal of the IMA, 3(4):310–344, 2014.
doi: 10.1093/imaiai/iau011.

Yogesh Verma, Samuel Kaski, Markus Heinonen, and Vikas Garg. Modular flows:
Differential molecular generation. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Process-
ing Systems, volume 35, pp. 12409–12421. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
509f7977030f3550300f541ec228c3fc-Paper-Conference.pdf.

Yogesh Verma, Amauri H Souza, and Vikas Garg. Topological neural networks go persistent, equiv-
ariant, and continuous. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st Inter-
national Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 49388–49407. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/verma24a.html.

Rui Wang, Duc Duy Nguyen, and Guo-Wei Wei. Persistent spectral graph. International Journal
for Numerical Methods in Biomedical Engineering, 36(9), Aug 2020. doi: 10.1002/cnm.3376.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In Interna-
tional Conference on Learning Representations (ICLR), 2019.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geomet-
ric diffusion model for molecular conformation generation. In ICLR, 2022.

Minkai Xu, Alexander S. Powers, Ron O. Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

12

https://proceedings.mlr.press/v235/papamarkou24a.html
https://arxiv.org/abs/2304.10031
https://arxiv.org/abs/2304.10031
https://openreview.net/forum?id=MO632iPq3I
https://openreview.net/forum?id=MO632iPq3I
https://openreview.net/forum?id=NSVtmmzeRB
https://openreview.net/forum?id=NSVtmmzeRB
https://proceedings.neurips.cc/paper_files/paper/2022/file/509f7977030f3550300f541ec228c3fc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/509f7977030f3550300f541ec228c3fc-Paper-Conference.pdf
https://proceedings.mlr.press/v235/verma24a.html
https://proceedings.mlr.press/v235/verma24a.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In
Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pp. 2896–2906. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.
press/v108/zhao20d.html.

13

https://proceedings.mlr.press/v108/zhao20d.html
https://proceedings.mlr.press/v108/zhao20d.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF THEOREM 1

We will prove Theorem 1 edge by edge in the following sequence of propositions. Note that Theorem
5 of Immonen et al. (2023) already showed that RePHINE is strictly more expressive than PH. We
also defer the proof that EC = ECm to Appendix A.2.

Proposition 8. RePHINESpec is strictly more expressive than RePHINE.

Proof. From Definition 6, we know that RePHINESpec by definition includes all the data
RePHINE can have. To see that it is strictly more expressive, we consider the graphs G as the
star graph on 4 vertices and H as the path graph on 4 vertices (see Figure 3(a)). Furthermore, we
require that every vertex be colored red. From the remarks below Theorem 5 of Immonen et al.
(2023), we know that RePHINE cannot differentiate G and H . However, the data about the real
holes of the respective RePHINESpec diagrams of G and H will be different. This is because the
eigenvalues of ∆0(G) are {0, 1, 1, 4} and the eigenvalues of ∆0(H) are {0, 2, 2−

√
2, 2+

√
2}.

Proposition 9. RePHINEmSpec is strictly more expressive than RePHINEm.

Proof. From Definition 4 and Definiton 6, we know that RePHINEmSpec by construction has at
least the same expressive power as RePHINEm. To see that RePHINEmSpec is strictly more ex-
pressive, we can use the same example in Proposition 8 since there are no essential differences
between RePHINESpec and RePHINEmSpec on graphs whose vertices all have the same color.

Proposition 10. RePHINEmSpec and RePHINE are incomparable.

Proof. The same example in Proposition 8 provides a pair of graphs that the max spectral RePHINE
diagram can tell apart but the RePHINE diagrams cannot. For the other direction, we consider the
two colored graphs G and H in Figure 3(b). Also let T1 and T2 be the two trees in Figure 3(c). Note
that T1 and T2 are the subtrees of red vertices in G and H respectively.

We will first check that RePHINEmSpec cannot tell the difference between them. For the ease of
notations, we will write r = fv(red) and b = fv(blue). It suffices for us to check this in the
following three cases on fv .

1. r > b: Recall that the induced function Fe for max RePHINE is given by Fe((v1, v2)) =
max(Fv(v1), Fv(v2)) for an edge (v1, v2) in the graph. Since r > b and every vertex in G
(resp. H) is either red or connected to a red vertex, we conclude that Fe is constant with
value r on the edges of both G and H .

Since G and H are both trees, RePHINEmSpec(G, fv)
1 and RePHINEmSpec(H, fv)

1 are
both the empty list. It suffices for us to examine

RePHINEmSpec(G, fv)
0 = {(0, dG(v), αG(v), γG(v), ρG(v)}v∈V (G)

and

RePHINEmSpec(H, fv)
0 = {(0, dH(w), αH(w), γH(w), ρH(w)}w∈V (H).

Clearly, G and H are isomorphic as uncolored graphs, and it therefore follows that the data
ρG(v) and ρH(w) are both the same. Since Fe is constant, it also follows that γG(v) and
γH(w) are the same. For both G and H , they will have exactly 1 blue vertex that dies at ∞,
1 blue vertex that dies at time r, and 10 red vertices that dies at time r. Hence, we conclude
that their respective max RePHINE Spectral diagrams will be the same.

2. r = b: In this case, we completely lose the added information that there are blue vertices in
the graph. Let R be the same graph as G but with every vertex colored red, then we clearly
have that RePHINEmSpec(G, fv) = RePHINEmSpec(R, fv) = RePHINEmSpec(H, fv).

14
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3. r < b: At time r, we observe that Gfe
r is the disjoint union of the tree T1 and two vertices.

On the other hand, Hfe
r is the disjoint union of the tree T2 and two vertices. For both G

and H at time r, there will be 10 red vertices that die at this time. Their α-values will be
the same (being r itself). Their γ-values will also be equal to r as γ takes the minimum
of the values of fe on edges adjacent to each vertex. Their ρ-values will also be the same.
This is because we can compute and find that the characteristic polynomials of ∆0(T1) and
∆0(T2) are both equal to

x11−20x10+166x9−748x8+2014x7−3368x6+3525x5−2264x4+843x3−160x2+11x.

At time b, Gfe
b = G and Hfe

b = H . For both G and H , there will be 2 blue vertices that die
at this time. Their α-values will be the same (being b). Their γ-values will be both equal to
b, and their ρ-values will be the same since, again, G and H are isomorphic as uncolored
graphs.

At the time ∞, the remaining 1 red vertex in G and H will both die, and it is clear that their
α, γ, and ρ-values will be the same.

Now we will show that RePHINE can tell the difference between G and H . Intuitively, the differ-
ence between the RePHINE diagram and the max spectral RePHINE diagram is that the former can
assign the colors “red-blue” and “red-red” to the edges of G and H while the latter can only assign
the color “red”, so there is an extra degree of freedom in the RePHINE diagram. Now, let us set
r > b and fe(red-blue) = 1 and fe(red-red) = 2. Now, we have that Gfe

1 is the disjoint union of 10
vertices and a path graph of 3 vertices (linking the two blue vertices to the middle red vertex). On
the other hand, we have that Hfe

1 is the disjoint union of 9 vertices and two separate path graphs of
two vertices (each path links a blue vertex to a red vertex). Hence, we see that 1 red vertex and 1
blue vertex died in G at time 1, but two red vertices died in H at time 1. Hence, they have different
RePHINE diagrams.

Proposition 11. RePHINESpec is strictly more expressive than RePHINEmSpec.

Proof. From Definition 6, we know that RePHINEmSpec is by construction a special case of
RePHINESpec. Hence, RePHINESpec has at least the same expressive power as RePHINEmSpec.
In the proof of Proposition 10, we know that RePHINEmSpec cannot tell the difference between G
and H in Figure 3(b), but RePHINE can. Since RePHINESpec is a generalization of RePHINE,
it can certainly tell the difference between G and H too. We thus conclude that RePHINESpec is
strictly more expressive than RePHINEmSpec.

Proposition 12. RePHINE is strictly more expressive than RePHINEm.

Proof. From Definition 4, we know that RePHINEm is by construction a special case of RePHINE.
Hence, RePHINE has at least the same expressive power as RePHINEm. In the proof of Proposi-
tion 10, we know that RePHINEmSpec cannot tell the difference between G and H in Figure 3(b),
but RePHINE can. Since RePHINEmSpec is a generalization of RePHINEm, RePHINEm itself
certainly cannot tell the difference between G and H either. We thus conclude that RePHINE is
strictly more expressive than RePHINEm.

Proposition 13. PH is strictly more expressive than EC.

Proof. In the proof of Proposition 19, we showed that PH(G, fv, fe) = PH(H, fv, fe) implies
EC(G, fv, fe) = EC(H, fv, fe). Thus, PH has at least the same expressive power as EC. Now
consider the graphs G and H in Figure 4. Since all vertices have the same color, fv has to be
constant, and the edge coloring function fe is also necessarily constant. Let a be the constant value
of fv and b be the constant value of fe, then we clearly have that

χ(Gfv
a ) = 0 = χ(Hfv

a ) and χ(Gfe
b ) = 0 = χ(Hfe

b ).

Hence, their respective EC diagrams have to be the same. On the other hand, the zeroth Betti
numbers (ie. the number of connected components) of G and H are clearly different, so we can find
two different PH diagrams of G and H .
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G H
Figure 4: Illustration of graphs G and H that PH can tell apart but EC cannot.

Proposition 14. RePHINEm is strictly more expressive than ECm.

Proof. By restricting to the first two components of the tuples provided by the max RePHINE di-
agram, we can use a similar proof in that of Proposition 19 to show that RePHINEm(G, fv) =
RePHINEm(H, fv) implies ECm(G, fv) = ECm(H, fv). To show that RePHINEm is strictly
more expressive than ECm, we can use the same example as in Figure 4. The proof follows sim-
ilarly to that of Proposition 13 because there is no difference between max RePHINE, RePHINE,
and PH on graphs where all vertices have the same color.

A.2 PROOFS FOR SECTION 3.2

In this section, we will characterize the expressivity of EC on graphs. For the discussion of EC on
simplicial complexes, please see Appendix C.

Before we state the proofs, we first remind the reader that in Section 3.2, we assumed that G and H
have the same number of vertices (otherwise, they clearly are not isomorphic to each other).

Proof of Proposition 1. We will first show that the second and third items are equivalent. For each
vertex color function f : X → R, we use gf : X ×X → R to denote its correspondent edge color
function.

Suppose ECm(G, f)1 = ECm(H, f)1 for all possible f : X → R. Recall by assumption G and H
have the same number of vertices n. Let f be an vertex color function such that 0 < f(a) < f(b) <
minci∈C−{a,b} f(ci), then we have that

n−#EG(a, a) = χ(G
gf
a ) = χ(H

gf
a ) = n−#EH(a, a)

Hence #EG(a, a) = #EH(a, a). By choosing another appropriate vertex color function, we can
similarly show that #EG(b, b) = #EH(b, b). Now, if we look back on the function f , we have that

n−#EG(a, a)−#EG(a, b)−#EG(b, b) = χ(G
gf
b )

= χ(H
gf
b ) = n−#EH(a, a)−#EH(a, b)−#EH(b, b).

This implies that #EG(a, b) = #EH(a, b) since we already know that #EG(a, a) = #EH(a, a)
and #EG(b, b) = #EH(b, b).

Conversely, suppose #EG(a, b) = #EH(a, b) for all colors a, b ∈ X . Let f be an edge color
filtration function such that 0 < f(d1) ≤ ... ≤ f(ds), where di is a relabeling of the colors c1, ..., cs
by this ordering.
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Since G and H have the same number of vertices n, we have that χ(Ggf
0 ) = n = χ(H

gf
0 ). Thus, it

suffices for us to show that χ(Ggf
t ) = χ(H

gf
t ) for all t > 0. Indeed,

χ(G
gf
t ) = n−

∑
i≤j s.t. f(di),f(dj)≤t

#EG(di, dj)

= n−
∑

i≤j s.t. f(di),f(dj)≤t

#EH(di, dj)

= χ(H
gf
t ).

Hence, we have that the second and third items are equivalent. Finally, we observe that clearly
(1) implies (2) because the edge function induced by the max EC diagram is a special case of a
symmetric edge coloring function. An argument very similar to the proof of (3) implies (2) will also
show that (3) implies (1). This is because for all t > 0,

χ(Gg
t ) = n−

∑
i≤j s.t. g(di,dj)≤t

#EG(di, dj)

= n−
∑

i≤j s.t. g(di,dj)≤t

#EH(di, dj)

= χ(Hg
t ).

Proof of Proposition 2. There is no difference between the definition of the 0-th dimensional com-
ponent of the EC diagram and the max EC diagram, so the first two items are equivalent.

For (1) implies (3), we can choose any injective vertex color function such that f obtains its mini-
mum at the color c, Then Gf

f(c) and Hf
f(c) will be G(c) and H(c), and hence their Euler character-

istics will be the same. For any a ̸= b ∈ X , we can choose an injective vertex color function f such
that f is smallest at a and second smallest at b. In this case, we have that

χ(Gf
f(b)) = χ(Hf

f(b)).

Here we have that
χ(Gf

f(b)) = χ(G(a))−#EG(a, b) + χ(G(b)),

χ(Hf
f(b)) = χ(H(a))−#EH(a, b) + χ(H(b)).

Hence, we conclude that #EG(a, b) = #EH(a, b) for all a ̸= b ∈ X . The proof of (3) implies (1)
is similar to that in Proposition 1.

Proof of Theorem 3. The first two statements come directly from combining the statements of
Proposition 1 and Proposition 2. The third statement follows from the observation that χ(G(c)) +
#EG(c, c) = #VG(c).

A.3 PROOFS FOR SECTION 4

For ease of notation, we will omit the parameter G in the RePHINE diagram in this section since
we will only be discussing functions on the same graph. We will first verify that our definition of a
metric dRB in Definition 7 is actually a metric. To do this, we first note that the definition of dRB can
be elaborated as the following definition.
Definition 11. Let RePHINE(G, f) and RePHINE(G, g) be the two associated
RePHINE diagrams for G respectively. We define the bottleneck distance as
dRB(RePHINE(G, f),RePHINE(G, g)) := dR,0

B (RePHINE(G, f)0,RePHINE(G, g)0) +
dB(RePHINE(G, f)1,RePHINE(G, g)1).

For the 0-th dimensional component, dR,0
B is defined as,

dR,0
B (RePHINE(G, f)0,RePHINE(G, g)0) := inf

π∈bijections
max

p∈RePHINE(G,f)0
d(p, π(p)),
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where d is defined as d((b0, d0, α0, γ0), (b1, d1, α1, γ1)) = max{|b1− b0|, |d1−d0|}+ |α1−α0|+
|γ1 − γ0|, and π ranges over all bijections RePHINE(G, f)0 → RePHINE(G, g)0. For the 1-st
dimensional component, dB is the usual bottleneck distance on 1-dimensional persistence pairs.

Proposition 15. dRB is a metric.

Proof. Since the usual bottleneck distance is a metric, it suffices for us to check that dR,0
B is a metric.

1. Non-degeneracy: Clearly the function is non-negative, and choosing π to be the identity bi-
jection shows that dR,0

B (RePHINE(f)0,RePHINE(f)0) = 0. For any pairs RePHINE(f)0 ̸=
RePHINE(g)0, the term maxp∈RePHINE(f)0 d(p, π(p)) will be greater than 0 for any choice
of bijection π. Since there are only finitely many possible bijections π, the infimum
dR,0
B (RePHINE(f)0,RePHINE(g)0) will be greater than 0.

2. Symmetry: Any bijection π : RePHINE(f)0 → RePHINE(g)0 corresponds exactly to a
bijection π−1 : RePHINE(g)0 → RePHINE(f)0. Hence, the definition of dR,0

B is symmetric.

3. Triangle Inequality: Let RePHINE(f)0,RePHINE(g)0,RePHINE(h)0 be the vertex compo-
nents of RePHINE diagrams on G. Suppose σ1 : RePHINE(f)0 → RePHINE(h)0 is a bijection
that achieves the infimum labeled in the definition of dR,0

B . In other words,

dR,0
B (RePHINE(f)0,RePHINE(h)0) = max

p∈RePHINE(f)0
d(p, σ1(p)).

Suppose τ1, τ2 are bijections from RePHINE(f)0 → RePHINE(g)0 and RePHINE(g)0 →
RePHINE(h)0 respectively. We then have that,

max
p∈RePHINE(f)0

d(p, σ1(p)) ≤ max
p∈RePHINE(f)0

d(p, τ1(p)) + d(τ1(p), τ2(τ1(p)))

Triangle Inequality for d
≤ max

p∈RePHINE(f)0
d(p, τ1(p)) + max

q∈RePHINE(g)0
d(q, τ2(q)).

For the sake of paragraph space, we write A = dR,0
B (RePHINE(f)0,RePHINE(h)0). Taking

infimum over all possible τ1 and over τ2 gives us that

A = dR,0
B (RePHINE(f)0,RePHINE(h)0)

≤ inf
τ1,τ2

max
p∈RePHINE(f)0

d(p, τ1(p)) + max
q∈RePHINE(g)0

d(q, τ2(q))

≤ inf
τ1∈bijection

max
p∈RePHINE(f)0

d(p, τ1(p)) + inf
τ2∈bijection

max
q∈RePHINE(g)0

d(q, τ2(q))

≤ dR,0
B (RePHINE(f)0,RePHINE(g)0) + dR,0

B (RePHINE(g)0,RePHINE(h)0).

This shows that dR,0
B satisfies the triangle inequality.

To prove Theorem 4, we first define a technical construction as follows.

Definition 12. Given a graph G and functions (fv, fe) on X . This induces functions (Fv, Fe) as
defined in Definition 1. From here, we construct a pairing between RePHINE(f)0 and (v, e) ∈
V (G)× {0} ∪ E(G) as follows.

1. For every almost hole (0, d) that occurs in the edge filtration by Fe, this corresponds to the
merging of two connected components represented by vertices vi and vj .

2. We assign to (0, d) the vertex that has greater value under α. If there is a tie, we assign the
vertex that has the lower value under γ. If there is a further tie, we will be flexible in how
we assign them in the proof of the stability of the RePHINE diagram.

3. The occurrence of an almost hole (0, d) is caused by an edge e whose value under fe is d
that merges two connected components. We assign this edge to (0, d). If there are multiple
such edges, we will be flexible in how we assign them in how we assign them in the proof
of the stability of the RePHINE diagram.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

4. For the real holes, we assign them with the vertices left. The edge takes an uninformative
value (ie. 0).

Note that for any vertex v that dies at finite time d, its associated edge e = (v1, v2) satisfies
fe(c(v1), c(v2)) = d(v).

We will now state and prove two propositions that will directly imply Theorem 4. Our proof adapts
the methods presented in Skraba & Turner (2021).

Proposition 16. Suppose fe = ge = h for some edge coloring function h, then

dR,0
B (RePHINE(fv, h)

0,RePHINE(gv, h)
0) ≤ ||fv − gv||∞.

Proof. Let ht
v(x) = (1− t)fv(x) + tgv(x). Also let Ht

v : G → R be the induced function of ht
v on

G, in the sense of Definition 1. We can divide [0, 1] into finite intervals [t0, t1], [t1, t2], ..., [tn, tn+1],
where t0 = 0, tn+1 = 1, t0 < t1 < ... < tn+1, such that for all t ∈ [ti, ti+1] and all simplicies
x, y ∈ G, either

Ht
v(x)−Ht

v(y) ≤ 0 or ≥ 0 (†).

To be clear on the wording, this means that we cannot find s, s′ ∈ [ti, ti+1] such that Hs
v(x) > Hs

v(y)

but Hs′

v (x) < Hs′

v (y).

For all s1, s2 ∈ [ti, ti+1], we claim that we can use Definition 12 to produce the same list of pairs
(v, e) (with some flexible adjustments at endpoints if needed).

Since fe = ge, the list of death times and order of edges that appear do not change, what could
change is which vertex to kill off at the time stamp. Let us now order the finite death times (ie. those
corresponding to almost holes), accounting for multiplicity, as d1 ≤ d2 ≤ ... ≤ dn < ∞. Now we
observe that

1. At d1, RePHINE(hs1
v , h) and RePHINE(hs2

v , h) will be merging the same two connected
components with vertex representatives v and w. For the RePHINE diagram at s1 (resp.
s2), we choose which vertex to kill off based on which vertex has a higher value under Hs1

v
(resp. Hs2

v ). By (†), we will be killing off the same vertex. If there happens to be a tie of
α values, we will still kill off the same vertex in the comparison of γ values since fe = ge.
Finally, if there is a tie of γ values, we make the flexible choice to kill off the same vertex.

Since fe = ge, the edge associated to this vertex can be chosen to be the same. Hence,
RePHINE(hs1

v , h) and RePHINE(hs2
v , h) will produce the same pair (v, e) at time d1.

2. Suppose that up to the i-th death, both RePHINE diagrams are producing the same pairs
and merging the same components. For the i + 1-death, the RePHINE diagrams at both
s1 and s2 will be merging the same two components v′ and w′. The same argument as the
case for d1 shows that they will produce the same pair of vertex and edge.

3. After we go through all finite death times, both RePHINE diagrams will have the same list
of vertices that are not killed off, which are then matched to real holes.

This proves the claim above. From triangle inequality, we know that
dR,0
B (RePHINE(fv, h)

0,RePHINE(gv, h)
0) is bounded by the term

n∑
i=0

dR,0
B (RePHINE(hti

v , h)
0,RePHINE(hti+1

v , h)0).

For each summand on the right, we assign a bijection from RePHINE(hti
v , h)

0 to
RePHINE(h

ti+1
v , h)0 as follows - using our previous claim, we send (0, d, α, γ) ∈

RePHINE(hti
v , h)

0 to the pair in RePHINE(h
ti+1
v , h)0 that correspond to the same (v, e). For

the sake of paragraph space, we write Ai = dR,0
B (RePHINE(hti

v , h)
0,RePHINE(h

ti+1
v , h)0) and
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see that

Ai = dR,0
B (RePHINE(hti

v , h)
0,RePHINE(hti+1

v , h)0)

≤ max
(v,e)

|dti+1(v)− dti(v)|+ |αti+1(v)− αti(v)|+ |γti+1(v)− γti(v)|

= max
(v,e)

0 + |αti+1(v)− αti(v)|+ 0 Since fe = ge

= max
v

|αti+1
(v)− αti(v)|

= max
w

|hti+1
v (c(w))− hti

v (c(w))|

= max
w

|(1− ti+1)fv(c(w)) + ti+1gv(c(w))− (1− ti)fv(c(w))− tigv(c(w))|

= max
w

|(ti − ti+1)fv(c(w)) + (ti+1 − ti)gv(c(w))|

= max
w

(ti+1 − ti)|fv(c(w))− gv(c(w))|

≤ (ti+1 − ti)||fv − gv||∞.

Hence, we have that

dR,0
B (RePHINE(fv, h)

0,RePHINE(gv, h)
0) ≤

n∑
i=0

Ai

≤
n∑

i=0

(ti+1 − ti)||fv − gv||∞

= ||fv − gv||∞.

Remark 1. In the proof of the previous proposition, we claimed that we can assign the same vertex-
edge pair to each death time for both filtration at ti and ti+1. This may seem contradictory at first,
as this seems to suggest that, by connecting the endpoints of the interval, RePHINE would assign
the same vertices on G as real holes regardless of the choice of functions. However, in our proof, the
choice of vertex-edge assignment on ti ∈ [ti, ti+1] need not be the same as the choice of vertex-edge
assignment on ti ∈ [ti−1, ti]. This is what we meant by “flexibility” in Definition 12, the key point
is that both choices will give the same RePHINE diagram.

Proposition 17. Suppose fv = gv = h for some vertex coloring function h, then

dR,0
B (RePHINE(h, fe)

0,RePHINE(h, ge)
0) ≤ 2||fe − ge||∞.

Proof. Let ht
e(x) = (1 − t)fe(x) + tge(x) : X ×X → R>0 be as in the previous proof. Also let

Ht
e : G → R≥0 denote the induced function on G in the sense of Definition 1. We can divide [0, 1]

into finite intervals [t0, t1], [t1, t2], ..., [tn, tn+1], where t0 = 0, tn+1 = 1, t0 < t1 < ... < tn+1,
such that for all t ∈ [ti, ti+1] and all edges x, y ∈ G, either

Ht
e(x)−Ht

e(y) ≤ 0 or ≥ 0 (†).

For all s1, s2 ∈ [ti, ti+1], we claim that we can use Definition 12 to produce the same list of pairs
(v, e) (with some flexible adjustments at endpoints if needed).

The death times for the RePHINE diagrams at s1 and s2 may be different. Let us write ds11 ≤
... ≤ ds1n (with multiplicity) to indicate all the finite death times for s1, and similarly we write
ds21 ≤ ... ≤ ds2n for s2 (with reordering allowed for deaths that occur at the same time). We claim
that the corresponding (v, e) produced at ds21 and ds2i can be chosen to be the same.

1. For each death time that occurs, we are free to choose any of the merging of two compo-
nents that occurred at that time to be assigned to that death time.

2. At ds11 , the death occurs between the merging of two vertices v and w by an edge e such
that Hs1

e (e) = ds11 . If Hs2
e (e) = ds21 , then we can choose the first death to occur with the

same edge e between v and w.
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Otherwise, suppose Hs2
e (e) > ds21 . There exists an edge e′ such that Hs2

e (e′) = ds21 ,
so Hs2

e (e) > Hs2
e (e′). By (†), this means that Hs1

e (e) ≥ Hs1
e (e′), which implies that

Hs1
e (e′) = ds11 . We instead choose the first death in ds11 to occur with the edge e′ between

its adjacent vertices.

In either case, we see that at the first death time, we can choose an assignment such that the
RePHINE diagrams at s1 and s2 are merging the same two connected components a, b by
the same edge. Now we will show that they will kill off the same vertex. Since fv = gv , the
first comparison will always give the same result. If there is a tie, then we are comparing
fe and ge. Suppose for contradiction, that without loss, a has lower γ value at s1 and b has
lower γ value at s2. This means that there exists an edge ea adjacent to a such that

Hs1
e (ea) < Hs1

e (e), for all e adjacent to b.

Now, since b has lower γ value at s2, this means that there exists an edge eb adjacent to b
such that

Hs2
e (eb) < Hs2

e (e), for all e adjacent to a.

In particular, this means that Hs2
e (eb) < Hs2

e (ea) and Hs1
e (eb) > Hs1

e (ea), which violates
(†). Hence, we will have a consistent vertex to kill off. Finally, if there is a tie, then we
flexibly choose the same vertex to kill off. Since we are comparing the same edge, there is
a canonical edge associated too.

Thus, we have shown that ds11 and ds22 can be chosen to give the same vertex edge pair.

3. Inductively, suppose that up to the i-th death, both RePHINE diagrams are producing the
same pairs and merging the same components.

For the i + 1-th death, ds1i+1 occurs between the merging of two connected components
C1 and C2 by an edge e such that Hs1

e (e) = ds1i+1. Now if Hs2
e (e) = ds2i+1, then by our

inductive hypothesis we can choose both filtration so that they would be merging the same
connected components.

Now suppose Hs2
e (e) ̸= ds2i+1. By the inductive hypothesis, it cannot be lower, so Hs2

e (e) >
ds2i+1. In this case, we look at ds2i+1 itself, which also occurs with an edge e′ that merges
connected components C ′

1 and C ′
2. Hence, we have that

Hs2
e (e) > Hs2

e (e′) = ds2i+1.

By (†), this means that
Hs1

e (e) ≥ Hs2
e (e′).

By our inductive hypothesis, this edge e′ cannot have occurred in prior deaths, hence we
have that Hs2

e (e′) = ds1i+1, and the same arguments as the base case follow through.

In either case, we see that at the i+1-th death time, we can choose an assignment such that
the RePHINE diagrams at s1 and s2 are merging the same two connected components a, b
by the same edge. Similar to our discussion in the base case, the vertex-edge pair produced
would be consistent.

4. After we go through all finite death times, both RePHINE diagrams will have the same list
of vertices that are not killed off, which are then matched to real holes.

This proves the claim above. Now, from triangle inequality, we again have that
dR,0
B (RePHINE(h, fe)

0,RePHINE(h, ge)
0) is bounded by the sum

n∑
i=0

dR,0
B (RePHINE(h, hti

e )
0,RePHINE(h, hti+1

e )0).

For each summand on the right, we assign a bijection with the exact same strategy as
the proof of the previous proposition. For the sake of paragraph space, we write Ai =
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dR,0
B (RePHINE(h, hti

e )
0,RePHINE(h, h

ti+1
e )0) and compute that

Ai = dR,0
B (RePHINE(h, hti

e )
0,RePHINE(h, hti+1

e )0)

≤ max
(v,e)

|dti+1
(v)− dti(v)|+ |αti+1

(v)− αti(v)|+ |γti+1
(v)− γti(v)|

= max
(v,e)

|dti+1(v)− dti(v)|+ 0 + |γti+1(v)− γti(v)| Since fv = gv

= max
(v,e)

|Hti+1
e (e)−Hti

e (e)|+ |γti+1
(v)− γti(v)|

≤ (ti+1 − ti)||fe − ge||∞ +max
v

|γti+1
(v)− γti(v)|.

We claim that |γti+1(v) − γti(v)| ≤ ||hti+1
e − hti

e ||∞. Indeed, without loss let us say γti+1(v) ≥
γti(v). Let ei be the edge adjacent to v that has minimum value under Hti

e , then this means that

|γti+1
(v)− γti(v)| = γti+1

(v)− γti(v)

= γti+1
(v)−Hti

e (ei)

≤ Hti+1
e (ei)−Hti

e (ei) Since γti+1
(v) is minimum

≤ ||Hti+1
e −Hti

e ||∞
≤ ||hti+1

e − hti
e ||∞

≤ (ti+1 − ti)||fe − ge||∞.

Thus, we have that

Ai = dR,0
B (RePHINE(h, fe)

0,RePHINE(h, ge)
0) ≤ 2(ti+1 − ti)||fe − ge||∞.

Hence, we have that

dR,0
B (RePHINE(h, fe)

0,RePHINE(h, ge)
0) ≤

n∑
i=0

Ai

≤
n∑

i=0

2(ti+1 − ti)||fe − ge||∞

= 2||fe − ge||∞.

Now we finally give a proof of Theorem 4.

Proof of Theorem 4. On the 1-dimensional components of the RePHINE diagram, we have the
usual bottleneck distance. Cohen-Steiner et al. (2006) gives a standard bound on this term by
dB(RePHINE(f)1,RePHINE(g)1) ≤ ||fe − ge||∞. The theorem then follows from the triangle
inequality, the inequality in the previous sentence, and the previous two propositions.

From Theorem 4, we also prove the corollary on max RePHINE diagrams.

Proof of Corollary 1. It suffices for us to check that induced functions fe and ge satisfy ||fe −
ge||∞ ≤ ||fv − gv||∞. For any (c1, c2) ∈ X ×X , we have that

|fe(c1, c2)− ge(c1, c2)| = |max(fv(c1), fv(c2))−max(gv(c1), gv(c2))|
If c1 maximizes both terms or c2 maximizes both terms, then we are done. Otherwise, without loss
let us suppose that max(fv(c1), fv(c2)) = fv(c1) and max(gv(c1), gv(c2)) = gv(c2). Then in
particular we have that

fv(c1)− gv(c2) ≤ fv(c1)− gv(c1),

gv(c2)− fv(c1) ≤ gv(c2)− fv(c2).

Thus, we have that

|fe(c1, c2)− ge(c1, c2)| = |max(fv(c1), fv(c2))−max(gv(c1), gv(c2))| ≤ ||fv − gv||∞.
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Now we show that dSpecRB is a metric and that RePHINESpec is locally stable under this metric.

Proposition 18. dSpecRB is a metric.

Proof. Since we showed d from Definition 7 is a metric, it suffices for us to check in this proposition
that dSpec is a metric. To reiterate the definition of dSpec, given a list L of non-zero eigenvalues with
length n, we define an embedding ϕ(L) ∈ ℓ1(N) where ϕ(L) where the first n-elements in the
sequence are L sorted in ascending order and the rest are zeroes. This embedding is clearly injective
on the lists of non-zero eigenvalues. For two lists ρ0, ρ1, we define

dSpec(ρ0, ρ1) = ||ϕ(ρ0)− ϕ(ρ1)||1.

The fact that dSpec is a metric now follows from the fact that ℓ1(N) is a metric space under its
ℓ1-distance and ϕ is injective.

Proof of Theorem 5. We will again split this into two cases where fe = ge and fv = gv respectively.

Suppose again that fe = ge = h, let us try to follow the proof of Proposition 16 to give an idea
on why using this method falls apart. let ht

v(x) = (1 − t)fv(x) + tgv(x) and Ht
v : G → R be

the induced function of ht
v on G, in the sense of Definition 1. We can again divide [0, 1] into finite

intervals [t0, t1], [t1, t2], ..., [tn, tn+1], where t0 = 0, tn+1 = 1, t0 < t1 < ... < tn+1, such that for
all t ∈ [ti, ti+1] and all simplicies x, y ∈ G, either

Ht
v(x)−Ht

v(y) ≤ 0 or ≥ 0 (†).

For all s1, s2 ∈ [t0, t1], we can again use Definition 12 to produce the same list of pairs (v, e) (vertex
to edge identification). Previously, by choosing s1 = t0 = 0 and s2 = t1, we were able to obtain
a reasonable bound on the bottleneck distance for RePHINE in terms of the L∞ norms of ht0

v and
ht1
v . We could do this for RePHINE because the b, d, α, γ parameters of RePHINE are all not

sensitive to the loss of injectivity. However, the ρ-parameter in RePHINESpec is sensitive to the
loss of injectivity, as seen in Example 1. Moreover, the way we constructed the division of [0, 1]
indicates that we are forced to cross some time stamps t in [0, 1] where ht

v is no-longer injective.

However, we observe that clearly we could get the desired bound

dSpecR,0
B (RePHINESpec(fv, h)

0,RePHINESpec(gv, h)
0) ≤ ||fv − gv||∞,

provided that the following more restrictive condition holds - ht
v is injective for all t ∈ [0, 1]. The

bounds on the b, d, α, γ parameters evidently follows from the same proof of Proposition 16. For
the bound of ρ, we observe that in the production of the vertex-edge pairs (v, e) in the proof of
Proposition 16, we can choose the order of vertex deaths to be the same for both (fv, h) = (h0

v, h)
and (gv, h) = (h1

v, h). Furthermore, the condition that ht
v is injective for all t ∈ [0, 1] means that

the ordering of colors in X given by fv and gv respectively are exactly the same. Furthermore, both
orderings are strict as they are injective. Thus, the component that the vertices die in at each time
are also the same. What this effectively means is that, ρf (v) = ρg(v) for all v ∈ V (after choosing
the (v, e) identification). Thus, we would obtain the same bound.

Suppose fv = gv = h, then we note that an analogous argument would work to show the bound

dSpecR,0
B (RePHINESpec(h, fe)

0,RePHINESpec(h, ge)
0) ≤ 2||fe − ge||∞,

if we impose the condition that ht
e is injective for all t ∈ [0, 1] in the context of the proof for

Proposition 17.

We still need to check what happens for dSpecR,1
B , which is no longer the usual bottleneck distance.

If fe = ge = h and ht
v is injective for all t ∈ [0, 1], then the 1st dimensional component of

RePHINESpec(fv, h) and RePHINESpec(gv, h) would quite literally be identical. If fv = gv = h,
and ht

e is injective for all t ∈ [0, 1], then a similar argument as in Proposition 17 would show that

dSpecR,1
B (RePHINESpec(h, fe)

1,RePHINESpec(h, ge))
1 ≤ ||fe − ge||∞.

The idea is that the only obstruction to this bound was the presence of the ρ-parameter, which
we could always choose the presence of cycles to have the same strict order with the same graph
components showing up.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Thus, we have proven the following result - let f = (fv, fe) and g = (gv, ge), suppose ht
v(x) =

(1− t)fv(x) + tgv(x) and ht
e(x) = (1− t)fe(x) + tge(x) are injective for all t ∈ [0, 1], then

dSpecRB (RePHINESpec(f),RePHINESpec(g)) ≤ 3||fe − ge||∞ + ||fv − gv||∞.

It remains for us to show that the conditions on ht
v and ht

e are locally satisfied. However, we note
that clearly Confnv

(R) and Confne
(R>0) are both locally convex, which is the same as imposing

the hypothesis to obtain this bound. Thus, we have proven that RePHINESpec is locally stable.

We remark that Confn(X) is an open subset of Xn, so f = (fv, fe) would still be locally stable in
(R)nv×(R>0)

ne provided fv and fe are both injective. Now we show that the injectivity assumption
is necessary for local stability and RePHINESpec is not globally stable in general.

Example 1. Let G be the path graph on 4 vertices colored in the order red, blue, blue, red. Let
fv = gv be any functions. Let ge be constant with value 1, and fe be given by fe(red, blue) = 1 and
fe(blue, blue) = 1− ϵ for ϵ > 0 (fe(red, red) can be any value). RePHINESpec(G, f)0 has 1 tuple
representing 1 blue vertex that dies at time t = 1 − ϵ whose ρ-parameter is {2}. In contrast, every
tuple of RePHINESpec(G, g)0 has its ρ-parameter equal to the list L = {2, 2 ±

√
2}. No matter

how small ϵ > 0 is, the distance between their RePHINESpec diagrams is bounded below by

dSpecRB (RePHINESpec(G, f),RePHINESpec(G, g)) ≥ dSpec({2}, L) > 0.

We also note that RePHINESpec is not globally stable, even with the injectivity assumption. A
counter-example can be found by changing ge in Example 1 to the function given by ge(red, red) =
fe(red, red), ge(red, blue) = 1, and ge(blue, blue) = 1 + ϵ.

A.4 PROOFS FOR SECTION 5

Proof of Proposition 3. To check that the graphs are the same, we wish to check that they have the
same vertex set and edge sets. Indeed, let t ∈ R, then

V (GfG
t □HfH

t ) = {(g, h) | fG(c(g)) ≤ t and fH(c(h)) ≤ t}

= {(g, h) | max(fG(c(g)), fH(c(h))) ≤ t} = {(g, h) | F ((g, h)) ≤ t} = V ((G□H)t).

Now to check edges, we have that for (g1, h1), (g2, h2) ∈ V (Gt□Ht) = V ((G□H)t). Now sup-
pose there is an edge between (g1, h1) and (g2, h2) in (G□H)ft ⊆ G□H . Since this is an edge in
G□H it means either of two following cases

1. g1 = g2 and h1 ∼ h2 in H . Now if we can show that h1 ∼ h2 in Ht, then this will give
an edge between (g1, h1) and (g2, h2) in GfG

t □HfH
t . Indeed, that just comes from the

definition of a vertex filtration as the colors on h1, h2 are both less than or equal to t under
fH .

2. h1 = h2 and g1 ∼ g2 in G. The argument is nearly identical to the first case.

Conversely, suppose there is an edge between (g1, h1) and (g2, h2) in GfG
t □HfH

t . Then, since
F ((g1, h1)) ≤ t and F ((g2, h2)) ≤ t (as they have the same vertex set), it follows that this edge has
to be in (G□H)t by definition of vertex filtration.

Proof of Proposition 4. To check that the graphs are the same, we wish to check that they have the
same vertex set and edge sets for all t ≥ 0. The vertex set at time t for t ≥ 0 is always the collection
of all vertices. The proof for the edge sets follows similarly to the proof in Proposition 3.

Proof of Proposition 5. Claim (1) is obvious. It suffices for us to verify Claim (2) since Claim (3)
follows by a symmetric argument. For the ease of notations, let us write n = hb

t and m = gdt . Since
the number of vertices still alive in Ht corresponds to its number of connected components, we can
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write C1, ..., Cn as the connected components of Ht. Now we have that, for all s ∈ (t− ϵ, t+ ϵ) for
ϵ > 0 sufficiently small,

(G□H)s = Gs□Ht = Gs□(

n⊔
i=1

Ci) =

n⊔
i=1

Gs□Ci.

The number of vertices that dies at time t is additive under this disjoint union, so it suffices for us
to show that the number of vertices that die in Gt□Ci at time t is m = gdt . Now indeed, write
D1, ..., Dℓ as the connected components of Gt−ϵ. However, at time t, the connected components
Dj and Dk are merged if and only if the connected components Dj□Ci and Dk□Ci are merged.
This proves the desired claim.

A.5 PROOFS FOR SECTION D

Proof of Proposition 19. Note that Theorem 4 of Immonen et al. (2023) showed that RePHINE is
a graph isomorphism invariant. Since RePHINEmSpec is a special case of RePHINE, it is also
a graph isomorphism invariant. Theorem 2 of Ballester & Rieck (2024) shows that PH is a graph
isomorphism invariant.

Now for EC, we observe that for a graph G with pairs (fv, fe), we can write

χ(Gfv
t ) = #{(bv, dv) ∈ PH0(f) : bv ≤ t, dv > t} −#{(be, de) ∈ PH0(f) : be ≤ t, de > t}.

Here (bv, dv) indicates that the pair is from 0-dimensional persistence, and (be, de) indicates that the
pair is from 1-dimensional persistence. We can similarly write χ(Gfe

t ) using PH1(f). Since PH is a
graph isomorphism invariant and determines EC, we have that EC is a graph isomorphism invariant.
Now, ECm is a special case of EC, so it is also a graph isomorphism invariant.

Finally, if RePHINESpec is a graph isomorphism invariant, then so is RePHINEmSpec. It then
suffices for us to check this for RePHINESpec. We will first show that for RePHINESpec(f)0.
Here we follow the suggestions laid out in Theorem 4 of Immonen et al. (2023) and decompose it in
two steps.

1. From Theorem 4 of Immonen et al. (2023), we know that the original RePHINE with
(b, d, α, γ) is an isomorphism invariant.

2. We also want to show that the map G 7→ {ρ(C(v, d(v)))}v∈V (G) is an isomorphism in-
variant. Here, ρ produces the spectrum of the connected component v is in at its time d(v).
Since ρ itself does not depend on choice, it suffices for us to show the following map is an
isomorphism invariant:

G 7→ {C(v, d(v))}v∈V (G),

where C(v, d) is the component v is in at time d. The ambiguity comes in, depending on
our choice, a vertex may very well die at different times.

Now from the proof of Theorem 4 of Immonen et al. (2023), we already know that the
multi-set of death times is an isomorphism invariant. Now a vertex death can only occur
during a merging of old connected components T1, ..., Tn (with representatives v1, ..., vn)
to a component C. Now under the RePHINE scheme, there is a specific procedure to
choose which vertex. However, we see that any choice of the vertex does not affect the
connected component that will be produced after merging. Thus, we will always be adding
a constant n− 1 copies of C to the function we are producing.

For the real holes, we know from the proof of Theorem 4 of Immonen et al. (2023) that,
it does not matter how each of the remaining vertices is matched to the real holes, since
the rest of the vertices are associated in an invariant way. Hence, the production of graph
Laplacians for the real holes will not be affected. Finally, the description above also shows
that we can concatenate the pair (b, d, α, γ) with (ρ) in a consistent way.

3. Hence, we see that RePHINESpec(f)0 is an isomorphism invariant.
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Now for RePHINESpec(f)1, the argument follows similarly as above. It suffices for us to check
that the list {C(e, b(e))}e∈cycle is consistent. We observe that the birth of a cycle can only happen
when an edge occurs that goes from a connected component C back to itself. The only possible
ambiguity is that, at the birth time, multiple edges are spawned at the same time, and an edge may
or may not create a cycle based on the order it is added to the graph. However, regardless of the
order, the resulting connected component that the edge belongs in will be the same. Thus, the list
{C(e, b(e))}e∈cycle will be consistent.

A.6 PROOFS FOR SECTION 6

Proof of Proposition 6. The intuitive idea is that the zeroth homology only captures the notion of
connected components, and adding more edges between two nodes that are already connected does
not affect this connectivity. To be more rigorous, we will invoke Theorem 1 and Theorem 2 of
Immonen et al. (2023) to prove the first and second statements respectively. Although both theorems
were proven for the case of simple graphs, their proofs easily generalize to graphs with multi-edges
such that every edge between two fixed nodes has the same color. Hence, we can apply them to M(c)
and M(t). In particular, we can see that there are no color-separating sets and no color-disconnecting
sets between M(c) and M(t), so it follows that the 0-th dimensional persistence diagrams of M(t)
will be the same as that of M(c).

Proof of Proposition 7. For ease of notation, for a graph representing a molecule, we write G1 as
the number of edges in G labeled “single bond”, G2 as the number of edges in G labeled “double
bond”, and G3 as the number of edges in G labeled “triple bond.”

Although we only proved Theorem 3 for simple graphs, the proof of Theorem 3 to the bond counting
representation of molecules we are considering here. In particular, the characterization of EC tells
us that the EC diagram of M(t) and N(t) with respect to all possible fe are the same if and only if
M(t)1 = N(t)1,M(t)2 = N(t)2,M(t)3 = N(t)3. Now M(t)1 = M(c)1, M(t)2 = 2M(c)2, and
M(t)3 = 3M(c)3 (and similarly for N ), so equivalently we have that

M(c)1 = N(c)1,M(c)2 = N(c)2,M(c)3 = N(c)3.

By Theorem 3, the equalities above are equivalent to the observation that the EC diagram of M(c)
and N(c) with respect to all possible fe are the same. This proves the proposition.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B EXPRESSIVITY OF SPECTRAL INFORMATION

Suppose K is an n-dimensional finite simplicial complex. There is a standard simplicial chain
complex of the form

... 0 Cn(K) ... C1(K) C0(K) 0
∂n+1 ∂n ∂1 ∂0 .

Here each Ci(K) has a formal basis being the finite set of i-simplicies in K, hence there is a way
well-defined notion of an adjoint (which is the transpose) ∂T

i for each ∂i. The i-th combinatorial
Laplacian of K is defined as

∆i(K) = ∂T
i ◦ ∂i + ∂i+1 ◦ ∂T

i+1.

∆i is a linear operator on Ci(K). Note that when K is a graph and i = 0, ∆0(K) is exactly the
graph Laplacian of K. It is a general fact that the dimension of ker∆i(K) is the same as the i-th
Betti number of K. Hence, the multiplicity of the zero eigenvalues of ∆i(K) corresponds to the
i-th Betti number of K. However, the Betti numbers of K (harmonic information) do not give any
information on the non-zero eigenvalues of ∆i(K) (which we can think of as the non-harmonic
information). This is the data that we would like to keep track of.

For a filtration of a simplicial complex K by ∅ = K0 ⊆ K1 ⊆ ... ⊆ Km = K, Wang et al. (2020)
proposed a persistent version of combinatorial Laplacians as follows.
Definition 13. Let Ct

q = Cq(Kt) denote the q-th simplicial chain group of Kt,
∂t
q : Cq(Kt) → Cq−1(Kt) be the boundary map on the simplicial subcomplex Kt. For

p > 0, we use Ct+p
q to denote the subset of Ct+p

q whose boundary is in Ct
q−1 (in other words

Ct+p
q := {α ∈ Ct+p

q | ∂t+p
q (α) ∈ Ct

q−1}).

We define the operator ðt+p
q : Ct+p

q → Ct
q−1 as the restriction of ∂t+p

q to Ct+p
q . From here, we

define the p-persistent q-combinatorial Laplacian ∆t+p
q (K) : Cq(Kt) → Cq(Kt) as

∆t+p
q (K) = ðt+p

q+1(ð
t+p
q+1)

T + (∂t
q)

T∂t
q.

Note that the multiplicity of the zero eigenvalues in ∆t+p
q (K) coincides with the p-persistent q-th

Betti number.

Now we will focus on the special case where K = G is a graph. In this case, we only need to look
at the p-persistent 1-combinatorial Laplacians and the p-persistent 0-combinatorial Laplacians. Our
goal is to augment the RePHINE diagram, so we intuitively would like to include all the non-zero
eigenvalues of the p-persistent q-combinatorial Laplacians in our augmentation. In this section, we
will show that augmentation is no more expressive than simply focusing on the spectral information
of the ordinary graph Laplacian.
Lemma 1. On a graph G, the multi-set of non-zero eigenvalues of ∆1(G) is the same as the non-
zero eigenvalues of ∆0(G).

Proof. For ease of notation, we omit the parameter G in the combinatorial Laplacian. Since G has
dimension 1, ∂0 and ∂2 are both 0. Hence, the two combinatorial Laplacians may be written as

∆0 = ∂1 ◦ ∂T
1 and ∆1 = ∂T

1 ◦ ∂1.

Let v be an eigenvector of ∆0 corresponding to a non-zero eigenvalue λ, then

∆1(∂
T
1 v) = ∂T

1 (∂1 ◦ ∂T
1 (v)) = ∂T

1 (∆0(v)) = ∂T
1 (λv) = λ(∂T

1 v).

Hence, ∂T
1 v is an eigenvector of ∆1 with eigenvalue λ.

We also need to check that if v, w are linearly independent eigenvectors of ∆0 with the same eigen-
value λ, then ∂T

1 v and ∂T
1 w are linearly independent. Suppose for contradiction this is not the case,

then there exist coefficients a, b ∈ R (not all zero) such that

0 = a∂T
1 v + b∂T

1 w = ∂T
1 (av + bw).
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This means that av + bw ∈ ker(∂T
1 ) ⊂ ker(∆0) is a non-zero eigenvector corresponding to the

eigenvalue 0. However, we also know that av + bw is a non-zero eigenvector of ∆0 corresponding
to the eigenvalue λ. Thus, it has to be the case that av + bw = 0, so we have a contradiction.

Hence, the non-zero eigenvalues of ∆0 form a sub-multiset of that of ∆1. The other direction may
also be proven using linear algebra. Alternatively, however, we observe that by the equality of the
Euler characteristic,

|V (G)| − |E(G)| = χ(G) = dimker(∆0)− dimker(∆1).

Rearranging the terms gives us

|V (G)| − dimker(∆0) = |E(G)| − dimker(∆1).

This means that ∆1 and ∆0 have the same number of non-zero eigenvalues, so their respective
multi-sets of non-zero eigenvalues are equal.

Let G be a graph and
∅ = G0 ⊆ G1 ⊆ G2 ⊆ ... ⊆ Gm = G

be a sequence of subgraphs of G. Recall that ∆t+p
q (G) denotes the p-persistent q-combinatorial

Laplacian operator. We will first examine what happens when q = 1.

Lemma 2. The 1-combinatorial p-persistence Laplacian ∆t+p
1 (G) is equal to ∆t

1(G) = ∆1(Gt).
Moreover, the non-zero eigenvalues of p-persistence ∆t+p

1 (G) are the same as the non-zero eigen-
values of ∆t

0(G), accounting multiplicity.

Proof. Recall that ∆t+p
q (G) is defined as

∆t+p
q (G) = ðt+p

q+1(ð
t+p
q+1)

T + (∂t
q)

T∂t
q.

When q = 1, we know that ðt+p
2 (G) is the zero matrix since G is a graph, and hence

∆t+p
1 (G) = (∂t

1)
T∂t

1.

This is independent of p and is just ∆t
1(G). Finally, from Lemma 1, we have that ∆t

1(G) and ∆t
0(G)

have the same multi-set of non-zero eigenvalues.

Remark 2. This is reflective of the definition of the p-persistent k-th homology group of Gt, which
is given by

Hp
k (G

t) = ker ∂k(G
t)/(im ∂k+1(G

t+p) ∩ ker(∂k(G
t)))

In this case, when k = 1, ∂k+1(G
t+p) = ∂2(G

t+p) is the zero map, so Hp
1 (G

t) = ker ∂1(G
t) =

H1(Gt). Hence, the p-persistent 1st homology groups of Gt stays constant as p varies. This is also
reflective of the fact that an inclusion of subgraph i : G → G′ induces an injective homomorphism
i∗ : H1(G) → H1(G

′).

The focus of persistent spectral theory should then be on the data given by the graph Laplacians, so
it makes sense for us to interpret what exactly ∆t+p

0 (G) is.
Lemma 3. The p-persistent 0-combinatorial Laplacian operator of G

∆t+p
0 (G) = ðt+p

1 (ðt+p
1 )T

is the graph Laplacian of the subgraph of Gt+q with all the vertices in Gt.

Proof. Recall that Ct+p
0 = {α ∈ Ct+p

q | ∂t+p
1 (α) ∈ Ct

0}. This represents all the 1-simplicies (edges)
in Gt+p whose vertices are in Gt. The map ðt+p

1 : Ct+p
1 → Ct

0 is the restriction map on ∂t+p onto
Ct+p

0 . Let G′ denote the subgraph of Gt+q generated by vertices in Gt, then there are two vertical
isomorphisms, by quite literally the identity map, such that the following diagram commutes,

C1(G
′) C0(G

′)

Ct+p
1 Ct

0

∂

ð

.

Hence, the graph Laplacian of G′ is the same as the Laplacian ∆t+p
0 .
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Corollary 2. Lemma 2 asserts that the non-zero eigenvalues of ∆t+p
1 (G) are the same as the

non-zero eigenvalues of ∆t
0(G) = ∆0(Gt). In the special case where we focus on filtrations

of G given by (Fv, Fe) outlined in Section 2, we furthermore have that:

1. In the vertex filtration given by Fv , ∆t+p
0 (G) is the same as ∆0(Gt).

2. In the edge filtration given by Fe, ∆t+p
0 (G) is the same as ∆0(Gt+p).

Proof. For the vertex filtration, Lemma 3 implies that ∆t+p
0 (G) is the graph Laplacian of the sub-

graph of Gt+p generated by the vertices in Gt. In the vertex filtration defined in Section 2, there are
no additional edges added between the vertices in Gt after time t, so the subgraph is the same as Gt.

For the edge filtration, Lemma 3 implies that ∆t+p
0 (G) is the graph Laplacian of the subgraph of

Gt+p generated by the vertices in Gt. However, all vertices are spawned at the start, so they have
the same vertex set and the subgraph is just the entire graph Gt+p.

In particular, the non-zero eigenvalues of p-persistent q-combinational Laplacians for the edge filtra-
tion have the same expressive power of just including the non-zero eigenvalues of graph Laplacians
at all time steps. Since the graph only changes whenever there is a death of a connected component
or the birth of a cycle, it suffices for us to include the graph Laplacians at all cycle birth times and
vertex death times, hence the construction in Definition 6.
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C EXPRESSIVITY OF EC ON SIMPLICIAL COMPLEXES

Let K be a simplicial complex of dimension n where each vertex is assigned a color in some coloring
set X . The Euler characteristic of K is defined by

χ(K) =

n∑
i=0

(−1)n#{simplicies in K of dimension i}.

Notation: Let c1, ..., ci ∈ X be a list of distinct colors with i ≤ j, we define Sj
K(c1, ..., ci) as the

number of j-simplices in K whose vertice’s set of colors is {c1, ..., ci}.

Under suitable extension of the definition of EC and max EC diagrams to a simplicial complex,
we can, in fact, characterize them completely in terms of the combinatorial data provided by
Sj
K(c1, ..., ci). We will make these definitions precise and in particular prove the following the-

orem.

Theorem 6. Let K,M be simplicial complexes of dimension n. The following are equiva-
lent:

1. EC(K, f0, ..., fn) = EC(M,f0, ..., fn) for all possible f0, ..., fn. Here, each fi is
an i-simplex coloring function, to be elaborated upon in Appendix C.

2. ECm(K, f0) = ECm(M,f0) for all possible f0.
3. For all j ≤ n, Sj

K(c1, ..., ci) = Sj
M (c1, ..., ci) for all distinct colors c1, ..., ci with

1 ≤ i ≤ j.

We first extend our definition of EC and ECm to a simplicial complex K of dimension n with a
vertex coloring function c : V (K) → X .

Definition 14. Let K be a simplicial complex of dimension n with vertex color set X . For 0 < i ≤ n,
we define a color value function fi :

∏i+1
j=1 X → R>0 as follows:

1. For any permutation σ ∈ Si+1, fi(σ(x⃗)) = fi(x⃗).

2. For any x⃗, y⃗ ∈
∏i+1

j=1 X such that x⃗ and y⃗ have the same coordinates modulo order and
multiplicity, fi(x⃗) = fi(y⃗). For example, if X = {red, blue}, f2(red, red, blue) =
f2(blue, blue, red). The intuition is, as sets (so we forget about order and multiplicity),
{red, red, blue} is the same set as {blue, blue, red}.

We define the i-th simplex filtration function fi of K as follows:

• For all simplices σ with dimension less than i, Fi(σ) = 0.

• For all i-simplices σ with vertices v0, ..., vi, Fi(σ) := fi(c(v0), ..., c(vi)).

• For all simplices σ with dimension greater than i, Fi(σ) := maxi-simplex τ⊂σ fi(τ).

Note that when K = G is a graph f0, f1, F0, F1 agrees with our construction of fv, fe, Fv, Fe.
Finally, for each i and t ∈ R, we define

Kfi
t := F−1

i ((−∞, t]).

From here, we can construct the EC and max EC diagram on simplicial complexes as follows.

Definition 15. Let K be a simplicial complex of dimension n with simplex filtration functions
f0, f1, ..., fn. The EC diagram EC(K, f0, ..., fn) of K is composed of n + 1 lists EC(K, fi) for
i = 0, ..., n+ 1. For each i, write ai1 < ... < aini

as the list of values fi can produce, EC(K, fi) is
the list {χ(Kfi

ai
j
)}ni

j=1.

Suppose we are only given a vertex filtration function f0. We define the max EC diagram of K as
ECm(K, f0) = EC(K, f0, g1, ..., gn). Here gi(σ) = maxi-simplex τ⊂σ maxvi∈τ f0(vi).
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One can check that the gi’s defining max EC are consistent with the setup in Definition 14. As an
immediate corollary of Theorem 6, we will see that EC and ECm have the same expressive power
on the level of simplicial complexes.
Theorem 7. EC and ECm have the same expressive power.
Remark 3. The choice of Condition (2) in Definition 14 is intentional so that Theorem 7 would
hold. The intuition is that Condition (2) corresponds to coloring the i-th simplex σ, with vertices
v0, ..., vi+1, of K with the feature being the set {v0, ..., vi+1} that forgets about multiplicity and
order. However, Theorem 7 is not true if we modify Condition (2) such that we color σ with the
feature being the multi-set {c(v0), ..., c(vi+1)} to remember multiplicity.

We will now prove Theorem 6. To do this, we will first prove a lemma.
Lemma 4. Let K and M be two simplicial complexes of dimension n, if they have the same max EC
diagram for all possible f0, then K and M have the same f -vector, meaning that their respective
number of simplicies are the same at each dimension.

Proof. For this proof, let Ki denote the subcomplex of K with all simplicies with dimension ≤ i. By
comparing any complete filtration, we will have that χ(K) = χ(M) (so χ(Kn−1) = χ(Mn−1)).
Comnparing time t = 0 for any induced i-simplex coloring filtration by an injective f0 will give
us that χ(Ki) = χ(M i) for all i = 0, ..., n − 1. From here we can see that they have the same
f -vector.

Now we will finally prove Theorem 6.

Proof of Theorem 6. Clearly (1) implies (2). To see that (3) implies (1), we first note that (3)
implies K and M have the same f -vector, so the starting values of their Euler characteristics for
any fi are always the same. For any change of the Euler characteristic as time varies, we will be
modifying the value by adding or subtracting values of the form Sj

K(c1, ..., ci) = Sj
M (c1, ..., ci).

Hence, their Euler characteristics will agree as time varies.

For (2) implies (3), we first note that Lemma 4 implies K and M have the same f -vector. We will
now prove the claim from a backward induction on j = 0, 1, ..., n. Indeed, when j = n, we have
that

1. We will induct on 1 ≤ i ≤ n. For i = 1, we wish to show that Sn
K(c1) = Sn

M (c1) for all
c1 ∈ C. Note that Sn

K(c1) is just the number of n-simplicies whose vertices all have color
c1. Choose f0 such that c1 has the minimum value, then under the induced max n-simplex
coloring filtration, we have that

χ(Kfn
f0(c1)

) = χ(Mfn
f0(c1)

)

Since K and M have the same f -vector by Lemma 4, we conclude that Sn
K(c1) = Sn

M (c1).

2. Suppose this is true up to 1 ≤ i = k < n. We wish to show this is true for i = k + 1.
Indeed, let c1, ..., ck+1 be k + 1 distinct colors. Choose f0 such that c1 has the minimum
value, c2 is the second smallest, and so on until ck+1. Under the induced max n-simplex
coloring filtration, we have that

χ(Kfn
f0(ck+1)

) = χ(Mfn
f0(ck+1)

)

Subtracting their Euler characteristics at the time step f0(ck), we have that

(−1)n
∑
a∈A

Sn
K(a) = (−1)n

∑
a∈A

Sn
M (a).

where A is the collection of subsets of {c1, ..., ck+1} that contains ck+1. Since the inductive
hypothesis is true up to i = k, we know that for all a ∈ A such that |a| ≤ k, Sn

K(a) =
Sn
M (a). Hence cancelling both sides gives us∑

a∈A,|a|>k

Sn
K(a) =

∑
a∈A,|a|>k

Sn
M (a).
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Now, there is only one element in A with |a| > k, namely a = {c1, ..., ck+1}. Hence, we
have proven this for the case i = k + 1.

3. Thus, by induction, we have shown this for j = n.

Now we will induct down from j = n. Indeed, suppose this is true up to 0 < j = k + 1 ≤ n, we
wish to show this is true for j = k. Now we wish to show that Sk

K(c1, ..., ci) = Sk
M (c1, ..., ci) for

all distinct colors c1, ..., ci and 1 ≤ i ≤ k. We will do this by an induction on i.

1. For i = 1, we wish to show that Sk
K(c1) = Sk

M (c1). Indeed, choose f0 such that c1 has the
minimum value. Then we have that

χ(Kfk
f0(c1)

) = χ(Mfk
f0(c1)

)

Since K and M have the same f -vector, cancelling that out gives us that
n∑

ℓ=k

Sℓ
K(c1) =

n∑
ℓ=k

Sℓ
M (c1).

By our inductive hypotehsis on j, we know that Sℓ
K(c1) = Sℓ

M (c1) for all ℓ > k, hence
subtracting them off gives us that Sk

K(c1) = Sk
M (c1).

2. Suppose this is true up to 1 ≤ i = ℓ < k. We wish to show this is true for i = ℓ + 1.
Indeed, let c1, ..., cℓ+1 be ℓ + 1 distinct colors. Choose f0 such that c1 has the minimum
value, c2 is the second smallest, and so on until cℓ+1. Under the induced max k-simplex
coloring filtration, we have that

χ(Kfk
f0(cℓ+1)

) = χ(Mfk
f0(cℓ+1)

)

Since they have the same Euler characteristics at the time step f0(cℓ+1), we can cancel
those terms out and obtain∑

a∈A

n∑
p=k

(−1)pSp
K(a) =

∑
a∈A

n∑
p=k

(−1)pSp
M (a).

Here A is the collection of all subsets of {c1, ..., cℓ+1} that contains the color cℓ+1. Now
by the inductive hypothesis on j, we know that Sp

K(a) = Sp
M (a) for all p > k, so we can

cancel the expressions and obtain

(−1)p
∑
a∈A

Sk
K(a) = (−1)p

∑
a∈A

Sk
M (a).

Now by the inductive hypothesis for i, we have that for all |a| < ℓ + 1, Sk
M (a) = Sk

K(a),
hence we have that

(−1)p
∑

a∈A,|a|>ℓ

Sk
K(a) = (−1)p

∑
a∈A,|a|>ℓ

Sk
M (a).

There is only one subset of size ℓ + 1, namely {c1, ..., cℓ+1}. Hence, we conclude that
Sk
K(c1, ..., cℓ+1) = Sk

M (c1, ..., cℓ+1).

Thus, by the principle of induction, we have proven that (2) implies (3).
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D WELL-DEFINEDNESS AND DEATH-TIME FILTRATION

We will verify in Appendix A.5 that all the diagrams in Section 2 are graph isomorphism invariants.

Proposition 19. The diagrams PH, RePHINE, RePHINEm, EC, ECm, RePHINESpec, and
RePHINEmSpec are all well-defined graph isomorphism invariants.

In the construction of max RePHINE in Definition 4, we considered an edge filtration of G whose
values are dependent on the color values of the vertices in G under fv . For a vertex w ∈ V (G),
fv(w) is the birth time of the vertex in the filtration given by fv . Therefore, the edge filtration in the
max RePHINE diagram may be thought of as a certain “birth-time filtration”.

As a dual notion, this motivates the idea for us to consider a “death-time filtration”. A possible
proposal one might reasonably consider is as follows.
Proposal 1. Let fv : X → R be a vertex function such that fv > 0. We use this to define an edge
filtration of G as follows. At time t = 0, G0 is composed of all the vertices of G. At finite time
t > 0, Gt = G0 ∪ {(v0, v1) ∈ E(G) | max(d(v0), d(v1)) ≤ t}. Here d denotes the death time of
the vertex in the filtration {Gfv

t }t∈R. At time t = ∞, we add the remaining edges back in.

This may appear to be a reasonable definition, as we have simply replaced the birth time of the
vertex with the death time of the vertex. However, while there is a consistent function (ie. fv) that
assigns a vertex v to its birth time, the death time of a vertex v is not a function and can depend on
choices made during the vertex filtration. We illustrate this problem with the following example.

A B

G

A B

(1)
A B

(2)

Figure 5: Illustration of a graph G showing the proposed death time filtration is inconsistent if fv
assigns ‘green” to the lowest color value. (1) represents the filtration if we choose v2 to be the real
hole for time t → ∞. (2) represents the filtration if we choose v3 to be the real hole for time t → ∞.

Example 2. Let G be the graph indicated in Figure 5 with vertex color function fv given by

0 < fv(green) = 1 < fv(blue) = 2 < fv(red) = 3.

The vertex filtration yields the persistence diagram {(1,∞), (1, 1), (2, 2), (3, 3)}. The ambiguity
comes whether A or B is the real hole. If the vertex A is the real hole, then the corresponding “death
time filtration” when t >> 3 would be the graph labeled (1) in Figure 5, which has 3 connected
components. If the vertex B is the real hole, then the corresponding “death time filtration” when
t >> 3 would be the graph labeled (2) in Figure 5, which has 2 connected components.
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