Quantifying Module Interactions in the PSO-X Framework
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Abstract PSO-X incorporates dozens of algorithm components that have been proposed to solve
single-objective continuous optimization problems using particle swarm optimization (PSO).
While modular frameworks allow for flexible algorithm configuration and enable designers
to automatically generate implementations tailored to specific optimization problems, un-
derstanding which modules matter most and how they interact remains an open question.
In this study, we used performance data from 1,424 PSO algorithms instantiated from PSO-X
and apply functional ANOVA to identify the impact that algorithm components, and their
combinations, have on the algorithm performance tailored to different problem landscapes.

1 Introduction

In recent years, modular optimization frameworks, such as modCMA-ES (de Nobel et al.,, 2021),
PSO-X (Camacho-Villaléon et al., 2022) and modDE (Vermetten et al., 2023), have emerged as an
effective approach for systematically designing, fine-tuning and assessing the performance of
randomized optimization algorithms. These frameworks allow researchers to generate optimization
algorithms from discrete modules, which are often interchangeable and responsible for specific
algorithmic behaviors (Camacho-Villalon et al., 2023; Tzanetos and Kudela, 2024). There are three
main advantages to using modular optimization frameworks: (i) they enable the use of an automatic
design approach, in which automatic algorithm configuration tools (e.g., irace (Lopez-Ibanez et al.,
2016) and SMAC (Hutter et al., 2011)) explore the framework’s design space in order to find high-
performing designs; (ii) they facilitate fair comparisons across the algorithmic variants included in
the framework on different benchmarks (Doerr et al., 2018); and (iii) they promote reproducibility
by providing a standardized implementation of algorithmic variants (Bartz-Beielstein et al., 2020).

Despite the clear advantages that modular optimization frameworks have at a practical level,
they often include dozens or even hundreds of implementation options, which make it challenging
to fully understand each module’s contribution to the overall performance of the resulting algo-
rithms. In this study, we conducted a comprehensive investigation of module importance and their
interactions within the PSO-X framework across varied problem landscapes.

2 Related Work

Previous research on the performance of modular optimization frameworks has primarily studied
module importance via a frequency-based analysis of top-performing configurations. In (de Nobel
et al., 2021; Vermetten et al., 2023), the authors used the automatic algorithm configuration tool
irace to identify commonly selected modules in successful configurations of modCMA-ES and
modDE. Few papers have focused on studying modules contribution in a more systematic manner.
For example, in (Kostovska et al., 2024, 2022), the authors used problem landscape features to
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train an ML regression model to predict the optimal module selection, whereas in (Van Stein et al.,
2024), the authors applied XAI techniques to analyze module importance. These works, however,
only consider individual module interaction. To our knowledge, the sole attempt to measure how
much variance each module—individually or in combination—adds to overall performance within
modular frameworks such as modDE and modCMA-ES is the work by (Nikolikj et al., 2024). Yet no
comparable variance-decomposition analysis has been performed for the PSO-X framework within
different problem landscapes. This paper therefore fills an important gap in the literature.

Methodology for Quantifying Module Effects

To uncover problem groups that share similar patterns of module contributions and interactions in
PSO-X, we apply functional ANOVA (f~-ANOVA) (Hutter et al., 2014; Van Rijn and Hutter, 2018).
Originating in ML, f~ANOVA analyzes automatic configuration tools by partitioning performance
variance into main, pairwise, and higher-order effects (module interactions), yielding precise,
statistically grounded insights into which modules and combinations of modules matter most in
modular optimization frameworks. For each benchmark function, we assemble a dataset that lists
every PSO-X variant tested on it, encoding the variant’s module settings as features and its achieved
performance as the target. The datasets are then given as input to f~ANOVA to quantify how much
individual modules and their combinations influence performance in the specific problem class.
Our approach can be summarized as follows:

1) Quantifying module effects with f~ANOVA: The datasets serve as input to f~ANOVA, which
decomposes the variance in performance and attributes it systematically to individual modules and
their interactions. Given n modules that define the variants, the analysis quantifies the contribution
of each of the n individual modules, as well as all (}) pairwise and () triple module interactions.
This process is repeated separately for each problem-class-specific dataset.

2) Grouping problem classes based on module effects: To analyze how module effects differ across
problem classes, the quantified effects are first concatenated into a single vector representation for
each class (i.e., can be assumed as an embedding). Each vector has a dimensionality of n + (’2') + (’31),
capturing the individual, pairwise and triple interaction effects. Once these vectors are constructed,
a clustering algorithm is applied to identify groups of problem classes that share similar module
effect patterns and distinguish those that differ. This analysis is conducted in the original high-
dimensional space to avoid any potential loss of information that may result from dimensionality
reduction techniques. Next, we examine how the clusters identified in the previous step correspond
to established groupings of problem classes based on high-level characteristics, such as modality or
conditioning.

Experimental Design

The PSO-X framework (Camacho-Villalén et al., 2022) is a modular implementation of the particle
swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995).
The framework incorporates a wide range of modules inspired by various state-of-the-art PSO
variants, where key design choices have been translated into distinct modules. This modular
setup enables the construction of thousands of unique PSO-X variants. To systematically generate
the PSO variants considered in our study, we took the Cartesian product of eight modules and
26 implementation options (see Table 1 in the Supplemental Section A), resulting in a total of
1424 variants. Each algorithm variant was executed independently 10 times on each of the 25
problem classes from the CEC’05 benchmark suite. The evaluation budget was set to 2500d function
evaluations, where d is the number of dimension of the optimization problem. Performance was
assessed based on the distance between the best-found solution and the known global optimum
(distance). To ensure numerical stability and meaningful comparisons, distances smaller than 10~°
were capped at this threshold. For each problem instance, the median distance across the 10 runs



was taken as the final performance measure. These values were then log-transformed using base
10. As a result, the distance metric has a lower bound of -9, with lower values indicating better
optimization performance.
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Figure 1: Clustermap. The color-coding in the first column of the clustermap indicates the cluster. The
rows are the problem classes, while the moduls interactions are represented on x-axis.

The experiments are conducted on the CEC’05 benchmark suite (Suganthan et al., 2005), which
comprises 25 problem classes, including unimodal, multimodal and hybrid composition functions.
We consider only problems defined in a ten-dimensional space (i.e., with d = 10). The performance
distribution of the 1,424 PSO-X variants across the 25, ten-dimenisonal problem classes from the
CEC’05 suite is presented in Supplemental (see Section B).

This study aims to quantify the importance of individual modules for each of the 25 problem
classes. To do so, the data is first organized into 25 separate datasets, one for each problem class.
Each dataset contains 1,424 algorithm variants (data instances), where each instance is described
by eight module settings (features), and the target variable corresponds to the performance of
the variants on the respective problem class. Running f~ANOVA on each dataset individually
results in 25 vector representations, each capturing the module effects through 8 + (2) + (g) terms.
To identify similarities among problem classes based on these effects, we apply Hierarchical
Clustering (HC) (Miillner, 2011). Given the relatively small dataset (25 instances) and our focus on
interpretability, HC was chosen for its ability to provide a clear and transparent clustering process
via a dendrogram, which visually illustrates how clusters are formed and merged at each stage.
To determine the most suitable number of clusters, we conduct a grid search over the clustering
algorithm’s hyperparameters and evaluate the results using the Silhouette coefficient (Rousseeuw,
1987). This metric, ranging from -1 to 1, reflects the quality of clustering—where higher values
indicate more compact and well-separated clusters. The hyperparameter settings explored during
this search are detailed in Table 2 in the Supplemental A.

Results and discussion

We selected seven clusters (see Supplemental C), the cosine distance metric, and the complete
linkage method, for the clustering experiment. While clusters are still distinguishable (as supported
by the moderate Silhouette score of 0.55), the low inter-cluster distance of 0.065 implies that the
module importance patterns are quite similar overall, and the boundaries between clusters are



subtle. Figure 1 presents a clustermap of the vector representation. Rows correspond to problem
classes (f_id), and columns to module effects (e f fect_id). The color intensity indicates the variance
contribution of each module effect, ranging from 0 (no importance) to 1 (high importance). The
first column shows cluster assignments, with each color representing a different cluster. The results
reveal that most problem classes fall into three dominant clusters—green, cyan, and pink—while
a few remain isolated in smaller, distinct clusters. The clustermap reveals that the individual
effects of the randomMatrix and omegalCS modules, and to a lesser extent DN PP, are the most
influential across problem classes. Among the interaction effects, combinations involving these
modules—such as omegalCS + randomMatrix, DNPP + omegalCS, DNPP + randomMatrix, and
the triplet DNPP + omegalCS + randomMatrix—stand out as highly impactful. This suggests that
the behavior of the PSO-X variants is primarily driven by the interplay of these three modules.

These findings are consistent with theoretical and experimental studies of PSO variants (Bonyadi
and Michalewicz, 2017). In PSO-X, omegalCS specifies the strategy for controlling particle inertia
and plays a direct role in the local convergence of the algorithm, whereas randomMatrix ensures the
implementation is rotation-invariant. As the vast majority of the CEC’05 functions are multimodal
and/or rotated, omegalCS and randomMatrix become critical to the algorithm design. Conversely,
the DNPP module determines how particles combine the position vectors of other particles in the
swarm, as well as their personal best and velocity vectors. The influence of the DNPP module
largely depends on the omegalCS and randomMatrix modules being enabled.

Figure 4, in Supplemental D, displays the marginal performance of the options for the most
important module effects, namely the randomMatrix and omegalCS modules, in problem classes
with f_id € {0,8,11}. The problem class was selected randomly, one per the three larger clusters.
In Figure 4, the boxplots display the marginals for the individual effect, the x-axis shows the
different options for the module, and the y-axis indicates the marginal performance, where lower
values indicate better marginal performance (i.e., lower distance to the optimum on average). The
heatmaps (Figure 4) presented, display the marginal performance for a combination of module
options, the x and y-axis show the different options, while the color-coding indicates the marginal
performance, where lower values indicate better performance (i.e. lower distance to the optimum).
The 0, 1 and 4 options for randomMatrix consistently yield the best marginal performance across
all problem classes. For the omegalCS the 0.75, 12 and 14 options tend to result in better marginal
performance. When analyzing the pairwise interactions between randomMatrix and omegalCS,
these high-performing individual options also combine well.

Conclusions

Although we can present only a subset of our findings here—these are preliminary results, trimmed
for space, with higher-dimensional cases omitted—our f~ANOVA study of 1,424 PSO-X variants
already demonstrates which individual modules drive performance and how their interactions shape
output across diverse landscapes. By clustering problems with similar variance-decomposition
profiles, we expose recurring design patterns and pinpoint context-dependent synergies among
modules. In the future, these insights will provide principled guidance for composing PSO compo-
nents and set the stage for more adaptive, landscape-aware optimization strategies.
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A Supplemental Section

Table 1: The eight PSO-X modules and 26 implementation options considered in this work.

module_id option_id

DNPP DNPP-rectangular, DNPP-spherical, DNPP-standard, DNPP-Gaussian, DNPP-discrete,
DNPP-Cauchy-Gaussian (operatorCG_parm_r 0.5)

AC AC-constant (phil 1.4, phi2 1.4), AC-random (initialPhil 2.4, finalPhi1 0.5, initialPhi2 0.5,
finalPhi2 2.4)

Topology Top-ring, Top-fully-connected

Mol Mol-best-of-neighborhood, Mol-fully informed

randomMatrix none, Mtx-random diagonal, Mtx-Euclidean rotation (angleCS 2, angle_par_alpha 30,
angle_par_beta 0.01), Mtx-Increasing group-based

omegalCS IW-constant (omegal 0.75), IW-constant (omegal 0.0), IW-adaptive based on velocity

(iw_par_lambda 0.5, initiallW 0.15, finallW 0.95), IW-rank-based (initiallW 0.15, finallW 0.95),
IW-success-based (initiallW 0.15, finallW 0.95)

perturbation1CS  none, Pertinfo-Gaussian (magnitude1CS 4, magnitudel 0.5, magl_par_success 40,
magl_par_failure 20)

perturbation2CS  none, Pertrand-rectangular (magnitude1CS 4, magnitudel 0.5, magl_par_success 40,
magl_par_failure 20)

We show in parentheses the default values for the parameters associated with specific implementation
options.

Table 2: Hyperparameter search space for the HC algorithm.

Hyperparameter Range
n_clusters {2, ..., 25}
metric {cosine, euclidean}
linkage {single, complete, average, ward}

B Algorithm performance distribution

This section analyzes how the PSO-X variants perform in each of the problem classes. To measure
performance, we use the distance metric, which captures the gap between the best-found solution
(within a certain budget of function evaluations) and the global optimum. The distance values
are aggregated using the median across multiple runs on the same problem class, followed by a
logarithmic transformation as outlined in the experimental setup.

Figure 2 shows the performance distribution of 1,424 PSO-X variants across the 25, ten-
dimensional problem classes from the CEC’05 suite. The spread of the boxplots indicates variability
in performance, highlighting the potential for algorithm configuration. The higher variability in
problem classes with f_id € {0 —5,8,9,11, 12} suggests that the choice of variant significantly
impacts performance. In contrast, low variability in classes with f_id € {7, 10, 13 — 24} implies that
majority of the variants perform very similarly.

Clustering

Figure 3 displays the clustering results in two sub-figures. The top-left panel of Figure 3a shows
the tuning outcomes for different clustering settings, varying the number of clusters, distance
metrics, and linkage methods. The x-axis denotes the number of clusters, while the y-axis shows
the Silhouette coefficient (ranging from -1 to 1), where higher values indicate more coherent
clusters. Each line represents a different combination of hyperparameters. Figure 3b presents a
dendrogram—a tree-like diagram representing the hierarchical clustering process. It visualizes
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Figure 2: Performance distribution of 1,424 PSO-X variants on 25 problem classes comprising the
CEC2005 suite (10d), evaluated using the distance metric—the absolute difference between
the best-found solution (within 25,000 evaluations) and the global optimum. The performance
values are presented on a logarithmic scale.
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Figure 3: Clustering results of the 25, ten-dimensional problem classes from the CEC2005 suite based
on the vector representations generated with f~ANOVA.

D Marginal performance
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Figure 4: Marginal performance of the options for the randomMatrix and omegalCS modules, in
problem classes with f_id € {0,8,11}. Sub-figures (a) - (c) show the individual effects
of the modules (first two rows, respectively, while the third row illustrates their pairwise
interaction.
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