
Published as a conference paper at ICLR 2025

CHEMAGENT: SELF-UPDATING LIBRARY IN LARGE
LANGUAGE MODELS IMPROVES CHEMICAL REASON-
ING

Xiangru Tang1,∗, Tianyu Hu1,∗, Muyang Ye1,∗, Yanjun Shao1,∗, Xunjian Yin1,
Siru Ouyang2, Wangchunshu Zhou, Pan Lu3, Zhuosheng Zhang4, Yilun Zhao1,
Arman Cohan1, Mark Gerstein1

1Yale University 2UIUC 3Stanford University 4Shanghai Jiao Tong University

xiangru.tang@yale.edu

ABSTRACT

Chemical reasoning usually involves complex, multi-step processes that demand
precise calculations, where even minor errors can lead to cascading failures. Fur-
thermore, large language models (LLMs) encounter difficulties handling domain-
specific formulas, executing reasoning steps accurately, and integrating code ef-
fectively when tackling chemical reasoning tasks. To address these challenges,
we present ChemAgent, a novel framework designed to improve the performance
of LLMs through a dynamic, self-updating library. This library is developed by
decomposing chemical tasks into sub-tasks and compiling these sub-tasks into
a structured collection that can be referenced for future queries. Then, when
presented with a new problem, ChemAgent retrieves and refines pertinent infor-
mation from the library, which we call memory, facilitating effective task de-
composition and the generation of solutions. Our method designs three types
of memory and a library-enhanced reasoning component, enabling LLMs to im-
prove over time through experience. Experimental results on four chemical rea-
soning datasets from SciBench demonstrate that ChemAgent achieves perfor-
mance gains of up to 46% (GPT-4), significantly outperforming existing meth-
ods. Our findings suggest substantial potential for future applications, including
tasks such as drug discovery and materials science. Our code can be found at
https://github.com/gersteinlab/chemagent.

1 INTRODUCTION

Chemical reasoning presents unique challenges in the realm of artificial intelligence, demanding
sophisticated reasoning and precise calculations beyond typical reasoning tasks (McQuarrie, 2008;
Atkins et al., 2014; Talanquer, 2022; Guo et al., 2023b; Cao et al., 2024). For example, the GPT
solution with CoT prompting in Figure 1 contains numerous errors in both the calculation process
and the chemical constants used. Even in short reasoning chains, a single error can cascade, reduc-
ing answer quality and escalating the probability of additional errors (Liao et al., 2024; Sun et al.,
2024b).

Recent advancements in large language models (LLMs) have demonstrated capabilities in simpler
scientific tasks or chemical scenarios that do not require complex reasoning (Boiko et al., 2023;
Atkins et al., 2023; Wang et al., 2024a; Hu & Shu, 2023; Xiao et al., 2024; Darvish et al., 2024;
Skreta et al., 2024). Other approaches have investigated the impact of tool augmentation on chem-
istry problem-solving, with Yu et al. introducing ChemToolAgent. However, their application to
complex chemical reasoning reveals significant limitations Pei et al. (2024); Li et al. (2024a). LLMs
often (1) struggle to effectively utilize domain-specific formulas, (2) exhibit incorrect reasoning
steps, and (3) produce errors when combining textual reasoning with Python code for calculations
(Zhong et al., 2024b); here, syntax errors may arise, causing the code to fail to compile. As shown

∗Equal contribution. The work was done when Mr. Hu and Mrs. Ye were interns at Yale University.

1

https://github.com/gersteinlab/chemagent

Published as a conference paper at ICLR 2025

Figure 1: Comparison of problem-solving approaches for a hydrogen atom energy transition
problem. The �gure illustrates three different methods:(a) shows a standard Chain-of-Thought
approach with calculation errors (in steps 3 and 4) in Wang et al. (2024a).(b) demonstrates the
StructChem (Ouyang et al., 2024) method with formula generation and step-by-step reasoning but
fails due to an incorrect constant and incorrect unit conversion (in steps 1 and 4).(c) presents the
ChemAgent solution, featuring task decomposition, memory retrieval from the library, and reason-
ing, leading to the accurate �nal answer.

in Figure 1 (StructChem output), errors often arise from determining a constant's incorrect form or
unit.

Some Previous approaches to address these challenges in chemical reasoning tasks have focused
on decomposing the reasoning process (Zhong et al., 2023), e.g., formatting the reasoning steps
through techniques such as self-re�ection (Shinn et al., 2023) and StructChem prompting (Ouyang
et al., 2024). However, these methods often rely heavily on human-curated knowledge (Chan et al.,
2023), or �xed work�ows (Fu et al., 2022; Wang et al., 2023; Zhou et al., 2023). Unlike human
learners who utilize a library system to retain and apply previous experiences, these methods lack
the ability to remember and learn from past analogous problems. For instance, humans can abstract
and store theorems or solution strategies from previous tasks and utilize this memory for future
problem-solving.1

Building on these insights, ChemAgent introduces a dynamic “LIBRARY ” system that facilitates
iterative problem-solving by continuously updating and re�ning its content based on task decom-
position. TheLIBRARY in ChemAgent serves as a comprehensive repository where decomposed
chemical tasks are stored. These tasks are broken down into sub-tasks, and their solutions are com-
piled in the library for future reference. As new tasks are encountered, the library is updated with
new sub-tasks and corresponding solutions, ensuring its content remains relevant and progressively
improves over time. In parallel, inspired by human cognitive mechanisms (Osman, 2004; Kaufman,
2011), our system incorporates three main memory components:Planning Memoryfor high-level
strategies,Execution Memoryfor speci�c task solutions, andKnowledge Memoryfor fundamental
chemistry principles. These memories are stored externally, allowing the model to retrieve them
ef�ciently during the problem-solving process. Unlike previous works relevant to LLM's external
memory system (Huang et al., 2024a; Zhong et al., 2024a; Zhang et al., 2023; Li et al., 2024b; Guo
et al., 2023a; Zhang et al., 2024b), we carefully integrate all these components in a complete agentic
framework and allow them to update dynamically.

These memories are stored in a structured tree-based format that allows for ef�cient retrieval during
the problem-solving process. When ChemAgent encounters a new problem, it �rst decomposes the
task into manageable sub-tasks, then leverages the library to retrieve relevant sub-tasks and solutions
stored in its memory components. The retrieved information is validated and re�ned using analo-
gous sub-tasks previously encountered, optimizing both task decomposition and solution generation.

1For a more detailed discussion of the related work, please refer to Appendix A.

2

Published as a conference paper at ICLR 2025

Figure 2:The diagram of our overall framework. It contains (a) library-enhanced reasoning and
(b) library construction.(a) illustrates how ChemAgent utilizes the library to address a new task for
the test set. And(b) demonstrates the construction of the library over the dev set, including Plan
MemoryM p and Execution MemoryM e).

The library is dynamically updated by adding new sub-tasks and solutions as they are encountered
and validated. This iterative process ensures that the memory is continuously enriched with new
strategies and solutions, mimicking human problem-solving improvements through practice. By
maintaining an evolving domain knowledge base, ChemAgent enables LLMs to autonomously nav-
igate the problem-solving process, thereby enhancing their performance on similar tasks over time.

Our experiments are conducted on four chemical reasoning datasets from SciBench (Wang
et al., 2024a) with GPT-3.5, GPT-4 (OpenAI et al., 2024), and open-source models like Llama3
(Llama Team, 2024). Experimental results indicate that ChemAgent signi�cantly enhances the ac-
curacy, though the degree of improvement achieved by our model varies accordingly due to the
varying sizes of these datasets. Compared to the base model (take GPT-4, for example), the applica-
tion of memory self-improving leads to an average increase in accuracy by 37%, with a maximum
improvement of 46%. In comparison with the current state-of-the-art model, StructChem (Ouyang
et al., 2024), our approach achieves an average improvement of 10% and a maximum improvement
of 15% across different datasets. Furthermore, the improvement is more pronounced for stronger
base models: GPT-4 exhibits greater enhancements compared to GPT-3.5 when augmented with our
framework. Additionally, we analyze the role of our library system and examine the bene�ts of
different memory updates across various stages. This analysis provides insights into how our iter-
ative library updates contributed to performance improvements in sub-task resolution and optimal
task decomposition. By continuously enriching the library with structured memory components,
ChemAgent ensures that the problem-solving process is progressively re�ned and optimized, lead-
ing to substantial improvements in accuracy.

2 METHOD

2.1 PRELIMINARIES

Analogous to how students organize and reference their problem-solving approaches for exams,
our motivation for developing a library system in ChemAgent is to enhance LLMs' ability to tackle
complex problems by providing structured access to a repository of previous sub-tasks and solutions.

The overall reasoning framework is shown in Figure 2(a). Formally, in a simpli�ed form, given
a complex and open-ended chemical problemPS as input, our method aims to generate a solution
OS . The problemPS , which comprises problem descriptionsTS and initial conditionsCS , is �rstly
decomposed into a series of sub-tasksPSi . The solutionOS is then synthesized from the sub-
solutionsOSi of the sub-tasks. EachOSi includes intermediate steps, such as formulae, reasoning
steps, code, and calculations. Then, a �nal answerA S is derived from the overall solutionOS . We
evaluate the performance via the accuracy ofA S against a ground truthA Sg .

3

Published as a conference paper at ICLR 2025

Figure 3: Given a taskP, the relevant memory examples are provided in the library. Speci�cally,
while Execution Memory (M e) and Plan Memory (M p) are derived from prior experiences, Knowl-
edge memory (M k) is generated by LLM based on the problem prompt. The conditionsC are not
explicitly presented here but are embedded withinP and the [GOAL] ofM e.

2.2 COMPOSITION OF THEL IBRARY

We dividelibrary into three memory components: planning memory, execution memory, and knowl-
edge memory. Figure 3 provides detailed examples, corresponding prompts are in Appendix G.
• Planning Memory (M p): This component stores high-level strategies and methodologies for

approaching complex problems.

• Execution Memory (M e): This contains highly structured descriptions of speci�c problem con-
texts and their corresponding solutions, serving as detailed execution plans.

• Knowledge Memory (M k): This houses fundamental chemistry principles and formulas, acting
as a ready reference. This component is generated temporarily during the solution of a speci�c
task and is not intended for permanent retention.

Thus, ChemAgent enables LLMs to tackle problems proactively, form new memories from these
attempts, utilize existing memories to solve complex problems, and continuously re�ne their solu-
tions. Built upon thelibrary of three types of memories, ChemAgent operates in two main stages:

1. Initial Library Construction: Complex problems in the development set are decomposed into
structured atomic sub-tasks, which serve as building blocks of the library, consisting of static
long-term memory (M p andM e).

2. Inference Phase and Dynamic Memory Updating:

(a) Memory-Enhanced Reasoning:The memory is dynamically enriched and improved dur-
ing runtime.

(b) Evaluation & refinement : Each sub-task's solution is evaluated on their veracity
and relevance to the main task, which leads to a correction of the solution or a re�nement of
the overall plan.

Figure 2 and Figure 4 illustrates this work�ow. In the following sections, we explain how each part
is constructed and utilized. All prompts used in our framework can be found in Appendix G.

2.3 DECOMPOSITION ASATOMIC BLOCKS

Human problem-solvers naturally break down complex chemistry problems into smaller, manage-
able sub-tasks (Zhou et al., 2023). This decomposition enhances the understanding of individual
components and their interactions, facilitating the resolution of the original problem in a structured
manner (Johnson et al., 2017). These sub-tasks not only improve the reasoning process but also
function as atomic building blocks within the execution memory, each paired with a corresponding
sub-solution. Key characteristics of this decomposition include:

Hierarchical Decomposition: Using the strategy stored in Planning Memory, we break down com-
plex chemistry problems into hierarchical sub-tasks. If a sub-task is too dif�cult to complete, it is
further decomposed until it can be executed in a single step by the LLM. We store each decomposed

4

Published as a conference paper at ICLR 2025

sub-task and its intermediate sub-solutions, enabling direct retrieval of solutions for similar future
problems. This hierarchical approach ensures each sub-task acts as an independent atomic block,
aiding future problem-solving.

Structured Sub-tasks: To maximize the ef�ciency of decomposition, sub-tasks are structured into
four distinct parts: (i)Task Queryde�ning the speci�c question, (ii)Sub-task Objectivesoutlining
clear goals, (iii)Step-by-step Solutiondetailing the method to address the sub-task, and (iv)Guid-
ance for Solutionssuggesting potential approaches.

Atomic Blocks as Memory: Decomposed sub-tasks serve as building blocks for memory. Identi-
fying and recalling similar problems can be challenging, but sub-tasks often share commonalities
that make it easier to leverage past experiences. These atomic blocks also function as examples
in few-shot prompting, standardizing response formats and bolstering the overall problem-solving
process.

Building on the concept of sub-tasks as fundamental units, we outline the processes involved in our
framework, which includes both a dynamic library system and the structured memory inside our
library. This section details how we initially construct the library and memory (§2.4), utilize and
update them for new tasks (§2.5), and evaluate and re�ne the generated solutions (§2.6). Speci�cally,
our approach leverages the development set to build a library, which is designed to dynamically self-
improve during runtime.

2.4 LIBRARY CONSTRUCTION Algorithm 1: Library Construction
Input: Development setD, LLM F ,

promptsf psplit; pref; prankg
Output: Static memoryM consisting of

units
U = f condition; question; solutiong

for (P , S) in D do
ConditionsC F (psplitkP)
// Verify conditions and

refine if necessary
C F (prefkPkC)
Sub-tasksT F (ptaskkPkC)
Sub-solutionsO F (psolkCkPkS)
Assert len(C) = len(T) = len(O)
for i in len(C) do

Add (Ci ; Ti ; Oi) into U
U F (prankkU)

return U

The Library is constructed using the development
set. As outlined in §2.3, we leverage sub-tasks de-
composed from each problem as the execution mem-
ory units. Each execution memory unitUi is de�ned
as follows, whereC represents the conditions of a
given problemP, andTi andOi denote the sub-task
and its corresponding sub-solution, respectively:

Ui = (C; Ti ; Oi) for i = 1 ; 2; : : : ; k

Given a problemP and its corresponding solutionS
in the development set, our method begins by iden-
tifying and extracting the conditions fromP. We
then verify these conditions for accuracy to ensure
that the subsequent steps operate with precise and
correctly parsed data. Based on the identi�ed con-
ditions, we instruct the LLMs to generate detailed
sub-tasks. For each identi�ed sub-taskTi , the corresponding sub-solutionsOi are parsed fromS
and assigned accordingly. Inspired by curriculum learning (Bengio et al., 2009), we then rank the
memory unitsU based on their dif�culty. In addition to ranking, we discard any memory units that
do not meet a prede�ned con�dence threshold, as evaluated by the LLMs. This ensures that the
memory utilized for future problem-solving is both relevant and reliable, enhancing the LLM's abil-
ity to tackle increasingly complex chemistry problems. The detailed memory construction process
is further described in Algorithm 1.

2.5 LIBRARY-ENHANCED REASONING

During testing, we �rst decompose a given problem into several sub-tasks. For each sub-task, we
retrieve related memory unitsUr to aid in solving it. Speci�cally, we compute the similarity between
the given sub-task and units stored in the memory. Memory units with similarity above a prede�ned
threshold� are used to assist the model in determining the answer for the sub-task.

Formally, let(Cj ; Tj) represent a sub-task decomposed from a new problem. We retrieve memory
unitsUr that satisfy

Similarity(Tj ; TUi) � � for Ui 2 M e:
Speci�cally, the similarity between tasks is calculated using Llama3's embeddings:

Similarity(Ta ; Tb) =
Embed(Ta) � Embed(Tb)

jjEmbed(Ta)jj � jj Embed(Tb)jj
:

5

Published as a conference paper at ICLR 2025

In scenarios where theexecution memorydoes not contain similar sub-tasks, we incorporate a self-
improving mechanism. Initially, we enrich the memory with the required information by leveraging
the internal parametric knowledge of LLMs. The LLM is instructed to identify thetopic of the
given sub-task (e.g., quantum chemistry or thermodynamics) and generate self-created chemistry
problems related to that topic, adhering to speci�c guidelines. This forms a kind of “synthetic”
execution memory. We encourage the LLMs to generate diverse problems and solutions beyond the
provided examples, thereby enhancing the robustness and adaptability of the memory system.

Moreover, the memory is continuously updated with newly solved sub-tasks and their solutions
during runtime. For each newly solved sub-taskTj , sub-answers from previous sub-problems are
incorporated into the conditions asCj , and the execution memory is updated based on solutionOj :

M e = M e [f (Cj ; Tj ; Oj)g:

The plan memory will be updated by a summary of the overall strategy knowledge used,K j (e.g.
formulas, conception, order of resolution):

M p = M p [f (Tj ; K j)g:
This dynamic updating ensures that the memory evolves and improves over time, progressively
enhancing the problem-solving capabilities. More details on self-evolution are in §2.9.

2.6 EVALUATE & REFINE MODULE

Figure 4: Overall framework of the evaluation
& refinement module. ChemAgent continuously
modi�es the solution or the comprehensive strategy un-
til it either reaches the maximum number of trials or
meets the evaluator's criteria.

To enhance the �exibility and relia-
bility of ChemAgent, we propose an
evaluation & refinement mod-
ule, to correct the planning trajectory and
verify the response to each sub-task.

As illustrated in Figure 4, after address-
ing a speci�c sub-taskPi , ChemAgent ex-
amines the sub-solutionOi . The system
evaluates whether the sub-solution con-
�icts with fundamental knowledge inM k
or contains common errors, such as incor-
rect units. If discrepancies are identi�ed,
a new sub-solutionO0

i is generated by re-
�ning the originalOi based on the relevant
knowledge inM k and the identi�ed mis-
takes.

Furthermore, if a sub-task fails due to insuf�cient conditions or if the evaluation determines that the
sub-task's question does not align with the main task (e.g., calculating energy using wavelength in-
stead of calculating wavelength using given energy), the sub-tasks fromPi to Pn will be restructured
asP0

i to P0
m , taking into account the main task and all preceding sub-tasks.

The evaluation & refinement module can use a different LLM than the one used for the
base reasoning process. For instance, if GPT-3.5 is the base model, GPT-4 can handleevaluation
& refinement . The evaluation component judges solutions without modifying them, while the
re�nement component adjusts solutions based on these evaluations. This separation clari�es error
identi�cation, helping humans understand where and why mistakes occur.

2.7 SETUP

We use four chemistry datasets from SciBench (Wang et al., 2024a), and the detailed distribution of
the speci�c �elds covered by each problem in the four datasets is shown in Figure 10. Each dataset
is divided into a development set (Dd) and a test set (Dt), with exact sizes provided in Table 6.
According to previous research (Ouyang et al., 2024), SciBench chemical sets are representative of
chemical reasoning tasks, addressing a broad range of queries typically encountered in this �eld.

During the reasoning stage, we con�gure the planning memory (M p) to provide a maximum of two
related memory instances (2-shot) for each query, and the execution memory (M e) to provide up to
four related instances (4-shot). However, during the construction of the library, only the knowledge

6

Published as a conference paper at ICLR 2025

Table 1: Performance on the test sets of four datasets:QUAN, CHEMMC, ATKINS, andMATTER.
Results are compared with baselines under two different setups: a zero-shot setting with no demon-
strations and a few-shot setting with three demonstrations. Accuracy scores are computed using the
approximation detailed in Section 4.3. The best results for each setup are highlighted inbold, and
the second-best results are underlined. In some settings, the two modules described in Sections 2.4
(Memory) and 2.6 (Evaluation & refinement) are disabled, helping illustrate each mod-
ule's impact on the overall performance.

Models CHEMMC MATTER ATKINS QUANAvg.

Baselines, all based on GPT-4 (gpt-4-1106-preview)
Few-shot + Direct reasoning 28.21 14.29 20.69 14.71 19.48
Few-shot + Python 38.46 34.69 57.01 44.12 43.57
StructChem 58.97 30.67 59.81 41.18 47.66

ChemAgent, all based on GPT-4 (gpt-4-1106-preview)
ChemAgent 74.36 48.98 61.18 44.12 57.16
w/o Evaluation & Refinement 61.54 44.89 57.94 44.12 52.12
w/o Memory, Evaluation & Refinement 58.97 38.78 57.94 41.18 49.22

all based on Llama 3.1-7b
Direct reasoning 28.20 10.20 22.43 8.82 17.41
ChemAgent 56.41 12.24 19.63 14.71 25.75

all based on Llama 3.1-70b
Direct reasoning 33.33 30.61 30.84 23.53 29.48
ChemAgent 64.10 32.65 43.93 29.41 42.52

all based on Qwen 2.5-72b
Direct reasoning 48.72 32.65 57.01 35.50 43.47
ChemAgent 69.23 44.90 56.07 44.12 53.58

memory (M k) is used, as the standard solutions are already available in the development set (Dd).
We evaluate the accuracy by comparing their outputs with the correct answers, using a relative
tolerance of 0.01.

We consider three baselines in alignment with the evaluation paradigm in SciBench (detailed in-
structions are provided in Appendix G):(1) Few-shot + Direct reasoninginvolves directly feeding
the problem into the LLM without any additional instructions, the source of the data is StructChem
(Ouyang et al., 2024).(2) Few-shot + Pythoncombines few-shot examples with a tool-augmented
strategy. Here, we provide six examples for every query, each consisting of a problem, its corre-
sponding solution, and Python code. These examples are taken fromDd. The results are from the
original benchmark, SciBench (Wang et al., 2024a).(3) StructChem(Ouyang et al., 2024) employs
structured instruction, con�dence-based review, and re�nement to guide LLMs through precise step-
by-step reasoning.

2.8 RESULTS

We report the performance of all methods regarding accuracy score for each sub-dataset and an
average score across the entire dataset. The results are summarized in Tables 1, 4 and 5. Additional
results and analysis of experiments conducted on other LLMs can be found in Appendix B.

Firstly, ChemAgent consistently outperforms the other baselines across various datasets and settings.
Speci�cally, in terms of the average score, ChemAgent improves by9.50% (47.66 vs. 57.16) over
StructChem, which is a 2.93 times increase and by37% (19.48 vs. 57.16) over direct reasoning,
which is a 2.93 times increase. Notably, the performance gain varies across different datasets. In
theCHEMMCdataset, our method exhibits the largest improvement, with a46% increase (28.21 vs.
74.36) compared to the direct reasoning setup. Secondly, the results also highlight the crucial role
of memory in our library. The version of our framework equipped with memory consistently outper-
forms the version without memory across all cases. Speci�cally, there is an absolute improvement
of 2.90% in terms of the average score. This underscores the importance of memory in retain-
ing and leveraging past information to improve the accuracy and reliability of solving chemistry
problems. Additionally, theEvaluation & Refinement module plays a signi�cant role when
using stronger LLMs. For instance, incorporatingEvaluation & Refinement with GPT-4
increases ChemAgent's performance by5.04% compared to ChemAgent with memory alone. In
summary, ChemAgent demonstrates superior performance across various LLM backbones, high-
lighting the critical importance of the library system, memory design, and evaluation modules in

7

Published as a conference paper at ICLR 2025

enhancing problem-solving capabilities. Appendix C details the speci�c aspects and reasons for our
method's improved performance.

2.9 SELF-EVOLUTION DURING RUNTIME

Figure 5: Self-evolving analysis. We test
ChemAgent twice for each iteration, and the
difference between the two results serves as
the error margin. All the experiments here
are done onMATTERdataset.

Moreover, we aim to show that library systems with
evolving memory perform better when exposed to an
increasing number of problems. Much like humans
improve their skills through practice, these systems
bene�t from continuous exposure to new tasks.

We allow ChemAgent to dynamically update and en-
rich its library during the test stage to analyze this
self-evolution process. Speci�cally, in iterationI i ,
ChemAgent uses all accumulated long-term mem-
ory from iterationsI 1 to I i � 1 as its library. When
solving a new problemP, all related responses and
knowledge from that process are added to the library
if the solution is correct. This means that in subse-
quent iterations, the system can leverage the newly
acquired information (updatedM p andM e) to im-
prove its performance. We employ 2-shotM p and
4-shotM e during reasoning but simplify the setup by removing the evaluation and re�nement mod-
ules. To ensure accuracy and prevent target leakage, the memory derived from problemPi in itera-
tion I j is excluded when solvingPi again inI k for anyj < k .

This iterative process demonstrates that as the memory pool grows with each new example, ChemA-
gent's problem-solving performance improves. Figure 5 shows that as the number of iterations in-
creases, the agent's performance gradually improves and converges to a score higher than the base-
line (44:89%). This improvement indicates that ChemAgent can enhance its performance through a
simple correct-or-not evaluation of past solutions instead of human-written high-quality trajectories.

2.10 COST ANALYSIS

Figure 6:Cost Analysis.The size of each bubble
corresponds to the average number of inferences
for each method, while they-axisindicates the av-
erage accuracy across the four datasets.

On average, each problem requires 0.012
million tokens without theEvaluation &
Refinement module, equivalent to around
$0.09 per example. When this module is ap-
plied, the average token consumption per prob-
lem increases to approximately 0.023 million,
costing about $0.1725 per example. Note that
the initial library construction is not included
in these calculations as it is a one-time setup.
Based on the results in Figure 6, the computa-
tional time required by our method is reason-
able. While the cost and resource consump-
tion are slightly higher than StructChem, the
improvements justify the additional expense.

2.11 ERRORANALYSIS

We conduct an analysis of the trajectories for the failed examples and �nd three types of errors,
shown in Figure 7.

(1) Lack of Understanding of the Question.We observe that plans often fail when the problem text
contains critical hidden information (e.g., in Figure 7, the terms `reversibly' and 'adiabatically' are
key) or include excessive, redundant details (e.g., the exact conditions such as “250K” are irrelevant
to the solution). This challenge is understandable, as even human solvers can be misled by such
information and err in their approach. This issue is prevalent and independent of whether the task is
tackled by our model or directly queried to the LLM, suggesting that these errors may be inherent
limitations of the LLM's capacity. Hence, improving the ability of the foundation model to handle
such nuances could signi�cantly enhance performance.

8

Published as a conference paper at ICLR 2025

Figure 7: Error analysis. This example highlights a typical incorrect solution, which can be at-
tributed to three main types of errors. Speci�cally, this problem pertains to an adiabatic process.

(2) Inaccurate Reasoning. As indicated before (Ouyang et al., 2024), the planning capabilities
of LLMs remain insuf�cient for handling complex problems. Incorrect planning for the reason-
ing chains exacerbates the problem-solving process, as subsequent decisions and actions are based
on initial problem decompositions. This issue persists until theEvaluation & Refinement
module detects an error, which may not happen promptly enough to correct the trajectory.

(3) Incorrect Memory Selection. While ChemAgent with memory demonstrates superior perfor-
mance compared to setups without memory, it sometimes invokes misleading information, even
when the similarity between the invoked memory and the problem is high. This indicates a need for
more sophisticated memory retrieval and utilization strategies.

In Figure 7, the invoked memory and sub-task 1.1 share considerable similarities—both concern
entropy change during a compression process. However, the subtle difference is that the current
problem involves an adiabatic process, whereas the examples in memory do not. This seemingly
minor distinction can lead to signi�cant changes in the problem-solving strategy. Distinguishing
between misleading and bene�cial memories remains a challenging issue, as invoked memories and
problem texts may be semantically similar yet differ in critical aspects.

3 ABLATION STUDY

3.1 MEMORY COMPONENTANALYSIS

To understand why our method performs particularly well and which memory component con-
tributes the most, we conduct an ablation study by independently removing each memory com-
ponent. We test these different settings on all four sub-datasets using GPT-4 as the base LLM. The
results are shown in Table 2. As mentioned in §2.3, the execution memory also serves as a few-shot
prompting strategy. Therefore, when we removeM e, we add two �xed human-written few-shot ex-
amples (provided with our code) into each query of each sub-task. These examples are selected from
the development set (Dd) corresponding to each dataset to ensure they do not provide misleading
information.

Firstly, removing any memory component results in an overall performance drop. And notably, the
relevant knowledge in LLM itself (M k) signi�cantly impacts the overall performance of ChemA-
gent. Delving into whyM k contributes the most, we �nd that this might be due to the insuf�cient
M p andM e in the Atkins dataset. As shown in Table 6,ATKINS has the lowest ratio of the devel-
opment set to the test set, while it also has the largest test set. This imbalance may result in a small
and sometimes irrelevant memory pool forM p andM e to search from. We hypothesize that this
issue can be mitigated when the model is exposed to more chemical questions over time. However,
due to limited computational resources, we cannot scale up to verify this hypothesis in this research.

9

