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ABSTRACT

Fitting the Mixture of Multivariate Linear Regression models (MMLR) is a fun-
damental task in the analysis of heterogeneous data. Still, standard methods like
the EM and K-means algorithms are hindered by their convergence to local op-
tima and the NP-hard nature of the underlying optimization problem. To address
this fundamental challenge, we propose Gibbs sampling with the simulated an-
nealing K-means clustering algorithm. By synergizing the K-means framework
with Gibbs sampling and a simulated annealing schedule, this approach is prov-
ably robust to initialization and avoids poor local minima. The primary contri-
butions of this work are a comprehensive set of theoretical guarantees. First, we
provide the first non-asymptotic guarantees on the algorithm’s convergence to the
global minimum of the Within-Cluster Sum of Squares (WCSS) objective, estab-
lishing explicit bounds on its rate and probability of convergence. Second, based
on this global optimum, we establish a rigorous upper bound for the estimation
error of the regression coefficients and a lower bound on classification accuracy
in an asymptotic sense. Numerical experiments validate the superior performance
of our method. This work presents a theoretically grounded and computationally
practical framework for estimation and clustering in mixture regression models.

1 INTRODUCTION

Understanding the linear relationships between sets of high-dimensional variables is a fundamental
goal in numerous scientific and industrial domains (James et al., 2013). Multivariate Linear Re-
gression (MLR) serves as the cornerstone of this task, modeling how multiple predictor variables
jointly influence numerous predicted variables (Härdle & Simar, 2007; Hastie, 2009). However, a
key limitation of standard MLR is its assumption of data homogeneity, presupposing that a single
regression model can adequately describe the entire data set (Goldfeld & Quandt, 1973; Jacobs et al.,
1991; McLachlan et al., 2019). In practice, many datasets exhibit significant heterogeneity, compris-
ing several latent subgroups with distinct relational patterns (Hennig et al., 2015; McLachlan et al.,
2019). For example, in personalized medicine, different subpopulations of patients may respond to
treatments in unique ways (Hamburg & Collins, 2010; Collins & Varmus, 2015; Shen & He, 2015).
A mixture of Multivariate Linear Regression (MMLR) models provides an elegant solution to this
challenge, capable of simultaneously clustering data into coherent groups and fitting a tailored MLR
model to each, thus capturing the underlying heterogeneous structure (De Veaux, 1989; Jacobs et al.,
1991; Frühwirth-Schnatter, 2006; McLachlan et al., 2019).

For decades, the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) and K-means
algorithm (Lloyd, 1982) have been the workhorse methods for fitting these models, prized for their
simplicity and computational efficiency. Despite their widespread success, classical algorithms like
EM and K-means are hindered by their iterative and local optimization nature. They are only guar-
anteed to converge to a local optimum. They are thus susceptible to parameter initialization, which
has significantly limited the reliability of mixture models in critical applications (McLachlan et al.,
2019). To mitigate this, a variety of practical strategies have been developed, such as K-means++ to
obtain better starting points (Arthur & Vassilvitskii, 2007) and multiple random restarts (Jain, 2010).

However, these practical methods lack theoretical guarantees and the establishment of such prop-
erties is exceptionally difficult. Previous theoretical work often relied on the impractical technique
of “sample splitting” to make the analysis tractable (Yi & Caramanis, 2015; Zhang et al., 2020).
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Pioneering work (Wang et al., 2024) has made a significant breakthrough by establishing a rigorous
convergence rate analysis for a penalized EM algorithm in high-dimensional mixture linear regres-
sion without sample splitting. However, this theoretical guarantee has its own limitations as it is
based on the strong assumption that the algorithm must be initialized within a “contraction basin”
close to the true parameters. In fact, despite these extensive efforts, finding the global optimum
for mixture models remains an NP-hard problem (Aloise et al., 2009), highlighting the need for
fundamentally new approaches.

To address this challenge fundamentally, we introduce a novel Gibbs sampling with the simulated
annealing K-means clustering algorithm. Our approach synergizes the efficiency of the K-means
framework with the global exploration capabilities of stochastic optimization. We augment the
classic assignment-update loop with a Gibbs sampling step to probabilistically explore cluster as-
signments (Geman & Geman, 1984) and a simulated annealing (SA) schedule to escape poor local
minima (Kirkpatrick et al., 1983; Klein & Dubes, 1989). The efficacy of SA is grounded in solid
theory; for instance, recent work by Tang & Zhou (2021) provides a rigorous convergence analysis,
proving that the probability that the algorithm remains far from the global optimum exhibits a poly-
nomial decay over time. This quantitative support justifies its ability to guide the search globally.
By integrating these powerful stochastic techniques, which have been shown to improve determin-
istic methods (Selim & Alsultan, 1991), our hybrid design ensures robustness to initialization and
facilitates convergence towards a globally optimal solution.

To validate these claims, our algorithm was validated through extensive experiments on simulated
datasets, where it consistently outperformed standard baselines. Beyond this empirical result, our
primary contribution is a comprehensive set of theoretical guarantees for this method. In sharp
contrast to the well-documented local convergence properties of traditional methods such as EM
and K-means (Balakrishnan et al., 2017; McLachlan et al., 2019), we prove that our algorithm is
robust to initialization and converges to the global optimum.

Our work establishes the first non-asymptotic (finite-sample) guarantees on its convergence rate and
probability of convergence. This type of analysis aligns with a modern push in stochastic opti-
mization to provide explicit performance bounds, similar to recent advances in the theoretical un-
derstanding of core components such as simulated annealing (Tang & Zhou, 2021). Furthermore,
based on the global optimality guaranteed by our algorithm, we analyze the statistical properties of
the resulting estimator. We establish rigorous upper limits on the estimation error of the regression
coefficients in both asymptotic and non-asymptotic regimes, complementing previous work on pe-
nalized estimators for mixture models (Städler et al., 2010; Wang et al., 2024). Finally, we derive
a formal lower bound on the accuracy of the algorithm’s classification in both asymptotic and non-
asymptotic (finite-sample) regimes, addressing the inherent difficulty of recovering latent labels in
mixture models (Von Luxburg, 2007).

2 MODEL AND ALGORITHM

We denote X ∈ Rp as predictors and Y ∈ Rq as the predicted variables from a mixture multivariate
regression model. The mixing weight of the kth submodel is pk, where 1 ≤ k ≤ K. Then our
model is formulated as,

Y = XBU + ϵ s.t. X ∼ N(0,Σ), ϵ ∼ N(0, σ2Iq), (1)
p(U = k) = pk, Bk,0 ∈ Rp×q, X ⊥ u

We consider a set of n i.i.d. samples S = {(xi, yi, ui,0)}ni=1 generated from the mixture model
in (1), where the true cluster assignments U0 = {u1,0, · · · , un,0} are not observed. Our ob-
jective is to estimate the true regression parameters θ0 = {B1,0, · · · , BK,0} with an estimator
θ̂ = {B̂1, · · · , B̂K}. This, in turn, allows us to infer the cluster labels for the given samples as
Û = {û1, · · · , ûn} and for new observations.

To develop our method, we first generalize the K-means approach to multivariate linear regression.
Specifically, we define the Within-Cluster Sum of Squares (WCSS) function as:

J(θ,U) =
K∑

k=1

∑
ui=k

∥yi − xiBk∥22. (2)
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According to a standard property of the K-means algorithm, for any 1 ≤ i ≤ n, we have the estimate
clusters ûi = argmink ∥yi − xiB̂k∥22. We define the residual squares associated with the estimator
θ as the function m:

m(x, y, θ) = min
1≤k≤K

∥y − xBk∥22.

Then for the K-means estimator θ̂, Û we have J(θ̂,Û)
n = 1

n

∑n
i=1 m(xi, yi, θ̂). Similarly to tra-

ditional K-means clustering in Euclidean space, finding the global minimum of WCSS objective
function is widely recognized as an NP-hard problem (Aloise et al., 2009). Consequently, deter-
ministic algorithms that guarantee convergence to the global minimum are deemed intractable for
practical purposes. We therefore propose a probabilistic framework that combines Gibbs sampling
with simulated annealing. This approach ensures asymptotic convergence to the global minimum
with high probability, provided that the computational complexity is bounded.

Within the simulated annealing framework, let T be the temperature parameter. The energy function
E(θ,U , T ) is defined as:

E(θ,U , T ) = exp

(
−J(θ,U)

T

)
=

K∏
k=1

∏
i

ûi=k

exp

(
−∥yi − xiBk∥22

T

)
(3)

For the energy function (3), we use an alternating Gibbs sampling scheme between the parameters θ
and the estimated cluster assignments U . The conditional distribution for each assignment variable
ûi follows a categorical distribution, with probabilities proportional to

P (ûi = k) ∝ exp

(
−∥yi − xiB̂k∥22

T

)
.

This distribution exhibits conditional independence given the parameters θ, which means that the
sampling of ûi depends only on the current parameter estimates B̂k.

For the regression coefficients B̂k, we define the design matrix XU
k as the matrix formed by stacking

the predictor vectors xi for all observations with ûi = k, and Y U
k as the corresponding response

vector. The conditional posterior distribution for B̂k derived from the energy function is:

p(B̂k) ∝ exp

(
−∥Y

U
k −XU

k B̂k∥22
T

)
,

which corresponds to a matrix-normal distribution under appropriate priors.

However, when the design matrix XU
k is rank-deficient (that is, rank(XU

k ) < p), the integral of

the function exp
(
−∥Y U

k −XU
k B̂k∥2

2

T

)
in the parameter space B̂k ∈ Rp×q diverges. To address this

ill-posedness and allow adequate sampling of B̂k, we introduce a ridge regularization penalty to the
energy function (3). This yields the modified energy function:

E(θ,U , T ) = exp(−J(θ,U)
T

)

K∏
k=1

exp(−∥Bk∥22
2κ

) =

K∏
k=1

exp(−∥Bk∥22
2κ

)
∏
i

exp(−m(xi, yi, θ)

T
). (4)

It follows that Gibbs sampling with the modified energy function (4) is equivalent to Bayesian infer-
ence under the following probabilistic model: the prior distribution for the vectorized regression co-
efficients vec(B̂k) is Gaussian with vec(B̂k) ∼ N (0, κIpq), while the sampling model corresponds
to equation (1) with σ2 = T/2. Crucially, as the temperature T → 0 during simulated annealing, the
influence of the regularization term vanishes asymptotically. Consequently, the global minimizer of
E(θ,U , T ) converges to the minimizer of the WCSS objective:

lim
T→0

argmax
θ,U
E(θ,U , T ) = argmin

θ,U
J(θ,U) = arg min

θ,ui=argmink ∥yi−xiBk,0∥

n∑
i=1

m(xi, yi, θ).

3
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Under this Bayesian interpretation, the conditional distribution is as follows: For cluster assign-
ments, the following distribution P (ûi = k) ∝ exp(−∥yi−xiB̂k∥2

2

T ) is true, and the posterior distri-

bution for vectorized coefficients is: p(vec(B̂k)) ∝ exp
(
−∥Y U

k −XU
k B̂k∥2

F

T − ∥B̂k∥2
F

2κ

)
. This corre-

sponds to a Gaussian distribution:

vec(B̂k) ∼ N

(
vec

((
XU⊤

k XU
k +

T

2κ
Ip

)−1

XU⊤
k Y U

k

)
,
T

2

(
Iq ⊗

(
XU⊤

k XU
k +

T

2κ
Ip

))−1
)
.

Based on the preceding discussion, we introduce our simulated annealing method, formally pre-
sented in Algorithm 1. The algorithm is designed to minimize the regularized energy function from
Equation (4). A key component is its slow cooling schedule, where the temperature Tt in iteration t
follows Tt = T0 · log(t + 1)−α for a constant 0 < α < 1. Although our implementation employs
a K-means++ seeding strategy (Arthur & Vassilvitskii, 2007) for practical efficiency, we prove in
Section 3.3 that the algorithm is theoretically robust to the choice of initial parameters.

Algorithm 1: Gibbs sampling with simulated annealing K-means clustering algorithm for mul-
tivariate linear regression
Input: [(x1, y1), (x2, y2), · · · , (xn, yn)],K, α, T0, c, κ

Output: B̂1, B̂2, · · · , B̂K , û1, û2, · · · , ûn

Let B̂1 = B̂2 = · · · = B̂K = 0 initially. for k ← 1 to K do
r ← {1, 2, · · · , n} satisfy P (r = i) ∝ min1≤k′≤k ∥yi − xiB̂k′∥22
B̂k =

x⊤
r yr

∥xr∥2
2

end
t = 0 while ûi not converge do

for k ← 1 to K do
XU

k is the matrix whose rows are all xi|ûi = k
Y U
k is the matrix whose rows are all yi|ûi = k

We seem B̂k as a p ∗ q dimensional matrix and
vec(B̂k) ∼ N(vec((Xu⊤

k Xu
k + Tt

2κIp)
−1Xu⊤

k Y u
k ), Tt

2 (Iq ⊗Xu⊤
k Xu

k + Tt

2κIp×q)
−1)

end
for j ← 1 to n do

p(ûj = k) ∝ exp(−∥yj−xjB̂k∥2
2

Tt
)

end
t = t+ 1
Tt = T0 · (log t)−α,where 0 < α < 1

end

3 MAIN RESULTS

3.1 NOTATIONS AND ASSUMPTIONS

This section presents the main theoretical results for our algorithm. Our framework assumes that the
model described in (1) is correct and the true number of classes K is given. The core of our anal-
ysis is the WCSS function J and the residual sum of squares function m. Consequently, the global
minimizer of J shares the same parameter estimate θ̂ as the empirical mean 1

n

∑n
i=1 m(xi, yi, θ̂).

To analyze the properties of the global minimum of J , we must therefore examine both the em-
pirical objective 1

n

∑n
i=1 m(xi, yi, θ) and its population counterpart E(X,Y ) [m(X,Y, θ)]. On the

other hand, for the model equation 1 to yield statistically significant conclusions, nondegeneracy is
essential. We thus formalize the following assumptions before the theoretical analysis.
Assumption 1 (Uniqueness of optimal solution up to permutation symmetry). The global mini-
mum θ̂ = (B̂1, B̂2, · · · , B̂K) of the function 1

n

∑n
i=1 m(xi, yi, θ) and the global minimum θ∗ =

(B∗
1 , B

∗
2 , · · · , B∗

K) of its expectation E(X,Y ) [m(X,Y, θ)] are unique up to permutations. That is,

4
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if θ̂ is a global minimum of 1
n

∑n
i=1 m(xi, yi, θ), then any permutation (B̂π(1), B̂π(2), · · · , B̂π(K)),

for π ∈ SK (the symmetric group on the K elements) is also a global minimum, and all global
minima are permutations of each other. Similarly, this property holds for the population minimizer
θ∗ = (B∗

1 , B
∗
2 , · · · , B∗

K)

Assumption 2 (Model correctness). The distribution of X,Y fits the model (equation 1), with pk ≥
c > 0 for any 1 ≤ k ≤ K.
Assumption 3 (Model non-degeneracy). The covariance matrix Σ of the variable X is non-
degenerate, which means that the minimum eigenvalue of Σ is strictly greater than zero.

Our subsequent analysis relies on the three assumptions mentioned previously. We define U∗ =
{u∗

1, · · · , u∗
n}, where each assignment u∗

i is the index of the true parameter that minimizes the
squared error, that is, u∗

i = argmin1≤k≤K ∥yi − xiB
∗
k∥22. Throughout, we use ∥ · ∥F to denote the

Frobenius norm and ∥ · ∥min for the minimum eigenvalue of a symmetric positive definite matrix.

3.2 THEOREMS ABOUT ESTIMATED QUALITY AND CLASSIFICATION ACCURACY

This subsection establishes an upper bound on the estimation error between the global minimum of
E(X,Y ) [m(X,Y, θ)], θ∗ = (B∗

1 , B
∗
2 , · · · , B∗

K) and the true parameters θ = (B1,0, B2,0, · · · , BK,0),
under the assumption that the number of clusters K is known. By analyzing the structural prop-
erties of the objective function m(X,Y, θ), we derive a high-probability bound for the param-
eter estimation error. This result further implies a limit on classification accuracy, defined as
1
n

∑n
i=1 I(u

∗
i = π(ui,0)), where π denotes the optimal permutation that aligns the estimated cluster

parameters with their true counterparts.

The quality of the parameter estimates is fundamental to the overall classification performance.
Therefore, we first conduct a thorough analysis of m(X,Y, θ) to control the estimation error. The
main theoretical contribution is presented in Lemma 3.1, which provides an upper bound on the gap
of the regression matrices of θ∗ and θ in the large sample setting. This bound explicitly characterizes
how the accuracy of the estimate depends on the dimensions of the problem (p, q) and the spectral
properties of the covariance matrices σ and Σ, providing information on the factors driving the
accuracy of the estimate.
Lemma 3.1. Under Assumptions 1, 2 and 3, we denote the estimator θ∗ = B∗

1 , B
∗
2 , · · · , B∗

K mini-
mize the

E(X,Y ) [m(X,Y, θ)] .

Then we have for any 1 ≤ k ≤ K, there exist a 1 ≤ π(k) ≤ K satisfy:

∥Bk,0 −B∗
π(k)∥F ≤ C

σ√
∥Σ∥min

,

where

C = K
√
3e{(K − 1)

√
2

π
+

√
1

c

2

π
(K − 1)2 +

1

c
2(K − 1)

√
2

π
},

which only related to the K and c.

Lemma 3.1 establishes an asymptotic upper bound on the Frobenius norm error ∥Bk,0 − B∗
π(k)∥F

for each true cluster parameter Bk,0 and the minimum point B∗
π(k) of function m. This bound

characterizes the behavior of the estimator θ̂ in large samples, with its magnitude governed by the
noise level σ, the minimum singular value of the covariance matrix ∥Σ∥min, and a constant C that
depends solely on K and c. Notice that for i ̸= j, we cannot prove π(i) ̸= π(j) without further
conditions.

The precision of these parameter estimates is fundamental to the classification accuracy, defined as
1
n

∑n
i=1 I(u∗

i = π(ui,0)). Intuitively, accurate classification requires that the maximum estimation
error, max1≤k≤K ∥Bk,0−B∗

π(k)∥F , is small relative to the minimum separation between two distinct
true parameters, D = mini≤j ∥Bi,0 − Bj,0∥F . When this condition is satisfied, that is, when the
estimated parameters are close to their true values and the clusters are well separated, the probability
of misclassification decays rapidly. The bound in Lemma 3.1 provides a direct pathway to formalize
this intuition and derive a subsequent bound on the classification error rate.
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In particular, if the distance between classes D between the different regression matrices is greater
than twice the maximum coefficient estimation error, max1≤k≤K ∥Bk,0−B̂π(k)∥F , it can be proven
that π(i) ̸= π(j) for any i ̸= j. This implies that π ∈ SK is a true permutation, which prevents
a single estimated matrix from being matched to multiple true matrices. Under slightly stronger
conditions, Theorem 3.2 establishes that, in the asymptotic sense of large samples, the probability
of missclassification decays at a rate Op

(
D−1(logD)1/2

)
. This shows that in the sense of large

samples, when the degree of separation between categories D tends to infinity, the probability that
each sample is correctly classified tends to 1.

Theorem 3.2. Let D′ =

√
∥Σ∥min

σ D and C ′ =
√

∥Σ∥2

∥Σ∥min
C. Under Assumptions 1, 2 and 3, if

the inequality condition D′ > 2C ′ + 2
√
q holds, then, for any sample yj = Bk,0xj + ϵj from

sub-distribution Y = Bk,0X + ϵ, the probability that this sample is correctly clustered could be
bounded by:

P (uj,0 ̸= π(k)) ≤ (K − 1){
C ′ + 2

√
q

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
√
q
))

1
2

+(
C ′ + 2

√
q

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
√
q
))

1
2 )q + e

1
2 (

C ′ + 2
√
q

D′ − C ′ )(1 + 2 log(
D′ − C ′

C ′ + 2
√
q
))

1
2 }

Theorem 3.2 gives an upper bound on the probability that each sample is incorrectly clustered.
This upper bound tends to 0 at a rate of Op

(
D−1(logD)1/2

)
when the degree of separation D of

the regression matrices of different sub-models tends to infinity. Through the precise guarantee on
the accuracy of sample classification provided by Theorem 3.2, when D is large, we can obtain a
more precise upper bound guarantee on the error of estimating the true parameter θ using the global
minimum θ∗ than Lemma 3.1. In fact, in Theorem 3.3, we proved that when D tends to infinity, the
estimation error max1≤k≤K ∥Bk,0 −B∗

k∥F decreases at the rate Op

(
D− 1

2 (logD)1/4
)

Theorem 3.3. Denoting D′ =

√
∥Σ∥min

σ D and C ′ =
√

∥Σ∥2

∥Σ∥min
C. Under Assumptions 1, 2 and 3, if

the inequality conditions D′ > 2C ′+2 and (K−1)(1+ e
1
2 ) C′+2

D′−C′ (1+2 log(D
′−C′

C′+2 ))
1
2 ≤ 1 holds

and estimator θ∗ = (B∗
1 , B

∗
2 , · · · , B∗

K) minimize the EX,Y m(X,Y, θ), then there is a constant CD,
for any 1 ≤ k ≤ K, there exist a π(k) satisfies

∥Bk,0 −B∗
π(k)∥F ≤ CD

σ√
∥Σ∥min

for any 1 ≤ k ≤ K, where
CD=

√
3e

1−P (K−1)
{(K−1)

√
2
π e−

1
2 C′+2

D′−C′

+

√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))}

with

P = (1 + e
1
2 )

C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

and C ′ = C
√

∥Σ∥2

∥Σ∥min
=
√

∥Σ∥2

∥Σ∥min
K
√
3e{(K − 1)

√
2
π +

√
1
c
2
π (K − 1)2 + 1

c2(K − 1)
√

2
π}.

In summary, our analysis provides rigorous theoretical guarantees for the proposed framework by
analyzing its properties at both the population and finite-sample levels. Our primary theoretical con-
tribution is to establish that the population minimizer of our objective function, θ∗, which represents
the asymptotic properties of θ̂, is a consistent proxy for the true parameter θ0. We show that the
asymptotic bias between θ∗ and θ0 is primarily governed by the separation distance D, the bias, and
the rate of misclassification decreasing as D increases. This relationship is further influenced by the
signal-to-noise ratio, where the bias is amplified by higher noise levels (σ) but reduced by a stronger
signal structure (characterized by the spectral properties of Σ). For completeness, we provide a de-
tailed analysis of the finite-sample error between θ̂ and θ0 in Appendix B. Collectively, these results
guarantee the reliability of our method by showing that its theoretical target is provably close to the
ground truth.
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3.3 THEOREMS ABOUT ALGORITHM CONVERGENCE

In Subsection 3.2, we analyze the global minimum point θ∗ = (B∗
1 , B

∗
2 , . . . , B

∗
K) and investigate the

statistical properties of this estimator to recover the true regression function and the true category
labels. However, both the point-wise objective function m(X,Y, θ) = min1≤k≤K ∥Y − XBk∥22
and its expectation are nonconvex. As a result, conventional K-means algorithms are generally un-
able to guarantee convergence to the global minimum. This section establishes that the proposed
Gibbs sampling with simulated annealing K-means clustering Algorithm (Algorithm 1) con-
verges provably to the global minimum of

∑n
i=1 m(xi, yi, θ) at a rate slightly slower than a power

function. These convergence results underline the algorithmic advantage of incorporating stochastic
sampling and annealing mechanisms to overcome the limitations of classical non-convex optimiza-
tion in clustering contexts.

Theorem 3.4. We denote Û (t) = (u
(t)
1 , · · · , u(t)

n ) and θ̂ = (B̂
(t)
1 , · · · , B̂(t)

n ) as the estimation
result of t-th iteration of Algorithm 1. If θ̂ is the global minimum of the function

∑n
i=1 m(xi, yi, θ),

Û = (û1, · · · , ûn) is the category estimate generated by θ̂. If Assumption 1 holds and T(1) ≤ T(2)

satisfies T(1)(log t)
α ≤ Tt ≤ T(2)(log t)

α for 0 < α < 1, then there is a permutation π such that
for any δ > 0,

P (û
(t)
i = π(ûi)) ≥ 1− C∗ exp(−C∗∗(log t)α),

P (∥B̂(t)
k − B̂π(k)∥F < δ) ≥ 1− C∗

δ exp(−C∗∗
δ (log t)α),

where C∗ , C∗∗ > 0 are not related to t or δ, and C∗
δ , C∗∗

δ > 0 are not related to t.

Theorem 3.4 establishes that the probability of convergence of our Gibbs sampling with simulated
annealing K-means clustering Algorithm (Algorithm 1) to a neighborhood of the global minimum
of the WCSS function J(θ,U) increases to 1 with the number of iterations. This result indicates that
the algorithm converges with high probability and at a rapid rate to the WCSS minimum while
remaining robust to initial conditions. Building on the theoretical framework developed in Section
3.2, these convergence guarantees imply that the algorithm produces estimates consistent with the
true regression function and produces highly accurate predictions as well as classifications with high
probabilities. In particular, these assurances hold for multivariate linear regression problems without
reliance on overly restrictive assumptions.

4 SIMULATION STUDIES

4.1 SIMULATION SETUP

This section presents a comprehensive empirical evaluation of the proposed Gibbs sampling with
simulated annealing K-means clustering Algorithm (GIBBS-SA K-MEANS, or GSAKM) for
multivariate linear regression, as formalized in Algorithm 1. Upon completing the iterative opti-
mization procedure described in Algorithm 1, we lower the temperature Tt to 0 for the final polish-
ing. To mitigate convergence to local optima and improve the quality of the solution, we performed
10 independent optimization trials with random initializations under all experimental conditions.
Throughout our experiments, the annealing parameter α is maintained at 0.99, a value empirically
calibrated to strike a balance between exploration and exploitation during the optimization process.

To improve convergence probability and reduce the number of iterations required, we adopt a tem-
perature scheduling scheme defined by Tt = T (log(t0 + t) − t1)

−α, where t0, t1 are parameters
introduced to prevent an excessively rapid decrease in temperature during initial iterations. In par-
ticular, T is not kept constant, but is instead dynamically scaled in proportion to the minimum value
of
∑n

i=1 m(xi, yi, θ) observed in all iterations. Since
∑n

i=1 m(xi, yi, θ) has a global minimum, the
decay rate of our temperature Tt remains consistent with the conditions specified in Theorem 3.4.
Specifically in our simulation studies, denoting θ̂(s) as the estimate parameter of t-th iteration, we
set T = K

np−Kpq min1≤s≤t

∑n
i=1 m(xi, yi, θ̂

(s)), κ = 0.01, t0 = 2 exp(4) and t1 = 3 + log(2)

To establish comparative baselines, we evaluate our proposed methodology (Algorithm 1) against
three established approaches: standard Expectation-Maximization (SEM), a variant of EM that as-
sumes a known error variance σ2 (SEMK), and standard K-Means clustering (SKM). Our simulation
framework generates data from the Gaussian mixture model specified in Equation equation 1 with

7
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a fixed sample size of n = 500. The covariate vectors xi ∈ Rp are sampled from N (0,Σ), where
Σ has an autoregressive covariance structure with Σij = 0.3|i−j|. The error terms are extracted
independently from ϵi ∼ N (0, Iq) (with σ = 1), and the response variables yi are subsequently
derived from the mixture model.

The experimental design systematically evaluates performance across multiple dimensions of prob-
lem complexity. We test both three-cluster (K = K = 3) systems with predictor dimensions of
p ∈ {50, 70} and four-cluster (K = K = 4) systems with p ∈ {35, 50}. For each of these (K, p)
pairs, we further vary the response dimensionality to include the q ∈ {2, 3} variables. For each
resulting combination, we then evaluate the cases with regression dimensions of D ∈ {20, 40}.
This complete factorial design yields a total of 2× 2× 2× 2 = 16 unique experimental conditions.
All four algorithms —-SEM, SEMK, SKM, and GSAKM —- undergo a rigorous evaluation under
each parameter configuration, enabling a comprehensive assessment of their relative performance
advantages across these varying complexities.

4.2 SIMULATION RESULTS

To evaluate prediction methods in multivariate linear regression with mixture models, we em-
ploy two metrics: estimation error and classification accuracy. The estimation error is defined as
minπ∈SK

max1≤k≤K ∥B̂π(k)−Bk,0∥F , where SK denotes the symmetric group of all permutations
of {1, 2, · · · ,K}. This permutation minimization accounts for label switching, ensuring invariance
to class relabeling. Notice that this definition remains valid regardless of whether the conditions
in Theorems in Subsection 3.2 hold, eliminating the lower bound assumptions about D in numeri-
cal experiments. The classification accuracy is 1

n

∑n
i=1 I(ûi = π(ui,0)). The predicted label ûi is

determined by ûi = argmin1≤k≤K ∥yi − xiB̂k∥2.

Beyond estimating the regression parameter θ̂ and assigning group memberships {ûi}1≤i≤n from
the training data to compute prediction and classification errors, we perform additional validation
using an independently generated testing set. This test dataset, simulated from the same model with
an identical sample size (n = 500), allows for the calculation of the out-of-sample classification
error. For both training and testing datasets, we further evaluated performance using WCSS, which
is denoted by J(θ̂, Û) =

∑n
i=1 m(xi, yi, θ̂).

This paper proposes a novel algorithm, combining Gibbs sampling with simulated annealing K-
means, for the estimation of the mixture of multivariate linear regression models. We provide a
comprehensive theoretical analysis that establishes that, under mild assumptions and sufficient sep-
aration (D) between the true regression matrices, the global minimizer of the objective function
is a consistent estimator. Specifically, we prove that both the parameter estimation error and the
misclassification rate converge to zero as D increases. Algorithmically, we show that our method
converges to this global minimum with high probability under a slow logarithmic cooling schedule
with an exponent α < 1.

The efficacy of our approach and its theoretical guarantees are validated through extensive exper-
iments on both synthetic and real-world datasets. Although our theory is presented for standard
errors, the framework is flexible enough to accommodate other distributions. Promising directions
for future work include extending this analysis to more general parametric families, such as gener-
alized linear models (GLMs), or to models based on soft component assignments.

5 DISCUSSION

This paper studies a mixed multivariate linear regression model using a Gibbs sampling-enhanced
simulated annealing K-means clustering algorithm. We establish that, under mild assumptions, in
both asymptotic and non-asymptotic (finite-sample) regimes, the global minimizer of the K-means
objective accurately recovers the true regression matrix in finite samples and assigns observations
to their true categories with high probability. Moreover, as the separation D between different
regression matrices increases, the parameter estimation error converges asymptotically to zero, and
the misclassification rate decays asymptotically to zero. Algorithmically, we prove that under a
logarithmic cooling schedule with exponent α < 1, the probability of converging to the global
minimum behaves as (log t)−α. Although the theory assumes standard errors, the framework is

8
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 1: The box-plot of estimation errors of four different estimation methods under 16 parameter
conditions.

flexible and can accommodate other distributions. Empirical results, based on both synthetic and
real data, support our theoretical claims. Future work could extend our analysis to more general
parametric families, such as Generalized Linear Models (GLMs), or develop estimation methods
for models where observations arise from soft assignments or linear combinations of the underlying
components.
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This work adheres to the ICLR Code of Ethics. As a foundational and theoretical study validated on
synthetic data, it presents no direct ethical risks involving human subjects or sensitive information.
However, we encourage careful consideration of fairness and bias in any real-world application of
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provided in the supplementary material.

Code The implementation of our experiments was carried out in R (version 4.4.3). To guarantee
a fully reproducible software environment, we have utilized the renv package. The exact versions
of all R packages are captured in the renv.lock file. Detailed setup instructions are available
in the README.md file included in our submission. The main simulation logic can be found in
simulate study program.R, with five figures generation scripts located in the leading direc-
tory.

Data All datasets analyzed in this work were generated by simulation. The code for this data gen-
eration process is an integral part of the main simulation script (simulate study program.R),
enabling the complete end-to-end replication of our results, from data creation to final analysis.
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A THE PROOF OF THE THEOREM GIVEN IN THE PAPER

A.1 PROOF OF LEMMA 3.1

Proof. For any fix X ,we define Y ∗
k = XB∗

k for 1 ≤ k ≤ K and Yk = XBk,0 for 1 ≤ k ≤ K then
E(X,Y ) [m(X,Y, θ∗)] = EX(EY min1≤k′≤K ∥Y − Y ∗

k′∥22). Here Y follows a mixture Gaussian
model, for probability pk, Y ∼ N(Yk, σ

2Iq). So we have EX(EY min1≤k′≤K ∥Y − Y ∗
k′∥22) =

EX(
∑n

k=1 pkEY∼N(Yk,σ2Iq) min1≤k′≤K ∥Y −Y ∗
k′∥22). Because X is not related to the mixing ratio.

We have EX(EY min1≤k′≤K ∥Y −Y ∗
k′∥22) =

∑n
k=1 pkEX(EY∼N(Yk,σ2Iq) min1≤k′≤K ∥Y −Y ∗

k′∥22)

We let tk = min{∥Y ∗
k′ − Yk∥2, 1 ≤ k′ ≤ K}. It may be worthwhile to let tk = ∥Y ∗

1 − Yk∥2. Then
if Y ∼ N(Yk, σ

2Iq), we have:

EY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Y ∗
k′∥22

= EY∼N(Yk,σ2Iq) min
2≤k′≤K

(min(∥Y − Y ∗
1 ∥22, ∥Y − Y ∗

k′∥22)

= EY∼N(Yk,σ2Iq) min
2≤k′≤K

(∥Y − Y ∗
1 ∥22 −max{0, ∥Y − Y ∗

1 ∥22 − ∥Y − Y ∗
k′∥22})
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≥ EY∼N(Yk,σ2Iq)(∥Y − Y ∗
1 ∥22 −

K∑
k′=2

max{0, ∥Y − Y ∗
1 ∥22 − ∥Y − Y ∗

k′∥22})

Notice that ∥Y − Y ∗
1 ∥22 − ∥Y − Y ∗

k′∥22 = 2 < Y ∗
k′ − Y ∗

1 , Y − 1
2 (Y

∗
1 + Y ∗

k′) >.We let t′k =

∥Yk′ −Yk∥2.Then EY∼N(Yk,σ2Iq) max{0, 2 < Y ∗
k′ −Y ∗

1 , Y − 1
2 (Y

∗
1 +Y ∗

k′) >} ≤ Ey∼N(0,σ)2(tk +

t′k)max{0, y − t′k−tk
2 }

By calculation, we have

Ey∼N(0,σ) max{0, y − t′k − tk
2
} =∫ +∞

t=
t′
k
−tk
2

1√
2πσ

(t− t′k − tk
2

)e−
t2

2σ2 dt

≤
∫ +∞

t=
t′
k
−tk
2

1√
2πσ

te−
t2

2σ2 dt

=
σ√
2π

e−
a2

2σ2

Where a =
t′k−tk

2 Because of t′k ≥ tk, we have a ≥ 0, and Ey∼N(0,σ)2(tk + t′k)max{0, y −
t′k−tk

2 } = 2(tk + t′k)
σ√
2π

e
−a2

2σ2 = 4 σ√
2π

(tk + a)e−
a2

2σ2

When a =
−tk+
√

t2k+4σ2

2 , the 4 σ√
2π

(tk + a)e−
a2

2σ2 take it’s maximin, which equals to 2 σ√
2π

(tk +√
t2k + 4σ2)e−

(−tk+
√

t2
k
+4σ2)2

8σ2 .It is easy to proof this maximum is smaller than 4σ√
2π

(tk + σ)

In summary, we have:
EY∼N(Yk,σ2Iq) min

1≤k′≤K
∥Y − Y ∗

k′∥22

≥ EY∼N(Yk,σ2Iq)(∥Y − Y ∗
1 ∥22 −

K∑
k′=2

max{0, ∥Y − Y ∗
1 ∥22 − ∥Y − Y ∗

k′∥22})

≥ qσ2 + t2k − (K − 1)
4σ√
2π

tk − (K − 1)
4σ2

√
2π

So in mixed distribution, we have:
n∑

k=1

pkEY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Y ∗
k′∥22

≥ qσ2 +

n∑
k=1

pk(t
2
k − (K − 1)

4σ√
2π

tk − (K − 1)
4σ2

√
2π

)

Now consider the variable of X , tk = min{∥Y ∗
k′ − Yk∥2, 1 ≤ k′ ≤ K} = min{∥XB∗

k′ −
XBk,0∥2, 1 ≤ k′ ≤ K} vary with X . So, it is easy to prove, based on the Jensen inequality, that:

qσ2 +

n∑
k=1

pk(t
2
k − (K − 1)

4σ√
2π

tk − (K − 1)
4σ2

√
2π

)

≥ qσ2 +

n∑
k=1

pk(EX(t2k)− (K − 1)
4σ√
2π

√
EX(t2k)− (K − 1)

4σ2

√
2π

)

Now we give an upper bound of EX(t2k) by rewrite ∥XB∗
k′−XBk,0∥22 =

∑p
i=1 aiξ

2
i where ai is the

ith eigenvalue of matrix (B∗
k′ −Bk,0)

⊤Σ(B∗
k′ −Bk,0) for 1 ≤ i ≤ p,ξ1, ξ2, · · · , ξp are independent

standard normal distributed random variables. For any λ > 0 and µ > 0 we have:
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P (

p∑
i=1

aiξ
2
i ≤ λ) = P (e−µ

∑p
i=1 aiξ

2
i ≥ e−µλ)

≤ eµλEe−µ
∑p

i=1 aiξ
2
i

≤ eµλ
p∏

i=1

Ee−µaiξ
2
i = eµλ

p∏
i=1

(1 + 2µai)
− 1

2 ≤ eµλ(1 + 2µ

p∑
i=1

ai)
− 1

2

We take µ = 1
2 (

1
λ −

1∑p
i=1 ai

) when λ <
∑p

i=1 ai, we have P (∥XB∗
k′ − XBk,0∥22 ≤ λ) ≤√

λ∑p
i=1 ai

e
1
2 (1−

λ∑p
i=1

ai
)
≤
√

eλ∑p
i=1 ai

Notice that If ∥B∗
k′ − Bk,0∥F = Fk′,k, we have

∑p
i=1 ai = tr((B∗

k′ − Bk,0)
⊤Σ(B∗

k′ − Bk,0)) =
tr(Σ(B∗

k′ −Bk,0)(B
∗
k′ −Bk,0)

⊤) ≤ ∥Σ∥minF
2
k′,k

If π(k) let Fπ(k),k is the minimum of Fk′,k when 1 ≤ k′ ≤ K, we have P (t2k ≤
λ) = P (min1≤k′≤K ∥XB∗

k′ − XBk,0∥22 ≤ λ) ≤ K
√

eλ
∥Σ∥minF 2

π(k),k

,so we have E(t2k) ≥∫ ∥Σ∥minF2
π(k),k

eK2

λ=0 (1−K
√

eλ
∥Σ∥minF 2

π(k),k

)dλ =
∥Σ∥minF

2
π(k),k

3eK2

So, if for any 1 ≤ k ≤ K,

Fπ(k),k >
σK
√
3e√

∥Σ∥min

{(K − 1)

√
2

π
+

√
1

c

2

π
(K − 1)2 +

1

c
2(K − 1)

√
2

π
}.

Then we have

EY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Y ∗
k′∥22

> σ2(q +
2

π

1− c

c
(K − 1)2 + 2

√
2

π

1− c

c
(K − 1))

so
K∑

k=1

pkEY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Y ∗
k′∥22

>

K∑
k=1

σ2(q + pk
2

π

1− c

c
(K − 1)2 + 2pk

√
2

π

1− c

c
(K − 1)

−(1− pk)
2

π
(K − 1)2 − (1− pk)

4√
2π

(K − 1)) ≥ qσ2

It is easy to prove when B∗
k′ = Bk,0 for k′ ≤ K, EY∼N(Yk,σ2Iq) min1≤k′≤K ∥Y − Y ∗

k′∥22 ≤ qσ2,
so if the θ∗ minimize the E(X,Y ) [m(X,Y, θ∗)], there exist a π(k) satisfy: ∥Bk,0 − B∗

π(k)∥F ≤

σK
√
3e√

∥Σ∥min

{(K − 1)
√

2
π +

√
1
c
2
π (K − 1)2 + 1

c2(K − 1)
√

2
π} for any k

A.2 PROOF OF THEOREM 3.2

Proof. Let’s assume that under the best matching, π(k) = k Using the conclusion of Lemma 3.1,
we have ∥Bk,0 − B∗

k∥F < C σ√
∥Σ∥min

= C ′ σ√
∥Σ∥2

. The conditions of D tell us for any i ̸= k,

∥Bk,0 −B∗
i ∥F > (D′ − C ′) σ√

∥Σ∥min

.

If D′ > 2C ′, it is easy to see that for any i ̸= k, ∥Bk,0 −B∗
i ∥F > ∥Bk,0 −B∗

k∥F .
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Then, if the sample yj = Bk,0xj + ϵj is from the sub-distribution Y = Bk,0X + ϵ, then if u∗
j = i,

it means ∥yj −B∗
i xj∥2 < ∥yj −B∗

kxj∥2, so ∥ϵj + (Bk,0 −B∗
i )xj∥2 < ∥ϵj + (Bk,0 −B∗

k)xj∥2.

On the other hand, because of ∥Bk,0−B∗
i ∥F > (D′−C ′) σ√

∥Σ∥min

and ∥Bk,0−B∗
k∥F < C ′ σ√

∥Σ∥2

,

using the tail bound of chi-square distribution we have use in the proof of theorem 3.1, we have:

P
(
∥(Bk,0 −B∗

i )xj∥22 < (D′ − C ′)2σ2 − λ
)
≤ e

1
2

λ
(D′−C′)2σ2 (1− λ

(D′ − C ′)2σ2
)

1
2

and
P
(
∥(Bk,0 −B∗

k)xj∥22 > C ′2σ2 + λ
)
≤ e−

1
2

λ
C′2σ2 (1 +

λ

C ′2σ2
)

1
2

satisfy for any λ > 0

And for error term ϵj ,beacuse ϵj ∼ N(0, σIq), it is clear that ∥ϵj∥2
2

σ2 ∼ χ2(q), so the tail bound of
∥ϵj∥22 is:

P
(
∥ϵj∥22 > qσ2 + λ

)
≤ (1 +

λ

qσ2
)

q
2 e−

λ
2σ2

Notice that, if ∥(Bk,0−B∗
i )xj∥2−∥(Bk,0−B∗

k)xj∥2 ≥ 2∥ϵj∥2, then ∥yj−B∗
i xj∥2 ≥ ∥yj−B∗

kxj∥2,
which means u∗

j ̸= i. So, we have for any i ̸= k

P(u∗
i = i) ≤ P(∥(Bk,0 −B∗

i )xj∥2 − ∥(Bk,0 −B∗
k)xj∥2 < 2∥ϵj∥2)

≤ P
(
∥(Bk,0 −B∗

k)xj∥22 > C ′2σ2 + 2C ′2σ2 log(
D′ − C ′

C ′ + 2
√
q
)

)
+P
(
∥ϵj∥22 > qσ2 + 2qσ2 log(

D′ − C ′

C ′ + 2
√
q
)

)
+P
(
∥(Bk,0 −B∗

i )xj∥22 < (C ′ + 2
√
q)2(1 + 2 log(

D′ − C ′

C ′ + 2
√
q
))σ2

)
≤

C ′ + 2
√
q

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
√
q
))

1
2 + (

C ′ + 2
√
q

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
√
q
))

1
2 )q

+e
1
2 (

C ′ + 2
√
q

D′ − C ′ )(1 + 2 log(
D′ − C ′

C ′ + 2
√
q
))

1
2

A.3 PROOF OF THEOREM 3.3

Proof. The condition we have is min1≤i<j≤k ∥Bi,0−Bj,0∥F = D = D′ σ√
∥Σ∥min

, ∥Bk,0−B∗
k∥F =

max1≤k≤K ∥Bk,0 −B∗
k∥F ≤ C σ√

∥Σ∥min

= C ′ σ√
∥Σ∥2

and D′ > 2C ′ + 2.

Then, we use the definition in the proof of Lemma 3.1, denote Y ∗
k = XB∗

k and Yk = XBk,0 for
1 ≤ k ≤ K, tk = min1≤k′≤K ∥Yk − Y ∗

k′∥2 for ‘ X . With the condition we have, for any k′ ̸= k we
can proof:

P
(
∥Yk′ − Y ∗

k ∥2 − ∥Yk − Y ∗
k ∥2 < 2σ(1 + 2 log(

D′ − C ′

C ′ + 2
))

1
2

)
= P

(
∥X(Bk,0 −B∗

k′)∥2 − ∥X(Bk,0 −B∗
k)∥2 < 2σ(1 + 2 log(

D′ − C ′

C ′ + 2
))

1
2

)
≤ P

(
∥X(Bk,0 −B∗

k)∥22 > C ′2σ2(1 + 2 log(
D′ − C ′

C ′ + 2
))

)
+P
(
∥X(Bk,0 −B∗

k′)∥22 < (C ′ + 2)2σ2(1 + 2 log(
D′ − C ′

C ′ + 2
))

)

14
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≤ C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2 + e

1
2
C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

= (1 + e
1
2 )

C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

So, the probability of tk = ∥Yk −Y ∗
k ∥2 could be bound, and for any k′ ̸= k, t′k = ∥Yk −Y ∗

k′∥2, a =
t′k−tk

2 we have:

P
(
tk = ∥Yk − Y ∗

k ∥2, and a > σ(1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2 for any k′ ̸= k

)
≥ 1− (K − 1)(1 + e

1
2 )

C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

We denote P = (1+ e
1
2 ) C′+2

D′−C′ (1+2 log(D
′−C′

C′+2 ))
1
2 and reuse the conclusion obtained in the proof

of Lemma 3.1. The global minimum of EX,Y (X,Y, θ) satisfy:

EX,Y (X,Y, θ∗)

= EX

K∑
k=1

pkEY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Y ∗
k′∥22

≥ EX

K∑
k=1

pkEY∼N(Yk,σ2Iq)(∥Y − Y ∗
k ∥22 −

∑
k′ ̸=k

max{0, ∥Y − Y ∗
k ∥22 − ∥Y − Y ∗

k′∥22})

≥ EX

K∑
k=1

pk(qσ
2 + t2k − 4(K − 1)

σ√
2π

(tk + a)e−
a2

2σ2 )

For any k, for at most probability (K − 1)P , tk ̸= ∥Yk − Y ∗
k ∥2 or a ≤ σ(1 + 2 log(D

′−C′

C′+2 ))
1
2 , so

t2k − 4(K − 1) σ√
2π

(tk + a)e−
a2

2σ2 ≥ t2k − 4 σ√
2π

(K − 1)tk − 4 σ2
√
2π

(K − 1) ≥ − 2σ2

π (K − 1)2 −

σ2
√

2
π (K− 1). Otherwise, we have tk = ∥Yk−Y ∗

k ∥2 and a > σ(1+2 log(D
′−C′

C′+2 ))
1
2 , In this case,

we have:
t2k − 4(K − 1)

σ√
2π

(tk + a)e−
a2

2σ2

≥ t2k − 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′ tk − 4(K − 1)
σ2

√
2π

e−
1
2
C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

= t2k − 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′ tk − 4(K − 1)
σ2

√
2π

e−
1
2

1 + e−
1
2

P

Using Jensen Inequality, under the condition of tk = ∥Yk − Y ∗
k ∥2 and a > σ(1 + 2 log(D

′−C′

C′+2 ))
1
2 ,

we have

EX [t2k − 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′ tk − 4(K − 1)
σ√
2π

e−
1
2

1 + e−
1
2

P ]

≥ E(t2k)− 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′EX(tk)− 4(K − 1)
σ2

√
2π

e−
1
2

1 + e−
1
2

P

≥ E(t2k)− 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′

√
E(t2k)− 4(K − 1)

σ2

√
2π

e−
1
2

1 + e−
1
2

P

On the other hand, we have proof P(∥Yk − Y ∗
k ∥22 ≤ λ) ≤

√
eλ

∥Σ∥min∥B∗
k−Bk,0∥2

2
in the proof of

Lemma 3.1, and we know for at least probably 1− (K − 1)P , the condition tk = ∥Yk − Y ∗
k ∥2 and

a > σ(1 + 2 log(D
′−C′

C′+2 ))
1
2 holds. So, under this condition, we denote Fk,k = ∥B∗

k − Bk,0∥2, it is
easy to see if (K − 1)P < 1 we have:

E(t2k) ≥
1

1− P (K − 1)

∫ (1−P (K−1))2∥Σ∥minF2
k,k

e

λ=0

(1− P (K − 1)−
√

eλ

∥Σ∥minF 2
k,k

)dλ
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=
(1− P (K − 1))2∥Σ∥minF

2
k,k

3e

Thus for k-th sub distribution, we have for probably at most P (K − 1), t2k − 4(K − 1) σ√
2π

(tk +

a)e−
a2

2σ2 ≥ − 2σ2

π (K − 1)2 − σ2
√

2
π (K − 1) and for at least probably 1 − P (K − 1), we de-

note T = (1 − P (K − 1))Fk,k

√
∥Σ∥min

3e ,the t2k − 4(K − 1) σ√
2π

(tk + a)e−
a2

2σ2 ≥ T 2 − 4(K −

1) σ√
2π

e−
1
2

C′+2
D′−C′T − 4(K − 1) σ2

√
2π

e−
1
2

1+e−
1
2
P if T ≥ 2(K − 1) σ√

2π
e−

1
2

C′+2
D′−C′ . Then we get the

lower bound of EY∼N(Yk,σ2Iq) min1≤k′≤K ∥Y − Y ∗
k′∥22:

EY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Y ∗
k′∥22

≥ qσ2 + t2k − 4(K − 1)
σ√
2π

(tk + a)e−
a2

2σ2

≥ qσ2 − P (K − 1)

(
2σ2

π
(K − 1)2 + 2σ2

√
2

π
(K − 1)

)

+(1− P (K − 1))

(
T 2 − 4(K − 1)

σ√
2π

e−
1
2
C ′ + 2

D′ − C ′T − 4(K − 1)
σ2

√
2π

e−
1
2

1 + e−
1
2

P

)

Notice that this bound holds for any 1 ≤ k ≤ K, So if for any k, T>σ{(K−1)
√

2
π e−

1
2 C′+2

D′−C′ +√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))}, similar to the proof

of theorem 3.1, we have EX,Y,θ∗m(X,Y, θ∗) =
∑K

k=1 pkEY∼N(Yk,σ2Iq) min1≤k′≤K ∥Y −Y ∗
k′∥22 >

qσ2

So, if θ∗ is the global minimum of EX,Y,θm(X,Y, θ), we have for any 1 ≤ k ≤ K, T≤σ{(K−

1)
√

2
π e−

1
2 C′+2

D′−C′ +

√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))},

which means Fk,k≤ σ
1−P (K−1)

√
3e

∥Σ∥min
{(K−1)

√
2
π e−

1
2 C′+2

D′−C′

+

√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))}

A.4 PROOF OF THEOREM 3.4

Proof. Any one-step Gibbs sampling included in our algorithm 1 contains a sample step of
θ̂ and a sample step of Û . In iteration t, we have: vec(B̂

(t)
k ) ∼ N(vec((XU⊤

k XU
k +

Tt

2κIp)
−1XU⊤

k Y U
k ), Tt

2 (Iq ⊗ XU⊤
k XU

k + Tt

2κIp×q)
−1) where XU

k is the matrix whose rows are all
xi|û(t)

i = k, Y U
k is the matrix whose rows are all yi|û(t)

i = k and Û (t) = (û
(t)
1 , · · · , û(t)

n ) is the
result of the clustering of iterations t. Then the result of the clustering of iterations t is generated

by: p(û(t+1)
j = k) ∝ exp(−∥yj−xjB̂

(t)
k ∥2

2

Tt
) for any 1 ≤ j ≤ n

Notice that for any 1 ≤ j ≤ n and t ≥ 1, Û (t)
j have only K different values to take. Therefore, the

number of states that Û (t) can take is finite. Based on the properties of Gibbs sampling, it is easy to
see that Û (t) itself can be regarded as a discrete-time Markov chain in finite state space S, and the
transition probability can be written as:

P (Û (t+1) = U2|Û (t) = U1)

=

∫
θ

P (Û (t+1) = U2|θ̂(t) = θ)p(θ̂(t) = θ|Û (t) = U1)dθ
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=

∫
θ

(
E(θ,U2, Tt)∑
U∈S E(θ,U , Tt)

)(
E(θ,U1, Tt)∫

θ̃
E(θ̃,U1, Tt)dθ̃

)

= (

∫
θ̃

E(θ̃,U1, Tt)dθ̃)
−1(

∫
θ

E(θ,U2, Tt)E(θ,U1, Tt)∑
U∈S E(θ,U , Tt)

dθ)

The equivalent above tells us that the transition matrix of Û (t) at each step is the transition matrix
of an invertible Markov chain. Furthermore, the transition probability between any two states is
nonzero for any t. So, the distribution:

P (Û (t) = U) ∝
∫
θ̃

E(θ̃,U , Tt)dθ̃

=

K∏
k=1

(πTt)
pq
2 det |XU⊤

k XU
k +

Tt

2κ
Ip|−

q
2 exp

(
−
tr(Y U⊤

k Y U
k − Y U⊤

k XU
k (X

U⊤
k XU

k + Tt

2κIp)
−1)XU⊤

k Y U
k )

Tt

)
is the stationary distribution of the transition probability matrix of iteration t.Π(t)

To further advance the proof, we use Ψ(t) denote the distribution of Û (t), Π(t) to denote the sta-
tionary distribution corresponding to the transition probability matrix from Û (t) to Û (t+1). γ(t)

γ(t) is the spectral gap of the transition probability matrix. Thus, we have ∥Ψ(t+1) − Π(t)∥TV ≤
(1− γ(t))∥Ψ(t) − Π(t)∥TV . According to Aldous’ inequality (Aldous, 2006; Levin & Peres, 2017)
we have:

γ(t) ≥ 1

2maxU1,U2 EτU1,U2

≥ minU1,U2
P (Û (t+1)

1 = Û (t+1)
2 |Û (t)

1 = U1, Û (t)
2 = U2)

2

≥
minU1,U2

∑
U∈S P (U (t+1) = U|U (t) = U2)P (U (t+1) = U|U (t) = U1)

2

≥ minU1,U2 P (U (t+1) = U2|U (t) = U1)
2

For any U1,U2 ∈ S, P (U (t+1) = U2|U (t) = U1) can be written as
(
∫
θ̃
E(θ̃,U1, Tt)dθ̃)

−1(
∫
θ

E(θ,U2,Tt)E(θ,U1,Tt)∑
U∈S E(θ,U,Tt)

dθ) it is obvious that E(θ,U , Tt) ≤∏K
k=1 exp(−

∥B̂k∥2
2

2κ ) so we can prove that there is constant E∗ and E∗∗ which do not relate
to t and T , equivalently.

(

∫
θ̃

E(θ̃,U1, Tt)dθ̃)
−1(

∫
θ

E(θ,U2, Tt)E(θ,U1, Tt)∑
U∈S E(θ,U , Tt)

dθ)

≥ E∗
∫
θ

E(θ,U2, Tt)E(θ,U1, Tt)dθ ≥ E∗ exp(−E∗∗

Tt
)

holds for any U1,U2.

So we have proved the spectral gap γ(t) ≥ E∗

2 exp(−E∗∗

Tt
) ≥ E∗

2 exp(−E∗∗

T(1)
(log t)α), then we have

∥Ψ(t+1)−Π(t+1)∥TV ≤ ∥Ψ(t+1)−Π(t)∥TV +∥Π(t)−Π(t+1)∥TV ≤ (1−γ(t))∥Ψ(t)−Π(t)∥TV +
∥Π(t) −Π(t+1)∥TV

Because in distribution Π(t), we have:

P (Û (t) = U) ∝
K∏

k=1

(πTt)
pq
2 det |XU⊤

k XU
k +

Tt

2κ
Ip|−

q
2

exp

(
−
tr(Y U⊤

k Y U
k − Y U⊤

k XU
k (X

U⊤
k XU

k + Tt

2κIp)
−1)XU⊤

k Y U
k )

Tt

)

So there is constant E∗∗∗ > 0, letting | log( P (Û(t)=U)

P (Û(t+1)=U)
)| ≤ E∗∗∗| 1Tt

− 1
Tt+1
| ≤ E∗∗∗

T1

α(log(t))α−1

t
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So,

∥Π(t) −Π(t+1)∥TV ≤
∑

U∈S,P (Û(t)=U)>P (Û(t+1)=U)

(P (Û (t) = U)− P (Û (t+1) = U))

≤ (1− exp(−E∗∗∗

T(1)

α(log(t))α−1

t
))

∑
U∈S,P (Û(t)=U)>P (Û(t+1)=U)

P (Û (t) = U)

≤ (1− exp(−E∗∗∗

T(1)

α(log(t))α−1

t
)) ≤ E∗∗∗

T(1)

α(log(t))α−1

t

So we have

∥Ψ(t+1) −Π(t+1)∥TV ≤ (1− γ(t))∥Ψ(t) −Π(t)∥TV + ∥Π(t) −Π(t+1)∥TV

≤ (1− E∗

2
exp(−E∗∗

T(1)
(log t)α))∥Ψ(t) −Π(t)∥TV +

E∗∗∗

T(1)

α(log(t))α−1

t

If there is a constant E let ∥Ψ(t) −Π(t)∥TV ≤ E exp(−E∗∗

T(1)
(log t)α), then

∥Ψ(t+1) −Π(t+1)∥TV ≤ (1− E∗

2
exp(−E∗∗

T(1)
(log t)α))E exp(−E∗∗

T(1)
(log t)α) +

α(log(t))α−1

t

≤ E exp(−E∗∗

T(1)
log(t+ 1)α)

−
(
EE∗∗

2
exp(−2E∗∗

T(1)
(log t)α)− E exp(−E∗∗

T(1)
log(t+ 1)α)

α(log(t))α−1

t
− E∗∗∗

T(1)

α(log(t))α−1

t

)
When E and t are sufficiently large, EE∗∗

2 exp(− 2E∗∗

T(1)
(log t)α) − E exp(−E∗∗

T(1)
log(t +

1)α)α(log(t))
α−1

t − E∗∗∗

T(1)

α(log(t))α−1

t > 0, so we have ∥Ψ(t+1) − Π(t+1)∥TV ≤
E exp(−E∗∗

T(1)
(log t)α), so according to the principle of induction, we can prove that there exists

E:

∥Ψ(t) −Π(t)∥TV ≤ E exp(−E∗∗

T(1)
(log t)α)

holds for any t.

Now we can analysis the Π(t), According to Assumption 1 and the properties of the distribution
of Π(t). If we denote E(t)U,k = tr(Y U⊤

k Y U
k − Y U⊤

k XU
k (X

U⊤
k XU

k + Tt

2κIp)
−1)XU⊤

k Y U
k ), then in

distribution Π(t), there is P (Û (t) = U) ∝
∏K

k=1(πTt)
pq
2 det |XU⊤

k XU
k + Tt

2κIp|
− q

2 exp(−E(t)
U,k

Tt
) =

exp(−
∑K

k=1 E(t)
U,k

Tt
)
∏K

k=1(πTt)
pq
2 det |XU⊤

k XU
k + Tt

2κIp|
− q

2 .

By Assumption 1, the sum
∑K

k=1 EU,k attains its unique minimum, up to the permutation symmetry
for {1, 2, · · · , k} at U = U∗. Furthermore, since Tt ≤

T(2)

(log t)α , based on the properties of the
exponential energy function during cooling, we know that there exist constants E′, E′∗ such that:
P (Û (t) = U) ≥ 1− E′∗ exp(− E′

T(2)
(log t)α) in the sense of rearranging categories 1, 2, · · · ,K,.

In summary, for the distribution Ψ(t), if in the sense of rearranging categories 1, 2, · · · ,K we have
U = U∗, there exist constants C∗, C∗∗ such that: P (Û (t) = U) ≥ 1 − C∗ exp(−C∗∗(log t)α), in
this time, under the condition Û (t) = U in the sense of rearranging categories 1, 2, · · · ,K,, we have
P (∥B̂(t)

k − B̂π(k)∥ < δ) ≥ 1−C∗
δ exp(−C∗∗

δ (log t)α) where permutation π of categories transfers
the cluster result U∗ to U .That is the proof.
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B THEOREMS OF FINITE-SAMPLE GUARANTEES FOR ESTIMATE PARAMETER
θ̂ AND THEIR PROOF

This appendix provides a detailed finite-sample analysis of the proposed estimator. We present a
series of theoretical results, including an upper bound on the estimation error between the estimator
θ̂ and the true parameter θ0, along with the corresponding guarantees on the classification accuracy
and misclassification rate. The subsequent sections present the formal statements of these theorems
and their proofs.

Our theoretical approach departs from the conventional finite-sample analysis of K-means clus-
tering, which typically requires a boundedness assumption on the observed samples (Kim & Lim,
2025). Instead, we avoid any sample-level constraints by restricting our analysis to a compact param-
eter space, ΘM . This constraint is not merely a theoretical convenience, but is naturally enforced by
the regularization mechanism within Algorithm 1. This addresses potential optimization instabilities
in the finite-sample regime, such as near-degenerate gradients. Within this well-defined framework,
Lemma B.1 and Theorems B.2 and B.3 establish a non-asymptotic theory for the properties of the
global minimum. The definition of the parameter space:

ΘM =
{
θ̂ | ∀1 ≤ k′ ≤ K ′, ∥B̂k′∥F ≤M

}
(5)

It is important to contextualize the conditions under which these theorems hold. For the separation
condition in Theorems B.2 and B.3 to be non-vacuous, the sample size n must be sufficiently large
(e.g., n100K2M2/D2). The key insight from this result is that, after leaving out the model’s inher-
ent systematic bias (that is, the difference between θ∗ and θ0), the intrinsic statistical uncertainty of
the estimator θ̂ still decays at the standard parametric rate of Op(n

−1/2).

B.1 LEMMA B.1 AND IT’S PROOF

Theorem B.1. Under Assumptions 1, 2 and 3, if we have the inequality condition

M > N = max{∥B1,0∥F , ∥B2,0∥F · · · , ∥BK,0∥F } where C = K
√
3e{(K − 1)

√
2
π +√

1
c ((K − 1)2 2

π ) + 2(K − 1)
√

2
π}, we denote the estimator θ̂ = (B̂1, B̂2, · · · , B̂K) minimize the

1

n

n∑
i=1

m(xi, yi, θ),

then under condition θ̂ ∈ ΘM for any 1 ≤ k′ ≤ K and 1 ≤ k ≤ K and for at least probability
1− t, there exist a 1 ≤ π(k) ≤ K satisfy:

∥Bk,0 − B̂π(k)∥F ≤ Cn,t
σ√
∥Σ∥min

where

Cn,t = K
√
3e{(K − 1)

√
2

π
+

√
1

c

2

π
(K − 1)2 +

1

c
2(K − 1)

√
2

π
+

1

σ2
(C ′

n + C
′′
n,t)}

, C ′
n =

√
32
n K(

√
q(q + 2)σ2+2(M+N)σ

√
∥Σ∥2+

√
3(M+N)2∥Σ∥2) and C ′′

n,t =
√

32
n (qσ2+

p(M +N)2∥Σ∥2) log(n(p+q)+1
t )

3
2

Proof. Let θ̂ = {B̂1, B̂2, · · · , B̂K} be the parameter, Θ = {θ̂|∥B̂k∥F < M} be the parameter
space. We define R(θ) = E(X,Y ) [m(X,Y, θ)], Rn(θ) = 1

n

∑n
i=1 m(xi, yi, θ). Then R(θ∗) =

minθ∈Θ R(θ) and Rn(θ̂) = minθ∈Θ Rn(θ), then we have R(θ̂) − R(θ0) ≤ R(θ̂) − R(θ∗) ≤
supθ∈Θ(Rn(θ)−R(θ)) + supθ∈Θ(R(θ)−Rn(θ)).

For both supθ∈Θ(Rn(θ)−R(θ)) and supθ∈Θ(R(θ)−Rn(θ)), we can bound them by Rademacher
complexity:

RC = Exi,yi,δi [sup
θ
| 1
n

n∑
i=1

δim(xi, yi, θ)|]
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where {δi} is an i.i.d sequence of two-point distribution random variable satisfies P (δi = 1) =
P (δi = −1) = 1

2

According to Symmetrization Lemma, We have E supθ∈Θ(R(θ) − Rn(θ)) ≤ 2RC and
E supθ∈Θ(Rn(θ)−R(θ)) ≤ 2RC.

To give an upper bound of RC, we use the theorm proved by the work Maurer (2016) notice that

RC = Exi,yi,δi [ sup
B1,...,BK

| 1
n

n∑
i=1

δi min
1≤k≤K

∥yi − xiBk∥22|]

≤
√
2Exi,yi,δik [ sup

∥B∥F≤M

1

n
|

n∑
i=1

K∑
k=1

δik∥yi − xiB∥22|]

≤
√
2KExi,yi,δi [ sup

∥B∥F≤M

1

n
|

n∑
i=1

δi∥yi − xiB∥22|]

=
√
2KExi,ϵi,δi [ sup

∥B∥F≤M

1

n
|

n∑
i=1

δi∥ϵi + xi(Bui,0,0 −B)∥22|]

≤ 1

n

√
2K(Exi,ϵi,δi [ sup

∥B∥F≤M

|
n∑

i=1

δi∥ϵi∥22|] + 2Exi,ϵi,δi [ sup
∥B∥F≤M

|
n∑

i=1

δixi(Bui,0,0 −B)ϵTi |]

+Exi,ϵi,δi [ sup
∥B∥F≤M

|
n∑

i=1

δi∥xi(Bui,0,0 −B)∥22|]

≤ 1

n

√
2K(

√
nq(q + 2)σ2 + 2(M +N)σ

√
n∥Σ∥2 +

√
3n(M +N)2∥Σ∥2).

After caculating RC, for any Mn > 0, we let ϵi = σai and xi = biΣ
1
2 , Then ai ∼ N(0, Iq) and

bi ∼ N(0, Ip) are both the ith vector of an i.i.d sequence. The probability of each component of
each random vector are smaller than Mn is:

P ((∩1≤i≤n,1≤j≤q|aij | < Mn) ∩ (∩1≤i≤n,1≤j≤p|bij | < Mn)) ≥ 1− n(p+ q)e−
M2

n
2 .

Then, under the condition of each component of each random vector ai and bi are smaller
than Mn(we call this the bound condition below), We have 0 ≤ ∥yi − xiB∥22 = ∥σai +

biΣ
1
2 (Bui,0,0−B)∥22 ≤ 2M2

n(qσ
2 + p(M +N)2∥Σ∥2). So the value of supθ∈Θ(Rn(θ)−R(θ))−

E[supθ∈Θ(Rn(θ) − R(θ))] = supθ∈Θ(
1
n

∑n
i=1 min1≤k≤K ∥yi − xiBk∥22 − Emin1≤k≤K ∥yi −

xiBk∥22) changes by at most 2
nM

2
n(qσ

2 + p(M + N)2∥Σ∥2) when one of the (xi, yi) varies. Ac-
cording to the McDiarmid inequality, the tail bound of Rn under the bound condition satisfies:

P (sup
θ∈Θ

(Rn(θ)−R(θ)) ≥ t) ≤ exp(− t2n

2M4
n(qσ

2 + p(M +N)2∥Σ∥2)2
).

In summary, without any condition, we have:

P (sup
θ∈Θ

(Rn(θ)−R(θ))− E[sup
θ∈Θ

(Rn(θ)−R(θ))] ≥ t)

≤ exp(− t2n

2M4
n(qσ

2 + p(M +N)2∥Σ∥2)2
) + n(p+ q)e−

M2
n
2 .

We let Mn = ( t2n
(qσ2+p(M+N)2∥Σ∥2)2

)
1
6 , then we have:

P (sup
θ∈Θ

(Rn(θ)−R(θ))− E[sup
θ∈Θ

(Rn(θ)−R(θ))] ≥ t)
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≤ (n(p+ q) + 1) exp(− (t2n)
1
3

2(qσ2 + p(M +N)2∥Σ∥2)
2
3

).

So for at least probability 1 − t, the supθ∈Θ(Rn(θ) − R(θ)) − E[supθ∈Θ(Rn(θ) − R(θ))] ≤√
8
n (qσ

2 + 4(M +N)2∥Σ∥2) log(n(p+q)+1
t )

3
2 .

Similarly, for at least probability 1− t, the supθ∈Θ(R(θ)−Rn(θ))−E[supθ∈Θ(R(θ)−Rn(θ))] ≤√
8
n (qσ

2 + p(M +N)2∥Σ∥2) log(n(p+q)+1
t )

3
2 .

In summary, the R(θ̂n)−R(θ̂) satisfy:

R(θ̂n)−R(θ̂) ≤ sup
θ∈Θ

(Rn(θ)−R(θ)) + sup
θ∈Θ

(R(θ)−Rn(θ))

≤ 4RC+sup
θ∈Θ

(R(θ)−Rn(θ))−E[sup
θ∈Θ

(R(θ)−Rn(θ))]+sup
θ∈Θ

(Rn(θ)−R(θ))−E[sup
θ∈Θ

(Rn(θ)−R(θ))]

So, for probably at least 1− t we have

supθ∈Θ(Rn(θ)−R(θ))+sup
θ∈Θ

(R(θ)−Rn(θ)) ≤ 4RC+

√
32

n
(qσ2+p(M+N)2∥Σ∥2) log(

n(p+ q) + 1

t
)

3
2

=

√
32

n
K(
√

q(q + 2)σ2 + 2(M +N)σ
√
∥Σ∥2 +

√
3(M +N)2∥Σ∥2)

+

√
32

n
(qσ2 + p(M +N)2∥Σ∥2) log(

n(p+ q) + 1

t
)

3
2

= C
′

n + C
′′

n,t

According to the proof of the theorem 3.1, if there is a Fπ(k),k > σK
√
3e√

∥Σ∥min

{(K − 1)
√

2
π +√

1
c
2
π (K − 1)2 + 1

c2(K − 1)
√

2
π + 1

σ2 (C
′′
n,t + C ′

n)}, we have R(θ̂n) > qσ2 + C
′′

n,t + C
′

n so

R(θ̂n)−R(θ̂) > C
′′

n,t+C
′

n. Probably for at least 1−t that will not happen. Thus, for probably at least

1 − t, Fπ(k),k ≤ σK
√
3e√

∥Σ∥min

{(K − 1)
√

2
π +

√
1
c
2
π (K − 1)2 + 1

c2(K − 1)
√

2
π + 1

σ2 (C
′′
n,t + C ′

n)}.
That ends the proof.

B.2 THEOREM B.2 AND IT’S PROOF

Theorem B.2. We let i = argmin1≤k≤K ∥yi − xiB̂k∥22 and D′ =

√
∥Σ∥min

σ D.

Under Assumptions 1, 2 and 3, if K = K,D′ > 2
√

∥Σ∥2

∥Σ∥min
Cn,t + 2

√
q and

M > N = max{∥B1,0∥F , ∥B2,0∥F · · · , ∥BK,0∥F } where C = K
√
3e{(K − 1)

√
2
π +√

1
c ((K − 1)2 2

π ) + 2(K − 1)
√

2
π}, estimator θ̂ = (B̂1, B̂2, · · · , B̂K) ∈ ΘM minimize the

1

n

n∑
i=1

m(xi, yi, θ).

It is reasonable to assume that k = argmin1≤k′≤k ∥B̂k′ − Bk,0∥F , the estimate cluster of

(xi, yi) should be ûi = min1≤k≤K ∥yi − xiB̂k∥2. If we denote C ′ = Cn,t

√
∥Σ∥2

∥Σ∥min
λ =

(K − 1){C
′+2

√
q

D′−C′ (1 + 2 log( D′−C′

C′+2
√
q ))

1
2 + (

C′+2
√
q

D′−C′ (1 + 2 log( D′−C′

C′+2
√
q ))

1
2 )q + e

1
2 (

C′+2
√
q

D′−C′ )(1 +

2 log( D′−C′

C′+2
√
q ))

1
2 } and ts = nn

ss(n−s)n−sλ
s(1 − λ)n−s where 0 ≤ s ≤ n, then for probability at

least 1− t− ts
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n∑
i=1

I(ûi ̸= ui) < s.

Proof. Using Lemma B.1, it is easy to find that there is at least probably 1 − t, max1≤k≤K ∥B̂k −
Bk,0∥F ≤ C ′ σ√

∥Σ∥2

.

If we have conditions max1≤k≤K ∥B̂k −Bk,0∥F ≤ C ′ σ√
∥Σ∥2

, according to lemma ??, for any 1 ≤

i ≤ n, P (ûi ̸= ui) ≤ λ. And it is easy to find after knowing the value B̂k, the sequence of events
{ûi ̸= ui} is an i.i.d. sequence. So we can get the Chernoff Bound of the P (

∑n
i=1 I(ûi ̸= ui) ≥ s):

P (

n∑
i=1

I(ûi ̸= ui) ≥ s)

≤ e−ts{EeI(ûi ̸=ui)}n

≤ e−ts(λet + 1− λ)n = (λet(
n−s
n ) + (1− λ)e−t s

n )n

We take t = log( s(1−λ)
(n−s)λ ) Then we have:

P (

n∑
i=1

I(ûi ̸= ui) ≥ s)

≤ (λ(
s(1− λ)

(n− s)λ
)

n−s
n + (1− λ)(

s(1− λ)

(n− s)λ
)

−s
n )n

= (
n

n− s
(1− λ)(

s(1− λ)

(n− s)λ
)

−s
n )n

=
nn

(n− s)n−sss
λs(1− λ)n−s = ts

The above analysis is the conditional probability obtained under the condition max1≤k≤K ∥B̂k −
Bk,0∥F ≤ C ′. Since the condition max1≤k≤K |B̂k −Bk,0∥F ≤ C ′ is greater than 1− t, it follows
that the probability of P (

∑n
i=1 I(ûi ̸= ui) < s) is greater than 1− t− ts.

B.3 THEOREM B.3 AND IT’S PROOF

Theorem B.3. If D′ =

√
∥Σ∥min

σ D. Then Under Assumptions 1, 2 and 3. If D′ > 2Cn,t + 2 and
estimator θ̂ = (B̂1, B̂2, · · · , B̂K) ∈ ΘM minimize the

1

n

n∑
i=1

m(xi, yi, θ),

Then for at least probability 1 − t, there is a constant CD, for any 1 ≤ k ≤ K, there exist a π(k)
satisfy

∥Bk,0 − B̂π(k)∥F ≤ CD
σ√
∥Σ∥min

for any 1 ≤ k ≤ K, where
CD=

√
3e

1−P (K−1)
{(K−1)

√
2
π e−

1
2 C′+2

D′−C′

+

√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))+ 1

σ2 (C′
n+C

′′
n,t)}

and

P = (1 + e
1
2 )

C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2
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and C ′ = Cn,t

√
∥Σ∥2

∥Σ∥min
, C ′

n =
√

32
n K(

√
q(q + 2)σ2+2(M+N)σ

√
∥Σ∥2+

√
3(M+N)2∥Σ∥2)

and C ′′
n,t =

√
32
n (qσ2 + p(M +N)2∥Σ∥2) log(n(p+q)+1

t )
3
2

Proof. This proof is similar to the proof of Theorem 3.3, for at least probability 1 − t, we have
min1≤i<j≤k ∥Bi,0 −Bj,0∥F = D = D′ σ√

∥Σ∥min

, ∥Bk,0 − B̂k∥F = max1≤k≤K ∥Bk,0 − B̂k∥F ≤
Cn,t

σ√
∥Σ∥min

= C ′ σ√
∥Σ∥2

and D′ > 2C ′ + 2.

Then, we use the definition in the proof of Lemma 3.1 and B.1, denote Ŷk = XB̂k and Yk = XBk,0

for 1 ≤ k ≤ K, tk = min1≤k′≤K ∥Yk − Ŷk′∥2 for X . With the condition we have, for any k′ ̸= k
we can proof:

P
(
∥Yk′ − Ŷk∥2 − ∥Yk − Ŷk∥2 < 2σ(1 + 2 log(

D′ − C ′

C ′ + 2
))

1
2

)
= P

(
∥X(Bk,0 − B̂k′)∥2 − ∥X(Bk,0 − B̂k)∥2 < 2σ(1 + 2 log(

D′ − C ′

C ′ + 2
))

1
2

)
≤ P

(
∥X(Bk,0 − B̂k)∥22 > C ′2σ2(1 + 2 log(

D′ − C ′

C ′ + 2
))

)
+P
(
∥X(Bk,0 − B̂k′)∥22 < (C ′ + 2)2σ2(1 + 2 log(

D′ − C ′

C ′ + 2
))

)
≤ C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2 + e

1
2
C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

= (1 + e
1
2 )

C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

So, the probability of tk = ∥Yk − Ŷk∥2 could be bound, and for any k′ ̸= k, t′k = ∥Yk − Ŷk′∥2, a =
t′k−tk

2 we have:

P
(
tk = ∥Yk − Ŷk∥2, and a > σ(1 + 2 log(

D′ − C ′

C ′ + 2
))

1
2 for any k′ ̸= k

)
≥ 1− (K − 1)(1 + e

1
2 )

C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

We denote P = (1+ e
1
2 ) C′+2

D′−C′ (1+2 log(D
′−C′

C′+2 ))
1
2 and reuse the conclusion obtained in the proof

of Lemma 3.1. The global minimum of EX,Y (X,Y, θ) satisfy:

EX,Y (X,Y, θ̂)

= EX

K∑
k=1

pkEY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Ŷk′∥22

≥ EX

K∑
k=1

pkEY∼N(Yk,σ2Iq)(∥Y − Ŷk∥22 −
∑
k′ ̸=k

max{0, ∥Y − Ŷk∥22 − ∥Y − Ŷk′∥22})

≥ EX

K∑
k=1

pk(qσ
2 + t2k − 4(K − 1)

σ√
2π

(tk + a)e−
a2

2σ2 )

For any k, for at most probability (K − 1)P , tk ̸= ∥Yk − Ŷk∥2 or a ≤ σ(1 + 2 log(D
′−C′

C′+2 ))
1
2 , so

t2k − 4(K − 1) σ√
2π

(tk + a)e−
a2

2σ2 ≥ t2k − 4 σ√
2π

(K − 1)tk − 4 σ2
√
2π

(K − 1) ≥ − 2σ2

π (K − 1)2 −

σ2
√

2
π (K − 1). Otherwise, we have tk = ∥Yk − Ŷk∥2 and a > σ(1+ 2 log(D

′−C′

C′+2 ))
1
2 , In this case,

we have:
t2k − 4(K − 1)

σ√
2π

(tk + a)e−
a2

2σ2
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≥ t2k − 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′ tk − 4(K − 1)
σ2

√
2π

e−
1
2
C ′ + 2

D′ − C ′ (1 + 2 log(
D′ − C ′

C ′ + 2
))

1
2

= t2k − 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′ tk − 4(K − 1)
σ2

√
2π

e−
1
2

1 + e−
1
2

P

Using Jensen Inequality, under the condition of tk = ∥Yk − Ŷk∥2 and a > σ(1 + 2 log(D
′−C′

C′+2 ))
1
2 ,

we have

EX [t2k − 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′ tk − 4(K − 1)
σ√
2π

e−
1
2

1 + e−
1
2

P ]

≥ E(t2k)− 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′EX(tk)− 4(K − 1)
σ2

√
2π

e−
1
2

1 + e−
1
2

P

≥ E(t2k)− 4(K − 1)
σ√
2π

e−
1
2
C ′ + 2

D′ − C ′

√
E(t2k)− 4(K − 1)

σ2

√
2π

e−
1
2

1 + e−
1
2

P

On the other hand, we have proof P(∥Yk − Ŷk∥22 ≤ λ) ≤
√

eλ
∥Σ∥min∥B̂k−Bk,0∥2

2

in the proof of

Lemma 3.1, and we know for at least probably 1− (K − 1)P , the condition tk = ∥Yk − Ŷk∥2 and
a > σ(1 + 2 log(D

′−C′

C′+2 ))
1
2 holds. So, under this condition, we denote Fk,k = ∥B̂k − Bk,0∥2, it is

easy to see if (K − 1)P < 1 we have:

E(t2k) ≥
1

1− P (K − 1)

∫ (1−P (K−1))2∥Σ∥minF2
k,k

e

λ=0

(1− P (K − 1)−
√

eλ

∥Σ∥minF 2
k,k

)dλ

=
(1− P (K − 1))2∥Σ∥minF

2
k,k

3e

Thus for k-th sub distribution, we have for probably at most P (K − 1), t2k − 4(K − 1) σ√
2π

(tk +

a)e−
a2

2σ2 ≥ − 2σ2

π (K − 1)2 − σ2
√

2
π (K − 1) and for at least probably 1 − P (K − 1), we de-

note T = (1 − P (K − 1))Fk,k

√
∥Σ∥min

3e ,the t2k − 4(K − 1) σ√
2π

(tk + a)e−
a2

2σ2 ≥ T 2 − 4(K −

1) σ√
2π

e−
1
2

C′+2
D′−C′T − 4(K − 1) σ2

√
2π

e−
1
2

1+e−
1
2
P if T ≥ 2(K − 1) σ√

2π
e−

1
2

C′+2
D′−C′ . Then we get the

lower bound of EY∼N(Yk,σ2Iq) min1≤k′≤K ∥Y − Ŷk′∥22:

EY∼N(Yk,σ2Iq) min
1≤k′≤K

∥Y − Ŷk′∥22

≥ qσ2 + t2k − 4(K − 1)
σ√
2π

(tk + a)e−
a2

2σ2

≥ qσ2 − P (K − 1)

(
2σ2

π
(K − 1)2 + 2σ2

√
2

π
(K − 1)

)

+(1− P (K − 1))

(
T 2 − 4(K − 1)

σ√
2π

e−
1
2
C ′ + 2

D′ − C ′T − 4(K − 1)
σ2

√
2π

e−
1
2

1 + e−
1
2

P

)

Notice that this bound holds for any 1 ≤ k ≤ K, So if for any k, T>σ{(K−1)
√

2
π e−

1
2 C′+2

D′−C′ +√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))}, similar to the proof

of theorem 3.1, we have EX,Y,θ̂m(X,Y, θ̂) =
∑K

k=1 pkEY∼N(Yk,σ2Iq) min1≤k′≤K ∥Y − Ŷk′∥22 >

qσ2

So, if θ̂ is the global minimum of EX,Y,θm(X,Y, θ), we have for any 1 ≤ k ≤ K, T≤σ{(K−

1)
√

2
π e−

1
2 C′+2

D′−C′ +

√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))},
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which means Fk,k≤ σ
1−P (K−1)

√
3e

∥Σ∥min
{(K−1)

√
2
π e−

1
2 C′+2

D′−C′

+

√
1
c

2
eπ (K−1)2( C′+2

D′−C′ )
2+ 1

c 2(K−1)
√

2
π

e
− 1

2

1+e
− 1

2

P+ 1
c

P (K−1)
1−P (K−1)

( 2
π (K−1)2+2

√
2
π (K−1))}

C FIGURES OF CLASSIFICATION ACCURACY AND WCSS OF FOUR
DIFFERENT ESTIMATION METHODS UNDER 16 PARAMETERS CONDITIONS
IN BOTH THE TRAINING SET AND THE TESTING SET

This appendix records figures for the classification accuracy and the WCSS function in the training
set and the testing set.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2: The box-plot of classification accuracy of four different estimation methods under 16
parameter conditions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3: The box-plot of WCSS of four different estimation methods under 16 parameter condi-
tions.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4: The box-plot of classification accuracy of four different estimation methods under 16
parameter conditions in testing set.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5: The box-plot of WCSS of four different estimation methods under 16 parameter conditions
in testing set.

D PERFORMANCE COMPARISON TABLES OF OUR SIMULATION RESULTS

This appendix presents the five performance comparison tables, which compare the three differ-
ent metrics used in the training set and the testing set. Results are presented as Mean (Standard
Deviation) of 100 replicates.

Table 1: Performance Comparison Table of estimation errors of four different estimation methods
under 16 parameter conditions.

P = 50,K = 3 P = 70,K = 3 P = 35,K = 4 P = 50,K = 4
D = 20 GSAKM 1.15(0.095) 1.51(0.12) 1.16(0.11) 1.58(0.14)
, q = 2 SEM 1.15(0.094) 6.14(6.26) 4.02(6.09) 17.93(5.29)

SEMK 16.63(2.29) 19.73(1.67) 18.98(1.86) 21.73(2.20)
SKM 16.42(1.86) 20.06(1.42) 18.62(1.86) 21.66(2.19)

D = 20 GSAKM 1.36(0.087) 1.79(0.12) 1.34(0.10) 1.80(0.15)
, q = 3 SEM 1.36(0.090) 2.32(2.42) 1.51(1.23) 11.09(7.21)

SEMK 15.09(4.40) 19.69(1.40) 18.31(3.10) 21.20(2.03)
SKM 15.42(4.24) 19.45(1.54) 18.15(2.51) 21.24(1.71)

D = 40 GSAKM 1.12(0.082) 1.45(0.11) 1.11(0.089) 1.47(0.12)
, q = 2 SEM 1.12(0.082) 9.69(13.11) 4.14(9.86) 33.06(12.62)

SEMK 31.94(6.73) 39.85(3.19) 38.05(4.27) 43.33(4.84)
SKM 32.71(6.95) 39.47(3.07) 37.63(3.30) 42.32(4.23)

D = 40 GSAKM 1.34(0.084) 1.76(0.11) 1.33(0.10) 4.30(12.76)
, q = 3 SEM 1.34(0.084) 2.33(4.01) 1.33(0.10) 17.36(16.87)

SEMK 28.28(10.37) 38.24(2.86) 36.18(5.33) 42.38(3.45)
SKM 29.22(9.34) 38.69(2.67) 36.60(6.45) 42.76(3.75)
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Table 2: Performance Comparison Table of 100 times the classification accuracy of four different
estimation methods under 16 parameter conditions.

P = 50,K = 3 P = 70,K = 3 P = 35,K = 4 P = 50,K = 4
D = 20 GSAKM 98.51(0.59) 98.04(0.67) 97.64(0.72) 97.11(0.78)
, q = 2 SEM 98.51(0.58) 84.72(17.32) 85.91(24.44) 48.77(13.59)

SEMK 48.17(8.40) 40.40(4.40) 37.53(5.01) 30.89(3.19)
SKM 47.66(6.17) 39.15(3.65) 37.25(4.96) 30.92(3.29)

D = 20 GSAKM 99.56(0.29) 99.49(0.33) 99.47(0.32) 99.13(0.42)
, q = 3 SEM 99.57(0.30) 98.06(5.88) 98.63(6.69) 73.35(20.73)

SEMK 55.03(14.57) 40.81(3.66) 42.95(10.42) 31.43(2.87)
SKM 53.32(13.89) 41.03(3.92) 41.30(8.06) 31.40(2.93)

D = 40 GSAKM 99.62(0.27) 99.50(0.30) 99.41(0.33) 99.20(0.46)
, q = 2 SEM 99.62(0.28) 87.60(18.54) 93.85(17.85) 52.49(18.58)

SEMK 50.13(10.89) 39.50(3.86) 36.62(4.58) 31.34(2.98)
SKM 47.81(8.10) 39.67(3.63) 36.33(4.47) 30.79(2.82)

D = 40 GSAKM 99.96(0.088) 99.94(0.12) 99.92(0.11) 98.26(8.61)
, q = 3 SEM 99.95(0.094) 99.26(4.72) 99.92(0.12) 80.85(20.32)

SEMK 56.87(17.08) 41.34(3.89) 42.60(10.05) 31.36(3.24)
SKM 54.46(15.49) 40.39(3.55) 42.61(8.38) 31.33(2.34)

Table 3: Performance Comparison Table of WCSS of four different estimation methods under 16
parameter conditions.

P = 50, K = 3 P = 70, K = 3 P = 35, K = 4 P = 50, K = 4
D = 20 GSAKM 681.68(35.70) 565.29(34.11) 695.62(35.10) 582.36(32.17)
, q = 2 SEM 682.84(35.77) 2560.03(2624.32) 3643.55(6534.88) 6526.78(2216.05)

SEMK 12627.42(1850.99) 10741.43(719.03) 11481.15(943.91) 9201.12(641.44)
SKM 13227.79(1414.66) 11390.24(3.65) 12114.49(842.06) 9808.03(591.55)

D = 20 GSAKM 1046.34(44.81) 895.76(42.03) 1081.15(42.08) 894.00(46.38)
, q = 3 SEM 1047.12(44.77) 1214.21(1592.39) 1304.73(2027.40) 5935.86(3922.34)

SEMK 16626.17(4939.88) 16799.62(863.66) 17195.59(2799.57) 15231.85(799.41)
SKM 17501.23(4822.07) 17412.95(950.60) 18500.90(2235.11) 15920.06(715.56)

D = 40 GSAKM 692.32(36.28) 578.18(34.86) 711.20(35.88) 599.59(33.91)
, q = 2 SEM 692.60(36.26) 7628.15(11016.12) 6241.16(19028.99) 23775.27(9879.18)

SEMK 49458.63(10240.71) 44304.19(3281.83) 47640.71(3198.72) 38230.18(2775.92)
SKM 52573.70(6958.00) 44796.48(2906.76) 48313.04(3247.59) 38806.31(2460.36)

D = 40 GSAKM 1050.82(44.87) 864.53(42.16) 1086.49(42.64) 2713.22(10293.99)
, q = 3 SEM 1050.90(44.91) 1666.65(5641.26) 1086.63(42.71) 17051.68(17027.03)

SEMK 63092.95(24163.18) 67777.92(3650.69) 70209.06(11271.25) 61858.14(2939.07)
SKM 66013.13(21619.79) 68708.04(3899.46) 72019.29(9680.24) 62615.94(3398.19)
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Table 4: Performance Comparison Table of 100 times the classification accuracy of four different
estimation methods under 16 parameter conditions in testing set.

P = 50,K = 3 P = 70,K = 3 P = 35,K = 4 P = 50,K = 4
D = 20 GSAKM 98.35(0.59) 98.24(0.56) 97.67(0.67) 97.28(0.73)
, q = 2 SEM 98.36(0.60) 83.23(19.38) 84.89(26.21) 43.99(14.52)

SEMK 49.58(8.77) 40.33(4.18) 37.74(5.23) 30.78(3.26)
SKM 49.44(7.68) 38.91(3.84) 38.65(5.15) 31.10(2.99)

D = 20 GSAKM 99.59(0.28) 99.42(0.33) 99.45(0.36) 99.19(0.39)
, q = 3 SEM 99.57(0.28) 97.91(6.67) 98.50(7.72) 70.66(22.57)

SEMK 58.34(14.23) 41.31(4.30) 44.35(11.09) 31.74(3.31)
SKM 56.67(13.42) 42.64(4.83) 43.40(8.46) 31.48(3.33)

D = 40 GSAKM 99.56(0.31) 99.54(0.27) 99.35(0.33) 99.35(0.40)
, q = 2 SEM 99.55(0.31) 85.96(20.76) 93.34(19.03) 48.42(19.88)

SEMK 51.66(11.39) 39.11(3.85) 37.07(5.49) 30.98(3.28)
SKM 49.52(8.79) 40.08(3.78) 36.51(4.58) 30.94(2.86)

D = 40 GSAKM 99.95(0.10) 99.94(0.11) 99.93(0.12) 98.07(9.36)
, q = 3 SEM 99.95(0.11) 99.29(4.57) 99.93(0.13) 77.51(23.19)

SEMK 60.56(16.40) 42.90(4.74) 45.10(10.45) 31.49(3.34)
SKM 58.38(15.14) 41.85(4.36) 44.55(9.00) 31.85(3.04)

Table 5: Performance Comparison Table of WCSS of four different estimation methods under 16
parameter conditions.

P = 50, K = 3 P = 70, K = 3 P = 35, K = 4 P = 50, K = 4
D = 20 GSAKM 1442.402(73.45) 1773.54(110.46) 1407.62(75.33) 1736.92(114.21)
, q = 2 SEM 1441.67(73.97) 13346.09(16895.62) 6326.59(10713.02) 36077.63(10598.51)

SEMK 43180.33(6770.65) 57418.31(4129.72) 39901.59(3613.73) 50698.78(4286.57)
SKM 43267.50(5633.81) 58247.33(3992.27) 39732.16(3780.62) 50241.30(3408.44)

D = 20 GSAKM 2158.51(88.54) 2638.46(146.10) 2105.24(98.53) 2562.77(146.31)
, q = 3 SEM 2158.32(88.84) 4308.49(7912.15) 2469.68(3255.00) 25470.38(19878.75)

SEMK 47580.35(14465.06) 72172.82(4317.75) 49774.01(8435.70) 63447.61(3470.00)
SKM 48539.67(13828.59) 70424.93(4283.86) 50914.74(6540.50) 62880.66(3074.25)

D = 40 GSAKM 1438.60(73.56) 1740.78(99.66) 1397.53(69.7735.88) 1690.39(101.31)
, q = 2 SEM 1437.82(73.06) 43178.53(7100.72) 11128.08(32422.03) 131712.1(55251.18)

SEMK 163565.8(35394.89) 228815.7(15910.89) 160259.4(13578.53) 198040.8(13786.17)
SKM 169878.3(24355.66) 230161.8(18840.61) 161230.6(13647.85) 198084.6(13094.98)

D = 40 GSAKM 2151.98(88.10) 2615.92(137.84) 2102.31(96.65) 10177.25(40213.96)
, q = 3 SEM 2151.75(88.27) 6361.89(26366.08) 2102.09(96.60) 69359.46(76110.14)

SEMK 176308.6(67842.98) 275009.4(14521.1) 195217.3(33030.29) 248687.7(12173.08)
SKM 184417.7(60941.88) 279237.4(16053.05) 197359.4(27946.47) 247761.1(12133.02)
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