

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GIBBS SAMPLING WITH SIMULATED ANNEALING K-MEANS FOR MIXTURE REGRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Fitting the Mixture of Multivariate Linear Regression models (MMLR) is a fundamental task in the analysis of heterogeneous data. Still, standard methods like the EM and K-means algorithms are hindered by their convergence to local optima and the NP-hard nature of the underlying optimization problem. To address this fundamental challenge, we propose Gibbs sampling with the simulated annealing K-means clustering algorithm. By synergizing the K-means framework with Gibbs sampling and a simulated annealing schedule, this approach is provably robust to initialization and avoids poor local minima. The primary contributions of this work are a comprehensive set of theoretical guarantees. First, we provide the first non-asymptotic guarantees on the algorithm’s convergence to the global minimum of the Within-Cluster Sum of Squares (WCSS) objective, establishing explicit bounds on its rate and probability of convergence. Second, based on this global optimum, we establish a rigorous upper bound for the estimation error of the regression coefficients and a lower bound on classification accuracy in an asymptotic sense. Numerical experiments validate the superior performance of our method. This work presents a theoretically grounded and computationally practical framework for estimation and clustering in mixture regression models.

1 INTRODUCTION

Understanding the linear relationships between sets of high-dimensional variables is a fundamental goal in numerous scientific and industrial domains (James et al., 2013). Multivariate Linear Regression (MLR) serves as the cornerstone of this task, modeling how multiple predictor variables jointly influence numerous predicted variables (Härdle & Simar, 2007; Hastie, 2009). However, a key limitation of standard MLR is its assumption of data homogeneity, presupposing that a single regression model can adequately describe the entire data set (Goldfeld & Quandt, 1973; Jacobs et al., 1991; McLachlan et al., 2019). In practice, many datasets exhibit significant heterogeneity, comprising several latent subgroups with distinct relational patterns (Hennig et al., 2015; McLachlan et al., 2019). For example, in personalized medicine, different subpopulations of patients may respond to treatments in unique ways (Hamburg & Collins, 2010; Collins & Varmus, 2015; Shen & He, 2015). A mixture of Multivariate Linear Regression (MMLR) models provides an elegant solution to this challenge, capable of simultaneously clustering data into coherent groups and fitting a tailored MLR model to each, thus capturing the underlying heterogeneous structure (De Veaux, 1989; Jacobs et al., 1991; Frühwirth-Schnatter, 2006; McLachlan et al., 2019).

For decades, the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) and K-means algorithm (Lloyd, 1982) have been the workhorse methods for fitting these models, prized for their simplicity and computational efficiency. Despite their widespread success, classical algorithms like EM and K-means are hindered by their iterative and local optimization nature. They are only guaranteed to converge to a local optimum. They are thus susceptible to parameter initialization, which has significantly limited the reliability of mixture models in critical applications (McLachlan et al., 2019). To mitigate this, a variety of practical strategies have been developed, such as K-means++ to obtain better starting points (Arthur & Vassilvitskii, 2007) and multiple random restarts (Jain, 2010).

However, these practical methods lack theoretical guarantees and the establishment of such properties is exceptionally difficult. Previous theoretical work often relied on the impractical technique of “sample splitting” to make the analysis tractable (Yi & Caramanis, 2015; Zhang et al., 2020).

054 Pioneering work (Wang et al., 2024) has made a significant breakthrough by establishing a rigorous
 055 convergence rate analysis for a penalized EM algorithm in high-dimensional mixture linear regres-
 056 sion without sample splitting. However, this theoretical guarantee has its own limitations as it is
 057 based on the strong assumption that the algorithm must be initialized within a “contraction basin”
 058 close to the true parameters. In fact, despite these extensive efforts, finding the global optimum
 059 for mixture models remains an NP-hard problem (Aloise et al., 2009), highlighting the need for
 060 fundamentally new approaches.

061 To address this challenge fundamentally, we introduce a novel Gibbs sampling with the simulated
 062 annealing K-means clustering algorithm. Our approach synergizes the efficiency of the K-means
 063 framework with the global exploration capabilities of stochastic optimization. We augment the
 064 classic assignment-update loop with a Gibbs sampling step to probabilistically explore cluster as-
 065 signments (Geman & Geman, 1984) and a simulated annealing (SA) schedule to escape poor local
 066 minima (Kirkpatrick et al., 1983; Klein & Dubes, 1989). The efficacy of SA is grounded in solid
 067 theory; for instance, recent work by Tang & Zhou (2021) provides a rigorous convergence analysis,
 068 proving that the probability that the algorithm remains far from the global optimum exhibits a poly-
 069 nomial decay over time. This quantitative support justifies its ability to guide the search globally.
 070 By integrating these powerful stochastic techniques, which have been shown to improve determin-
 071 istic methods (Selim & Alsultan, 1991), our hybrid design ensures robustness to initialization and
 072 facilitates convergence towards a globally optimal solution.

073 To validate these claims, our algorithm was validated through extensive experiments on simulated
 074 datasets, where it consistently outperformed standard baselines. Beyond this empirical result, our
 075 primary contribution is a comprehensive set of theoretical guarantees for this method. In sharp
 076 contrast to the well-documented local convergence properties of traditional methods such as EM
 077 and K-means (Balakrishnan et al., 2017; McLachlan et al., 2019), we prove that our algorithm is
 078 robust to initialization and converges to the global optimum.

079 Our work establishes the first non-asymptotic (finite-sample) guarantees on its convergence rate and
 080 probability of convergence. This type of analysis aligns with a modern push in stochastic opti-
 081 mization to provide explicit performance bounds, similar to recent advances in the theoretical un-
 082 derstanding of core components such as simulated annealing (Tang & Zhou, 2021). Furthermore,
 083 based on the global optimality guaranteed by our algorithm, we analyze the statistical properties of
 084 the resulting estimator. We establish rigorous upper limits on the estimation error of the regression
 085 coefficients in both asymptotic and non-asymptotic regimes, complementing previous work on pe-
 086 nalized estimators for mixture models (Städler et al., 2010; Wang et al., 2024). Finally, we derive
 087 a formal lower bound on the accuracy of the algorithm’s classification in both asymptotic and non-
 088 asymptotic (finite-sample) regimes, addressing the inherent difficulty of recovering latent labels in
 089 mixture models (Von Luxburg, 2007).

090 2 MODEL AND ALGORITHM

092 We denote $X \in \mathbb{R}^p$ as predictors and $Y \in \mathbb{R}^q$ as the predicted variables from a mixture multivariate
 093 regression model. The mixing weight of the k th submodel is p_k , where $1 \leq k \leq K$. Then our
 094 model is formulated as,

$$095 \quad \begin{aligned} Y &= XB_U + \epsilon \quad s.t. \quad X \sim N(0, \Sigma), \quad \epsilon \sim N(0, \sigma^2 I_q), \\ 096 \quad p(U = k) &= p_k, \quad B_{k,0} \in \mathbb{R}^{p \times q}, \quad X \perp u \end{aligned} \quad (1)$$

098 We consider a set of n i.i.d. samples $\mathcal{S} = \{(x_i, y_i, u_{i,0})\}_{i=1}^n$ generated from the mixture model
 099 in (1), where the true cluster assignments $\mathcal{U}_0 = \{u_{1,0}, \dots, u_{n,0}\}$ are not observed. Our ob-
 100 jective is to estimate the true regression parameters $\theta_0 = \{B_{1,0}, \dots, B_{K,0}\}$ with an estimator
 101 $\hat{\theta} = \{\hat{B}_1, \dots, \hat{B}_K\}$. This, in turn, allows us to infer the cluster labels for the given samples as
 102 $\hat{\mathcal{U}} = \{\hat{u}_1, \dots, \hat{u}_n\}$ and for new observations.

103 To develop our method, we first generalize the K-means approach to multivariate linear regression.
 104 Specifically, we define the *Within-Cluster Sum of Squares* (WCSS) function as:

$$106 \quad J(\theta, \mathcal{U}) = \sum_{k=1}^K \sum_{u_i=k} \|y_i - x_i B_k\|_2^2. \quad (2)$$

According to a standard property of the K-means algorithm, for any $1 \leq i \leq n$, we have the estimate clusters $\hat{u}_i = \arg \min_k \|y_i - x_i \hat{B}_k\|_2^2$. We define the residual squares associated with the estimator θ as the function m :

$$m(x, y, \theta) = \min_{1 \leq k \leq K} \|y - x B_k\|_2^2.$$

Then for the K -means estimator $\hat{\theta}, \hat{\mathcal{U}}$ we have $\frac{J(\hat{\theta}, \hat{\mathcal{U}})}{n} = \frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \hat{\theta})$. Similarly to traditional K -means clustering in Euclidean space, finding the global minimum of WCSS objective function is widely recognized as an NP-hard problem (Aloise et al., 2009). Consequently, deterministic algorithms that guarantee convergence to the global minimum are deemed intractable for practical purposes. We therefore propose a probabilistic framework that combines Gibbs sampling with simulated annealing. This approach ensures asymptotic convergence to the global minimum with high probability, provided that the computational complexity is bounded.

Within the simulated annealing framework, let T be the temperature parameter. The energy function $\mathcal{E}(\theta, \mathcal{U}, T)$ is defined as:

$$\mathcal{E}(\theta, \mathcal{U}, T) = \exp\left(-\frac{J(\theta, \mathcal{U})}{T}\right) = \prod_{k=1}^K \prod_{\substack{i \\ \hat{u}_i=k}} \exp\left(-\frac{\|y_i - x_i B_k\|_2^2}{T}\right) \quad (3)$$

For the energy function (3), we use an alternating Gibbs sampling scheme between the parameters θ and the estimated cluster assignments \mathcal{U} . The conditional distribution for each assignment variable \hat{u}_i follows a categorical distribution, with probabilities proportional to

$$P(\hat{u}_i = k) \propto \exp\left(-\frac{\|y_i - x_i \hat{B}_k\|_2^2}{T}\right).$$

This distribution exhibits conditional independence given the parameters θ , which means that the sampling of \hat{u}_i depends only on the current parameter estimates \hat{B}_k .

For the regression coefficients \hat{B}_k , we define the design matrix $X_k^{\mathcal{U}}$ as the matrix formed by stacking the predictor vectors x_i for all observations with $\hat{u}_i = k$, and $Y_k^{\mathcal{U}}$ as the corresponding response vector. The conditional posterior distribution for \hat{B}_k derived from the energy function is:

$$p(\hat{B}_k) \propto \exp\left(-\frac{\|Y_k^{\mathcal{U}} - X_k^{\mathcal{U}} \hat{B}_k\|_2^2}{T}\right),$$

which corresponds to a matrix-normal distribution under appropriate priors.

However, when the design matrix $X_k^{\mathcal{U}}$ is rank-deficient (that is, $\text{rank}(X_k^{\mathcal{U}}) < p$), the integral of the function $\exp\left(-\frac{\|Y_k^{\mathcal{U}} - X_k^{\mathcal{U}} \hat{B}_k\|_2^2}{T}\right)$ in the parameter space $\hat{B}_k \in \mathbb{R}^{p \times q}$ diverges. To address this ill-posedness and allow adequate sampling of \hat{B}_k , we introduce a ridge regularization penalty to the energy function (3). This yields the modified energy function:

$$\mathcal{E}(\theta, \mathcal{U}, T) = \exp\left(-\frac{J(\theta, \mathcal{U})}{T}\right) \prod_{k=1}^K \exp\left(-\frac{\|B_k\|_2^2}{2\kappa}\right) = \prod_{k=1}^K \exp\left(-\frac{\|B_k\|_2^2}{2\kappa}\right) \prod_i \exp\left(-\frac{m(x_i, y_i, \theta)}{T}\right). \quad (4)$$

It follows that Gibbs sampling with the modified energy function (4) is equivalent to Bayesian inference under the following probabilistic model: the prior distribution for the vectorized regression coefficients $\text{vec}(\hat{B}_k)$ is Gaussian with $\text{vec}(\hat{B}_k) \sim \mathcal{N}(\mathbf{0}, \kappa \mathbf{I}_{pq})$, while the sampling model corresponds to equation (1) with $\sigma^2 = T/2$. Crucially, as the temperature $T \rightarrow 0$ during simulated annealing, the influence of the regularization term vanishes asymptotically. Consequently, the global minimizer of $\mathcal{E}(\theta, \mathcal{U}, T)$ converges to the minimizer of the WCSS objective:

$$\lim_{T \rightarrow 0} \arg \max_{\theta, \mathcal{U}} \mathcal{E}(\theta, \mathcal{U}, T) = \arg \min_{\theta, \mathcal{U}} J(\theta, \mathcal{U}) = \arg \min_{\theta, u_i = \arg \min_k \|y_i - x_i B_{k,0}\|} \sum_{i=1}^n m(x_i, y_i, \theta).$$

162 Under this Bayesian interpretation, the conditional distribution is as follows: For cluster assignments,
 163 the following distribution $P(\hat{u}_i = k) \propto \exp(-\frac{\|y_i - x_i \hat{B}_k\|_2^2}{T})$ is true, and the posterior distribution
 164 for vectorized coefficients is: $p(\text{vec}(\hat{B}_k)) \propto \exp\left(-\frac{\|Y_k^U - X_k^U \hat{B}_k\|_F^2}{T} - \frac{\|\hat{B}_k\|_F^2}{2\kappa}\right)$. This corresponds to a Gaussian distribution:
 165

$$166 \text{vec}(\hat{B}_k) \sim \mathcal{N}\left(\text{vec}\left(\left(X_k^U \top X_k^U + \frac{T}{2\kappa} \mathbf{I}_p\right)^{-1} X_k^U \top Y_k^U\right), \frac{T}{2} \left(\mathbf{I}_q \otimes \left(X_k^U \top X_k^U + \frac{T}{2\kappa} \mathbf{I}_p\right)\right)^{-1}\right).$$

167 Based on the preceding discussion, we introduce our simulated annealing method, formally presented in Algorithm 1. The algorithm is designed to minimize the regularized energy function from
 168 Equation (4). A key component is its slow cooling schedule, where the temperature T_t in iteration t follows $T_t = T_0 \cdot \log(t+1)^{-\alpha}$ for a constant $0 < \alpha < 1$. Although our implementation employs
 169 a K-means++ seeding strategy (Arthur & Vassilvitskii, 2007) for practical efficiency, we prove in
 170 Section 3.3 that the algorithm is theoretically robust to the choice of initial parameters.

171
 172 **Algorithm 1:** Gibbs sampling with simulated annealing K-means clustering algorithm for multivariate linear regression

173 **Input:** $[(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)], K, \alpha, T_0, c, \kappa$
 174 **Output:** $\hat{B}_1, \hat{B}_2, \dots, \hat{B}_K, \hat{u}_1, \hat{u}_2, \dots, \hat{u}_n$
 175 Let $\hat{B}_1 = \hat{B}_2 = \dots = \hat{B}_K = 0$ initially. **for** $k \leftarrow 1$ **to** K **do**
 176 $r \leftarrow \{1, 2, \dots, n\}$ satisfy $P(r = i) \propto \min_{1 \leq k' \leq K} \|y_i - x_i \hat{B}_{k'}\|_2^2$
 177 $\hat{B}_k = \frac{x_r \top y_r}{\|x_r\|_2^2}$
 178 **end**
 179 $t = 0$ **while** \hat{u}_i not converge **do**
 180 **for** $k \leftarrow 1$ **to** K **do**
 181 X_k^U is the matrix whose rows are all $x_i | \hat{u}_i = k$
 182 Y_k^U is the matrix whose rows are all $y_i | \hat{u}_i = k$
 183 We seem \hat{B}_k as a $p * q$ dimensional matrix and
 184 $\text{vec}(\hat{B}_k) \sim N(\text{vec}((X_k^U \top X_k^U + \frac{T_t}{2\kappa} \mathbf{I}_p)^{-1} X_k^U \top Y_k^U), \frac{T_t}{2} (I_q \otimes X_k^U \top X_k^U + \frac{T_t}{2\kappa} \mathbf{I}_{p \times q})^{-1})$
 185 **end**
 186 **for** $j \leftarrow 1$ **to** n **do**
 187 $p(\hat{u}_j = k) \propto \exp(-\frac{\|y_j - x_j \hat{B}_k\|_2^2}{T_t})$
 188 **end**
 189 $t = t + 1$
 190 $T_t = T_0 \cdot (\log t)^{-\alpha}$, where $0 < \alpha < 1$
 191 **end**

200

201

202 3 MAIN RESULTS

203

204 3.1 NOTATIONS AND ASSUMPTIONS

205

206 This section presents the main theoretical results for our algorithm. Our framework assumes that the
 207 model described in (1) is correct and the true number of classes K is given. The core of our analysis
 208 is the WCSS function J and the residual sum of squares function m . Consequently, the global
 209 minimizer of J shares the same parameter estimate $\hat{\theta}$ as the empirical mean $\frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \hat{\theta})$.
 210 To analyze the properties of the global minimum of J , we must therefore examine both the empirical
 211 objective $\frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \theta)$ and its population counterpart $\mathbb{E}_{(X, Y)} [m(X, Y, \theta)]$. On the
 212 other hand, for the model equation 1 to yield statistically significant conclusions, nondegeneracy is
 213 essential. We thus formalize the following assumptions before the theoretical analysis.

214 **Assumption 1** (Uniqueness of optimal solution up to permutation symmetry). *The global minimum $\hat{\theta} = (\hat{B}_1, \hat{B}_2, \dots, \hat{B}_K)$ of the function $\frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \theta)$ and the global minimum $\theta^* = (B_1^*, B_2^*, \dots, B_K^*)$ of its expectation $\mathbb{E}_{(X, Y)} [m(X, Y, \theta)]$ are unique up to permutations. That is,*

216 if $\hat{\theta}$ is a global minimum of $\frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \theta)$, then any permutation $(\hat{B}_{\pi(1)}, \hat{B}_{\pi(2)}, \dots, \hat{B}_{\pi(K)})$,
 217 for $\pi \in S_K$ (the symmetric group on the K elements) is also a global minimum, and all global
 218 global minima are permutations of each other. Similarly, this property holds for the population minimizer
 219 $\theta^* = (B_1^*, B_2^*, \dots, B_K^*)$.

220 **Assumption 2** (Model correctness). *The distribution of X, Y fits the model (equation 1), with $p_k \geq$
 221 $c > 0$ for any $1 \leq k \leq K$.*

222 **Assumption 3** (Model non-degeneracy). *The covariance matrix Σ of the variable X is non-
 223 degenerate, which means that the minimum eigenvalue of Σ is strictly greater than zero.*
 224

225 Our subsequent analysis relies on the three assumptions mentioned previously. We define $\mathcal{U}^* =$
 226 $\{u_1^*, \dots, u_n^*\}$, where each assignment u_i^* is the index of the true parameter that minimizes the
 227 squared error, that is, $u_i^* = \arg \min_{1 \leq k \leq K} \|y_i - x_i B_k^*\|_2^2$. Throughout, we use $\|\cdot\|_F$ to denote the
 228 Frobenius norm and $\|\cdot\|_{\min}$ for the minimum eigenvalue of a symmetric positive definite matrix.

229 **3.2 THEOREMS ABOUT ESTIMATED QUALITY AND CLASSIFICATION ACCURACY**

231 This subsection establishes an upper bound on the estimation error between the global minimum of
 232 $\mathbb{E}_{(X,Y)} [m(X, Y, \theta)]$, $\theta^* = (B_1^*, B_2^*, \dots, B_K^*)$ and the true parameters $\theta = (B_{1,0}, B_{2,0}, \dots, B_{K,0})$,
 233 under the assumption that the number of clusters K is known. By analyzing the structural prop-
 234 erties of the objective function $m(X, Y, \theta)$, we derive a high-probability bound for the par-
 235 ameter estimation error. This result further implies a limit on classification accuracy, defined as
 236 $\frac{1}{n} \sum_{i=1}^n I(u_i^* = \pi(u_{i,0}))$, where π denotes the optimal permutation that aligns the estimated cluster
 237 parameters with their true counterparts.

238 The quality of the parameter estimates is fundamental to the overall classification performance.
 239 Therefore, we first conduct a thorough analysis of $m(X, Y, \theta)$ to control the estimation error. The
 240 main theoretical contribution is presented in Lemma 3.1, which provides an upper bound on the gap
 241 of the regression matrices of θ^* and θ in the large sample setting. This bound explicitly characterizes
 242 how the accuracy of the estimate depends on the dimensions of the problem (p, q) and the spectral
 243 properties of the covariance matrices σ and Σ , providing information on the factors driving the
 244 accuracy of the estimate.

245 **Lemma 3.1.** *Under Assumptions 1, 2 and 3, we denote the estimator $\theta^* = B_1^*, B_2^*, \dots, B_K^*$ mini-
 246 mize the*

$$\mathbb{E}_{(X,Y)} [m(X, Y, \theta)].$$

247 *Then we have for any $1 \leq k \leq K$, there exist a $1 \leq \pi(k) \leq K$ satisfy:*

$$\|B_{k,0} - B_{\pi(k)}^*\|_F \leq C \frac{\sigma}{\sqrt{\|\Sigma\|_{\min}}},$$

248 *where*

$$C = K\sqrt{3e}\left\{(K-1)\sqrt{\frac{2}{\pi}} + \sqrt{\frac{1}{c}\frac{2}{\pi}(K-1)^2 + \frac{1}{c}2(K-1)\sqrt{\frac{2}{\pi}}}\right\},$$

249 *which only related to the K and c .*

250 Lemma 3.1 establishes an asymptotic upper bound on the Frobenius norm error $\|B_{k,0} - B_{\pi(k)}^*\|_F$
 251 for each true cluster parameter $B_{k,0}$ and the minimum point $B_{\pi(k)}^*$ of function m . This bound
 252 characterizes the behavior of the estimator $\hat{\theta}$ in large samples, with its magnitude governed by the
 253 noise level σ , the minimum singular value of the covariance matrix $\|\Sigma\|_{\min}$, and a constant C that
 254 depends solely on K and c . Notice that for $i \neq j$, we cannot prove $\pi(i) \neq \pi(j)$ without further
 255 conditions.

256 The precision of these parameter estimates is fundamental to the classification accuracy, defined as
 257 $\frac{1}{n} \sum_{i=1}^n \mathbb{I}(u_i^* = \pi(u_{i,0}))$. Intuitively, accurate classification requires that the maximum estimation
 258 error, $\max_{1 \leq k \leq K} \|B_{k,0} - B_{\pi(k)}^*\|_F$, is small relative to the minimum separation between two distinct
 259 true parameters, $D = \min_{i \leq j} \|B_{i,0} - B_{j,0}\|_F$. When this condition is satisfied, that is, when the
 260 estimated parameters are close to their true values and the clusters are well separated, the probability
 261 of misclassification decays rapidly. The bound in Lemma 3.1 provides a direct pathway to formalize
 262 this intuition and derive a subsequent bound on the classification error rate.

In particular, if the distance between classes D between the different regression matrices is greater than twice the maximum coefficient estimation error, $\max_{1 \leq k \leq K} \|B_{k,0} - \hat{B}_{\pi(k)}\|_F$, it can be proven that $\pi(i) \neq \pi(j)$ for any $i \neq j$. This implies that $\pi \in S_K$ is a true permutation, which prevents a single estimated matrix from being matched to multiple true matrices. Under slightly stronger conditions, Theorem 3.2 establishes that, in the asymptotic sense of large samples, the probability of missclassification decays at a rate $\mathcal{O}_p(D^{-1}(\log D)^{1/2})$. This shows that in the sense of large samples, when the degree of separation between categories D tends to infinity, the probability that each sample is correctly classified tends to 1.

Theorem 3.2. *Let $D' = \frac{\sqrt{\|\Sigma\|_{\min}}}{\sigma} D$ and $C' = \sqrt{\frac{\|\Sigma\|_2}{\|\Sigma\|_{\min}}} C$. Under Assumptions 1, 2 and 3, if the inequality condition $D' > 2C' + 2\sqrt{q}$ holds, then, for any sample $y_j = B_{k,0}x_j + \epsilon_j$ from sub-distribution $Y = B_{k,0}X + \epsilon$, the probability that this sample is correctly clustered could be bounded by:*

$$\begin{aligned} P(u_{j,0} \neq \pi(k)) &\leq (K-1) \left\{ \frac{C' + 2\sqrt{q}}{D' - C'} \left(1 + 2 \log \left(\frac{D' - C'}{C' + 2\sqrt{q}} \right) \right)^{\frac{1}{2}} \right. \\ &\quad \left. + \left(\frac{C' + 2\sqrt{q}}{D' - C'} \left(1 + 2 \log \left(\frac{D' - C'}{C' + 2\sqrt{q}} \right) \right)^{\frac{1}{2}} \right)^q + e^{\frac{1}{2}} \left(\frac{C' + 2\sqrt{q}}{D' - C'} \right) \left(1 + 2 \log \left(\frac{D' - C'}{C' + 2\sqrt{q}} \right) \right)^{\frac{1}{2}} \right\} \end{aligned}$$

Theorem 3.2 gives an upper bound on the probability that each sample is incorrectly clustered. This upper bound tends to 0 at a rate of $\mathcal{O}_p(D^{-1}(\log D)^{1/2})$ when the degree of separation D of the regression matrices of different sub-models tends to infinity. Through the precise guarantee on the accuracy of sample classification provided by Theorem 3.2, when D is large, we can obtain a more precise upper bound guarantee on the error of estimating the true parameter θ using the global minimum θ^* than Lemma 3.1. In fact, in Theorem 3.3, we proved that when D tends to infinity, the estimation error $\max_{1 \leq k \leq K} \|B_{k,0} - B_k^*\|_F$ decreases at the rate $\mathcal{O}_p(D^{-\frac{1}{2}}(\log D)^{1/4})$

Theorem 3.3. *Denoting $D' = \frac{\sqrt{\|\Sigma\|_{\min}}}{\sigma} D$ and $C' = \sqrt{\frac{\|\Sigma\|_2}{\|\Sigma\|_{\min}}} C$. Under Assumptions 1, 2 and 3, if the inequality conditions $D' > 2C' + 2$ and $(K-1)(1+e^{\frac{1}{2}})\frac{C'+2}{D'-C'}(1+2\log(\frac{D'-C'}{C'+2}))^{\frac{1}{2}} \leq 1$ holds and estimator $\theta^* = (B_1^*, B_2^*, \dots, B_K^*)$ minimize the $\mathbb{E}_{X,Y} m(X, Y, \theta)$, then there is a constant C_D , for any $1 \leq k \leq K$, there exist a $\pi(k)$ satisfies*

$$\|B_{k,0} - B_{\pi(k)}^*\|_F \leq C_D \frac{\sigma}{\sqrt{\|\Sigma\|_{\min}}}$$

for any $1 \leq k \leq K$, where

$$\begin{aligned} C_D &= \frac{\sqrt{3e}}{1-P(K-1)} \left\{ (K-1) \sqrt{\frac{2}{\pi}} e^{-\frac{1}{2}} \frac{C'+2}{D'-C'} \right. \\ &\quad \left. + \sqrt{\frac{1}{c} \frac{2}{e\pi} (K-1)^2 \left(\frac{C'+2}{D'-C'} \right)^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1+e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K-1)}{1-P(K-1)} \left(\frac{2}{\pi} (K-1)^2 + 2\sqrt{\frac{2}{\pi}} (K-1) \right)} \right\} \end{aligned}$$

with

$$P = (1+e^{\frac{1}{2}}) \frac{C'+2}{D'-C'} \left(1 + 2 \log \left(\frac{D' - C'}{C' + 2} \right) \right)^{\frac{1}{2}}$$

$$\text{and } C' = C \sqrt{\frac{\|\Sigma\|_2}{\|\Sigma\|_{\min}}} = \sqrt{\frac{\|\Sigma\|_2}{\|\Sigma\|_{\min}}} K \sqrt{3e} \left\{ (K-1) \sqrt{\frac{2}{\pi}} + \sqrt{\frac{1}{c} \frac{2}{\pi} (K-1)^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}}} \right\}.$$

In summary, our analysis provides rigorous theoretical guarantees for the proposed framework by analyzing its properties at both the population and finite-sample levels. Our primary theoretical contribution is to establish that the population minimizer of our objective function, θ^* , which represents the asymptotic properties of $\hat{\theta}$, is a consistent proxy for the true parameter θ_0 . We show that the asymptotic bias between θ^* and θ_0 is primarily governed by the separation distance D , the bias, and the rate of misclassification decreasing as D increases. This relationship is further influenced by the signal-to-noise ratio, where the bias is amplified by higher noise levels (σ) but reduced by a stronger signal structure (characterized by the spectral properties of Σ). For completeness, we provide a detailed analysis of the finite-sample error between $\hat{\theta}$ and θ_0 in Appendix B. Collectively, these results guarantee the reliability of our method by showing that its theoretical target is provably close to the ground truth.

324 3.3 THEOREMS ABOUT ALGORITHM CONVERGENCE
325

326 In Subsection 3.2, we analyze the global minimum point $\theta^* = (B_1^*, B_2^*, \dots, B_K^*)$ and investigate the
327 statistical properties of this estimator to recover the true regression function and the true category
328 labels. However, both the point-wise objective function $m(X, Y, \theta) = \min_{1 \leq k \leq K} \|Y - XB_k\|_2^2$
329 and its expectation are nonconvex. As a result, conventional K-means algorithms are generally un-
330 able to guarantee convergence to the global minimum. This section establishes that the proposed
331 **Gibbs sampling with simulated annealing K-means clustering Algorithm** (Algorithm 1) con-
332 verges provably to the global minimum of $\sum_{i=1}^n m(x_i, y_i, \theta)$ at a rate slightly slower than a power
333 function. These convergence results underline the algorithmic advantage of incorporating stochastic
334 sampling and annealing mechanisms to overcome the limitations of classical non-convex optimiza-
335 tion in clustering contexts.

336 **Theorem 3.4.** *We denote $\hat{\mathcal{U}}^{(t)} = (u_1^{(t)}, \dots, u_n^{(t)})$ and $\hat{\theta} = (\hat{B}_1^{(t)}, \dots, \hat{B}_n^{(t)})$ as the estimation
337 result of t -th iteration of Algorithm 1. If $\hat{\theta}$ is the global minimum of the function $\sum_{i=1}^n m(x_i, y_i, \theta)$,
338 $\hat{\mathcal{U}} = (\hat{u}_1, \dots, \hat{u}_n)$ is the category estimate generated by $\hat{\theta}$. If Assumption 1 holds and $T_{(1)} \leq T_{(2)}$
339 satisfies $T_{(1)}(\log t)^\alpha \leq T_t \leq T_{(2)}(\log t)^\alpha$ for $0 < \alpha < 1$, then there is a permutation π such that
340 for any $\delta > 0$,*

$$341 P(\hat{u}_i^{(t)} = \pi(\hat{u}_i)) \geq 1 - C^* \exp(-C^{**}(\log t)^\alpha),$$

$$342 P(\|\hat{B}_k^{(t)} - \hat{B}_{\pi(k)}\|_F < \delta) \geq 1 - C_\delta^* \exp(-C_\delta^{**}(\log t)^\alpha),$$

343 where $C^*, C^{**} > 0$ are not related to t or δ , and $C_\delta^*, C_\delta^{**} > 0$ are not related to t .

344 Theorem 3.4 establishes that the probability of convergence of our **Gibbs sampling with simulated
345 annealing K-means clustering Algorithm** (Algorithm 1) to a neighborhood of the global minimum
346 of the WCSS function $J(\theta, \mathcal{U})$ increases to 1 with the number of iterations. This result indicates that
347 the algorithm converges with high probability and at a rapid rate to the WCSS minimum while
348 remaining robust to initial conditions. Building on the theoretical framework developed in Section
349 3.2, these convergence guarantees imply that the algorithm produces estimates consistent with the
350 true regression function and produces highly accurate predictions as well as classifications with high
351 probabilities. In particular, these assurances hold for multivariate linear regression problems without
352 reliance on overly restrictive assumptions.

353 4 SIMULATION STUDIES
354355 4.1 SIMULATION SETUP
356

357 This section presents a comprehensive empirical evaluation of the proposed **Gibbs sampling with
358 simulated annealing K-means clustering Algorithm** (GIBBS-SA K-MEANS, or GSAKM) for
359 multivariate linear regression, as formalized in Algorithm 1. Upon completing the iterative opti-
360 mization procedure described in Algorithm 1, we lower the temperature T_t to 0 for the final polish-
361 ing. To mitigate convergence to local optima and improve the quality of the solution, we performed
362 10 independent optimization trials with random initializations under all experimental conditions.
363 Throughout our experiments, the annealing parameter α is maintained at 0.99, a value empirically
364 calibrated to strike a balance between exploration and exploitation during the optimization process.

365 To improve convergence probability and reduce the number of iterations required, we adopt a tem-
366 perature scheduling scheme defined by $T_t = T(\log(t_0 + t) - t_1)^{-\alpha}$, where t_0, t_1 are parameters
367 introduced to prevent an excessively rapid decrease in temperature during initial iterations. In par-
368 ticular, T is not kept constant, but is instead dynamically scaled in proportion to the minimum value
369 of $\sum_{i=1}^n m(x_i, y_i, \theta)$ observed in all iterations. Since $\sum_{i=1}^n m(x_i, y_i, \theta)$ has a global minimum, the
370 decay rate of our temperature T_t remains consistent with the conditions specified in Theorem 3.4.
371 Specifically in our simulation studies, denoting $\hat{\theta}^{(s)}$ as the estimate parameter of t -th iteration, we
372 set $T = \frac{K}{np - Kpq} \min_{1 \leq s \leq t} \sum_{i=1}^n m(x_i, y_i, \hat{\theta}^{(s)})$, $\kappa = 0.01$, $t_0 = 2 \exp(4)$ and $t_1 = 3 + \log(2)$

373 To establish comparative baselines, we evaluate our proposed methodology (Algorithm 1) against
374 three established approaches: standard Expectation-Maximization (SEM), a variant of EM that as-
375 sumes a known error variance σ^2 (SEMK), and standard K-Means clustering (SKM). Our simulation
376 framework generates data from the Gaussian mixture model specified in Equation equation 1 with

378 a fixed sample size of $n = 500$. The covariate vectors $x_i \in \mathbb{R}^p$ are sampled from $\mathcal{N}(0, \Sigma)$, where
 379 Σ has an autoregressive covariance structure with $\Sigma_{ij} = 0.3^{|i-j|}$. The error terms are extracted
 380 independently from $\epsilon_i \sim \mathcal{N}(0, I_q)$ (with $\sigma = 1$), and the response variables y_i are subsequently
 381 derived from the mixture model.

382 The experimental design systematically evaluates performance across multiple dimensions of prob-
 383 lem complexity. We test both three-cluster ($K = K = 3$) systems with predictor dimensions of
 384 $p \in \{50, 70\}$ and four-cluster ($K = K = 4$) systems with $p \in \{35, 50\}$. For each of these (K, p)
 385 pairs, we further vary the response dimensionality to include the $q \in \{2, 3\}$ variables. For each
 386 resulting combination, we then evaluate the cases with regression dimensions of $D \in \{20, 40\}$.
 387 This complete factorial design yields a total of $2 \times 2 \times 2 \times 2 = 16$ unique experimental conditions.
 388 All four algorithms —SEM, SEMK, SKM, and GSAKM— undergo a rigorous evaluation under
 389 each parameter configuration, enabling a comprehensive assessment of their relative performance
 390 advantages across these varying complexities.

392 4.2 SIMULATION RESULTS

393 To evaluate prediction methods in multivariate linear regression with mixture models, we em-
 394 ploy two metrics: estimation error and classification accuracy. The estimation error is defined as
 395 $\min_{\pi \in \mathcal{S}_K} \max_{1 \leq k \leq K} \|\hat{B}_{\pi(k)} - B_{k,0}\|_F$, where \mathcal{S}_K denotes the symmetric group of all permutations
 396 of $\{1, 2, \dots, K\}$. This permutation minimization accounts for label switching, ensuring invariance
 397 to class relabeling. Notice that this definition remains valid regardless of whether the conditions
 398 in Theorems in Subsection 3.2 hold, eliminating the lower bound assumptions about D in numeri-
 399 cal experiments. The classification accuracy is $\frac{1}{n} \sum_{i=1}^n \mathbb{I}(\hat{u}_i = \pi(u_{i,0}))$. The predicted label \hat{u}_i is
 400 determined by $\hat{u}_i = \arg \min_{1 \leq k \leq K} \|y_i - x_i \hat{B}_k\|_2$.

401 Beyond estimating the regression parameter $\hat{\theta}$ and assigning group memberships $\{\hat{u}_i\}_{1 \leq i \leq n}$ from
 402 the training data to compute prediction and classification errors, we perform additional validation
 403 using an independently generated testing set. This test dataset, simulated from the same model with
 404 an identical sample size ($n = 500$), allows for the calculation of the out-of-sample classification
 405 error. For both training and testing datasets, we further evaluated performance using WCSS, which
 406 is denoted by $J(\hat{\theta}, \hat{U}) = \sum_{i=1}^n m(x_i, y_i, \hat{\theta})$.

407 This paper proposes a novel algorithm, combining Gibbs sampling with simulated annealing K-
 408 means, for the estimation of the mixture of multivariate linear regression models. We provide a
 409 comprehensive theoretical analysis that establishes that, under mild assumptions and sufficient sep-
 410 aration (D) between the true regression matrices, the global minimizer of the objective function
 411 is a consistent estimator. Specifically, we prove that both the parameter estimation error and the
 412 misclassification rate converge to zero as D increases. Algorithmically, we show that our method
 413 converges to this global minimum with high probability under a slow logarithmic cooling schedule
 414 with an exponent $\alpha < 1$.

415 The efficacy of our approach and its theoretical guarantees are validated through extensive exper-
 416 iments on both synthetic and real-world datasets. Although our theory is presented for standard
 417 errors, the framework is flexible enough to accommodate other distributions. Promising directions
 418 for future work include extending this analysis to more general parametric families, such as gen-
 419 eralized linear models (GLMs), or to models based on soft component assignments.

422 5 DISCUSSION

424 This paper studies a mixed multivariate linear regression model using a Gibbs sampling-enhanced
 425 simulated annealing K-means clustering algorithm. We establish that, under mild assumptions, in
 426 both asymptotic and non-asymptotic (finite-sample) regimes, the global minimizer of the K-means
 427 objective accurately recovers the true regression matrix in finite samples and assigns observations
 428 to their true categories with high probability. Moreover, as the separation D between different
 429 regression matrices increases, the parameter estimation error converges asymptotically to zero, and
 430 the misclassification rate decays asymptotically to zero. Algorithmically, we prove that under a
 431 logarithmic cooling schedule with exponent $\alpha < 1$, the probability of converging to the global
 432 minimum behaves as $(\log t)^{-\alpha}$. Although the theory assumes standard errors, the framework is

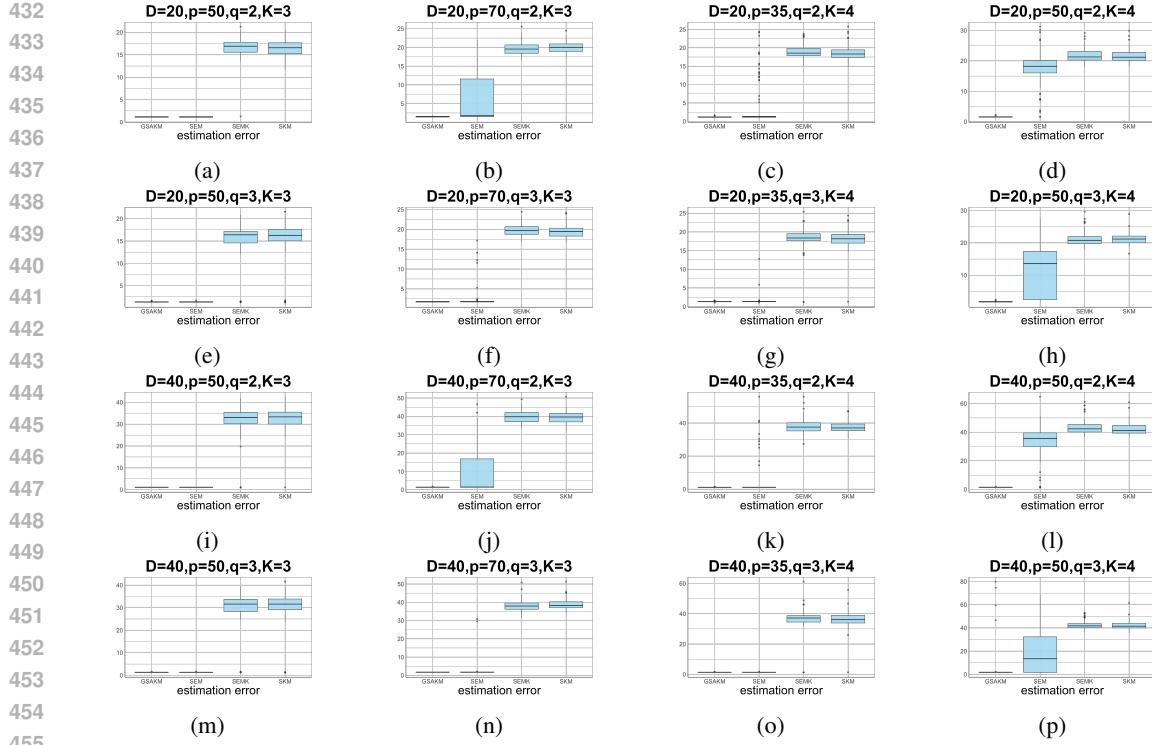


Figure 1: The box-plot of estimation errors of four different estimation methods under 16 parameter conditions.

flexible and can accommodate other distributions. Empirical results, based on both synthetic and real data, support our theoretical claims. Future work could extend our analysis to more general parametric families, such as Generalized Linear Models (GLMs), or develop estimation methods for models where observations arise from soft assignments or linear combinations of the underlying components.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. As a foundational and theoretical study validated on synthetic data, it presents no direct ethical risks involving human subjects or sensitive information. However, we encourage careful consideration of fairness and bias in any real-world application of this general-purpose algorithm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of the research presented in this paper. All code, simulation scripts, and instructions required to replicate the experiments, figures, and tables are provided in the supplementary material.

Code The implementation of our experiments was carried out in R (version 4.4.3). To guarantee a fully reproducible software environment, we have utilized the `renv` package. The exact versions of all R packages are captured in the `renv.lock` file. Detailed setup instructions are available in the `README.md` file included in our submission. The main simulation logic can be found in `simulate_study_program.R`, with five figures generation scripts located in the leading directory.

Data All datasets analyzed in this work were generated by simulation. The code for this data generation process is an integral part of the main simulation script (`simulate_study_program.R`), enabling the complete end-to-end replication of our results, from data creation to final analysis.

486
487
LARGE LANGUAGE MODEL ASSISTANCE488
489
490
491
492
During the preparation of our code and supplementary materials for submission, we utilized
Google’s Gemini and Deepseek. Its assistance was specifically sought for debugging R code, im-
proving the language and clarity of the main text, and refining technical descriptions. The authors
assume full and final responsibility for all content presented in this paper and its supplementary
materials.493
494
REFERENCES495
496
497
David Aldous. Random walks on finite groups and rapidly mixing markov chains. In *Séminaire de
Probabilités XVII 1981/82: Proceedings*, pp. 243–297. Springer, 2006.
498
499
Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of euclidean sum-
of-squares clustering. *Machine Learning*, 75(2):245–248, 2009.
500
501
502
David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2007.
503
504
Sivaraman Balakrishnan, Martin J Wainwright, and Bin Yu. Statistical guarantees for the EM algo-
rithm: From population to sample-based analysis. 2017.
505
506
507
Francis S Collins and Harold Varmus. A new initiative on precision medicine. *New England Journal
of Medicine*, 372(9):793–795, 2015.
508
509
Richard D De Veaux. Mixtures of linear regressions. *Computational Statistics & Data Analysis*, 8
(3):227–245, 1989.
510
511
512
Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the EM algorithm. *Journal of the Royal Statistical Society: Series B*, 39(1):1–22, 1977.
513
Sylvia Frühwirth-Schnatter. *Finite mixture and Markov switching models*. Springer, 2006.
514
515
516
517
Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, (6):
721–741, 1984.
518
519
Stephen M Goldfeld and Richard E Quandt. A markov model for switching regressions. *Journal of
Econometrics*, 1(1):3–15, 1973.
520
521
522
Margaret A Hamburg and Francis S Collins. The path to personalized medicine. *New England
Journal of Medicine*, 363(4):301–304, 2010.
523
Wolfgang Härdle and Léopold Simar. *Applied Multivariate Statistical Analysis*. Springer, 2007.
524
525
Trevor Hastie. The elements of statistical learning: Data mining, inference, and prediction, 2009.
526
527
Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci. *Handbook of Cluster Analysis*.
CRC press, 2015.
528
529
530
Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. *Neural Computation*, 3(1):79–87, 1991.
531
532
Anil K Jain. Data clustering: 50 years beyond k-means. *Pattern Recognition Letters*, 31(8):651–666,
2010.
533
534
535
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. *An Introduction to Statistical
Learning: with Applications in R*, volume 103. Springer, 2013.
536
537
Jeungju Kim and Johan Lim. Strong consistency of sparse k-means clustering. *arXiv preprint
arXiv:2501.09983*, 2025.
538
539
Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

540 Raymond W Klein and Richard C Dubes. Experiments in projection and clustering by simulated
 541 annealing. *Pattern Recognition*, 22(2):213–220, 1989.
 542

543 David A Levin and Yuval Peres. *Markov Chains and Mixing Times*, volume 107. American Mathe-
 544 matical Society, 2017.

545 Stuart Lloyd. Least squares quantization in pcm. *IEEE Transactions on Information Theory*, 28(2):
 546 129–137, 1982.
 547

548 Andreas Maurer. A vector-contraction inequality for rademacher complexities. In *Algorithmic
 549 Learning Theory: 27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016,
 550 Proceedings 27*, pp. 3–17. Springer, 2016.

551 Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite mixture models. *Annual
 552 Review of Statistics and Its Application*, 6(1):355–378, 2019.
 553

554 Shokri Z Selim and K 1 Alsultan. A simulated annealing algorithm for the clustering problem.
 555 *Pattern Recognition*, 24(10):1003–1008, 1991.

556 Juan Shen and Xuming He. Inference for subgroup analysis with a structured logistic-normal mix-
 557 ture model. *Journal of the American Statistical Association*, 110(509):303–312, 2015.
 558

559 Nicolas Städler, Peter Bühlmann, and Sara Van De Geer. L_1 -penalization for mixture regression
 560 models. *Test*, 19(2):209–256, 2010.

561 Wenpin Tang and Xun Yu Zhou. Simulated annealing from continuum to discretization: a conver-
 562 gence analysis via the eyring–kramers law. *arXiv preprint arXiv:2102.02339*, 2021.
 563

564 Ulrike Von Luxburg. A tutorial on spectral clustering. *Statistics and Computing*, 17(4):395–416,
 565 2007.

566 Ning Wang, Xin Zhang, and Qing Mai. Statistical analysis for a penalized EM algorithm in high-
 567 dimensional mixture linear regression model. *Journal of Machine Learning Research*, 25(222):
 568 1–85, 2024.
 569

570 Xinyang Yi and Constantine Caramanis. Regularized EM algorithms: A unified framework and
 571 statistical guarantees. *Advances in Neural Information Processing Systems*, 28, 2015.

572 Linjun Zhang, Rong Ma, T Tony Cai, and Hongzhe Li. Estimation, confidence intervals, and
 573 large-scale hypotheses testing for high-dimensional mixed linear regression. *arXiv preprint
 574 arXiv:2011.03598*, 2020.
 575

576

577 A THE PROOF OF THE THEOREM GIVEN IN THE PAPER

579 A.1 PROOF OF LEMMA 3.1

581 *Proof.* For any fix X , we define $Y_k^* = XB_k^*$ for $1 \leq k \leq K$ and $Y_k = XB_{k,0}$ for $1 \leq k \leq K$ then
 582 $\mathbb{E}_{(X,Y)}[m(X, Y, \theta^*)] = \mathbb{E}_X(\mathbb{E}_Y \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2)$. Here Y follows a mixture Gaussian
 583 model, for probability p_k , $Y \sim N(Y_k, \sigma^2 I_q)$. So we have $\mathbb{E}_X(\mathbb{E}_Y \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2) =$
 584 $\mathbb{E}_X(\sum_{k=1}^n p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2)$. Because X is not related to the mixing ratio.
 585 We have $\mathbb{E}_X(\mathbb{E}_Y \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2) = \sum_{k=1}^n p_k \mathbb{E}_X(\mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2)$
 586

587 We let $t_k = \min\{\|Y_{k'}^* - Y_k\|_2, 1 \leq k' \leq K\}$. It may be worthwhile to let $t_k = \|Y_1^* - Y_k\|_2$. Then
 588 if $Y \sim N(Y_k, \sigma^2 I_q)$, we have:

$$\begin{aligned}
 & \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2 \\
 &= \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{2 \leq k' \leq K} (\min(\|Y - Y_1^*\|_2^2, \|Y - Y_{k'}^*\|_2^2) \\
 &= \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{2 \leq k' \leq K} (\|Y - Y_1^*\|_2^2 - \max\{0, \|Y - Y_1^*\|_2^2 - \|Y - Y_{k'}^*\|_2^2\})
 \end{aligned}$$

594 $\geq \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} (\|Y - Y_1^*\|_2^2 - \sum_{k'=2}^K \max\{0, \|Y - Y_1^*\|_2^2 - \|Y - Y_{k'}^*\|_2^2\})$
 595
 596
 597
 598 Notice that $\|Y - Y_1^*\|_2^2 - \|Y - Y_{k'}^*\|_2^2 = 2 < Y_{k'}^* - Y_1^*, Y - \frac{1}{2}(Y_1^* + Y_{k'}^*) >$. We let $t'_k = \|Y_{k'} - Y_k\|_2$. Then $\mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \max\{0, 2 < Y_{k'}^* - Y_1^*, Y - \frac{1}{2}(Y_1^* + Y_{k'}^*) >\} \leq \mathbb{E}_{y \sim N(0, \sigma)} 2(t_k + t'_k) \max\{0, y - \frac{t'_k - t_k}{2}\}$
 600
 601 By calculation, we have
 602

$$\begin{aligned}
 603 \mathbb{E}_{y \sim N(0, \sigma)} \max\{0, y - \frac{t'_k - t_k}{2}\} &= \\
 604 &\int_{t=\frac{t'_k - t_k}{2}}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} (t - \frac{t'_k - t_k}{2}) e^{-\frac{t^2}{2\sigma^2}} dt \\
 605 &\leq \int_{t=\frac{t'_k - t_k}{2}}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} t e^{-\frac{t^2}{2\sigma^2}} dt \\
 606 &= \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{a^2}{2\sigma^2}}
 \end{aligned}$$

607 Where $a = \frac{t'_k - t_k}{2}$. Because of $t'_k \geq t_k$, we have $a \geq 0$, and $\mathbb{E}_{y \sim N(0, \sigma)} 2(t_k + t'_k) \max\{0, y - \frac{t'_k - t_k}{2}\} = 2(t_k + t'_k) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{a^2}{2\sigma^2}} = 4 \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}}$
 613
 614
 615

616 When $a = \frac{-t_k + \sqrt{t_k^2 + 4\sigma^2}}{2}$, the $4 \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}}$ take it's maximin, which equals to $2 \frac{\sigma}{\sqrt{2\pi}} (t_k + \sqrt{t_k^2 + 4\sigma^2}) e^{-\frac{(-t_k + \sqrt{t_k^2 + 4\sigma^2})^2}{8\sigma^2}}$. It is easy to proof this maximum is smaller than $\frac{4\sigma}{\sqrt{2\pi}} (t_k + \sigma)$
 617
 618
 619

620 In summary, we have:
 621

$$\begin{aligned}
 622 \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2 & \\
 623 &\geq \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} (\|Y - Y_1^*\|_2^2 - \sum_{k'=2}^K \max\{0, \|Y - Y_1^*\|_2^2 - \|Y - Y_{k'}^*\|_2^2\}) \\
 624 &\geq q\sigma^2 + t_k^2 - (K-1) \frac{4\sigma}{\sqrt{2\pi}} t_k - (K-1) \frac{4\sigma^2}{\sqrt{2\pi}}
 \end{aligned}$$

628 So in mixed distribution, we have:
 629

$$\begin{aligned}
 630 \sum_{k=1}^n p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2 & \\
 631 &\geq q\sigma^2 + \sum_{k=1}^n p_k (t_k^2 - (K-1) \frac{4\sigma}{\sqrt{2\pi}} t_k - (K-1) \frac{4\sigma^2}{\sqrt{2\pi}})
 \end{aligned}$$

636 Now consider the variable of X , $t_k = \min\{\|Y_{k'}^* - Y_k\|_2, 1 \leq k' \leq K\} = \min\{\|XB_{k'}^* - XB_{k,0}\|_2, 1 \leq k' \leq K\}$ vary with X . So, it is easy to prove, based on the Jensen inequality, that:
 637
 638

$$\begin{aligned}
 639 q\sigma^2 + \sum_{k=1}^n p_k (t_k^2 - (K-1) \frac{4\sigma}{\sqrt{2\pi}} t_k - (K-1) \frac{4\sigma^2}{\sqrt{2\pi}}) & \\
 640 &\geq q\sigma^2 + \sum_{k=1}^n p_k (\mathbb{E}_X(t_k^2) - (K-1) \frac{4\sigma}{\sqrt{2\pi}} \sqrt{\mathbb{E}_X(t_k^2)} - (K-1) \frac{4\sigma^2}{\sqrt{2\pi}})
 \end{aligned}$$

645 Now we give an upper bound of $\mathbb{E}_X(t_k^2)$ by rewrite $\|XB_{k'}^* - XB_{k,0}\|_2^2 = \sum_{i=1}^p a_i \xi_i^2$ where a_i is the i th eigenvalue of matrix $(B_{k'}^* - B_{k,0})^\top \Sigma (B_{k'}^* - B_{k,0})$ for $1 \leq i \leq p$, $\xi_1, \xi_2, \dots, \xi_p$ are independent standard normal distributed random variables. For any $\lambda > 0$ and $\mu > 0$ we have:
 646
 647

648
 649
 650 $P\left(\sum_{i=1}^p a_i \xi_i^2 \leq \lambda\right) = P\left(e^{-\mu \sum_{i=1}^p a_i \xi_i^2} \geq e^{-\mu \lambda}\right)$
 651
 652 $\leq e^{\mu \lambda} E e^{-\mu \sum_{i=1}^p a_i \xi_i^2}$
 653
 654 $\leq e^{\mu \lambda} \prod_{i=1}^p E e^{-\mu a_i \xi_i^2} = e^{\mu \lambda} \prod_{i=1}^p (1 + 2\mu a_i)^{-\frac{1}{2}} \leq e^{\mu \lambda} (1 + 2\mu \sum_{i=1}^p a_i)^{-\frac{1}{2}}$
 655
 656
 657 We take $\mu = \frac{1}{2}(\frac{1}{\lambda} - \frac{1}{\sum_{i=1}^p a_i})$ when $\lambda < \sum_{i=1}^p a_i$, we have $P(\|XB_{k'}^* - XB_{k,0}\|_2^2 \leq \lambda) \leq$
 658 $\sqrt{\frac{\lambda}{\sum_{i=1}^p a_i}} e^{\frac{1}{2}(1 - \frac{\lambda}{\sum_{i=1}^p a_i})} \leq \sqrt{\frac{e\lambda}{\sum_{i=1}^p a_i}}$
 659
 660
 661 Notice that If $\|B_{k'}^* - B_{k,0}\|_F = F_{k',k}$, we have $\sum_{i=1}^p a_i = \text{tr}((B_{k'}^* - B_{k,0})^\top \Sigma (B_{k'}^* - B_{k,0})) =$
 662 $\text{tr}(\Sigma (B_{k'}^* - B_{k,0})(B_{k'}^* - B_{k,0})^\top) \leq \|\Sigma\|_{\min} F_{k',k}^2$
 663 If $\pi(k)$ let $F_{\pi(k),k}$ is the minimum of $F_{k',k}$ when $1 \leq k' \leq K$, we have $P(t_k^2 \leq \lambda) = P(\min_{1 \leq k' \leq K} \|XB_{k'}^* - XB_{k,0}\|_2^2 \leq \lambda) \leq K \sqrt{\frac{e\lambda}{\|\Sigma\|_{\min} F_{\pi(k),k}^2}}$, so we have $E(t_k^2) \geq$
 664 $\int_{\lambda=0}^{\frac{\|\Sigma\|_{\min} F_{\pi(k),k}^2}{eK^2}} (1 - K \sqrt{\frac{e\lambda}{\|\Sigma\|_{\min} F_{\pi(k),k}^2}}) d\lambda = \frac{\|\Sigma\|_{\min} F_{\pi(k),k}^2}{3eK^2}$
 665
 666
 667
 668 So, if for any $1 \leq k \leq K$,
 669
 670 $F_{\pi(k),k} > \frac{\sigma K \sqrt{3e}}{\sqrt{\|\Sigma\|_{\min}}} \left\{ (K-1) \sqrt{\frac{2}{\pi}} + \sqrt{\frac{1}{c} \frac{2}{\pi} (K-1)^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}}} \right\}$
 671
 672
 673 Then we have
 674
 675
 676 $\mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2$
 677
 678 $> \sigma^2 \left(q + \frac{2}{\pi} \frac{1-c}{c} (K-1)^2 + 2 \sqrt{\frac{2}{\pi} \frac{1-c}{c} (K-1)} \right)$
 679
 680 so
 681 $\sum_{k=1}^K p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2$
 682
 683
 684 $> \sum_{k=1}^K \sigma^2 \left(q + p_k \frac{2}{\pi} \frac{1-c}{c} (K-1)^2 + 2p_k \sqrt{\frac{2}{\pi} \frac{1-c}{c} (K-1)} \right)$
 685
 686 $- (1-p_k) \frac{2}{\pi} (K-1)^2 - (1-p_k) \frac{4}{\sqrt{2\pi}} (K-1) \right) \geq q\sigma^2$
 687
 688
 689 It is easy to prove when $B_{k'}^* = B_{k,0}$ for $k' \leq K$, $\mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2 \leq q\sigma^2$,
 690 so if the θ^* minimize the $\mathbb{E}_{(X,Y)} [m(X, Y, \theta^*)]$, there exist a $\pi(k)$ satisfy: $\|B_{k,0} - B_{\pi(k)}^*\|_F \leq$
 691 $\frac{\sigma K \sqrt{3e}}{\sqrt{\|\Sigma\|_{\min}}} \left\{ (K-1) \sqrt{\frac{2}{\pi}} + \sqrt{\frac{1}{c} \frac{2}{\pi} (K-1)^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}}} \right\}$ for any k \square
 692
 693
 694
 695 A.2 PROOF OF THEOREM 3.2
 696
 697 Proof. Let's assume that under the best matching, $\pi(k) = k$ Using the conclusion of Lemma 3.1,
 698 we have $\|B_{k,0} - B_k^*\|_F < C \frac{\sigma}{\sqrt{\|\Sigma\|_{\min}}} = C' \frac{\sigma}{\sqrt{\|\Sigma\|_2}}$. The conditions of D tell us for any $i \neq k$,
 699 $\|B_{k,0} - B_i^*\|_F > (D' - C') \frac{\sigma}{\sqrt{\|\Sigma\|_{\min}}}$.
 700
 701 If $D' > 2C'$, it is easy to see that for any $i \neq k$, $\|B_{k,0} - B_i^*\|_F > \|B_{k,0} - B_k^*\|_F$.
 702

702 Then, if the sample $y_j = B_{k,0}x_j + \epsilon_j$ is from the sub-distribution $Y = B_{k,0}X + \epsilon$, then if $u_j^* = i$,
 703 it means $\|y_j - B_i^*x_j\|_2 < \|y_j - B_k^*x_j\|_2$, so $\|\epsilon_j + (B_{k,0} - B_i^*)x_j\|_2 < \|\epsilon_j + (B_{k,0} - B_k^*)x_j\|_2$.
 704

705 On the other hand, because of $\|B_{k,0} - B_i^*\|_F > (D' - C')\frac{\sigma}{\sqrt{\|\Sigma\|_{min}}}$ and $\|B_{k,0} - B_k^*\|_F < C'\frac{\sigma}{\sqrt{\|\Sigma\|_2}}$,
 706 using the tail bound of chi-square distribution we have use in the proof of theorem 3.1, we have:
 707

$$708 \mathbb{P}(\|(B_{k,0} - B_i^*)x_j\|_2^2 < (D' - C')^2\sigma^2 - \lambda) \leq e^{\frac{1}{2}\frac{\lambda}{(D' - C')^2\sigma^2}}(1 - \frac{\lambda}{(D' - C')^2\sigma^2})^{\frac{1}{2}}$$

710 and

$$711 \mathbb{P}(\|(B_{k,0} - B_k^*)x_j\|_2^2 > C'^2\sigma^2 + \lambda) \leq e^{-\frac{1}{2}\frac{\lambda}{C'^2\sigma^2}}(1 + \frac{\lambda}{C'^2\sigma^2})^{\frac{1}{2}}$$

713 satisfy for any $\lambda > 0$

715 And for error term ϵ_j , beacuse $\epsilon_j \sim N(0, \sigma I_q)$, it is clear that $\frac{\|\epsilon_j\|_2^2}{\sigma^2} \sim \chi^2(q)$, so the tail bound of
 716 $\|\epsilon_j\|_2^2$ is:

$$718 \mathbb{P}(\|\epsilon_j\|_2^2 > q\sigma^2 + \lambda) \leq (1 + \frac{\lambda}{q\sigma^2})^{\frac{q}{2}}e^{-\frac{\lambda}{2\sigma^2}}$$

721 Notice that, if $\|(B_{k,0} - B_i^*)x_j\|_2 - \|(B_{k,0} - B_k^*)x_j\|_2 \geq 2\|\epsilon_j\|_2$, then $\|y_j - B_i^*x_j\|_2 \geq \|y_j - B_k^*x_j\|_2$,
 722 which means $u_j^* \neq i$. So, we have for any $i \neq k$

$$723 \mathbb{P}(u_i^* = i) \leq \mathbb{P}(\|(B_{k,0} - B_i^*)x_j\|_2 - \|(B_{k,0} - B_k^*)x_j\|_2 < 2\|\epsilon_j\|_2) \\ 724 \leq \mathbb{P}\left(\|(B_{k,0} - B_k^*)x_j\|_2^2 > C'^2\sigma^2 + 2C'^2\sigma^2 \log\left(\frac{D' - C'}{C' + 2\sqrt{q}}\right)\right) \\ 725 + \mathbb{P}\left(\|\epsilon_j\|_2^2 > q\sigma^2 + 2q\sigma^2 \log\left(\frac{D' - C'}{C' + 2\sqrt{q}}\right)\right) \\ 726 + \mathbb{P}\left(\|(B_{k,0} - B_i^*)x_j\|_2^2 < (C' + 2\sqrt{q})^2(1 + 2 \log\left(\frac{D' - C'}{C' + 2\sqrt{q}}\right))\sigma^2\right) \\ 727 \leq \frac{C' + 2\sqrt{q}}{D' - C'}(1 + 2 \log\left(\frac{D' - C'}{C' + 2\sqrt{q}}\right))^{\frac{1}{2}} + \left(\frac{C' + 2\sqrt{q}}{D' - C'}(1 + 2 \log\left(\frac{D' - C'}{C' + 2\sqrt{q}}\right))^{\frac{1}{2}}\right)^q \\ 728 + e^{\frac{1}{2}}\left(\frac{C' + 2\sqrt{q}}{D' - C'}(1 + 2 \log\left(\frac{D' - C'}{C' + 2\sqrt{q}}\right))^{\frac{1}{2}}\right)$$

730 \square

731 A.3 PROOF OF THEOREM 3.3

732 *Proof.* The condition we have is $\min_{1 \leq i < j \leq k} \|B_{i,0} - B_{j,0}\|_F = D = D' \frac{\sigma}{\sqrt{\|\Sigma\|_{min}}}$, $\|B_{k,0} - B_k^*\|_F =$
 733 $\max_{1 \leq k \leq K} \|B_{k,0} - B_k^*\|_F \leq C \frac{\sigma}{\sqrt{\|\Sigma\|_{min}}} = C' \frac{\sigma}{\sqrt{\|\Sigma\|_2}}$ and $D' > 2C' + 2$.

734 Then, we use the definition in the proof of Lemma 3.1, denote $Y_k^* = XB_k^*$ and $Y_k = XB_{k,0}$ for
 735 $1 \leq k \leq K$, $t_k = \min_{1 \leq k' \leq K} \|Y_k - Y_{k'}^*\|_2$ for X . With the condition we have, for any $k' \neq k$ we
 736 can proof:

$$737 \mathbb{P}\left(\|Y_{k'} - Y_k^*\|_2 - \|Y_k - Y_k^*\|_2 < 2\sigma(1 + 2 \log\left(\frac{D' - C'}{C' + 2}\right))^{\frac{1}{2}}\right) \\ 738 = \mathbb{P}\left(\|X(B_{k,0} - B_{k'})\|_2 - \|X(B_{k,0} - B_k^*)\|_2 < 2\sigma(1 + 2 \log\left(\frac{D' - C'}{C' + 2}\right))^{\frac{1}{2}}\right) \\ 739 \leq \mathbb{P}\left(\|X(B_{k,0} - B_k^*)\|_2^2 > C'^2\sigma^2(1 + 2 \log\left(\frac{D' - C'}{C' + 2}\right))\right) \\ 740 + \mathbb{P}\left(\|X(B_{k,0} - B_{k'})\|_2^2 < (C' + 2)^2\sigma^2(1 + 2 \log\left(\frac{D' - C'}{C' + 2}\right))\right)$$

$$\begin{aligned}
&\leq \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} + e^{\frac{1}{2}} \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \\
&= (1 + e^{\frac{1}{2}}) \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}
\end{aligned}$$

So, the probability of $t_k = \|Y_k - Y_k^*\|_2$ could be bound, and for any $k' \neq k$, $t'_k = \|Y_k - Y_{k'}^*\|_2$, $a = \frac{t'_k - t_k}{2}$ we have:

$$\begin{aligned}
&\mathbb{P} \left(t_k = \|Y_k - Y_k^*\|_2, \text{ and } a > \sigma (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \text{ for any } k' \neq k \right) \\
&\geq 1 - (K - 1) (1 + e^{\frac{1}{2}}) \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}
\end{aligned}$$

We denote $P = (1 + e^{\frac{1}{2}}) \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$ and reuse the conclusion obtained in the proof of Lemma 3.1. The global minimum of $\mathbb{E}_{X,Y}(X, Y, \theta)$ satisfy:

$$\begin{aligned}
&\mathbb{E}_{X,Y}(X, Y, \theta^*) \\
&= \mathbb{E}_X \sum_{k=1}^K p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2 \\
&\geq \mathbb{E}_X \sum_{k=1}^K p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} (\|Y - Y_k^*\|_2^2 - \sum_{k' \neq k} \max\{0, \|Y - Y_k^*\|_2^2 - \|Y - Y_{k'}^*\|_2^2\}) \\
&\geq \mathbb{E}_X \sum_{k=1}^K p_k (q\sigma^2 + t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}})
\end{aligned}$$

For any k , for at most probability $(K-1)P$, $t_k \neq \|Y_k - Y_k^*\|_2$ or $a \leq \sigma (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$, so $t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}} \geq t_k^2 - 4 \frac{\sigma}{\sqrt{2\pi}} (K-1) t_k - 4 \frac{\sigma^2}{\sqrt{2\pi}} (K-1) \geq -\frac{2\sigma^2}{\pi} (K-1)^2 - \sigma^2 \sqrt{\frac{2}{\pi}} (K-1)$. Otherwise, we have $t_k = \|Y_k - Y_k^*\|_2$ and $a > \sigma (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$, In this case, we have:

$$\begin{aligned}
&t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}} \\
&\geq t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} t_k - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \\
&= t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} t_k - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P
\end{aligned}$$

Using Jensen Inequality, under the condition of $t_k = \|Y_k - Y_k^*\|_2$ and $a > \sigma (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$, we have

$$\begin{aligned}
&\mathbb{E}_X [t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} t_k - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P] \\
&\geq E(t_k^2) - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} \mathbb{E}_X(t_k) - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P \\
&\geq E(t_k^2) - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} \sqrt{E(t_k^2)} - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P
\end{aligned}$$

On the other hand, we have proof $\mathbb{P}(\|Y_k - Y_k^*\|_2 \leq \lambda) \leq \sqrt{\frac{e\lambda}{\|\Sigma\|_{min} \|B_k^* - B_{k,0}\|_2^2}}$ in the proof of Lemma 3.1, and we know for at least probably $1 - (K-1)P$, the condition $t_k = \|Y_k - Y_k^*\|_2$ and $a > \sigma (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$ holds. So, under this condition, we denote $F_{k,k} = \|B_k^* - B_{k,0}\|_2$, it is easy to see if $(K-1)P < 1$ we have:

$$E(t_k^2) \geq \frac{1}{1 - P(K-1)} \int_{\lambda=0}^{\frac{(1-P(K-1))^2 \|\Sigma\|_{min} F_{k,k}^2}{e}} (1 - P(K-1) - \sqrt{\frac{e\lambda}{\|\Sigma\|_{min} F_{k,k}^2}}) d\lambda$$

$$810 \quad = \frac{(1 - P(K - 1))^2 \|\Sigma\|_{min} F_{k,k}^2}{3e}$$

813 Thus for k -th sub distribution, we have for probably at most $P(K - 1)$, $t_k^2 - 4(K - 1) \frac{\sigma}{\sqrt{2\pi}}(t_k +$
814 $a)e^{-\frac{a^2}{2\sigma^2}} \geq -\frac{2\sigma^2}{\pi}(K - 1)^2 - \sigma^2 \sqrt{\frac{2}{\pi}}(K - 1)$ and for at least probably $1 - P(K - 1)$, we de-
815 note $T = (1 - P(K - 1))F_{k,k} \sqrt{\frac{\|\Sigma\|_{min}}{3e}}$, the $t_k^2 - 4(K - 1) \frac{\sigma}{\sqrt{2\pi}}(t_k + a)e^{-\frac{a^2}{2\sigma^2}} \geq T^2 - 4(K -$
816 $1) \frac{\sigma}{\sqrt{2\pi}}e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} T - 4(K - 1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P$ if $T \geq 2(K - 1) \frac{\sigma}{\sqrt{2\pi}}e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'}$. Then we get the
817 lower bound of $\mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2$:
818

$$819 \quad \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2$$

$$820 \quad \geq q\sigma^2 + t_k^2 - 4(K - 1) \frac{\sigma}{\sqrt{2\pi}}(t_k + a)e^{-\frac{a^2}{2\sigma^2}}$$

$$821 \quad \geq q\sigma^2 - P(K - 1) \left(\frac{2\sigma^2}{\pi}(K - 1)^2 + 2\sigma^2 \sqrt{\frac{2}{\pi}}(K - 1) \right)$$

$$822 \quad + (1 - P(K - 1)) \left(T^2 - 4(K - 1) \frac{\sigma}{\sqrt{2\pi}}e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} T - 4(K - 1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P \right)$$

823 Notice that this bound holds for any $1 \leq k \leq K$, So if for any k , $T > \sigma \{(K - 1) \sqrt{\frac{2}{\pi}}e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} +$
824 $\sqrt{\frac{1}{c} \frac{2}{e\pi}(K - 1)^2 (\frac{C' + 2}{D' - C'})^2 + \frac{1}{c} 2(K - 1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K - 1)}{1 - P(K - 1)} (\frac{2}{\pi}(K - 1)^2 + 2\sqrt{\frac{2}{\pi}}(K - 1))}\}$, similar to the proof
825 of theorem 3.1, we have $\mathbb{E}_{X, Y, \theta^*} m(X, Y, \theta^*) = \sum_{k=1}^K p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - Y_{k'}^*\|_2^2 >$
826 $q\sigma^2$
827

828 So, if θ^* is the global minimum of $\mathbb{E}_{X, Y, \theta} m(X, Y, \theta)$, we have for any $1 \leq k \leq K$, $T \leq \sigma \{(K -$
829 $1) \sqrt{\frac{2}{\pi}}e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} + \sqrt{\frac{1}{c} \frac{2}{e\pi}(K - 1)^2 (\frac{C' + 2}{D' - C'})^2 + \frac{1}{c} 2(K - 1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K - 1)}{1 - P(K - 1)} (\frac{2}{\pi}(K - 1)^2 + 2\sqrt{\frac{2}{\pi}}(K - 1))}\}$,
830 which means $F_{k,k} \leq \frac{\sigma}{1 - P(K - 1)} \sqrt{\frac{3e}{\|\Sigma\|_{min}}} \{(K - 1) \sqrt{\frac{2}{\pi}}e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} +$
831 $\sqrt{\frac{1}{c} \frac{2}{e\pi}(K - 1)^2 (\frac{C' + 2}{D' - C'})^2 + \frac{1}{c} 2(K - 1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K - 1)}{1 - P(K - 1)} (\frac{2}{\pi}(K - 1)^2 + 2\sqrt{\frac{2}{\pi}}(K - 1))}\}$
832

833 \square

A.4 PROOF OF THEOREM 3.4

834 *Proof.* Any one-step Gibbs sampling included in our algorithm 1 contains a sample step of
835 $\hat{\theta}$ and a sample step of $\hat{\mathcal{U}}$. In iteration t , we have: $\text{vec}(\hat{B}_k^{(t)}) \sim N(\text{vec}((X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} +$
836 $\frac{T_t}{2\kappa} I_p)^{-1} X_k^{\mathcal{U}\top} Y_k^{\mathcal{U}}), \frac{T_t}{2}(I_q \otimes X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_{p \times q})^{-1})$ where $X_k^{\mathcal{U}}$ is the matrix whose rows are all
837 $x_i | \hat{u}_i^{(t)} = k$, $Y_k^{\mathcal{U}}$ is the matrix whose rows are all $y_i | \hat{u}_i^{(t)} = k$ and $\hat{\mathcal{U}}^{(t)} = (\hat{u}_1^{(t)}, \dots, \hat{u}_n^{(t)})$ is the
838 result of the clustering of iterations t . Then the result of the clustering of iterations t is generated
839 by: $p(\hat{u}_j^{(t+1)} = k) \propto \exp(-\frac{\|y_j - x_j \hat{B}_k^{(t)}\|_2^2}{T_t})$ for any $1 \leq j \leq n$

840 Notice that for any $1 \leq j \leq n$ and $t \geq 1$, $\hat{\mathcal{U}}_j^{(t)}$ have only K different values to take. Therefore, the
841 number of states that $\hat{\mathcal{U}}^{(t)}$ can take is finite. Based on the properties of Gibbs sampling, it is easy to
842 see that $\hat{\mathcal{U}}^{(t)}$ itself can be regarded as a discrete-time Markov chain in finite state space S , and the
843 transition probability can be written as:

$$844 \quad P(\hat{\mathcal{U}}^{(t+1)} = \mathcal{U}_2 | \hat{\mathcal{U}}^{(t)} = \mathcal{U}_1)$$

$$845 \quad = \int_{\theta} P(\hat{\mathcal{U}}^{(t+1)} = \mathcal{U}_2 | \hat{\theta}^{(t)} = \theta) p(\hat{\theta}^{(t)} = \theta | \hat{\mathcal{U}}^{(t)} = \mathcal{U}_1) d\theta$$

$$\begin{aligned}
&= \int_{\theta} \left(\frac{\mathcal{E}(\theta, \mathcal{U}_2, T_t)}{\sum_{\mathcal{U} \in S} \mathcal{E}(\theta, \mathcal{U}, T_t)} \right) \left(\frac{\mathcal{E}(\theta, \mathcal{U}_1, T_t)}{\int_{\tilde{\theta}} \mathcal{E}(\tilde{\theta}, \mathcal{U}_1, T_t) d\tilde{\theta}} \right) \\
&= \left(\int_{\tilde{\theta}} \mathcal{E}(\tilde{\theta}, \mathcal{U}_1, T_t) d\tilde{\theta} \right)^{-1} \left(\int_{\theta} \frac{\mathcal{E}(\theta, \mathcal{U}_2, T_t) \mathcal{E}(\theta, \mathcal{U}_1, T_t)}{\sum_{\mathcal{U} \in S} \mathcal{E}(\theta, \mathcal{U}, T_t)} d\theta \right)
\end{aligned}$$

The equivalent above tells us that the transition matrix of $\hat{\mathcal{U}}^{(t)}$ at each step is the transition matrix of an invertible Markov chain. Furthermore, the transition probability between any two states is nonzero for any t . So, the distribution:

$$\begin{aligned}
&P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) \propto \int_{\tilde{\theta}} \mathcal{E}(\tilde{\theta}, \mathcal{U}, T_t) d\tilde{\theta} \\
&= \prod_{k=1}^K \left(\pi T_t \right)^{\frac{pq}{2}} \det \left| X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_p \right|^{-\frac{q}{2}} \exp \left(-\frac{\text{tr}(Y_k^{\mathcal{U}\top} Y_k^{\mathcal{U}} - Y_k^{\mathcal{U}\top} X_k^{\mathcal{U}} (X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_p)^{-1} X_k^{\mathcal{U}\top} Y_k^{\mathcal{U}})}{T_t} \right)
\end{aligned}$$

is the stationary distribution of the transition probability matrix of iteration $t, \Pi^{(t)}$

To further advance the proof, we use $\Psi^{(t)}$ denote the distribution of $\hat{\mathcal{U}}^{(t)}$, $\Pi^{(t)}$ to denote the stationary distribution corresponding to the transition probability matrix from $\hat{\mathcal{U}}^{(t)}$ to $\hat{\mathcal{U}}^{(t+1)}$. $\gamma^{(t)}$ is the spectral gap of the transition probability matrix. Thus, we have $\|\Psi^{(t+1)} - \Pi^{(t)}\|_{TV} \leq (1 - \gamma^{(t)})\|\Psi^{(t)} - \Pi^{(t)}\|_{TV}$. According to Aldous' inequality (Aldous, 2006; Levin & Peres, 2017) we have:

$$\begin{aligned}
\gamma^{(t)} &\geq \frac{1}{2 \max_{\mathcal{U}_1, \mathcal{U}_2} \mathbb{E} \tau_{\mathcal{U}_1, \mathcal{U}_2}} \geq \frac{\min_{\mathcal{U}_1, \mathcal{U}_2} P(\hat{\mathcal{U}}_1^{(t+1)} = \hat{\mathcal{U}}_2^{(t+1)} | \hat{\mathcal{U}}_1^{(t)} = \mathcal{U}_1, \hat{\mathcal{U}}_2^{(t)} = \mathcal{U}_2)}{2} \\
&\geq \frac{\min_{\mathcal{U}_1, \mathcal{U}_2} \sum_{\mathcal{U} \in S} P(\mathcal{U}^{(t+1)} = \mathcal{U} | \mathcal{U}^{(t)} = \mathcal{U}_2) P(\mathcal{U}^{(t+1)} = \mathcal{U} | \mathcal{U}^{(t)} = \mathcal{U}_1)}{2} \\
&\geq \frac{\min_{\mathcal{U}_1, \mathcal{U}_2} P(\mathcal{U}^{(t+1)} = \mathcal{U}_2 | \mathcal{U}^{(t)} = \mathcal{U}_1)}{2}
\end{aligned}$$

For any $\mathcal{U}_1, \mathcal{U}_2 \in S$, $P(\mathcal{U}^{(t+1)} = \mathcal{U}_2 | \mathcal{U}^{(t)} = \mathcal{U}_1)$ can be written as $(\int_{\tilde{\theta}} \mathcal{E}(\tilde{\theta}, \mathcal{U}_1, T_t) d\tilde{\theta})^{-1} (\int_{\theta} \frac{\mathcal{E}(\theta, \mathcal{U}_2, T_t) \mathcal{E}(\theta, \mathcal{U}_1, T_t)}{\sum_{\mathcal{U} \in S} \mathcal{E}(\theta, \mathcal{U}, T_t)} d\theta)$ it is obvious that $\mathcal{E}(\theta, \mathcal{U}, T_t) \leq \prod_{k=1}^K \exp(-\frac{\|\hat{B}_k\|_2^2}{2\kappa})$ so we can prove that there is constant E^* and E^{**} which do not relate to t and T , equivalently.

$$\begin{aligned}
&\left(\int_{\tilde{\theta}} \mathcal{E}(\tilde{\theta}, \mathcal{U}_1, T_t) d\tilde{\theta} \right)^{-1} \left(\int_{\theta} \frac{\mathcal{E}(\theta, \mathcal{U}_2, T_t) \mathcal{E}(\theta, \mathcal{U}_1, T_t)}{\sum_{\mathcal{U} \in S} \mathcal{E}(\theta, \mathcal{U}, T_t)} d\theta \right) \\
&\geq E^* \int_{\theta} \mathcal{E}(\theta, \mathcal{U}_2, T_t) \mathcal{E}(\theta, \mathcal{U}_1, T_t) d\theta \geq E^* \exp(-\frac{E^{**}}{T_t})
\end{aligned}$$

holds for any $\mathcal{U}_1, \mathcal{U}_2$.

So we have proved the spectral gap $\gamma^{(t)} \geq \frac{E^*}{2} \exp(-\frac{E^{**}}{T_t}) \geq \frac{E^*}{2} \exp(-\frac{E^{**}}{T_{(1)}} (\log t)^\alpha)$, then we have $\|\Psi^{(t+1)} - \Pi^{(t+1)}\|_{TV} \leq \|\Psi^{(t+1)} - \Pi^{(t)}\|_{TV} + \|\Pi^{(t)} - \Pi^{(t+1)}\|_{TV} \leq (1 - \gamma^{(t)})\|\Psi^{(t)} - \Pi^{(t)}\|_{TV} + \|\Pi^{(t)} - \Pi^{(t+1)}\|_{TV}$

Because in distribution $\Pi^{(t)}$, we have:

$$\begin{aligned}
&P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) \propto \prod_{k=1}^K \left(\pi T_t \right)^{\frac{pq}{2}} \det \left| X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_p \right|^{-\frac{q}{2}} \\
&\exp \left(-\frac{\text{tr}(Y_k^{\mathcal{U}\top} Y_k^{\mathcal{U}} - Y_k^{\mathcal{U}\top} X_k^{\mathcal{U}} (X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_p)^{-1} X_k^{\mathcal{U}\top} Y_k^{\mathcal{U}})}{T_t} \right)
\end{aligned}$$

So there is constant $E^{***} > 0$, letting $|\log(\frac{P(\hat{\mathcal{U}}^{(t)} = \mathcal{U})}{P(\hat{\mathcal{U}}^{(t+1)} = \mathcal{U})})| \leq E^{***} |\frac{1}{T_t} - \frac{1}{T_{t+1}}| \leq \frac{E^{***}}{T_1} \frac{\alpha(\log(t))^{\alpha-1}}{t}$

918 So,

$$\begin{aligned}
 920 \|\Pi^{(t)} - \Pi^{(t+1)}\|_{TV} &\leq \sum_{\mathcal{U} \in S, P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) > P(\hat{\mathcal{U}}^{(t+1)} = \mathcal{U})} (P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) - P(\hat{\mathcal{U}}^{(t+1)} = \mathcal{U})) \\
 921 &\leq (1 - \exp(-\frac{E^{***} \alpha(\log(t))^{\alpha-1}}{T_{(1)}})) \sum_{\mathcal{U} \in S, P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) > P(\hat{\mathcal{U}}^{(t+1)} = \mathcal{U})} P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) \\
 922 &\leq (1 - \exp(-\frac{E^{***} \alpha(\log(t))^{\alpha-1}}{T_{(1)}})) \leq \frac{E^{***} \alpha(\log(t))^{\alpha-1}}{T_{(1)}}
 \end{aligned}$$

923 So we have

$$\begin{aligned}
 924 \|\Psi^{(t+1)} - \Pi^{(t+1)}\|_{TV} &\leq (1 - \gamma^{(t)}) \|\Psi^{(t)} - \Pi^{(t)}\|_{TV} + \|\Pi^{(t)} - \Pi^{(t+1)}\|_{TV} \\
 925 &\leq (1 - \frac{E^*}{2} \exp(-\frac{E^{**}}{T_{(1)}}(\log t)^\alpha)) \|\Psi^{(t)} - \Pi^{(t)}\|_{TV} + \frac{E^{***} \alpha(\log(t))^{\alpha-1}}{T_{(1)}}
 \end{aligned}$$

926 If there is a constant E let $\|\Psi^{(t)} - \Pi^{(t)}\|_{TV} \leq E \exp(-\frac{E^{**}}{T_{(1)}}(\log t)^\alpha)$, then

$$\begin{aligned}
 927 \|\Psi^{(t+1)} - \Pi^{(t+1)}\|_{TV} &\leq (1 - \frac{E^*}{2} \exp(-\frac{E^{**}}{T_{(1)}}(\log t)^\alpha)) E \exp(-\frac{E^{**}}{T_{(1)}}(\log t)^\alpha) + \frac{\alpha(\log(t))^{\alpha-1}}{t} \\
 928 &\leq E \exp(-\frac{E^{**}}{T_{(1)}} \log(t+1)^\alpha) \\
 929 &- \left(\frac{EE^{**}}{2} \exp(-\frac{2E^{**}}{T_{(1)}}(\log t)^\alpha) - E \exp(-\frac{E^{**}}{T_{(1)}} \log(t+1)^\alpha) \frac{\alpha(\log(t))^{\alpha-1}}{t} - \frac{E^{***} \alpha(\log(t))^{\alpha-1}}{T_{(1)}} \right)
 \end{aligned}$$

930 When E and t are sufficiently large, $\frac{EE^{**}}{2} \exp(-\frac{2E^{**}}{T_{(1)}}(\log t)^\alpha) - E \exp(-\frac{E^{**}}{T_{(1)}} \log(t+1)^\alpha) \frac{\alpha(\log(t))^{\alpha-1}}{t} - \frac{E^{***} \alpha(\log(t))^{\alpha-1}}{T_{(1)}}$ > 0 , so we have $\|\Psi^{(t+1)} - \Pi^{(t+1)}\|_{TV} \leq E \exp(-\frac{E^{**}}{T_{(1)}}(\log t)^\alpha)$, so according to the principle of induction, we can prove that there exists E :

$$\|\Psi^{(t)} - \Pi^{(t)}\|_{TV} \leq E \exp(-\frac{E^{**}}{T_{(1)}}(\log t)^\alpha)$$

931 holds for any t .

932 Now we can analysis the $\Pi^{(t)}$, According to Assumption 1 and the properties of the distribution of $\Pi^{(t)}$. If we denote $\mathcal{E}_{\mathcal{U},k}^{(t)} = \text{tr}(Y_k^{\mathcal{U}\top} Y_k^{\mathcal{U}} - Y_k^{\mathcal{U}\top} X_k^{\mathcal{U}} (X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_p)^{-1} X_k^{\mathcal{U}\top} Y_k^{\mathcal{U}})$, then in distribution $\Pi^{(t)}$, there is $P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) \propto \prod_{k=1}^K (\pi T_t)^{\frac{pq}{2}} \det |X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_p|^{-\frac{q}{2}} \exp(-\frac{\mathcal{E}_{\mathcal{U},k}^{(t)}}{T_t}) = \exp(-\frac{\sum_{k=1}^K \mathcal{E}_{\mathcal{U},k}^{(t)}}{T_t}) \prod_{k=1}^K (\pi T_t)^{\frac{pq}{2}} \det |X_k^{\mathcal{U}\top} X_k^{\mathcal{U}} + \frac{T_t}{2\kappa} I_p|^{-\frac{q}{2}}$.

933 By Assumption 1, the sum $\sum_{k=1}^K \mathcal{E}_{\mathcal{U},k}$ attains its unique minimum, up to the permutation symmetry for $\{1, 2, \dots, K\}$ at $\mathcal{U} = \mathcal{U}^*$. Furthermore, since $T_t \leq \frac{T_{(2)}}{(\log t)^\alpha}$, based on the properties of the exponential energy function during cooling, we know that there exist constants E', E'^* such that: $P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) \geq 1 - E'^* \exp(-\frac{E'}{T_{(2)}}(\log t)^\alpha)$ in the sense of rearranging categories $1, 2, \dots, K$.

934 In summary, for the distribution $\Psi^{(t)}$, if in the sense of rearranging categories $1, 2, \dots, K$ we have $\mathcal{U} = \mathcal{U}^*$, there exist constants C^*, C^{**} such that: $P(\hat{\mathcal{U}}^{(t)} = \mathcal{U}) \geq 1 - C^* \exp(-C^{**}(\log t)^\alpha)$, in this time, under the condition $\hat{\mathcal{U}}^{(t)} = \mathcal{U}$ in the sense of rearranging categories $1, 2, \dots, K$, we have $P(\|\hat{B}_k^{(t)} - \hat{B}_{\pi(k)}\| < \delta) \geq 1 - C_\delta^* \exp(-C_\delta^{**}(\log t)^\alpha)$ where permutation π of categories transfers the cluster result \mathcal{U}^* to \mathcal{U} . That is the proof. \square

972 **B THEOREMS OF FINITE-SAMPLE GUARANTEES FOR ESTIMATE PARAMETER**
973 $\hat{\theta}$ **AND THEIR PROOF**
974

975 This appendix provides a detailed finite-sample analysis of the proposed estimator. We present a
976 series of theoretical results, including an upper bound on the estimation error between the estimator
977 $\hat{\theta}$ and the true parameter θ_0 , along with the corresponding guarantees on the classification accuracy
978 and misclassification rate. The subsequent sections present the formal statements of these theorems
979 and their proofs.
980

981 Our theoretical approach departs from the conventional finite-sample analysis of K-means clus-
982 tering, which typically requires a boundedness assumption on the observed samples (Kim & Lim,
983 2025). Instead, we avoid any sample-level constraints by restricting our analysis to a compact param-
984 eter space, Θ_M . This constraint is not merely a theoretical convenience, but is naturally enforced by
985 the regularization mechanism within Algorithm 1. This addresses potential optimization instabilities
986 in the finite-sample regime, such as near-degenerate gradients. Within this well-defined framework,
987 Lemma B.1 and Theorems B.2 and B.3 establish a non-asymptotic theory for the properties of the
988 global minimum. The definition of the parameter space:
989

990
$$\Theta_M = \left\{ \hat{\theta} \mid \forall 1 \leq k' \leq K', \|\hat{B}_{k'}\|_F \leq M \right\} \quad (5)$$
991

992 It is important to contextualize the conditions under which these theorems hold. For the separation
993 condition in Theorems B.2 and B.3 to be non-vacuous, the sample size n must be sufficiently large
994 (e.g., $n100K^2M^2/D^2$). The key insight from this result is that, after leaving out the model's inher-
995 ent systematic bias (that is, the difference between θ^* and θ_0), the intrinsic statistical uncertainty of
996 the estimator $\hat{\theta}$ still decays at the standard parametric rate of $\mathcal{O}_p(n^{-1/2})$.
997

998 **B.1 LEMMA B.1 AND IT'S PROOF**
999

1000 **Theorem B.1.** *Under Assumptions 1, 2 and 3, if we have the inequality condition*
1001 $M > N = \max\{\|B_{1,0}\|_F, \|B_{2,0}\|_F, \dots, \|B_{K,0}\|_F\}$ *where* $C = K\sqrt{3e}\{(K-1)\sqrt{\frac{2}{\pi}} +$
1002 $\sqrt{\frac{1}{c}((K-1)^2\frac{2}{\pi}) + 2(K-1)\sqrt{\frac{2}{\pi}}}\}$, *we denote the estimator* $\hat{\theta} = (\hat{B}_1, \hat{B}_2, \dots, \hat{B}_K)$ *minimize the*
1003

1004
$$\frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \theta),$$
1005

1006 *then under condition* $\hat{\theta} \in \Theta_M$ *for any* $1 \leq k' \leq K$ *and* $1 \leq k \leq K$ *and for at least probability*
1007 $1 - t$, *there exist a* $1 \leq \pi(k) \leq K$ *satisfy:*
1008

1009
$$\|B_{k,0} - \hat{B}_{\pi(k)}\|_F \leq C_{n,t} \frac{\sigma}{\sqrt{\|\Sigma\|_{min}}}$$
1010

1011 *where*
1012

1013
$$C_{n,t} = K\sqrt{3e}\{(K-1)\sqrt{\frac{2}{\pi}} + \sqrt{\frac{1}{c}\frac{2}{\pi}(K-1)^2 + \frac{1}{c}2(K-1)\sqrt{\frac{2}{\pi}} + \frac{1}{\sigma^2}(C'_n + C''_{n,t})}\}$$

1014 , $C'_n = \sqrt{\frac{32}{n}}K(\sqrt{q(q+2)}\sigma^2 + 2(M+N)\sigma\sqrt{\|\Sigma\|_2} + \sqrt{3}(M+N)^2\|\Sigma\|_2)$ *and* $C''_{n,t} = \sqrt{\frac{32}{n}}(q\sigma^2 +$
1015 $p(M+N)^2\|\Sigma\|_2)\log(\frac{n(p+q)+1}{t})^{\frac{3}{2}}$
1016

1017 *Proof.* Let $\hat{\theta} = \{\hat{B}_1, \hat{B}_2, \dots, \hat{B}_K\}$ be the parameter, $\Theta = \{\hat{\theta} \mid \|\hat{B}_k\|_F < M\}$ be the parameter
1018 space. We define $R(\theta) = \mathbb{E}_{(X,Y)}[m(X, Y, \theta)]$, $R_n(\theta) = \frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \theta)$. Then $R(\theta^*) =$
1019 $\min_{\theta \in \Theta} R(\theta)$ and $R_n(\hat{\theta}) = \min_{\theta \in \Theta} R_n(\theta)$, then we have $R(\hat{\theta}) - R(\theta_0) \leq R(\hat{\theta}) - R(\theta^*) \leq$
1020 $\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) + \sup_{\theta \in \Theta} (R(\theta) - R_n(\theta))$.
1021

1022 For both $\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta))$ and $\sup_{\theta \in \Theta} (R(\theta) - R_n(\theta))$, we can bound them by Rademacher
1023 complexity:
1024

1025
$$RC = \mathbb{E}_{x_i, y_i, \delta_i} [\sup_{\theta} \left| \frac{1}{n} \sum_{i=1}^n \delta_i m(x_i, y_i, \theta) \right|]$$

1026 where $\{\delta_i\}$ is an i.i.d sequence of two-point distribution random variable satisfies $P(\delta_i = 1) =$
 1027 $P(\delta_i = -1) = \frac{1}{2}$
 1028

1029 According to Symmetrization Lemma, We have $E \sup_{\theta \in \Theta} (R(\theta) - R_n(\theta)) \leq 2RC$ and
 1030 $E \sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) \leq 2RC$.

1031 To give an upper bound of RC , we use the theorem proved by the work Maurer (2016) notice that
 1032

$$\begin{aligned}
 1033 \quad RC &= \mathbb{E}_{x_i, y_i, \delta_i} \left[\sup_{B_1, \dots, B_K} \left| \frac{1}{n} \sum_{i=1}^n \delta_i \min_{1 \leq k \leq K} \|y_i - x_i B_k\|_2^2 \right| \right] \\
 1034 \\
 1035 \quad &\leq \sqrt{2} \mathbb{E}_{x_i, y_i, \delta_{ik}} \left[\sup_{\|B\|_F \leq M} \frac{1}{n} \left| \sum_{i=1}^n \sum_{k=1}^K \delta_{ik} \|y_i - x_i B\|_2^2 \right| \right] \\
 1036 \\
 1037 \quad &\leq \sqrt{2} K \mathbb{E}_{x_i, y_i, \delta_i} \left[\sup_{\|B\|_F \leq M} \frac{1}{n} \left| \sum_{i=1}^n \delta_i \|y_i - x_i B\|_2^2 \right| \right] \\
 1038 \\
 1039 \quad &= \sqrt{2} K \mathbb{E}_{x_i, \epsilon_i, \delta_i} \left[\sup_{\|B\|_F \leq M} \frac{1}{n} \left| \sum_{i=1}^n \delta_i \|\epsilon_i + x_i (B_{u_i, 0} - B)\|_2^2 \right| \right] \\
 1040 \\
 1041 \quad &\leq \frac{1}{n} \sqrt{2} K \left(\mathbb{E}_{x_i, \epsilon_i, \delta_i} \left[\sup_{\|B\|_F \leq M} \left| \sum_{i=1}^n \delta_i \|\epsilon_i\|_2^2 \right| \right] + 2 \mathbb{E}_{x_i, \epsilon_i, \delta_i} \left[\sup_{\|B\|_F \leq M} \left| \sum_{i=1}^n \delta_i x_i (B_{u_i, 0} - B) \epsilon_i^T \right| \right] \right. \\
 1042 \\
 1043 \quad &\quad \left. + \mathbb{E}_{x_i, \epsilon_i, \delta_i} \left[\sup_{\|B\|_F \leq M} \left| \sum_{i=1}^n \delta_i \|x_i (B_{u_i, 0} - B)\|_2^2 \right| \right] \right) \\
 1044 \\
 1045 \quad &\leq \frac{1}{n} \sqrt{2} K (\sqrt{nq(q+2)}\sigma^2 + 2(M+N)\sigma\sqrt{n\|\Sigma\|_2} + \sqrt{3n}(M+N)^2\|\Sigma\|_2).
 \end{aligned}$$

1053 After calculating RC , for any $M_n > 0$, we let $\epsilon_i = \sigma a_i$ and $x_i = b_i \Sigma^{\frac{1}{2}}$, Then $a_i \sim N(0, I_q)$ and
 1054 $b_i \sim N(0, I_p)$ are both the i th vector of an i.i.d sequence. The probability of each component of
 1055 each random vector are smaller than M_n is:
 1056

$$1057 \quad P((\cap_{1 \leq i \leq n, 1 \leq j \leq q} |a_{ij}| < M_n) \cap (\cap_{1 \leq i \leq n, 1 \leq j \leq p} |b_{ij}| < M_n)) \geq 1 - n(p+q)e^{-\frac{M_n^2}{2}}.$$

1059 Then, under the condition of each component of each random vector a_i and b_i are smaller
 1060 than M_n (we call this the bound condition below), We have $0 \leq \|y_i - x_i B\|_2^2 = \|\sigma a_i +$
 1061 $b_i \Sigma^{\frac{1}{2}} (B_{u_i, 0} - B)\|_2^2 \leq 2M_n^2(q\sigma^2 + p(M+N)^2\|\Sigma\|_2)$. So the value of $\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) -$
 1062 $E[\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta))]$ is $\sup_{\theta \in \Theta} (\frac{1}{n} \sum_{i=1}^n \min_{1 \leq k \leq K} \|y_i - x_i B_k\|_2^2 - E \min_{1 \leq k \leq K} \|y_i - x_i B_k\|_2^2)$ changes by at most $\frac{2}{n} M_n^2(q\sigma^2 + p(M+N)^2\|\Sigma\|_2)$ when one of the (x_i, y_i) varies. Ac-
 1063 cording to the McDiarmid inequality, the tail bound of R_n under the bound condition satisfies:
 1064

$$1066 \quad P(\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) \geq t) \leq \exp\left(-\frac{t^2 n}{2M_n^4(q\sigma^2 + p(M+N)^2\|\Sigma\|_2)^2}\right).$$

1069 In summary, without any condition, we have:
 1070

$$\begin{aligned}
 1071 \quad P(\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) - E[\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta))] \geq t) \\
 1072 \\
 1073 \quad &\leq \exp\left(-\frac{t^2 n}{2M_n^4(q\sigma^2 + p(M+N)^2\|\Sigma\|_2)^2}\right) + n(p+q)e^{-\frac{M_n^2}{2}}.
 \end{aligned}$$

1076 We let $M_n = (\frac{t^2 n}{(q\sigma^2 + p(M+N)^2\|\Sigma\|_2)^2})^{\frac{1}{6}}$, then we have:
 1077

$$1079 \quad P(\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) - E[\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta))] \geq t)$$

$$1080 \leq (n(p+q)+1) \exp\left(-\frac{(t^2 n)^{\frac{1}{3}}}{2(q\sigma^2 + p(M+N)^2 \|\Sigma\|_2)^{\frac{2}{3}}}\right).$$

$$1081$$

$$1082$$

1083 So for at least probability $1-t$, the $\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) - E[\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta))] \leq$
 1084 $\sqrt{\frac{8}{n}(q\sigma^2 + 4(M+N)^2 \|\Sigma\|_2) \log(\frac{n(p+q)+1}{t})^{\frac{3}{2}}}.$
 1085

1086 Similarly, for at least probability $1-t$, the $\sup_{\theta \in \Theta} (R(\theta) - R_n(\theta)) - E[\sup_{\theta \in \Theta} (R(\theta) - R_n(\theta))] \leq$
 1087 $\sqrt{\frac{8}{n}(q\sigma^2 + p(M+N)^2 \|\Sigma\|_2) \log(\frac{n(p+q)+1}{t})^{\frac{3}{2}}}.$
 1088

1089 In summary, the $R(\hat{\theta}_n) - R(\hat{\theta})$ satisfy:
 1090

$$1091 R(\hat{\theta}_n) - R(\hat{\theta}) \leq \sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) + \sup_{\theta \in \Theta} (R(\theta) - R_n(\theta))$$

$$1092$$

$$1093 \leq 4RC + \sup_{\theta \in \Theta} (R(\theta) - R_n(\theta)) - E[\sup_{\theta \in \Theta} (R(\theta) - R_n(\theta))] + \sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) - E[\sup_{\theta \in \Theta} (R_n(\theta) - R(\theta))]$$

$$1094$$

1095 So, for probably at least $1-t$ we have
 1096

$$1097 \sup_{\theta \in \Theta} (R_n(\theta) - R(\theta)) + \sup_{\theta \in \Theta} (R(\theta) - R_n(\theta)) \leq 4RC + \sqrt{\frac{32}{n}(q\sigma^2 + p(M+N)^2 \|\Sigma\|_2) \log(\frac{n(p+q)+1}{t})^{\frac{3}{2}}}$$

$$1098$$

$$1099 = \sqrt{\frac{32}{n}} K(\sqrt{q(q+2)}\sigma^2 + 2(M+N)\sigma\sqrt{\|\Sigma\|_2} + \sqrt{3}(M+N)^2 \|\Sigma\|_2)$$

$$1100$$

$$1101 + \sqrt{\frac{32}{n}(q\sigma^2 + p(M+N)^2 \|\Sigma\|_2) \log(\frac{n(p+q)+1}{t})^{\frac{3}{2}}}$$

$$1102$$

$$1103 = C'_n + C''_{n,t}$$

$$1104$$

$$1105$$

1106 According to the proof of the theorem 3.1, if there is a $F_{\pi(k),k} > \frac{\sigma K \sqrt{3e}}{\sqrt{\|\Sigma\|_{min}}} \{(K-1)\sqrt{\frac{2}{\pi}} +$
 1107 $\sqrt{\frac{1}{c}\frac{2}{\pi}(K-1)^2 + \frac{1}{c}2(K-1)\sqrt{\frac{2}{\pi}} + \frac{1}{\sigma^2}(C''_{n,t} + C'_n)}\}$, we have $R(\hat{\theta}_n) > q\sigma^2 + C''_{n,t} + C'_n$ so
 1108 $R(\hat{\theta}_n) - R(\hat{\theta}) > C''_{n,t} + C'_n$. Probably for at least $1-t$ that will not happen. Thus, for probably at least
 1109 $1-t$, $F_{\pi(k),k} \leq \frac{\sigma K \sqrt{3e}}{\sqrt{\|\Sigma\|_{min}}} \{(K-1)\sqrt{\frac{2}{\pi}} + \sqrt{\frac{1}{c}\frac{2}{\pi}(K-1)^2 + \frac{1}{c}2(K-1)\sqrt{\frac{2}{\pi}} + \frac{1}{\sigma^2}(C''_{n,t} + C'_n)}\}$.
 1110 That ends the proof. \square
 1111

1112 B.2 THEOREM B.2 AND IT'S PROOF

1113 **Theorem B.2.** We let $i = \arg \min_{1 \leq k \leq K} \|y_i - x_i \hat{B}_k\|_2^2$ and $D' = \frac{\sqrt{\|\Sigma\|_{min}}}{\sigma} D$.
 1114 Under Assumptions 1, 2 and 3, if $K = K, D' > 2\sqrt{\frac{\|\Sigma\|_2}{\|\Sigma\|_{min}}} C_{n,t} + 2\sqrt{q}$ and
 1115 $M > N = \max\{\|B_{1,0}\|_F, \|B_{2,0}\|_F, \dots, \|B_{K,0}\|_F\}$ where $C = K\sqrt{3e}\{(K-1)\sqrt{\frac{2}{\pi}} +$
 1116 $\sqrt{\frac{1}{c}((K-1)^2\frac{2}{\pi}) + 2(K-1)\sqrt{\frac{2}{\pi}}}\}$, estimator $\hat{\theta} = (\hat{B}_1, \hat{B}_2, \dots, \hat{B}_K) \in \Theta_M$ minimize the
 1117

$$1118 \frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \theta).$$

$$1119$$

$$1120$$

$$1121$$

$$1122$$

$$1123$$

$$1124$$

$$1125$$

$$1126$$

$$1127$$

1128 It is reasonable to assume that $k = \arg \min_{1 \leq k' \leq K} \|\hat{B}_{k'} - B_{k,0}\|_F$, the estimate cluster of
 1129 (x_i, y_i) should be $\hat{u}_i = \min_{1 \leq k \leq K} \|y_i - x_i \hat{B}_k\|_2$. If we denote $C' = C_{n,t} \sqrt{\frac{\|\Sigma\|_2}{\|\Sigma\|_{min}}} \lambda =$
 1130 $(K-1)\{\frac{C'+2\sqrt{q}}{D'-C'}(1+2\log(\frac{D'-C'}{C'+2\sqrt{q}}))^{\frac{1}{2}} + (\frac{C'+2\sqrt{q}}{D'-C'}(1+2\log(\frac{D'-C'}{C'+2\sqrt{q}}))^{\frac{1}{2}})^q + e^{\frac{1}{2}}(\frac{C'+2\sqrt{q}}{D'-C'})(1+$
 1131 $2\log(\frac{D'-C'}{C'+2\sqrt{q}}))^{\frac{1}{2}}\}$ and $t_s = \frac{n^n}{s^s(n-s)^{n-s}} \lambda^s (1-\lambda)^{n-s}$ where $0 \leq s \leq n$, then for probability at
 1132 $1-t-t_s$
 1133

1134

1135

1136

1137

1138

1139 *Proof.* Using Lemma B.1, it is easy to find that there is at least probably $1 - t$, $\max_{1 \leq k \leq K} \|\hat{B}_k - B_{k,0}\|_F \leq C' \frac{\sigma}{\sqrt{\|\Sigma\|_2}}$.

1140

1141 If we have conditions $\max_{1 \leq k \leq K} \|\hat{B}_k - B_{k,0}\|_F \leq C' \frac{\sigma}{\sqrt{\|\Sigma\|_2}}$, according to lemma ??, for any $1 \leq$
 1142 $i \leq n$, $P(\hat{u}_i \neq u_i) \leq \lambda$. And it is easy to find after knowing the value \hat{B}_k , the sequence of events
 1143 $\{\hat{u}_i \neq u_i\}$ is an i.i.d. sequence. So we can get the Chernoff Bound of the $P(\sum_{i=1}^n I(\hat{u}_i \neq u_i) \geq s)$:

1144

1145

$$\begin{aligned} 1146 \quad & P\left(\sum_{i=1}^n I(\hat{u}_i \neq u_i) \geq s\right) \\ 1147 \quad & \leq e^{-ts} \{ \mathbb{E} e^{I(\hat{u}_i \neq u_i)} \}^n \\ 1148 \quad & \leq e^{-ts} (\lambda e^t + 1 - \lambda)^n = (\lambda e^{t(\frac{n-s}{n})} + (1 - \lambda) e^{-t \frac{s}{n}})^n \end{aligned}$$

1149

1150

We take $t = \log(\frac{s(1-\lambda)}{(n-s)\lambda})$ Then we have:

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

The above analysis is the conditional probability obtained under the condition $\max_{1 \leq k \leq K} \|\hat{B}_k - B_{k,0}\|_F \leq C'$. Since the condition $\max_{1 \leq k \leq K} \|\hat{B}_k - B_{k,0}\|_F \leq C'$ is greater than $1 - t$, it follows that the probability of $P(\sum_{i=1}^n I(\hat{u}_i \neq u_i) \geq s)$ is greater than $1 - t - t_s$.

□

1165

1167

B.3 THEOREM B.3 AND IT'S PROOF

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Theorem B.3. If $D' = \frac{\sqrt{\|\Sigma\|_{min}}}{\sigma} D$. Then Under Assumptions 1, 2 and 3. If $D' > 2C_{n,t} + 2$ and estimator $\hat{\theta} = (\hat{B}_1, \hat{B}_2, \dots, \hat{B}_K) \in \Theta_M$ minimize the

$$\frac{1}{n} \sum_{i=1}^n m(x_i, y_i, \theta),$$

Then for at least probability $1 - t$, there is a constant C_D , for any $1 \leq k \leq K$, there exist a $\pi(k)$ satisfy

$$\|B_{k,0} - \hat{B}_{\pi(k)}\|_F \leq C_D \frac{\sigma}{\sqrt{\|\Sigma\|_{min}}}$$

for any $1 \leq k \leq K$, where

$$C_D = \frac{\sqrt{3e}}{1 - P(K-1)} \{ (K-1) \sqrt{\frac{2}{\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} \}$$

$$+ \sqrt{\frac{1}{c} \frac{2}{e\pi} (K-1)^2 \left(\frac{C' + 2}{D' - C'} \right)^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K-1)}{1 - P(K-1)} \left(\frac{2}{\pi} (K-1)^2 + 2\sqrt{\frac{2}{\pi}} (K-1) + \frac{1}{\sigma^2} (C'_n + C''_{n,t}) \right) \}$$

and

$$P = (1 + e^{\frac{1}{2}}) \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$$

1188 and $C' = C_{n,t} \sqrt{\frac{\|\Sigma\|_2}{\|\Sigma\|_{min}}}$, $C'_n = \sqrt{\frac{32}{n}} K (\sqrt{q(q+2)}\sigma^2 + 2(M+N)\sigma\sqrt{\|\Sigma\|_2} + \sqrt{3}(M+N)^2\|\Sigma\|_2)$
 1189 and $C''_{n,t} = \sqrt{\frac{32}{n}} (q\sigma^2 + p(M+N)^2\|\Sigma\|_2) \log(\frac{n(p+q)+1}{t})^{\frac{3}{2}}$
 1190
 1191

1192 *Proof.* This proof is similar to the proof of Theorem 3.3, for at least probability $1 - t$, we have
 1193 $\min_{1 \leq i < j \leq k} \|B_{i,0} - B_{j,0}\|_F = D = D' \frac{\sigma}{\sqrt{\|\Sigma\|_{min}}}$, $\|B_{k,0} - \hat{B}_k\|_F = \max_{1 \leq k \leq K} \|B_{k,0} - \hat{B}_k\|_F \leq$
 1194 $C_{n,t} \frac{\sigma}{\sqrt{\|\Sigma\|_{min}}} = C' \frac{\sigma}{\sqrt{\|\Sigma\|_2}}$ and $D' > 2C' + 2$.
 1195
 1196

1197 Then, we use the definition in the proof of Lemma 3.1 and B.1, denote $\hat{Y}_k = X \hat{B}_k$ and $Y_k = X B_{k,0}$
 1198 for $1 \leq k \leq K$, $t_k = \min_{1 \leq k' \leq K} \|Y_k - \hat{Y}_{k'}\|_2$ for X . With the condition we have, for any $k' \neq k$
 1199 we can proof:

$$\begin{aligned} & \mathbb{P} \left(\|Y_{k'} - \hat{Y}_k\|_2 - \|Y_k - \hat{Y}_k\|_2 < 2\sigma(1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \right) \\ &= \mathbb{P} \left(\|X(B_{k,0} - \hat{B}_{k'})\|_2 - \|X(B_{k,0} - \hat{B}_k)\|_2 < 2\sigma(1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \right) \\ &\leq \mathbb{P} \left(\|X(B_{k,0} - \hat{B}_k)\|_2^2 > C'^2\sigma^2(1 + 2\log(\frac{D' - C'}{C' + 2})) \right) \\ &\quad + \mathbb{P} \left(\|X(B_{k,0} - \hat{B}_{k'})\|_2^2 < (C' + 2)^2\sigma^2(1 + 2\log(\frac{D' - C'}{C' + 2})) \right) \\ &\leq \frac{C' + 2}{D' - C'} (1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} + e^{\frac{1}{2}} \frac{C' + 2}{D' - C'} (1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \\ &= (1 + e^{\frac{1}{2}}) \frac{C' + 2}{D' - C'} (1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \end{aligned}$$

1215 So, the probability of $t_k = \|Y_k - \hat{Y}_k\|_2$ could be bound, and for any $k' \neq k$, $t'_k = \|Y_k - \hat{Y}_{k'}\|_2$, $a =$
 1216 $\frac{t'_k - t_k}{2}$ we have:

$$\begin{aligned} & \mathbb{P} \left(t_k = \|Y_k - \hat{Y}_k\|_2, \text{ and } a > \sigma(1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \text{ for any } k' \neq k \right) \\ &\geq 1 - (K-1)(1 + e^{\frac{1}{2}}) \frac{C' + 2}{D' - C'} (1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \end{aligned}$$

1223 We denote $P = (1 + e^{\frac{1}{2}}) \frac{C' + 2}{D' - C'} (1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$ and reuse the conclusion obtained in the proof
 1224 of Lemma 3.1. The global minimum of $\mathbb{E}_{X,Y}(X, Y, \theta)$ satisfy:

$$\begin{aligned} & \mathbb{E}_{X,Y}(X, Y, \hat{\theta}) \\ &= \mathbb{E}_X \sum_{k=1}^K p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - \hat{Y}_{k'}\|_2^2 \\ &\geq \mathbb{E}_X \sum_{k=1}^K p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} (\|Y - \hat{Y}_k\|_2^2 - \sum_{k' \neq k} \max\{0, \|Y - \hat{Y}_k\|_2^2 - \|Y - \hat{Y}_{k'}\|_2^2\}) \\ &\geq \mathbb{E}_X \sum_{k=1}^K p_k (q\sigma^2 + t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}}) \end{aligned}$$

1236 For any k , for at most probability $(K-1)P$, $t_k \neq \|Y_k - \hat{Y}_k\|_2$ or $a \leq \sigma(1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$, so
 1237 $t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}} \geq t_k^2 - 4 \frac{\sigma}{\sqrt{2\pi}} (K-1) t_k - 4 \frac{\sigma^2}{\sqrt{2\pi}} (K-1) \geq -\frac{2\sigma^2}{\pi} (K-1)^2 -$
 1238 $\sigma^2 \sqrt{\frac{2}{\pi}} (K-1)$. Otherwise, we have $t_k = \|Y_k - \hat{Y}_k\|_2$ and $a > \sigma(1 + 2\log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$, In this case,
 1239 we have:
 1240

$$t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}}$$

$$\begin{aligned}
&\geq t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} t_k - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} (1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}} \\
&= t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} t_k - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P
\end{aligned}$$

Using Jensen Inequality, under the condition of $t_k = \|Y_k - \hat{Y}_k\|_2$ and $a > \sigma(1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$, we have

$$\begin{aligned}
&\mathbb{E}_X [t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} t_k - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P] \\
&\geq E(t_k^2) - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} \mathbb{E}_X (t_k) - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P \\
&\geq E(t_k^2) - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} \sqrt{E(t_k^2)} - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P
\end{aligned}$$

On the other hand, we have proof $\mathbb{P}(\|Y_k - \hat{Y}_k\|_2^2 \leq \lambda) \leq \sqrt{\frac{e\lambda}{\|\Sigma\|_{\min} \|\hat{B}_k - B_{k,0}\|_2^2}}$ in the proof of Lemma 3.1, and we know for at least probably $1 - (K-1)P$, the condition $t_k = \|Y_k - \hat{Y}_k\|_2$ and $a > \sigma(1 + 2 \log(\frac{D' - C'}{C' + 2}))^{\frac{1}{2}}$ holds. So, under this condition, we denote $F_{k,k} = \|\hat{B}_k - B_{k,0}\|_2$, it is easy to see if $(K-1)P < 1$ we have:

$$\begin{aligned}
E(t_k^2) &\geq \frac{1}{1 - P(K-1)} \int_{\lambda=0}^{\frac{(1-P(K-1))^2 \|\Sigma\|_{\min} F_{k,k}^2}{e}} (1 - P(K-1) - \sqrt{\frac{e\lambda}{\|\Sigma\|_{\min} F_{k,k}^2}}) d\lambda \\
&= \frac{(1 - P(K-1))^2 \|\Sigma\|_{\min} F_{k,k}^2}{3e}
\end{aligned}$$

Thus for k -th sub distribution, we have for probably at most $P(K-1)$, $t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}} \geq -\frac{2\sigma^2}{\pi} (K-1)^2 - \sigma^2 \sqrt{\frac{2}{\pi}} (K-1)$ and for at least probably $1 - P(K-1)$, we denote $T = (1 - P(K-1)) F_{k,k} \sqrt{\frac{\|\Sigma\|_{\min}}{3e}}$, the $t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}} \geq T^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} T - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P$ if $T \geq 2(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'}$. Then we get the lower bound of $\mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - \hat{Y}_{k'}\|_2^2$:

$$\begin{aligned}
&\mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - \hat{Y}_{k'}\|_2^2 \\
&\geq q\sigma^2 + t_k^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} (t_k + a) e^{-\frac{a^2}{2\sigma^2}} \\
&\geq q\sigma^2 - P(K-1) \left(\frac{2\sigma^2}{\pi} (K-1)^2 + 2\sigma^2 \sqrt{\frac{2}{\pi}} (K-1) \right) \\
&+ (1 - P(K-1)) \left(T^2 - 4(K-1) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} T - 4(K-1) \frac{\sigma^2}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P \right)
\end{aligned}$$

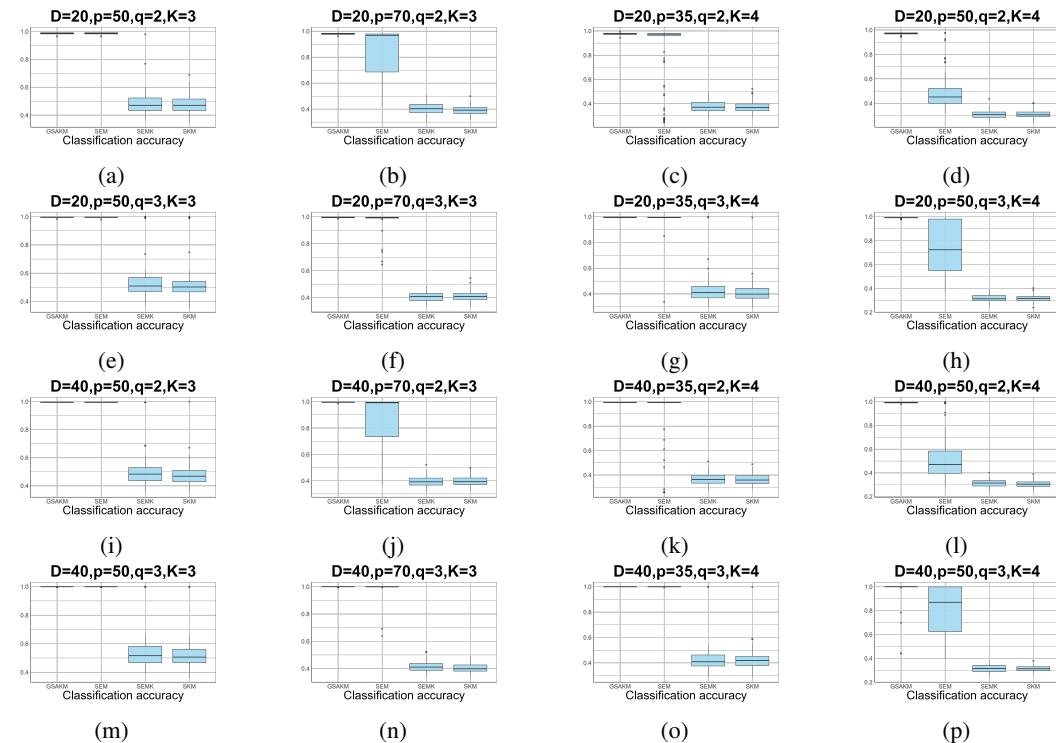
Notice that this bound holds for any $1 \leq k \leq K$, So if for any k , $T > \sigma \{ (K-1) \sqrt{\frac{2}{\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} + \sqrt{\frac{1}{c} \frac{2}{e\pi} (K-1)^2 (\frac{C' + 2}{D' - C'})^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K-1)}{1 - P(K-1)} (\frac{2}{\pi} (K-1)^2 + 2 \sqrt{\frac{2}{\pi}} (K-1)) \}$, similar to the proof of theorem 3.1, we have $\mathbb{E}_{X, Y, \hat{\theta}} m(X, Y, \hat{\theta}) = \sum_{k=1}^K p_k \mathbb{E}_{Y \sim N(Y_k, \sigma^2 I_q)} \min_{1 \leq k' \leq K} \|Y - \hat{Y}_{k'}\|_2^2 > q\sigma^2$

So, if $\hat{\theta}$ is the global minimum of $\mathbb{E}_{X, Y, \theta} m(X, Y, \theta)$, we have for any $1 \leq k \leq K$, $T \leq \sigma \{ (K-1) \sqrt{\frac{2}{\pi}} e^{-\frac{1}{2}} \frac{C' + 2}{D' - C'} + \sqrt{\frac{1}{c} \frac{2}{e\pi} (K-1)^2 (\frac{C' + 2}{D' - C'})^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1 + e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K-1)}{1 - P(K-1)} (\frac{2}{\pi} (K-1)^2 + 2 \sqrt{\frac{2}{\pi}} (K-1)) \}$,

1296 which means $F_{k,k} \leq \frac{\sigma}{1-P(K-1)} \sqrt{\frac{3e}{\|\Sigma\|_{min}}} \{ (K-1) \sqrt{\frac{2}{\pi}} e^{-\frac{1}{2}} \frac{C'+2}{D'-C'} \}$
 1297 $+ \sqrt{\frac{1}{c} \frac{2}{e\pi} (K-1)^2 (\frac{C'+2}{D'-C'})^2 + \frac{1}{c} 2(K-1) \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{1}{2}}}{1+e^{-\frac{1}{2}}} P + \frac{1}{c} \frac{P(K-1)}{1-P(K-1)} (\frac{2}{\pi} (K-1)^2 + 2\sqrt{\frac{2}{\pi}} (K-1)) \}$
 1298 \square
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307

1308 **C FIGURES OF CLASSIFICATION ACCURACY AND WCSS OF FOUR
 1309 DIFFERENT ESTIMATION METHODS UNDER 16 PARAMETERS CONDITIONS
 1310 IN BOTH THE TRAINING SET AND THE TESTING SET**
 1311
 1312
 1313
 1314
 1315

1316 This appendix records figures for the classification accuracy and the WCSS function in the training
 1317 set and the testing set.
 1318
 1319
 1320
 1321
 1322
 1323
 1324



1348 Figure 2: The box-plot of classification accuracy of four different estimation methods under 16
 1349 parameter conditions.

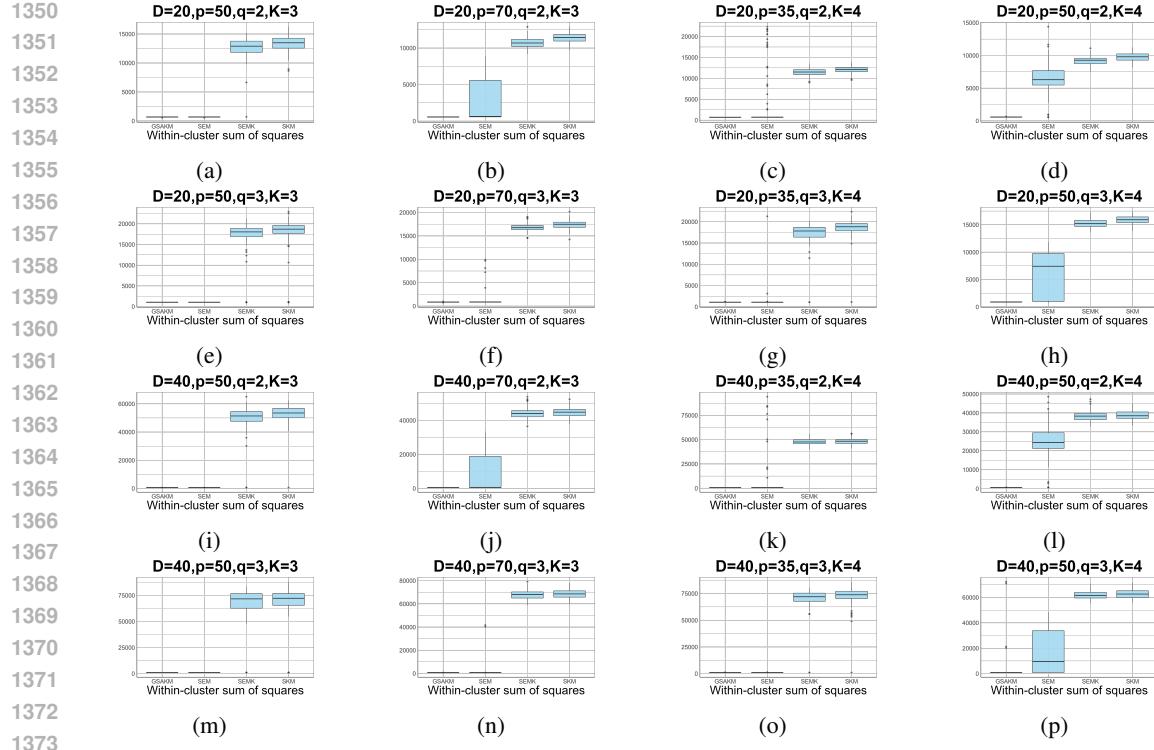


Figure 3: The box-plot of WCSS of four different estimation methods under 16 parameter conditions.

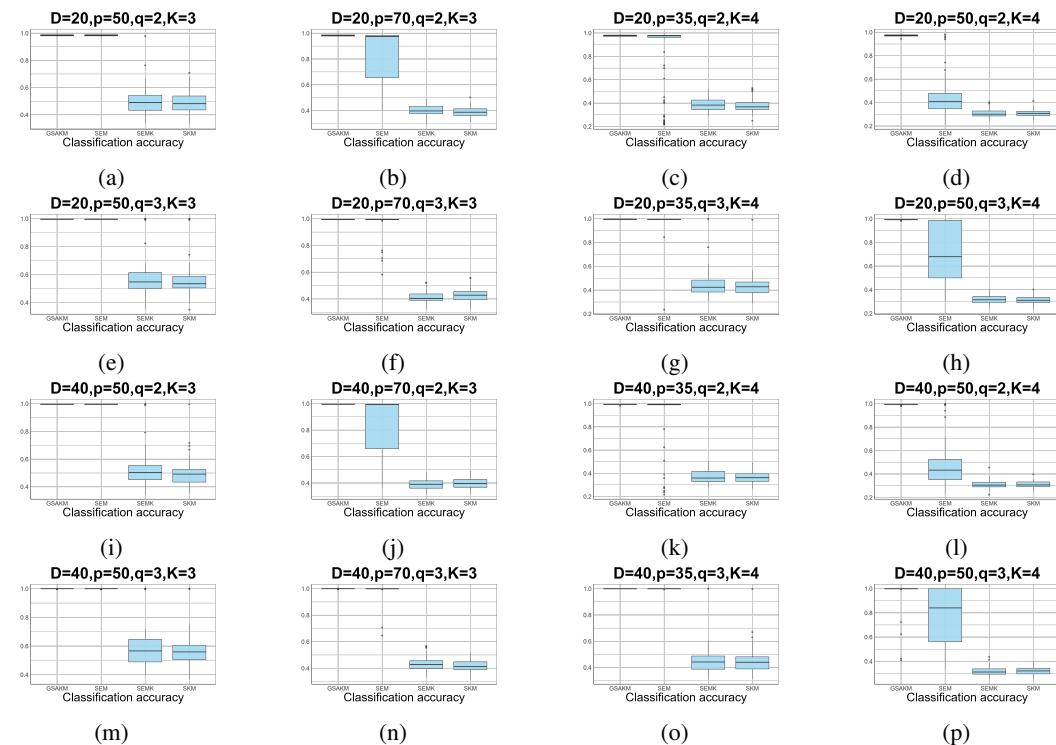


Figure 4: The box-plot of classification accuracy of four different estimation methods under 16 parameter conditions in testing set.

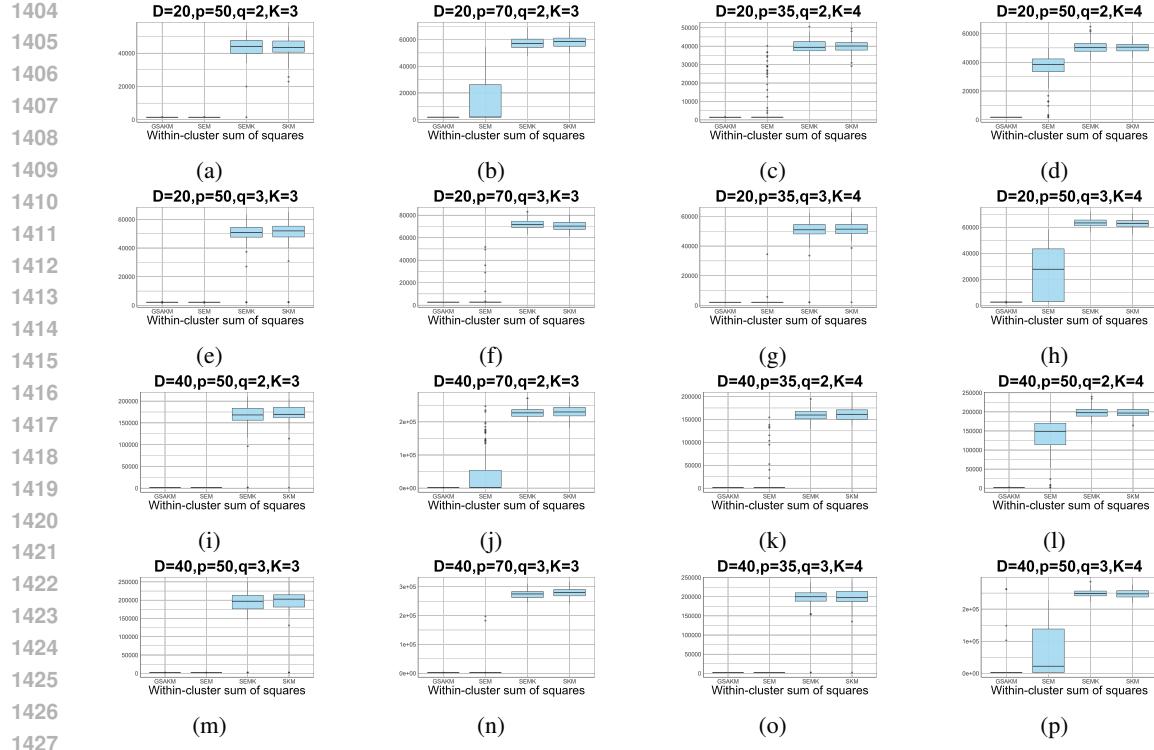


Figure 5: The box-plot of WCSS of four different estimation methods under 16 parameter conditions in testing set.

D PERFORMANCE COMPARISON TABLES OF OUR SIMULATION RESULTS

This appendix presents the five performance comparison tables, which compare the three different metrics used in the training set and the testing set. Results are presented as Mean (Standard Deviation) of 100 replicates.

Table 1: Performance Comparison Table of estimation errors of four different estimation methods under 16 parameter conditions.

		$P = 50, K = 3$	$P = 70, K = 3$	$P = 35, K = 4$	$P = 50, K = 4$
$D = 20$, $q = 2$	GSAKM	1.15(0.095)	1.51(0.12)	1.16(0.11)	1.58(0.14)
	SEM	1.15(0.094)	6.14(6.26)	4.02(6.09)	17.93(5.29)
	SEMK	16.63(2.29)	19.73(1.67)	18.98(1.86)	21.73(2.20)
	SKM	16.42(1.86)	20.06(1.42)	18.62(1.86)	21.66(2.19)
$D = 20$, $q = 3$	GSAKM	1.36(0.087)	1.79(0.12)	1.34(0.10)	1.80(0.15)
	SEM	1.36(0.090)	2.32(2.42)	1.51(1.23)	11.09(7.21)
	SEMK	15.09(4.40)	19.69(1.40)	18.31(3.10)	21.20(2.03)
	SKM	15.42(4.24)	19.45(1.54)	18.15(2.51)	21.24(1.71)
$D = 40$, $q = 2$	GSAKM	1.12(0.082)	1.45(0.11)	1.11(0.089)	1.47(0.12)
	SEM	1.12(0.082)	9.69(13.11)	4.14(9.86)	33.06(12.62)
	SEMK	31.94(6.73)	39.85(3.19)	38.05(4.27)	43.33(4.84)
	SKM	32.71(6.95)	39.47(3.07)	37.63(3.30)	42.32(4.23)
$D = 40$, $q = 3$	GSAKM	1.34(0.084)	1.76(0.11)	1.33(0.10)	4.30(12.76)
	SEM	1.34(0.084)	2.33(4.01)	1.33(0.10)	17.36(16.87)
	SEMK	28.28(10.37)	38.24(2.86)	36.18(5.33)	42.38(3.45)
	SKM	29.22(9.34)	38.69(2.67)	36.60(6.45)	42.76(3.75)

1458 Table 2: Performance Comparison Table of 100 times the classification accuracy of four different
 1459 estimation methods under 16 parameter conditions.

1460

		$P = 50, K = 3$	$P = 70, K = 3$	$P = 35, K = 4$	$P = 50, K = 4$
$D = 20$, $q = 2$	GSAKM	98.51(0.59)	98.04(0.67)	97.64(0.72)	97.11(0.78)
	SEM	98.51(0.58)	84.72(17.32)	85.91(24.44)	48.77(13.59)
	SEMK	48.17(8.40)	40.40(4.40)	37.53(5.01)	30.89(3.19)
	SKM	47.66(6.17)	39.15(3.65)	37.25(4.96)	30.92(3.29)
$D = 20$, $q = 3$	GSAKM	99.56(0.29)	99.49(0.33)	99.47(0.32)	99.13(0.42)
	SEM	99.57(0.30)	98.06(5.88)	98.63(6.69)	73.35(20.73)
	SEMK	55.03(14.57)	40.81(3.66)	42.95(10.42)	31.43(2.87)
	SKM	53.32(13.89)	41.03(3.92)	41.30(8.06)	31.40(2.93)
$D = 40$, $q = 2$	GSAKM	99.62(0.27)	99.50(0.30)	99.41(0.33)	99.20(0.46)
	SEM	99.62(0.28)	87.60(18.54)	93.85(17.85)	52.49(18.58)
	SEMK	50.13(10.89)	39.50(3.86)	36.62(4.58)	31.34(2.98)
	SKM	47.81(8.10)	39.67(3.63)	36.33(4.47)	30.79(2.82)
$D = 40$, $q = 3$	GSAKM	99.96(0.088)	99.94(0.12)	99.92(0.11)	98.26(8.61)
	SEM	99.95(0.094)	99.26(4.72)	99.92(0.12)	80.85(20.32)
	SEMK	56.87(17.08)	41.34(3.89)	42.60(10.05)	31.36(3.24)
	SKM	54.46(15.49)	40.39(3.55)	42.61(8.38)	31.33(2.34)

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496 Table 3: Performance Comparison Table of WCSS of four different estimation methods under 16
 1497 parameter conditions.

1498

		$P = 50, K = 3$	$P = 70, K = 3$	$P = 35, K = 4$	$P = 50, K = 4$
$D = 20$, $q = 2$	GSAKM	681.68(35.70)	565.29(34.11)	695.62(35.10)	582.36(32.17)
	SEM	682.84(35.77)	2560.03(2624.32)	3643.55(6534.88)	6526.78(2216.05)
	SEMK	12627.42(1850.99)	10741.43(719.03)	11481.15(943.91)	9201.12(641.44)
	SKM	13227.79(1414.66)	11390.24(3.65)	12114.49(842.06)	9808.03(591.55)
$D = 20$, $q = 3$	GSAKM	1046.34(44.81)	895.76(42.03)	1081.15(42.08)	894.00(46.38)
	SEM	1047.12(44.77)	1214.21(1592.39)	1304.73(2027.40)	5935.86(3922.34)
	SEMK	16626.17(4939.88)	16799.62(863.66)	17195.59(2799.57)	15231.85(799.41)
	SKM	17501.23(4822.07)	17412.95(950.60)	18500.90(2235.11)	15920.06(715.56)
$D = 40$, $q = 2$	GSAKM	692.32(36.28)	578.18(34.86)	711.20(35.88)	599.59(33.91)
	SEM	692.60(36.26)	7628.15(11016.12)	6241.16(19028.99)	23775.27(9879.18)
	SEMK	49458.63(10240.71)	44304.19(3281.83)	47640.71(3198.72)	38230.18(2775.92)
	SKM	52573.70(6958.00)	44796.48(2906.76)	48313.04(3247.59)	38806.31(2460.36)
$D = 40$, $q = 3$	GSAKM	1050.82(44.87)	864.53(42.16)	1086.49(42.64)	2713.22(10293.99)
	SEM	1050.90(44.91)	1666.65(5641.26)	1086.63(42.71)	17051.68(17027.03)
	SEMK	63092.95(24163.18)	67777.92(3650.69)	70209.06(11271.25)	61858.14(2939.07)
	SKM	66013.13(21619.79)	68708.04(3899.46)	72019.29(9680.24)	62615.94(3398.19)

1512
 1513
 1514
 1515
 1516 Table 4: Performance Comparison Table of 100 times the classification accuracy of four different
 1517 estimation methods under 16 parameter conditions in testing set.
 1518

		$P = 50, K = 3$	$P = 70, K = 3$	$P = 35, K = 4$	$P = 50, K = 4$
$D = 20$, $q = 2$	GSAKM	98.35(0.59)	98.24(0.56)	97.67(0.67)	97.28(0.73)
	SEM	98.36(0.60)	83.23(19.38)	84.89(26.21)	43.99(14.52)
	SEM K	49.58(8.77)	40.33(4.18)	37.74(5.23)	30.78(3.26)
	SKM	49.44(7.68)	38.91(3.84)	38.65(5.15)	31.10(2.99)
$D = 20$, $q = 3$	GSAKM	99.59(0.28)	99.42(0.33)	99.45(0.36)	99.19(0.39)
	SEM	99.57(0.28)	97.91(6.67)	98.50(7.72)	70.66(22.57)
	SEM K	58.34(14.23)	41.31(4.30)	44.35(11.09)	31.74(3.31)
	SKM	56.67(13.42)	42.64(4.83)	43.40(8.46)	31.48(3.33)
$D = 40$, $q = 2$	GSAKM	99.56(0.31)	99.54(0.27)	99.35(0.33)	99.35(0.40)
	SEM	99.55(0.31)	85.96(20.76)	93.34(19.03)	48.42(19.88)
	SEM K	51.66(11.39)	39.11(3.85)	37.07(5.49)	30.98(3.28)
	SKM	49.52(8.79)	40.08(3.78)	36.51(4.58)	30.94(2.86)
$D = 40$, $q = 3$	GSAKM	99.95(0.10)	99.94(0.11)	99.93(0.12)	98.07(9.36)
	SEM	99.95(0.11)	99.29(4.57)	99.93(0.13)	77.51(23.19)
	SEM K	60.56(16.40)	42.90(4.74)	45.10(10.45)	31.49(3.34)
	SKM	58.38(15.14)	41.85(4.36)	44.55(9.00)	31.85(3.04)

1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545 Table 5: Performance Comparison Table of WCSS of four different estimation methods under 16
 1546 parameter conditions.
 1547

		$P = 50, K = 3$	$P = 70, K = 3$	$P = 35, K = 4$	$P = 50, K = 4$
$D = 20$, $q = 2$	GSAKM	1442.402(73.45)	1773.54(110.46)	1407.62(75.33)	1736.92(114.21)
	SEM	1441.67(73.97)	13346.09(16895.62)	6326.59(10713.02)	36077.63(10598.51)
	SEM K	43180.33(6770.65)	57418.31(4129.72)	39901.59(3613.73)	50698.78(4286.57)
	SKM	43267.50(5633.81)	58247.33(3992.27)	39732.16(3780.62)	50241.30(3408.44)
$D = 20$, $q = 3$	GSAKM	2158.51(88.54)	2638.46(146.10)	2105.24(98.53)	2562.77(146.31)
	SEM	2158.32(88.84)	4308.49(7912.15)	2469.68(3255.00)	25470.38(19878.75)
	SEM K	47580.35(14465.06)	72172.82(4317.75)	49774.01(8435.70)	63447.61(3470.00)
	SKM	48539.67(13828.59)	70424.93(4283.86)	50914.74(6540.50)	62880.66(3074.25)
$D = 40$, $q = 2$	GSAKM	1438.60(73.56)	1740.78(99.66)	1397.53(69.7735.88)	1690.39(101.31)
	SEM	1437.82(73.06)	43178.53(7100.72)	11128.08(32422.03)	131712.1(55251.18)
	SEM K	163565.8(35394.89)	228815.7(15910.89)	160259.4(13578.53)	198040.8(13786.17)
	SKM	169878.3(24355.66)	230161.8(18840.61)	161230.6(13647.85)	198084.6(13094.98)
$D = 40$, $q = 3$	GSAKM	2151.98(88.10)	2615.92(137.84)	2102.31(96.65)	10177.25(40213.96)
	SEM	2151.75(88.27)	6361.89(26366.08)	2102.09(96.60)	69359.46(76110.14)
	SEM K	176308.6(67842.98)	275009.4(14521.1)	195217.3(33030.29)	248687.7(12173.08)
	SKM	184417.7(60941.88)	279237.4(16053.05)	197359.4(27946.47)	247761.1(12133.02)