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ABSTRACT

The Multi-Armed Bandit is a classic reinforcement learning problem that exempli-
fies the exploration–exploitation trade-off dilemma. When extreme values rather
than expected values are of interest, the Extreme Bandit is introduced. The motiva-
tion for this work comes from black-box optimization problems and meta learning,
where the goal is to find the best value for a target function from different search
spaces or using multiple search heuristics. Previous work on the extreme bandit
problem has assumed that rewards are drawn from an i.i.d manner, which severely
limits the applicability of this class of algorithm. In this paper, with minimal
temporal and spatial cost and minimal assumptions about the reward distribution,
we present an novel algorithm and provide its analysis. Numerical experiments
highlight the performance of the proposed algorithm to the existing approaches.

1 INTRODUCTION

The Multi-Armed Bandit (MAB) often serves as a powerful analogy for balancing exploration and
exploitation in search domains or sequential decision making tasks. In a MAB model, the learner
is interacting with K arms, each arm generates rewards from a different distribution, which is not
known a-priori. The problem is to allocate trials to the arms with the goal of maximizing cumulative
reward, and has been widely applied in diverse domains from real-life online recommending systems
(Hill et al., 2017) and Go games (Silver et al., 2016) to various optimization or selection problems
in machine learning research (Nguyen et al., 2020) (Bouneffouf et al., 2020).

In this paper, we consider a variant of the MAB, called the Extreme Bandits. The problem is to
allocate trials among the K arms with the goal of maximizing the expected best single reward. Our
work is motivated by black-box optimization problems for which a number of search heuristics ex-
ist: given K heuristics, e.g. Bayesian Optimization procedures in K independent sub-spaces, each
yielding unknown outcomes sequentially when applied to some particular search space, we wish
to find a single best value for the target black-box function, as in many meta learning problems.
Similar interest is discussed in Nishihara et al. (2016): Given the wide variety of hyper-parameter
optimization (HPO) algorithms available, it’s beneficial and challenging to devise a strategy for se-
lecting which algorithms to use in a sequential order so that the general performance is close to
what it would have been if only one of the best algorithms was used. This setting is also natural
in more real-world scenarios such as project scheduling problems (Cicirello & Smith, 2005), mali-
cious client detection in federated learning systems, and anomaly detection in endhost traffic models
(Bhatt et al., 2023).

In addition to considering its applications, the extreme bandit framework has distinct challenges that
deserve individual focus. For example, different from the classical MAB, the “best” distribution in
extreme bandit depends on the rewards already obtained and on the remaining time span. Conse-
quently, no policy can be ensured to perform as well as an oracle that always selects the best option
over a specific period (Nishihara et al., 2016).

1.1 MAIN CONTRIBUTIONS

In this work, we revisit the extreme bandit problem with the idea of designing algorithms with
minimal temporal and spatial cost under minimal assumptions on the arms. Our main contributions
are as follows:
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• We provided a universal extreme bandit algorithm A* Extreme Bandit (AEB) for K-armed
bandits that has O(T logK) time complexity, which is the lowest in non-ETC (Explore-
Then-Commit) algorithms within our knowledge, and O(K) storage complexity indepen-
dent of the time horizon T , which is the lowest reported in the existing literature (Section
5.1). The algorithm is fashioned in a non-parametric way by considering only the number
of trails and the observed maximum elements of each arm.

• We construct a unique surrogate of the bandit feedback value to trade-off exploration and
exploitation (Section 3). Leveraging similar analysis scheme to the classic A* (A-star)
search algorithm, AEB is shown asymptotically optimal, i.e, with probability 1 the best arm
will have the most allocated trials eventually (Section 4).

• To the best of our knowledge, AEB is the first algorithm in the extreme bandit literature with
a performance guarantee when the rewards are not generated independently and identically
distributed (i.i.d), as in many HPO algorithms. Besides, AEB is distribution-free, i.e., it
doesn’t make any parametric assumptions on the distributions of the reward.

• Although with the weakest assumptions introduced so far for extreme bandits, AEB
achieves competitive performance in common reported parametric arms such as polyno-
mial and exponential tails, and state-of-the-art performance in more realistic problems with
non-i.i.d or non-stationary arms (Section 5).

1.2 RELATED WORK

Following the criterion proposed by Bhatt et al. (2023) and Baudry et al. (2022), existing algorithms
for extreme bandit can be categorized into three:

• Fully-parametric methods (Cicirello & Smith, 2005) (Streeter & Smith, 2006a) assume the
arms are drawn from known distributions, two types of generalized extreme value distribu-
tion (GEV distribution Type I - Gumbel & Type II - Frechet) are discussed.

• Semi-parametric methods have weaker semi-parametric assumptions on the distributions
of the rewards are drawn from. Assuming that a lower bound on a parameter of the dis-
tribution is known, Carpentier & Valko (2014) and Achab et al. (2017) obtain vanishing
regrets (Section 2) for second-order Pareto distributions. David & Shimkin (2016) assumes
a known lower bound on the tail distribution.

• Distribution-free methods make no assumptions on the family of the rewards distribution.
Inspired by Chernoff Interval Estimation applied in the Upper Confidence Bound algorithm
(Auer et al., 2002) for classical MAB, Streeter & Smith (2006b) proposed a simple algo-
rithm called ThresholdAscent, but without theoretical guarantees. Bhatt et al. (2023) pro-
posed Max-Median by considering the median of maximum elements of carefully designed
sub-sets of observed data. Max-Median can be employed for any kind of i.i.d distribution,
and its vanishing regrets for polynomial and exponential tails are proved. Similar in spirit
to Max-Median, Baudry et al. (2022) recently introduced Quantile of Maxima algorithm
with two strategies: explore-then-commit style QoMax-ETC, and QoMax-SDA supported
by a recent sub-sampling method. Both strategies are shown to have vanishing regrets and
empirically more efficient than prior approaches.

2 EXTREME BANDIT SETTING

We denote the K arms generating rewards by ν1, . . . , νK . Let Xk,t be the reward obtained from arm
νk at time t, the rewards stream (Xk,t) is drawn from νk independently from other rewards streams,
but we don’t assume the rewards are of an i.i.d manner from the corresponding arm. Following
Carpentier & Valko (2014) and Bhatt et al. (2023), we give
Definition 1 (Vanishing Extreme Regret). Let π be a policy allocating arm trails, it selects an arm
It using past observations at time t, the extreme regret of π is

Rπ
T = max

k≤K
E[max

t≤T
Xk,t]− Eπ[max

t≤T
XIt,t].

We say that π has a vanishing regret in the weak sense if
Eπ[maxt≤T XIt,t]

maxk≤K E[maxt≤T Xk,t]
→ 1, as t→∞
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and π has a vanishing regret in the strong sense if

max
k≤K

E[max
t≤T

Xk,t]− Eπ[max
t≤T

XIt,t]→ 0, as t→∞.

Vanishing extreme regret has been applied as common analytical performance measure since Ci-
cirello & Smith (2005) and Carpentier & Valko (2014), it’s trivially achieved asymptotically for
bounded distributions using just fully randomized policy. This notion of regret is meaningful in
Carpentier & Valko (2014) and Bhatt et al. (2023) as they assume the distributions have unbounded
support with the only restriction of finite mean. However, for any unbounded rewards stream (Xk,t)
without finite mean guarantee, we can transform it into bounded variables with finite mean by mono-
tone transformations such as ((expXk,t+1)−1 ∈ (0, 1)). Our algorithm doesn’t assume finite mean
and is based in such monotonic transformations when tackling with unbounded rewards stream, so
we propose a novel non-trivial performance measure called asymptotic optimality.
Definition 2 (Asymptotic optimality). Let π be a policy selecting an arm It at time t, we say that π
is asymptotically optimal in the weak sense if

lim
T→∞

∑T
t=1 δItk∗∑T
t=0 δItk

> 1

and in the strong sense if

lim
T→∞

∑T
t=1 δItk∗∑T
t=0 δItk

=∞

for each k ̸= k∗,

where δij is Kronecker symbol with

i ̸= j, δij = 0 & i = j, δij = 1

and the asymptotically dominating arm νk∗ is defined following Bhatt et al. (2023) as
Definition 3 (Asymptotically Dominating Arm). For each k ̸= k∗, if

lim
T→∞

inf
E[maxt≤T Xk∗,t]

E[maxt≤T Xk,t]
> 1,

we say that arm νk∗ (asymptotically) dominates arm νk, writing it νk∗ ≻ νk. Also, a stronger version
of domination is available that

lim
T→∞

inf
E[maxt≤T Xk∗,t]

E[maxt≤T Xk,t]
=∞.

3 AEB ALGORITHM

In this section, we provide A* Extreme Bandit (AEB) algorithm for extreme bandits. The algorithm
is straight-forward and simple to implement, requiring no knowledge of the reward distributions,
assuming only that the reward values are real1. Its name was inspired by the classic A* search
algorithm for it’s analyzed in a similar way to A* search algorithm (see Section 4).

When designing algorithms, we are motivated by one vision: for better flexibility, the algorithm
should produce consistent behavior for any monotone transformation of the reward values. Opti-
mization algorithms with this property are said to support objective functions on manifolds. This
vision inspired the development of a effort-based surrogate for the reward values.

We denote the global best reward value received after t total trials by X∗
t , which grows over t. An

expected larger effort of trials is needed for a better X∗
t . With this intuition, we provide a surrogate

for any reward value Xk,t.
Definition 4 (Effort-based Surrogate). For any reward value Xk,t, if there exists an n such that

∀t < n,X∗
t < Xk,t & ∀t ≥ n,X∗

t ≥ Xk,t,

then the effort-based surrogate for Xk,t is fn(Xk,t) := n.
1However, AEB algorithm can also be applied to problems with non-real reward values if an order-preserving

mapping from the reward values to real numbers is provided.
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The idea of effort-based surrogate is hard to implement for unbounded reward, but after a proper
bounded monotone transformation BMT(·) with range (0, 1), we can transform any unbounded re-
ward Xk,t into a (0, 1)-bounded variable. We use an array a of length N to store the surrogates, and
for better discrimination between close reward values, an interpolation process is introduced, hence
we give our algorithms for constructing and getting effort-based surrogates fn(·).

Algorithm 1: Insert-step after each arm pull to construct fn(·)
Set parameter: Length of the storage array N Static initialization: a← {0}
Input: Reward XIt,t obtained from each arm pull // function insert(·)
Compute index i = ⌊N ∗ BMT(XIt,t)⌋
if ai = 0 then

if XIt,t is the best reward obtained up to t then
ai ← t

else if XIt,t is the worst reward obtained up to t then
Let aj be the nearest nonzero element to ai in array a
ai ← aj/2

else
Let aj and ak be the nearest nonzero elements on either side to ai in array a
ai ← (aj + ak)/2

Algorithm 2: Getting fn(·) for a given reward value
Input: Xk,t // function get fn(·)
Compute index i = ⌊N ∗ BMT(XIt,t)⌋
Return: ai

Using insert(·) function defined by Algorithm 1 and get fn(·) function defined by Algorithm
2, we give our main algorithm AEB (Algorithm 3), where K denotes the number of arms, It ∈ K
denotes the arm chosen at t, Nk,t =

∑t
τ=1 δIτk denotes the number of the kth arm pulls up to t, T

denotes the play horizon, X∗
k,t denotes the best reward obtained of the kth arm up to t.

Algorithm 3: A* Extreme Bandit (AEB)
Input: K, T Set parameter: Relaxation factor α
for t = 1 : K do

It = t, pull arm It, then insert(XIt,t) // (pull each arm once)

for t = K + 1 : T do
It = argmaxk∈K log get fn(X∗

k,t−1)− α ∗ logNk,t−1

Pull arm It, then insert(XIt,t)

Implementation Notes For AEB algorithm, we have three parameters that need to be specified
in advance, BMT(·) - the monotone negative transformation with range (0, 1), N - length of the
storage array, and α - the relaxation factor. With N sufficiently large, despite BMT(·), the index
i = ⌊N ∗ BMT(XIt,t)⌋ of each Xk,t would be well separated, hence the specific value of N won’t
affect the performance of the main algorithm. We will illustrate this empirically in Section 5.4.
Therefore, the only non-trivial parameter of AEB algorithm should be α - the relaxation factor. The
relaxation factor is associated with the asymptotic property of the algorithm, which will be discussed
in the following section.

4 ANALYSIS OF AEB

Recall that fn(Xk,t) is the effort-based surrogate for reward Xk,t and Nk,t denotes the number of
the kth arm pulls up to t. We start with two intuitive properties of the surrogate below.
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Lemma 1. The effort-based surrogate fn(X) is a time-invariant non-decreasing function on reward
value X .

This lemma holds naturally as the surrogate of X is constructed by Algorithm 1 after the first reward
value with the same index i = ⌊N ∗BMT(X)⌋ to X is obtained and will never be altered afterwards.
Lemma 2 (Upper bound on fn(Xk,t)). For any reward Xk,t obtained from any arm νk and any
time t,

fn(Xk,t) ≤ t

Proof. Suppose that fn(X∗
t ) ≤ t, if X∗

t+1 > X∗
τ for all τ < t + 1, by definition, we have

fn(X∗
t+1) = t + 1. Else-wise, X∗

t+1 ≤ X∗
t then fn(X∗

t+1) ≤ fn(X∗
t ) ≤ t. Therefore

fn(X∗
t+1) ≤ t + 1 holds. Given that fn(X∗

1 ) = 1, inductively we have fn(X∗
t ) ≤ t for all

t ≥ 1.

Note that Xk,t ≤ X∗
t and by Lemma 1, fn(Xk,t) is upper-bounded by t.

This upper bound leads to the following proposition.
Proposition 1. If the bandit is played by policy AEB with the relaxation factor α > 1, selecting an
arm It at time t, then for any arm νk, there exists a constant Ck such that

lim
T→∞

T∑
t=1

δItk/T > Ck.

Proof. We consider the opposite, hypothesize that there is a set of arms {νp} that for νk ∈ {νp},
limT→∞

∑T
t=1 δItk/T > Ck and the other set of arms {νq} with limT→∞

∑T
t=1 δItk/T = 0 for

νk ∈ {νq}. By Algorithm 3, the policy pulls the arm at time t that maximizes

fk,t−1 = log fn(X∗
k,t−1)− α logNk,t−1, where Nk,t−1 =

t−1∑
τ=1

δIτk.

For νk ∈ {νp} at time T , applying Lemma 2, we have

fk,T < log T − α logCkT = (1− α) log T − α logCk

and limT→∞ (1− α) log T = −∞ as α > 1, so limT→∞ fk,T = −∞. While for νk ∈ {νq},
limT→∞

∑T
t=1 δItk is finite, so limT→∞ fk,T > −∞. However, arms with larger fk,T should be

preferred by Algorithm 3, leading to a contradiction to our hypothesis.

Proposition 1 shows that the number of times each arm is pulled over T is of the same order O(T ).
We then provide the main analysis result of AEB.
Theorem 1. AEB is asymptotically optimal in the weak sense if the relaxation factor α is admissible,
i.e., α > 1.

Proof. We consider a bandit that has a dominating arm denoted by k∗: νk∗ ≻ νk for all k ̸= k∗,

lim
T→∞

inf
E[maxt≤T Xk∗,t]

E[maxt≤T Xk,t]
> 1.

As limT→∞
∑T

t=1 δItk > CkT = ∞, after the bounded monotone transformation BMT(·), without
a finite bound assumption on E[maxt≤T Xk,t], the best reward obtained

lim
T→∞

BMT(X∗
k,T ) = BMT( lim

T→∞
E[max

t≤T
Xk,t])

hence
lim

T→∞
BMT(X∗

k∗,T )/BMT(X
∗
k,T ) > 1.

With N sufficiently large to discriminate the index of BMT(X∗
k∗,T ) and BMT(X∗

k,T ), we have

lim
T→∞

fn(X∗
k∗,T )/fn(X

∗
k,T ) > 1.
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By proposition 1 and its proof, we know that when the policy keeps pulling the same set of arms, the
fk,T values of this set of arms will decrease asymptotically for α > 1, thus giving the other set of
arms a chance to be pulled. So in an asymptotic sense, the fk,T values of all arms are equal, leading
to

lim
T→∞

log fn(X∗
k∗,T )− α logNk∗,T

log fn(X∗
k,T )− α logNk,T

= 1.

With the above two results we can get

lim
T→∞

Nk∗,T

Nk,T
= lim

T→∞

∑T
t=1 δItk∗∑T
t=0 δItk

> 1.

However, if N is too small to discriminate the index of BMT(X∗
k∗,T ) and BMT(X∗

k,T ), we have
limT→∞ Nk∗,T /Nk,T ≥ 1. The asymptotic optimality of AEB is albeit a weak one, Nishihara
et al. (2016) proved that no policy can asymptotically achieve no extreme regret, i.e., no policy is
asymptotically optimal in the strong sense.

Comparison with the A* search algorithm A* (pronounced ”A-star”) is a graph traversal and
path search algorithm used to find the shortest path from a specified source to a specified goal. It is
widely used in computer science due to its completeness and optimality (Hart et al., 1968). A* can
be considered an extension of Dijkstra’s algorithm, but it achieves better results by using heuristics to
guide its search. In each iteration of its main loop, A* determines the path to extend by minimizing
the function

f(n) = g(n) + h(n).

Here, n represents the next node on the path, g(n) is the cost of the path from the start node to n,
and h(n) is a heuristic function that estimates the cost of the cheapest path from n to the goal. Once
a path is found, A* terminates and returns the path.

Theorem 2 (Optimality of A*). If the heuristic function is admissible, meaning it never overesti-
mates the actual cost to reach the goal, A* is guaranteed to return a optimal (least-cost) path from
the start to the goal.

Proof. Without loss of generality, we assume that the cost of the optimal path is C. As the heuristic
function is assumed to be admissible, we know that f(n∗) ≤ C for any node n∗ on the optimal path.
Considering a node n′ with g(n′) = C on a sub-optimal path with cost C+d (d > 0), then we have
f(n′) = C + h(n′) > C ≥ f(n∗). So n′ would never be expanded until every node on the optimal
path is expanded, i.e., the optimal path is found and returned.

The early nodes on a sub-optimal path might be expanded, but as the expanding process goes on,
the f(n′) of a new node n′ that can be expanded would be inferior to those of nodes on the optimal
path. AEB works in a similar way to A*, a sub-dominating arm νk might be pulled many times, but
with α > 1, fk,T of would go inferior to fk∗,T , leading to more pulls on the dominating arm νk∗ .
However, AEB doesn’t terminate like A* does.

5 PRACTICAL PERFORMANCE

In this section, we empirically evaluate AEB with the different competitors on synthetic data. The
competitors include ThresholdAscent (Streeter & Smith, 2006b), ExtremeHunter (Carpentier &
Valko, 2014), ExtremeETC (Achab et al., 2017), Max-Median (Bhatt et al., 2023) and QoMax
(Baudry et al., 2022). We use parameters suggested in the original papers and the comprehen-
sive work of Baudry et al. (2022). All numerical results in this section are averaged over 1000
independent experiments.
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5.1 TIME AND STORAGE COMPLEXITY

We present in Table 1 the storage and computational complexity for a time horizon T needed by the
different adaptive and ETC (Explore-Then-Commit) algorithms that we examine, using the men-
tioned parameters. For the complexities of the baselines, we refer to Baudry et al. (2022). The
lowest values in each category are highlighted in blue.

For AEB (Algorithm 3), the memory needed is K + N , K to store the best reward obtained
by each arm, and N for the effort-based surrogate array a. The computational complexity of
log get fn(X∗

k,t−1) − α ∗ logNk,t−1 is O(1) while the over-all computational complexity of
insert(XIt,t) isO(N log T ). To identify It for t = K+1 : T , a naive implementation takes K−1
comparisons, but a priority queue can be applied to get a reducedO(logK) complexity. So the over-
all time complexity of AEB for a time horizon T is O(T logK +N log T ). However, we can avoid
performing insert(XIt,t) operations and safely discard the surrogate for XIt,t < min{X∗

k,t},
resulting in a memory complexity of O(K) and a time complexity of O(T logK).

Table 1: Average memory & time complexities and of Extreme Bandit algorithms

Algorithm Memory Time
ThresholdAscent s-fixed O(KT )
ExtremeHunter T O

(
T 2

)
Max-Median T O(KT log T )
QoMax-SDA O

(
(log T )2

)
O(KT log T )

AEB (ours) O(K) O(T logK)
ExtremeETC O

(
K(log T )3

)
O
(
K(log T )6

)
QoMax-ETC O

(
K(log T )2

)
O
(
K(log T )3

)
AEB presents the lowest storage cost compared to all competitors within our knowledge. It should
be noted that ThresholdAscent considers the s best rewards observed so far where s is a parameter of
the algorithm, but it lacks theoretical grounding though utilizes a desirable s-fixed amount of data.
Among all adaptive (non-ETC) algorithms, AEB is the most computationally efficient. However,
ETC algorithms first explore for a certain amount of trials and then commit to a single arm for all
subsequent pulls, which naturally under-perform when dealing with non-stationary arms.

5.2 PERFORMANCE EVALUATION

In Bhatt et al. (2023), two criteria for evaluating the empirical finite sample performance is em-
ployed: (I) the extreme regret defined in Definition 1 and (II) the fraction of beat arm pulls. Most
works report only (I), Baudry et al. (2022) note that estimating the expectation E[maxt≤T XIt,t]
required for calculating the extreme regret is difficult. They also mention that approximations of
E[maxt≤T Xk∗,t] are only available for a few specific families and the use of standard Monte-Carlo
estimators can lead to high variance for heavy-tailed distributions. In the following sections, we
mainly employ criterion (II) for evaluation, it’s proven to be a robust performance indicator in the
experiments and analysis of Bhatt et al. (2023) and Baudry et al. (2022).

5.3 NUMERICAL RESULTS

In this section, we illustrate the performance of AEB on the most widely studied distributions in-
spired by real data, along with newly proposed non-i.i.d distributions. Most of the competitors’
results are also reported by Baudry et al. (2022). According to Section 5.4, we set N = 1 × 105,
BMT(x) = x−1 for x ∈ [1,∞) and BMT(x) = e−x for x ∈ [0,∞), and α = 1.

1. Pareto Arms: The tail distribution F̄ (x) ∼ akx
−λk for k = 1, 2, · · · ,K. This is

motivated by heavy-tailed data. We choose K = 7 Pareto distributions with λk ∈
[2.5, 2.8, 4, 3, 1.4, 1.4, 1.9]. All arms have a scaling ak = 1 except ν5 with a5 = 1.1.
Hence ν5 is the dominating arm from a slight margin. The results are illustrated in the left
of Figure 1.
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2. Exponential Arms: The tail distribution F̄ (x) ∼ ake
−λkx for k = 1, 2, · · · ,K. This is

motivated by exponential-tailed data. We choose K = 10 Exponential arms with param-
eters λk ∈ [2.1, 2.4, 1.9, 1.3, 1.1, 2.9, 1.5, 2.2, 2.6, 1.4]. The results are shown in the right
Figure 1.
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Figure 1: Fraction of best arm pulls for two kinds of distributions for T ∈ {100, 200, 500, 1 ×
103, 2.5× 103, 5× 103, 1× 104, 2× 104}

5.4 EFFECTS OF PARAMETER SELECTION

In this section, we demonstrate the impact of selecting the length N of the storage array a and
the relaxation factor α, based on exp.1 in Bhatt et al. (2023) for its simplicity: K = 5 Pareto
distributions with tail parameters λk ∈ [2.1, 2.3, 1.3, 1.1, 1.9]. We take BMT(x) = x−1 as x ∈
[1,∞) from the Pareto distributions. The results are shown in Figure 2.
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Figure 2: Fraction of best arm pulls using different parameters for T ∈ {100, 500, 2 × 103, 1 ×
104, 5× 104, 2× 105, 1× 106}

The numerical results show that the performance of the algorithm is positively correlated with the
value of N . When N is much smaller than T , it is difficult to discriminate the best rewards among
arms, so the performance of the algorithm tends to approach a simple random policy. When N ap-
proaches T , the further increase of N brings marginal improvement. When BMT(x) has a relatively
uniform distribution, we suggest that setting N to the same order as T would be sufficient. Setting
N too small will result in a loss of asymptotic performance, despite higher efficiency. In the experi-
ment investigating the influence of α, we set N = 1× 105. Although the algorithm has asymptotic
guarantees when α > 1, empirical results show that the convergence speed slows down significantly.
When α < 1, the algorithm is easily misled by sub-optimal arms. Therefore, we recommend setting
α equal to or slightly larger than 1.

Take-away parameter suggestions: Set array length N ≈ T , relaxation factor α ≳ 1.
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6 CONCLUSION

We provided a universal Extreme Bandit algorithm AEB with the minimal memory complexity and
time complexity (in non-ETC algorithms). AEB is the first algorithm tackling with non-stationary
rewards, which offer a more precise representation of real-world data sources. The universality of
the algorithm is achieved by surrogating reward X with the effort taken to find the first reward as
good as X . For non-i.i.d rewards without bound on the finite mean, we first proposed asymptotic
optimality for analysis and we established that the best arm will have the most allocated trials even-
tually by AEB. Numerical results in recognized experimental settings confirmed the efficiency and
finite-sample performance of AEB.

An interesting direction is to establish vanishing regret for AEB under stronger assumptions exten-
sively studied in the Extreme Bandit literature, although it currently doesn’t seem to be beneficial in
enhancing the performance of AEB on diverse application scenarios.

This work is motivated by black-box optimization (BBO) problems, for example, hyper-paremeter
optimization. Its contribution may inspire more people to integrate more insights from the bandit
literature into BBO problems, and the authors are in the process of assessing and improving the
proposed algorithm in realistic BBO problems.
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