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Abstract

Physics-informed neural networks (PINNs) have been widely used to develop
neural surrogates for solutions of Partial Differential Equations. A drawback of
PINNs is that they have to be retrained with every change in initial-boundary
conditions and PDE coefficients. The Hypernetwork, a model-based meta learning
technique, takes in a parameterized task embedding as input and predicts the
weights of PINN as output. Predicting weights of a neural network however, is a
high-dimensional regression problem, and thus it is observed that hypernetworks
perform sub-optimally while predicting parameters for large base networks. In
this work we investigate whether we can circumvent the above issue with use
of low ranked adaptation (LORA). Specifically, we use low ranked adaptation
to decompose every layer of the base network into low-ranked tensors and use
hypernetworks to predict the low-ranked tensors. However, we observe that the
reduced dimensionality of the resulting weight-regression problem does not suffice
to train the hypernetwork well. Nevertheless, addition of physics informed loss
(HyperPINN) drastically improves the generalization capabilities. In order to
show the efficacy of our proposed methods we consider widely used PDEs used in
the domain of Material Science such as Maxwell’s equation, Elasticity equation,
Burger’s equation, Navier-Stokes. We observe that LoRA-based HyperPINN
(PIHLoRA) training allows us to learn fast solutions while having an 8x reduction
in prediction parameters on average without compromising on accuracy when
compared to all other baselines.

1 Introduction

In the field of material science, Partial Differential Equations (PDEs) play a crucial role in modeling
and understanding the properties and behaviors of materials. The Helmholtz equation [1–5] is
extensively used in the design of metamaterials, solving problems related to electromagnetic properties
and graded media materials. Structural mechanics heavily rely on PDEs like the Biharmonic equations
[6] of elasticity and Euler-Bernoulli equations [7, 8] to simulate the behavior of materials under
various stress conditions. Additionally, the diffusion equation [9, 10] is fundamental in describing
substance distribution in different states of matter [11, 12], and Burgers’ equation is pivotal in
modeling shock wave interactions in nonlinear acoustics and high-viscosity material flows [13,
14]. These are examples of equations offer deep insights into complex material behaviors and are
instrumental in advancing material science.
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Most systems of PDEs are not amenable to analytical solutions and require numerical approximations.
In recent years there has been a strong interest in using machine learning techniques for obtaining
numerical approximations. One of the popular approaches of interest has been physics informed
neural networks (PINNs) [15], where the solution for a PDE is approximated with a neural surrogate,
also refered in this work as an implicit neural respresentation (INR). Representation of the final
solution with a neural network can pottentially allow one to overcome several limitations that occur in
numerical methods on account of discretization. We refer interesterd readers to [16, 17] for additional
discussion.

PINNs despite their popularity suffer from several limitations, one of them being that they have to be
retrained from scratch for every change in intial condition, boundary conditions or PDE coeffecients.
A possible solution to overcome this challenge is to employ hypernetworks. Hypernetwork [18] is a
form model based meta learning network that takes task descriptions as input and predicts the weights
of a neural network as output. Predicting weights of a neural network however, is a high-dimensional
regression problem, and hypernetworks perform sub-optimally while predicting parameters for large
base networks. However, one can represent the adaptation of large network with parameter efficient
tuning [19, 20]. Thus, a hypernetwork can be trained using just adaptation parameters rather than the
entire network. Almost concurrent to our work such ideas have been used for Image Generation [21]
and Instruction Tuning of LLMs [22].

In this work we show the efficacy of utilizing Hypernetworks to predict low rank adaptation of the
implicit nerual represtations of the solutions for PDEs. We observe that hypernetworks trained purely
by using Implicit Neural Representations (INRs) as data do not provide the best performance and
significant performance gains can be obtained if one can finetune the weights of the INRs while
training the hypernetworks as well. We believe that this performance difference may be observed
due to permutation equivariance related issues [23]. There are two possible approaches to finetune
the INRs while training the hypernetworks as well: (1) If one has access to input-output data for the
neural surrogates, i.e. INRs, they can be used to define supervision loss. Such data may be available
from sensors or from employing a PINN solver for each task. (2) HyperPINNs: One can introduce
a physics informed loss instead or in addition to the above supervision loss. We observed the best
performance when a physics informed loss is included during hypernetwork training.

The remainder of the paper is organized as follows. In section 2, we describe the related work and
some PDEs relevant to the material science community. In section 3, we describe the methodology
and state the motivations behind each technique we adopt. Sections 4 consists of the experiment
design. We discuss the results and observations in section 5 and conclude in section 6.

2 Related Work

2.1 Parameter Efficient Finetuning

Parameter-efficient fine-tuning (PEFT) adapts pre-trained large language models (LLMs) by training
a select subset of parameters. PEFT, encompassing various techniques such as adapter modules,
prompt tuning, and sparse updates, is explored in [24] for its robust application across language tasks,
and in [25] for enabling efficient task adaptation. [26] provides an extensive comparison of PEFT
methods like prefix tuning and adapter layers, directing readers to this review for a detailed overview.
Additionally, [27] highlights the use of transfer learning with adapters in NLP to overcome parameter
inefficiency in traditional fine-tuning. Low-ranked adaptation, popularly known as LoRA, is one of
the most popular techniques of PEFT. [19] addresses the challenges of adapting large-scale models
like GPT-3 175B for specific tasks, where full fine-tuning is impractical due to the enormous number
of parameters. Building upon this, [28] and [29] present systems that enhance speech recognition and
reduce both trainable parameters and activation memory costs in LLMs. [30] proposes a quantization-
aware adaptation algorithm for deploying LLMs in resource-limited environments, while [31] focuses
on efficient adaptation through perturbation of weight matrices in a Bayesian context. Beyond NLP,
[32] delves into the theoretical aspects and applications of LoRA in fine-tuning diffusion models.
[33] introduces an approach for dynamic rank adaptation to overcome the rigidity of traditional
LoRA, and [34] applies LoRA for solving visual problems with open-source LLMs, enhancing
tool invocation accuracy and enabling zero-shot learning. Collectively, these studies demonstrate
LoRA’s wide-ranging efficacy and flexibility across various fields. Adapters is another form of
PEFT. Adapters in neural networks provide a resource-efficient method for fine-tuning pre-trained
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models across various computational fields, particularly in natural language processing (NLP). [35]
enable parameter-efficient adjustments without full fine-tuning. "CHAPTER" [36] introduces CNN
adapters for self-supervised learning in speech models, significantly reducing the parameters needed
for fine-tuning. "AdapterHub" [37] proposes a framework for adapting transformer models in NLP,
addressing storage and sharing challenges of large models. Similarly, [27] suggests adapters for
transfer learning, enhancing model compactness and extensibility. "AdapterGNN" [38] applies these
principles to GNNs, showing the adaptability of this approach beyond traditional NLP applications.
Collectively, these studies underscore the efficiency and versatility of adapters in fine-tuning large,
pre-trained models in a variety of domains.

2.2 Meta-learning for Partial Differential Equations

Meta-learning techniques have been applied to solve a range of PDEs with diverse equations, initial
conditions, and boundary conditions, treating each variation as a distinct task. [39] introduced
a shared, offline-learned loss function for different tasks within PINNs. [40] suggested using a
reptile-initialization method for various PINN tasks. Meanwhile, [41] conducted a comprehensive
analysis of various meta-learning initializations, showcasing their effectiveness across PDEs like
Burgers’, Allen-Cahn, and Diffusion-Reaction equations, particularly when dealing with changing
equation coefficients. Hypernetworks [18] is a popular model-based Meta learning technique, have
been briefly explored for solving PDEs. Hypernetworks use one network to generate weights for
another, showing versatility across various applications [42]. Hypernetworks have been applied to
graphics for to BRDF estimation [43], Neural Architecture Search [11], and HyperPINNs [44] to
solve parameterized PDEs. In Physics Informed Symbolic Networks (PISN) [45], the authors employ
hypernetworks to predict differentiable programs and generate symbolic solutions for PDE. Moreover,
INRs have become vital in encoding signals for diverse applications like medical imaging, scene
reconstruction [46], and efficiently solving parametrized PDEs [47]. In HyperDreamBooth [21], the
authors combine hypernetworks with LoRA in diffusion models, demonstrating their potential in
personalized applications.

2.3 Partial Differential Equations for Material Science

Helmholtz Maxwell Equation: The study and design of metamaterials, which are engineered to have
properties not found in naturally occurring materials, often involve solving the Helmholtz equation.
The authors in [1] apply a PINN to predict the effective material parameters of a two-dimensional
metamaterial from its scattered fields by employing a loss function based on the Helmholtz equation.
[2] uses a PINN to design an electromagnetic metamaterial based on high-frequency Helmholtz
equation. [3–5] consist of additional examples of using Helmholtz equation to model graded media
materials.

Structural Mechanics: PDEs are used to model the behavior of materials under various loads
and conditions. [6] develops a surrogate model to solve Biharmonic equations of elasticity using
PINNs. Elasticity equations are based on Hooke’s law to develop stress-strain relations. [7] develops
PINNs to simulate complex structural systems consisting of single and double beams governed by
Euler-Bernoulli and Timoshenko PDE. [8] uses PINNs to model the strain-rate and temperature
dependence of the deformation fields in elastic-viscoplastic solids.

Diffusion Equation: In material science, the diffusion equation is a fundamental PDE that describes
the distribution of a substance within a system over time, essential for understanding phenomena
like heat conduction, mass transfer and the diffusion of particles in solids, liquids, or gases. [48]
solves anisotropic diffusion equation using PINNs.[12] models multi-component Diffusion reaction
equation using PINNs. [9, 10] develops neural surrogate solutions for non-Fickian coupled diffusion
elastic wave equation.

Burger’s equation: Burgers’ equation is used to model shock waves and their interactions in
various materials. It helps understand how these waves evolve and dissipate over time and distance,
particularly in nonlinear acoustics. In highly viscous materials like polymers [14] or glass [13] during
manufacturing, Burgers’ equation can model flow behavior, especially when there are nonlinear
effects due to the material’s viscosity.
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3 Methodology

3.1 Physics-informed Neural Networks

We consider Partial Differential Equations of the form

N [x, t, u(x, t)] = 0, t ∈ [0, T ], x ∈ Ω (1)

Here, N is a non-linear differential operator consisting of space and time derivatives of spatial variable
x and temporal variable t. The neural network is trained using a loss function that consists of: 1) A
supervised initial condition loss, boundary condition loss and 2) An unsupervised physics-informed
loss component.

L(θ) =
∑

xi∈IC

(u(xi, 0)−f(xi))
2+

∑
xbc,tbc∈BC

(u(xbc, tbc)−h(xbc, tbc))
2+

∑
x,t∈C

N(u, x, t, ut, ux, ...)2

(2)

Here, C represents the set of collocation points on which the Physics-loss is computed. IC, BC
represents the set of points at which Initial Conditions and Boundary Conditions are evaluated. f ,h,
represent the initial condition and boundary condition functions respectively. θ represents the weights
of the neural network.

3.2 HyperPINNs: Overcoming the Limitations of Standard PINNs

While PINNs have proven effective as neural surrogates for solving instances of PDEs, they are
typically tailored to a single PDE instance and lack generalizability across multiple instances. This
limitation is where HyperPINNs come into play, combining the principles of hypernetworks with
PINNs to address this challenge.

3.2.1 Hypernetworks

Hypernetworks [18], a model-based meta-learning technique used to handle multiple instances
of tasks. In this framework, a hypernetwork H , parameterized by weights θh, accepts a task
representation λ as input. This hypernetwork predicts the weights θm for a base neural network M ,
which is then used to model a specific instance of a task. The equation governing this relationship is:

θm = H(λ; θh) u(x, t) = M(x, t; θm) (3)

In this setup, θm is supplied directly to the main network, facilitating the evaluation of the solution
u. This method enables the hypernetwork to be trained on various samples of training tasks λ,
empowering it to generalize to unseen tasks during testing. The key advantage here is the elimination
of the need to train neural networks from scratch for each new task instance.

3.2.2 HyperPINNs

Building upon this foundation, HyperPINNs, introduced in [44], are specialized hypernetworks
trained with a physics-informed loss function, specifically designed to tackle parameterized PDEs:

θm = Hpinn(λ; θh) upinn(x, t) = Mpinn(x, t; θm) (4)

The architecture of HyperPINNs consists of two core components:

Hypernetwork (Hpinn): This component takes the task parameterization λh as input and outputs the
weights θm for the main network.

Main Network (Mpinn): This network utilizes the weights θm to solve specific instance of a PDE.

The introduction of HyperPINNs effectively mitigates the primary drawback of conventional
PINNs—the necessity of retraining for each new PDE instance, by directly predicting the weights
for the main network. While hypernetworks handle various instances of tasks, they encounter a
significant challenge when scaling up: the complexity of the weight regression problem increases
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Figure 1: PIHLoRA. The hypernetwork parameterized by θh, takes in task embedding λ as input,
and outputs Low-ranked weights θ′m. They are passed into the base-network (We show 2-layers as
reference) with pre-trained weights W0,W1. The base network takes in variables of PDE x, t as input
and outputs u, which is trained in a physics-informed manner to update θh.

substantially with the size of the main network. This complexity arises from the high dimensionality
of the weight space that the hypernetwork must navigate, making the process increasingly difficult for
larger base networks. To address this issue, we use Low-Rank Adaptation (LoRA) and intergrate it
with PINNs and HyperPINNs. LoRA decomposes the weight matrices of the main network, reducing
the dimensionality of the weight regression problem. The mathematical formulations are described
as follows:

3.3 Low ranked adaptation for PINNs (L-PINNs)

Building on the methodology proposed in [19], we begin by training a PINN on a baseline task T0,
denoting its weights as W0. For a new task T1, the network’s weights W1 are updated as follows:

W1 = W0 +∆W = W0 +A ·B (5)

In this formulation, W1 ∈ Rm×n and W0 ∈ Rm×n, with A ∈ Rm×r and B ∈ Rr×n, where r is less
than min{m,n}. During training, W0 remains fixed, while matrices A and B are trainable, allowing
adaptation from task T0 to T1 with reduced parameter complexity.

3.4 Bridging Hypernetworks and LoRA: HLoRA and PIHLoRA

3.4.1 HLoRA: LoRA-Based Hypernetworks

Extending this concept to hypernetworks, we introduce LoRA-based Hypernetworks (HLoRA). Here,
the hypernetwork H , parameterized by θh, predicts low-rank weight adjustments A,B (denoted as
θ′m = [A : B]) instead of the full weight matrix. The formulation is as follows:

θ′m = H(λ; θh) θm = W0 + θ′m u(x, t) = M(x, t; θm) (6)

3.4.2 PIHLoRA: LoRA-Based HyperPINNs

Taking this advancement further, we combine LoRA-based adaptation with HyperPINNs to form
LoRA-based HyperPINNs (PIHLoRA), designed to solve parameterized PDEs efficiently. The
mathematical formulation is:

θ′m = Hpinn(λ; θh) θm = W0 + θ′m u(x, t) = Mpinn(x, t; θm) (7)
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We provide an illustration of LoRA-based HyperPINN in figure 1. This approach enables the efficient
solving of parameterized PDEs by predicting fewer parameters compared to standard HyperPINNs,
thereby addressing scalability and adaptability challenges inherent in high-dimensional weight spaces.

4 Experiment Design

Our experiment design is structured into two distinct sections. The first section focuses on assessing
the impact of varying the rank in the decomposed weight matrices on the performance of PINNs.
This exploration is critical, as it aims to identify the optimal balance of parameters necessary for
our subsequent hypernetwork experiments. Essentially, decomposing the weights into higher ranks
increases the network’s capacity to represent and adapt to the dynamics of new tasks in relation to
the original task. However, this also means that the hypernetwork must predict a larger number of
parameters. Conversely, a lower rank decomposition simplifies the hypernetwork’s prediction task by
reducing the number of parameters but potentially compromises on the network’s ability to accurately
represent the dynamics of the original task. Two baselines for these experiments are PINNs trained
from scratch and PINNs finetuned over a base task (F-PINNs), without decomposition.

In the second section of our experiments, we delve into hypernetwork-centric investigations, structured
into three key benchmarks, each with a distinct focus:

True Solution-Based (TSB): The initial benchmark involves training hypernetworks using actual
PDE analytical solutions as outputs. In specific cases like the 1D-Burger’s equation, we employ
ground-truth simulations from numerical solvers as the training labels. While this method relies
on the availability of true simulations and analytical solutions, which are often scarce in practical
applications, it establishes a foundational baseline for our experiments.

INR Weight Regression (IWR): Addressing the limitation of the first benchmark, the second
benchmark takes a different route. Here, both F-PINNs and L-PINNs are trained on a large dataset
offline, from which we collect the trained weights. A hypernetwork is then trained to regress on these
Implicit Neural Representation (INR) labels, as inspired by [49]. This method, while computationally
intensive due to the extensive offline PINN training, marks a significant improvement over the first
benchmark by reducing dependency on analytical solutions.

PINN Output Inference (POI): In the third benchmark, we utilize the solutions inferred by the
trained PINNs as ground truth for training the hypernetworks. Similar to the OPR benchmark,
this approach is computationally demanding, especially given the volume of offline PINN training
involved, but it further refines our methodology by integrating practical inference scenarios.

Finally, our primary experiment, Physics-Informed Hypernetworks with Low-Rank Adaptation
(PIHLoRA), synthesizes the insights gained from the previous benchmarks. It directly combines
Physics-Informed Hypernetworks with LoRA, eliminating the need for generating an extensive offline
dataset. This experiment represents the culmination of our efforts, integrating and validating the
observations from the rank analysis across all benchmarks.

5 Results and Observations

5.1 Rank analysis of decomposed Low-rank matrices

Figure 5.1 describes the rank analysis results for LoRA experiments, and a detailed tabulation of the
results in Table 2. Across all PDE examples, we first train an independent PINN on a task T0. Then
we perform Low-ranked adaptation for a new task Tx using the trained PINN for task T0 as our base
model. Lower the rank of the decomposed tensors, the fewer the number of parameters involved in
adapting to the newer task.

Across all PDE systems, we notice the average accuracy across the test-tasks first increases with
increase in rank, reaches an optimal rank, and then slightly deteriorates as the rank is further increased
to the full rank of the original matrix. We increase the rank of the matrices in multiples of 2. The best
L-PINN is on average 4.58× accurate than PINNs, while requiring 8.22× fewer parameters, 4.79×
fewer epochs while yielding 5.25× faster training time per epoch (due to training fewer parameters).
Additionally, the best LoRA-based PINN is on average 2.92× accurate than a finetuned-PINN, while
requiring 8.22× fewer parameters, 1.86× fewer epochs yielding 5.25× faster training time per epoch.
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Figure 2: Rank analysis of PINNs. Here, the blue trendline indicates relationship between MSE and
the rank of decomposed matrix. P and FP refers to the benchmarks, PINNs and Finetuned PINNs.

Improvement of performance due to initial rank increase can be attributed to improved representation
capacity of the finetuned task Tx due to higher number of parameters. We see a 3.65%, 4.96%, 2.78%,
2.11%, 32.56% improvement in Rectangular Plate vibration, Maxwell, 1D-Burger’s, Kovasznay,
2D-Burger’s respectively on increasing the rank from 1 to 4. We additionally notice, while the
training-time per epoch is lower for L-PINNs with ranks 1 and 2, as the representation capacity is
restricted, these take a higher time to converge as compared to L-PINNs with rank 4. Further increase
in rank leads to drop in performance, and we speculate overfitting and increase in variance to be
reasons for it due to increase in # parameters. In addition, very high ranked L-PINNs require higher
training time to converge, as against the best-ranked (4) L-PINN.

5.2 Hypernetworks for Low-ranked adaptation

Figure 5.1 describes the results of our hypernetwork experiments, and a detailed tabulation of the
results in Tables 3, 4, 5, 6, 7. Across all examples, * refers to the case where we don’t perform LoRA
decomposition and hypernetwork predicts the weights of entire base network.

In our first benchmark, True Solution-Based (TSB), we trained HLoRA using traditional solvers
for 1D-Burger’s and analytical solutions for the remaining examples. Consistent with our previous
analyses, hypernetwork performance improves up to a LoRA of rank 4, beyond which we observe a
decline. This drop in performance for ranks higher than 4 is attributed to the hypernetworks’ challenge
in predicting high-dimensional weights in a regression setting. When tested, Rank-4 HLoRA show
varying degrees of performance: being slightly inferior (2.69×,1.25x,1.35× worse) to L-PINNs in
Rectangular plate, Maxwell, Kovasznay flow, respectively, but substantially less effective (10.15×
and 460× worse) in 2D-Burger’s and 1D-Burger’s, respectively. Most practical PDE systems don’t
have a closed-form analytical solutions, and generating simulations using traditional PDE solvers can
be computationally intensive.

To address these limitations, our second benchmark, INR Weight Regression (IWR), employs multiple
instances of trained PINNs, using their weights as supervised labels for the hypernetwork. Here, the
hypernetwork predicts the weights of the base network, a strategy inspired by [49]. Despite a similar
rank analysis and reduced training time, the performance on test examples is notably poor. This is
likely due to the extreme sensitivity of weight-spaces to minor perturbations, resulting in complex
manifolds that are difficult to generalize. INR-regressor hypernetworks perform significantly worse
(2-3 orders) compared to L-PINNs and the TSB benchmark.

In our third benchmark, PINN Output Inference (POI), we train multiple PINN instances, using
them to generate ground truth labels over a computational domain. The hypernetwork then maps
task embeddings to a neural network’s weights, replicating the outputs produced by the trained
PINNs. This approach differs from TSB by not relying on traditional solvers for ground-truth data,
and from IWR by avoiding direct regression in the weight space. We notice a similar trend in rank
analysis, with the best-ranked hypernetwork in POI performing comparably (1.04× worse) to the
best in TSB, but significantly outperforming (3-4 orders) INR-regressor hypernetworks. However,
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Figure 3: Hypernetwork based LoRA experiments. We have 3 benchmarks, TSB refers to HLoRA
trained with analytical ground truths, IWR refers to INR regression on PINNs, POI refers to HLoRA
trained on labels generated by PINNs, as elaborated in Sec 4. * refers to the case where we don’t
perform LoRA weight decomposition and the hypernetwork predicts the entire base network.
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Table 1: Inference-time of the architectures in seconds

Architecture Rectangular Plate Maxwell 1D-Burger’s Navier Stokes 2D Burger’s(Kovasznay flow)
PINN 38000 18000 8400 6600 9900

F-PINN 31350 12600 7000 4400 8415
L-PINN 3780 2200 600 720 602

PIHLoRA 1.3 1.2 1.1 1.2 1.2

like TSB, POI shows inferior performance (6.51×,3.96×,1.36×, 4.19×, and 463× worse) compared to
rank-4 L-PINNs in Kovasznay flow, 2D Burger’s, and 1D Burger’s, respectively. The challenges here
include computational feasibility in training multiple PINNs and poor generalization with physics
constraints violations.

To overcome these issues, our final experiment employs Physics-Informed Hypernetworks with Low-
Rank Adaptation (PIHLoRA), learning hypernetworks in a physics-informed manner. This approach
negates the necessity for pre-trained data or neural surrogate samples, as seen in TSB and POI.
We observe that Rank-4 PIHLoRA outperform their counterparts in 1D-Burger’s and 2D-Burger’s
equations by 2-3 orders of magnitude, and only marginally underperform (1.97× worse) than rank-4
L-PINNs in test examples. This indicates that PIHLoRA can generalize effectively across test tasks,
offering inference-time advantages and adhering to physics constraints.

We tabulate the inference time for our architectures in Table 1. Across all examples, we observe
PIHLoRA to be around 2-3 orders of magnitude faster than vanilla architectures, as the entire
computational cost is transferred to one-time train cost, and we simply predict the weights for a
test-time, without having to finetune. The best-ranked L-PINNs are 10.25× faster than F-PINNs
and 9.16× faster than vanilla-PINNs, due to training lower number of parameters and incorporating
pre-trained information from an already trained base-task.

There has also been significant recent interest in using neural network to approximate operators in
order to obtain fast solvers of PDEs. Early approaches along this line, such as [50] assumed a finite
dimensional fixed resolution mesh for approximating the solution. However recent advances on
Neural Operators [51, 52] claim mesh-free learning by utilizing a single set of network parameters
for different discretizations. These approaches suffer from two main drawbacks (1) Its not possible
to synthesize or record the data needed to facilitate data driven operator learning. Therefore papers
like [53–55], have looked into use of physics loss for advancing operator learning approaches to
circumstances when we don’t have data. (2) Despite the claims of [52], we expect that discretization
to cause artifacts, and implicit neural representation will lead to better results. While works like [56]
have looked at applying FNOs to irregular geometries, currently there is no literature which models
the input and output to an FNO with a neural surrogate.

6 Conclusions

We use Low-ranked adaptation for PINNs to quickly adapt solutions of parameterized PDEs from
one instance to another. We investigate the importance of choice of rank of decomposed tensors, and
conclude there exists an optimal rank for tensor decomposition, lowering which leads to reduced
representation capacity and larger training time for the newer PDE instance. Increasing the rank leads
to overfitting and a slight drop in performance at test-time. We note, the optimal low-rank adapted
PINN converges faster and outperforms PINNs trained from random initialization or finetuned PINNs.
Next, we scale L-PINNs to HyperLoRA-based PINNs to further reduce inference time. Rank analysis
of L-PINNs extend to HLoRA as well. HLoRA benchmarks have the drawback of requiring pre-
existing ground-truth data which is scarce, and have inferior generalization as the underlying physics
isn’t captured. Utilizing a physics-loss to train the LoRA-based Hypernetworks (PIHLoRA) leads to
improved generalization and comparable performance with instance-wise L-PINNs, while retaining
the advantage in inference-time.
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A Appendix

The appendix is organized as follows. Section A.1 describes the PDE information, A.2 refers to
the training and hyperparameter details of our experiments. A.3 tabulates the rank-analysis results,
followed by Hypernetwork experiment result tables in A.4.

A.1 PDE Information

A.1.1 Free Vibration of Rectangular Plate

The fourth order governing PDE system describing the out of plane motion of a plate is described as:

D(
∂4u

∂x4
+ 2

∂4u

∂x2y2
+

∂4u

∂y4
) = −ρ

∂2u

∂t2
(8)

Here D = Eh3/12(1− ν2) is the flexural stiffness, E is Young’s modulus, h as thickness of the plate
and ν is the Poisson’s ratio. The plate is subjected to the following initial and boundary conditions:

u = 0,
∂2u

∂n2
= 0 for x ∈ Γu, u = sin(πx)sin(πy), ut = 0 for t = 0 (9)

Here Ω ∈ [0, 1] × [0, 1],t ∈ [0, 0.1]. We consider D ∈ [300, 500] and ρ ∈ [2000, 4000]kg/m3 for
HyperLoRA experiments, and D = 398.222 and ρ = 2700kg/m3 for LoRA experiments.

A.1.2 Two dimensional Maxwell’s equation

We consider a two-dimensional Maxwell equation in heterogeneous medium whose governing
equations are given by:

ϵ
∂Ex

∂t
=

∂Hz

∂y

∂Ey

∂x
− ∂Ex

∂y
= −µ

∂Hz

∂t
ϵ
∂Ey

∂t
= −∂Hz

∂x
(10)

Here, Ω1 ∈ [0, π] × [0, 2π], Ω2 ∈ [π, 2π] × [0, 2π], t ∈ [0, 2] with x = π is the interface. ϵ and µ
refers to Electric permeability and magnetic permeability respectively. E and H are Electric and
Magnetic field vectors respectively. The analytical solutions of the given PDE system is given by:

Ex =
kycos(ωt)cos(kxx)sin(kyy)

ϵ
√
µω

Ey =
kxcos(ωt)sin(kxx)cos(kyy)

−ϵ
√
µω

Hz =
sin(ωt)cos(kxx)cos(kyy)√

µ
(11)

In our LoRA experiments, we consider µ = 1, ky = 2, ϵ(x) = 2 if x ∈ Ω1, ϵ(x) = 5 if
x ∈ Ω2, kx(x) = 2 if x ∈ Ω1, kx(x) = 4 if x ∈ Ω2. In our HyperLoRA experiments, ky ∈
[1.5, 2.5], ϵ(x) = [1, 3] if x ∈ Ω1, ϵ(x) = [4, 6] if x ∈ Ω2, kx(x) = [1, 3] if x ∈ Ω1, kx(x) = [3, 5]

if x ∈ Ω2. kx, ky represent wave numbers, ω =
k2
x+k2

y

µϵ represent the angular frequency of the wave.

A.1.3 One-dimensional Burger’s equation

The governing PDE system of one-dimensional Burger’s equation is given by:

ut + u2
x(x, t)/2 = νuxx u(x, 0) = u0(x) (12)

Here, Ω ∈ [0, 1],ν = 0.01 refers to the viscosity of the system, and u0 ∈ L2
per((0, 1);R) refers to the

initial condition sampled from µ where µ = N(0, 625(−∆+ 25I)−2), sampled using a Gaussian
Random Field.

A.1.4 Two-dimensional coupled viscous Burger’s equation

The governing equations of two-dimensional coupled viscous Burger’s equation is given by:

ut + u ∗ ux + v ∗ uy = ν ∗ (uxx + uyy) vt + u ∗ vx + v ∗ vy = ν ∗ (vxx + vyy) (13)
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The initial and boundary conditions are sampled from the true analytical solutions of the PDE, given
by:

u(x, y, t) =
3

4
+

1

4(1 + exp( (−4x+4y−t)
32ν ))

v(x, y, t) =
3

4
− 1

4(1 + exp( (−4x+4y−t)
32ν ))

(14)

Here Ω ∈ [0, 1]2, t ∈ [0, 1], ν refers to the viscosity of the flow. We consider ν ∈ [1e−4, 1e−3] for
HyperLoRA experiments, and use ν = 5e−4 for LoRA experiments.

A.1.5 Navier-Stokes: Kovasznay flow

Navier-Stokes: Kovasznay flow is a two-dimensional steady state laminar flow. The governing Partial
Differential equations are given by:

ux+vy = 0 u∗ux+v∗uy = −px+(uxx+uyy)/Re u∗vx+v∗vy = −py+(vxx+vyy)/Re (15)

The boundary conditions for the equation are sampled from the true analytical solutions of the PDE,
given by:

utrue = 1− eλxcos(2πy) vtrue = λeλxsin(2πy)/2π ptrue = (1− e2λx)/2 (16)

Here, Ω ∈ [0, 1]2, λ = Re
2 −

√
Re2

4 + 4π2, where Re refers to the Reynold’s number of the system.
We consider Re ∈ [20, 100] for HyperLoRA experiments and Re = 40 for LoRA experiments.

A.2 Training and Hyperparameter Details

A.2.1 Rank-Analysis Experiments

In our rank-analysis experiments, we employ a Multi-layer Perceptron (MLP) with an architecture of
[inputs-64*4-outputs] and use hyperbolic tangent activation functions, specifically tailored for training
PINNs. The training of the base PINN is conducted using the Adam optimizer over 40k epochs, with
an initial learning rate of 1e-3 for the first 10k epochs. This is followed by a multiplicative decay factor
of 0.1, descending to a minimum learning rate of 1e−7. The training process is terminated if there is
no improvement in validation loss for 1k consecutive epochs. Further refinement of the trained PINNs
is done using an L-BFGS optimizer. This training protocol, including the optimizer and learning
rate schedule, is applied to F-PINNs and L-PINNs. In the Rectangular Plate Vibration example, we
discretize the domain into a 20 × 20 × 10 grid across both spatial and temporal dimensions. For
Maxwell’s equations, our setup includes 400 boundary condition points (100 per boundary), 1k initial
condition points, and 15k uniformly distributed collocation points. For the 1D-Burger’s equation, we
use 128 initial condition points and 10k collocation points for training. In the case of the 2D-Burger’s
equation, the setup consists of 400 boundary condition points (100 on each side of the square grid),
500 initial condition points, and 10k collocation points. Lastly, for Navier-Stokes: Kovasznay flow,
we employ a 101× 101 grid for the spatial domain and sample 2,601 collocation points, alongside
320 boundary condition points (80 for each face of the grid).

A.2.2 Hypernetwork-Based Experiments

In our hypernetwork-based experiments, we use an MLP with an architecture of [inputs- 512*2 -
256*2 - 128*2 - outputs], utilizing hyperbolic tangent activation. The dimensionality of the inputs
varies depending on the task: 3 for Maxwell’s equation, 2 for the rectangular plate, 1 for Navier-
Stokes (Reynold’s number Re), 1 for 2D-Burger’s (viscosity ν), and 128 for 1D-Burger’s (initial
condition u0(x) discretized at 128 positions). The outputs pertain to the number of parameters being
predicted, with specific details provided in Tables 5, 7, and 6. All hypernetworks are trained using
the Adam optimizer for 15k epochs, starting with a learning rate of 1e−3 for the initial 5k epochs
and implementing a decay of 0.1 every 3k epochs. Across all examples, we employ 20 validation
and test tasks. The number of training tasks is set to 20 for the Rectangular Plate, 40 for Maxwell’s
Equations, 100 for 1D-Burger’s, 20 for 2D-Burger’s, and 20 for the Navier-Stokes equations. All
experiments were conducted on an Nvidia P100 GPU, featuring 16 GB of GPU memory and a 1.32
GHz memory clock, using the Pytorch framework.

15



A.3 L-PINN (Rank analysis) results for our experiments

Rectangular Plate Rank # Error Time Epochs
PINNs 21187 6.64e−5 0.95 40k

F-PINNs 21187 4.24e−5 0.95 33k

L-PINNs

1 645 5.18e−5 0.06 40k
2 1290 4.01e−5 0.13 33k
4 2580 1.42e−5 0.21 18k
8 5160 2.28e−5 0.34 21k

16 10320 3.99e−5 0.43 25k
32 20640 5.01e−5 0.61 27k

Maxwell Rank # Error Time Epochs
PINNs 21188 3.65e−4 0.36 50k

F-PINNs 21188 2.77e−4 0.36 35k

L-PINNs

1 646 3.28e−4 0.03 50k
2 1292 1.45e−4 0.07 35k
4 2584 6.61e−5 0.10 22k
8 5168 9.05e−5 0.14 26k

16 10336 1.84e−4 0.17 32k
32 20672 2.02e−4 0.20 32k

1D-Burger’s Rank # Error Time Epochs
PINNs 21057 4.54e−6 0.28 30k

F-PINNs 21057 1.93e−6 0.28 25k

L-PINNs

1 643 1.95e−6 0.01 30k
2 1286 1.54e−6 0.03 25k
4 2572 7.00e−7 0.05 12k
8 5144 8.89e−7 0.09 12.5k

16 10288 1.00e−6 0.12 20k
32 20576 1.03e−6 0.16 20k

2D-Burger’s Rank # Error Time Epochs
PINNs 21187 3.25e−5 0.33 30k

F-PINNs 21187 2.69e−5 0.33 25.5k

L-PINNs

1 645 3.81e−4 0.02 30k
2 1290 7.02e−5 0.04 25k
4 2580 1.17e−5 0.05 12k
8 5160 2.73e−5 0.10 13k

16 10320 2.89e−5 0.14 20k
32 20640 2.94e−5 0.17 20k

Kovasznay Rank # Error Time Epochs
PINNs 21187 1.05e−6 0.22 30k

F-PINNs 21187 6.36e−7 0.22 20k

L-PINNs

1 645 8.16e−7 0.02 30k
2 1290 6.68e−7 0.04 20k
4 2580 3.85e−7 0.06 12k
8 5160 5.59e−7 0.09 12.5k

16 10320 9.35e−7 0.14 20k
32 20640 9.74e−7 0.16 30k

Table 2: Low-ranked Adaptation results. Here, F-PINNs refer to PINNs finetuned directly, L-PINNs
refer to Low-ranked adaptation based PINNs. Error refers to MSE averaged over 20 test-tasks, to
be used in Tables 5,7,6. Time refers to training time per epoch in seconds. # refers to number of
parameters updated in training-time.

A.4 HLoRA results for our experiments
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Table 3: Mean squared error of Hypernetwork-based LoRA experiments for Rectangular Plate

Rank # Param Train Valid Test Time
(per epoch)

1 645 6.82e−4 6.97e−4 7.56e−4 0.24
2 1290 4.49e−4 4.22e−4 4.34e−4 0.35

TSB 4 2580 6.03e−5 5.62e−5 5.89e−5 0.59
8 5160 2.67e−4 2.53e−4 2.88e−4 0.88
* 20640 1.34e−2 2.15e−2 3.97e−2 1.16
1 645 8.12e−2 8.56e−2 7.71e−2 0.031
2 1290 5.49e−2 5.55e−2 5.39e−2 0.044

IWR 4 2580 8.01e−3 7.85e−3 7.34e−3 0.059
8 5160 3.92e−2 3.45e−2 3.56e−2 0.082
* 20640 1.06e−2 3.32e−2 5.00e−2 0.29
1 645 8.15e−4 7.26e−4 7.64e−4 0.24
2 1290 6.74e−4 7.17e−4 6.85e−4 0.35

POI 4 2580 8.65e−5 8.48e−5 9.23e−5 0.60
8 5160 1.97e−4 2.88e−4 2.12e−4 0.88
* 20640 1.34e−2 2.14e−2 3.78e−2 1.15
1 645 3.67e−4 3.93e−4 2.75e−4 0.84
2 1290 5.46e−5 5.98e−5 7.60e−5 2.04

PIHLoRA 4 2580 3.15e−5 4.84e−5 3.83e−5 4.12
8 5160 4.54e−5 5.58e−5 6.44e−5 5.37
* 20640 4.52e−2 1.91e−2 2.05e−2 14.26

Table 4: Mean squared error of Hypernetwork-based LoRA experiments for Maxwell equation

Rank # Param Train Valid Test Time
(per epoch)

1 646 6.65e−4 6.34e−4 6.52e−4 0.16
2 1292 5.43e−4 5.70e−4 5.91e−4 0.26

TSB 4 2584 1.19e−4 1.35e−4 1.40e−4 0.40
8 5168 3.77e−4 4.14e−4 4.64e−4 0.71
* 21272 1.75e−2 2.29e−2 3.01e−2 3.04
1 646 3.35e−2 4.16e−2 3.86e−2 0.04
2 1292 3.54e−2 3.75e−2 3.09e−2 0.08

IWR 4 2584 2.12e−2 2.09e−2 2.33e−2 0.15
8 5168 4.04e−2 4.17e−2 4.41e−2 0.23
* 21272 8.19e−2 7.65e−2 7.68e−2 1.06
1 646 7.09e−4 6.89e−4 7.45e−4 0.16
2 1292 5.96e−4 5.81e−4 6.04e−4 0.26

POI 4 2584 2.05e−4 2.32e−4 2.62e−4 0.40
8 5168 4.16e−4 3.99e−4 4.71e−4 0.71
* 21272 3.05e−2 3.51e−2 3.36e−2 3.05
1 646 5.16e−4 5.55e−4 5.79e−4 0.57
2 1292 4.74e−4 5.03e−4 5.92e−4 1.65

PIHLoRA 4 2584 9.05e−5 8.29e−5 8.52e−5 3.88
8 5168 2.32e−4 2.96e−4 2.57e−4 4.78
* 21272 3.76e−2 4.17e−2 1.95e−2 12.53
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Table 5: Mean squared error of Hypernetwork-based LoRA experiments for 1D Burger’s equation.

Rank # Param Train Valid Test Time
(per epoch)

1 643 7.25e−4 1.09e−3 8.78e−4 1.19
2 1286 2.69e−4 4.67e−4 4.98e−4 1.56

TSB 4 2572 3.02e−4 3.47e−4 3.22e−4 1.84
8 5144 5.69e−4 6.11e−4 6.37e−4 2.25
* 21057 1.96e−2 3.70e−2 3.14e−2 17.26
1 643 8.82e−3 8.54e−3 9.13e−3 0.81
2 1286 6.19e−3 6.15e−3 6.15e−3 1.05

IWR 4 2572 4.24e−3 4.43e−3 4.17e−3 1.36
8 5144 5.43e−3 5.94e−3 5.56e−3 1.74
* 21057 3.64e−2 4.90e−2 5.12e−2 10.14
1 643 7.18e−4 1.12e−3 8.89e−4 1.19
2 1286 2.86e−4 4.75e−4 5.05e−4 1.56

POI 4 2572 3.12e−4 3.55e−4 3.35e−4 1.84
8 5144 5.58e−4 6.16e−4 6.44e−4 2.25
* 21057 2.02e−2 3.84e−2 3.26e−2 17.26
1 643 9.64e−6 1.45e−5 1.17e−5 3.15
2 1286 4.02e−6 6.22e−6 6.64e−6 4.35

PIHLoRA 4 2572 3.67e−6 4.82e−6 4.74e−6 5.75
8 5144 7.19e−6 8.19e−6 8.23e−6 8.45
* 21057 2.58e−3 4.29e−3 2.47e−3 67.6

Table 6: Mean squared error of Hypernetwork-based LoRA experiments for Kovasznay flow

Rank # Param Train Valid Test Time
(per epoch)

1 645 2.19e−6 1.39e−6 1.87e−6 0.16
2 1290 4.45e−7 9.16e−7 8.31e−7 0.21

TSB 4 2580 4.08e−7 5.16e−7 5.23e−7 0.29
8 5160 6.46e−7 6.99e−7 7.75e−7 0.37
* 21187 4.38e−4 3.60e−3 2.66e−3 2.15
1 645 4.17e−3 3.29e−3 3.22e−3 0.05
2 1290 3.95e−3 3.59e−3 3.49e−3 0.07

IWR 4 2580 2.95e−3 3.06e−3 3.19e−3 0.101
8 5160 4.04e−3 5.19e−3 7.72e−3 0.12
* 21187 1.17e−2 2.18e−2 1.95e−2 0.73
1 645 2.19e−6 1.39e−6 1.91e−6 0.16
2 1290 4.28e−7 9.03e−7 8.29e−7 0.21

POI 4 2580 4.11e−7 5.04e−7 5.26e−7 0.29
8 5160 6.28e−7 7.15e−7 7.64e−7 0.37
* 21187 4.47e−4 3.66e−3 2.82e−3 2.15
1 645 2.22e−6 1.35e−6 1.80e−6 0.63
2 1290 4.36e−7 9.15e−7 8.25e−7 0.84

PIHLoRA 4 2580 4.15e−7 5.52e−7 4.84e−7 1.15
8 5160 5.93e−7 6.64e−7 7.22e−7 1.45
* 21187 3.17e−4 2.91e−3 4.42e−3 9.43
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Table 7: Mean squared error of Hypernetwork-based LoRA experiments for 2D Burger’s equation

Rank # Param Train Valid Test Time
(per epoch)

1 644 3.05e−4 4.44e−4 9.52e−4 0.093
2 1288 2.97e−4 3.26e−4 2.55e−4 0.131

TSB 4 2576 1.46e−4 1.50e−4 1.16e−4 0.171
8 5152 1.81e−4 1.66e−4 1.52e−4 0.241
* 21122 4.45e−2 3.99e−2 4.12e−2 1.91
1 644 3.17e−2 3.22e−2 2.68e−2 0.031
2 1288 2.12e−2 2.15e−2 2.36e−2 0.044

IWR 4 2576 1.40e−2 1.57e−2 2.15e−2 0.059
8 5152 2.66e−2 2.36e−2 2.94e−2 0.082
* 21122 3.25e−2 3.61e−2 2.76e−2 2.95
1 644 3.12e−4 4.63e−4 9.58e−4 0.093
2 1288 2.88e−4 3.32e−4 2.57e−4 0.131

POI 4 2576 1.49e−4 1.61e−4 1.19e−4 0.171
8 5152 1.85e−4 1.58e−4 1.48e−4 0.241
* 21122 1.82e−2 2.06e−2 2.52e−2 1.91
1 644 5.52e−4 8.26e−4 7.35e−4 0.375
2 1288 6.14e−5 7.66e−5 8.22e−5 0.525

PIHLoRA 4 2576 2.89e−5 4.26e−5 4.19e−5 0.69
8 5152 5.39e−5 5.87e−5 5.25e−5 0.975
* 21122 6.34e−3 2.76e−2 1.88e−2 7.85
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