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Abstract

Large vision-language models (LVLMs) have001
recently dramatically pushed the state of the002
art in image captioning and many image under-003
standing tasks (e.g., visual question answering).004
Nonetheless, LVLMs still often hallucinate and005
produce captions mentioning concepts that can-006
not be found in the input image. These hallu-007
cinations erode the trustworthiness of LVLMs008
and are one of the main obstacles to their ubiq-009
uitous adoption. Recent work suggests that010
addition of grounding objectives such as those011
based on referring expressions—explicit align-012
ment between image regions or objects and text013
descriptions— reduces the amount of LVLM014
hallucination. Although intuitive, this claim is015
not empirically justified as the reduction effects016
have been established, we argue, with flawed017
evaluation protocols that (i) rely on data (i.e.,018
MSCOCO) that has been extensively used in019
LVLM training and (ii) measure hallucination020
via question answering rather than open-ended021
caption generation. In this work, in contrast,022
we offer the first systematic analysis of the ef-023
fect of fine-grained object grounding on LVLM024
hallucination under an evaluation protocol that025
more realistically captures LVLM hallucination026
in open generation. Our extensive experiments027
reveal that, while grounding leads to more in-028
formative captions, it generally does not reduce029
the proportion of hallucinated content.030

1 Introduction031

Large Vision-Language Models (LVLMs) have dis-032

played impressive image understanding (Li et al.,033

2023a; Liu et al., 2023c; Bai et al., 2023; Fini034

et al., 2023; OpenAI, 2023; Anil et al., 2023, inter035

alia). Their widespread adoption, however, is hin-036

dered by the object hallucination problem in which037

the LVLMs—similar to “general” hallucinations of038

LLMs (Zhang et al., 2023b)— “invent” objects (or039

attributes, relations, etc.) not present in the image.040

A range of methods have been proposed for this041

problem like modified decoding strategies (Leng042

et al., 2023; Huang et al., 2023), post-hoc removal 043

of hallucinations (Yin et al., 2023; Zhou et al., 044

2023), or reinforcement learning (Sun et al., 2023; 045

Zhao et al., 2023b; Gunjal et al., 2023; Yu et al., 046

2023). Most approaches, however, either increase 047

inference cost or need expensive additional training 048

and/or data, limiting their ubiquitous applicability. 049

A recent line of work (Chen et al., 2023b; You 050

et al., 2023; Pramanick et al., 2023) has suggested 051

that including grounding objectives—e.g., based 052

on referring expressions (Kazemzadeh et al., 2014) 053

where textual descriptions of image regions have to 054

be grounded to the respective parts of the image— 055

into the LVLM training reduces object hallucina- 056

tion. The claim is intuitive: The region-level ob- 057

jectives are expected to encourage a finer-grained 058

image understanding than ‘global’ image caption- 059

ing, the de-facto main training objective of LVLMs, 060

as has been shown for image-text compositionally 061

(Bugliarello et al., 2023), and should discourage 062

the model from generating content it cannot ground 063

in the image. However, despite being intuitive, 064

the empirical support for reduced hallucinations is 065

lacking and mainly stems from evaluation in QA 066

scenarios where the model has to decide if objects 067

are (not) present in an image (Li et al., 2023b); we 068

argue that this evaluation protocol aligns poorly 069

with real-world free-form generative applications 070

like image captioning where there is no evidence 071

yet that grounding objectives reduce hallucination. 072

Contributions. In this work, we perform the first 073

comprehensive analysis of the effects that ground- 074

ing objectives have on LVLM object hallucina- 075

tion in open-form image captioning, addressing 076

the shortcomings of prior hallucination evaluation 077

protocols. Concretely, we measure the effects of 078

two grounding objectives, added as additional ob- 079

jectives to standard image captioning-based train- 080

ing of LVLMs: (1) referring data objective asks 081

the model to generate the bounding box of the re- 082
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gion that corresponds to a textual description and083

vice versa; whereas the (2) caption grounding ob-084

jective demands that the model generates image085

descriptions with interleaved bounding boxes for086

mentioned objects. We then compare the extent of087

hallucination for LVLM variants trained with and088

without the grounding objectives. To this end, we089

compare the hallucination measures based on ques-090

tion answering (QA) (Li et al., 2023b) against open-091

ended free-form metrics (Rohrbach et al., 2018;092

Jing et al., 2023). Crucially, since (Rohrbach et al.,093

2018; Li et al., 2023b) rely on MSCOCO (Lin094

et al., 2014) but MSCOCO is also used for train-095

ing LVLMs and they are thus a priori less likely096

to hallucinate on these examples, we extend the097

evaluation to out-of-distribution datasets. To this098

end, we propose an alternative method for CHAIR099

using semantic comparison that addresses the short-100

comings of string matching.101

Findings. Our experiments confirm that object102

grounding reduces hallucination in a QA-based103

protocol; at the same time, in free-form genera-104

tion, we find no reduction in hallucination: this, we105

believe, questions the utility of QA-based halluci-106

nation evaluation like Li et al. (2023b). Our anal-107

ysis reveals that referring data greatly increases108

how informative captions are, that is, they con-109

tain more descriptive content, but that this also110

results in increased hallucinations. On the other111

hand, caption grounding leads to shorter captions –112

this can be seen as a decrease in hallucination, but113

one that comes at the expense of less informative114

captions; Neither of the two grounding objectives115

consistently reduces hallucination. Overall, we find116

that, while grounding objectives do improve fine-117

grained image understanding of LVLMs, this does118

not translate into less hallucination in open caption119

generation.120

2 Grounding Objectives in LVLMs121

Grounding objectives seek to align natural lan-122

guage expressions with regions in the image. These123

objectives either take image regions as input, com-124

monly in the form of a bounding box, predicting125

corresponding natural language expressions or pro-126

duce such regions as output. A range of LVLMs127

have been proposed in recent times that include128

grounding tasks in their training mix alongside129

other objectives like captioning and visual ques-130

tion answering (Liu et al., 2023b; Bai et al., 2023;131

Wang et al., 2023b); other models have been de-132

signed specifically for expression grounding and 133

trained with grounding objectives only (Chen et al., 134

2023b; You et al., 2023; Pramanick et al., 2023; 135

Zhang et al., 2023a; Peng et al., 2023; Chen et al., 136

2023a; Zhao et al., 2023a). 137

Objectives. Our investigation focuses on the two 138

arguably most popular grounding objectives, com- 139

monly included in LVLMs training: referring ex- 140

pressions (Kazemzadeh et al., 2014) and grounded 141

captions (Plummer et al., 2015). 142

Referring expressions is the standard grounding 143

objective, included in training of nearly all LVLMs. 144

Given a natural language description (of a region), 145

the model has to ground it to the correct image 146

region. As is common practice, we also use the 147

inverse task, that is, generation of the natural lan- 148

guage description for the given image region. 149

Grounded captioning is the task of generating 150

an image caption in which the locations of regions 151

for mentioned objects are interleaved in the caption 152

(see Figure 3 for examples). In theory, such explicit 153

grounding is expected to result in closer adherence 154

to the image content and reduce hallucinations. 155

Other grounding objectives have been proposed 156

for LVLMs training, such as question answering 157

with image regions in the input or output (Zhu et al., 158

2016); these, however, are outside the scope of our 159

study, since we focus on the effects of grounding 160

on hallucination primarily in free-form captioning. 161

Encoding regions. Different approaches exist 162

for representing image regions for the LVLMs. 163

Most commonly, regions are represented as bound- 164

ing boxes using either (relative) coordinates in 165

“plain text” (Liu et al., 2023b; Chen et al., 166

2023b; Bai et al., 2023; Wang et al., 2023b) 167

(e.g., “[0.10, 0.05, 0.64, 1.00]”; the coordinates are 168

treated as text and tokenized normally) or with 169

learned embeddings corresponding to a fixed-size 170

rasterization of the image (Peng et al., 2023; You 171

et al., 2023; Pramanick et al., 2023). In this work, 172

we adopt the former region representation, i.e., rel- 173

ative coordinates as text, as this does not introduce 174

any additional trainable parameters to the model. 175

3 Measuring Object Hallucination 176

LVLM object hallucination is evaluated via two 177

main protocols: (1) in QA-based evaluation, where 178

models answer questions about object existence in 179

the image (Li et al., 2023b) and (2) in open gener- 180

ation (usually image captioning) (Rohrbach et al., 181
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A white hound and a cat looking at the camera

"A white hound and a cat looking at the camera""A white hound and a cat looking at the camera"  

CHAIR

1.
2.
3.

1.There is a hound.        
2.There is a cat.             
3.The hound is white. 

FaithScore

dog
cat

collar
human

1. Match to set

1. LLM extracts facts.

2. VQA verifies facts
2. Validate with human annotation

Figure 1: CHAIR and FaithScore are used to measure hallucinations in open caption generation with LVLMs.
CHAIR relies on human object annotation (over a fixed set) to identify objects and check if they are hallucinated.
FaithScore first uses an LLM to convert captions into facts which are then verified by a VQA model.

2018; Wang et al., 2023a; Jing et al., 2023). Mea-182

suring hallucination in the latter is arguably more183

indicative of models’ tendency to hallucinate “in184

the wild”, but it is also more difficult to devise au-185

tomatic metrics. In contrast, QA-based evaluation186

is straightforward but is merely a proxy for actual187

hallucination in generative tasks.188

QA-Based Hallucination Evaluation. POPE (Li189

et al., 2023b) is the de-facto standard benchmark190

for QA-based hallucination evaluation. Relying191

on images annotated for object detection (i.e.,192

MSCOCO (Lin et al., 2014)), the benchmark con-193

sists of yes/no questions about object existence (“Is194

there X in the image?”). The negative questions195

– with objects not in the image – are generated in196

three different ways using: i) objects randomly se-197

lected from the total pool of objects that exist in the198

dataset (random); ii) the most frequently annotated199

objects in the dataset (popular); iii) objects with200

high co-occurrence to the image’s actual objects201

(adversarial), as co-occurrence statistics are a com-202

mon cause of hallucinations (Rohrbach et al., 2018;203

Biten et al., 2022; Li et al., 2023b; Zhou et al.,204

2023). The performance metric is accuracy, i.e.,205

the percentage of correctly answered questions.206

Open Hallucination Evaluation. We select207

CHAIR (Rohrbach et al., 2018) and FaithScore208

(Jing et al., 2023) (illustrated in Figure 1) to quan-209

tify hallucinations in open caption generation. The210

two metrics identify hallucinations in distinct man-211

ners. By adopting both, we mitigate the risk of212

our findings being merely an artifact of a single213

(imperfect) evaluation metric.214

Both metrics also indirectly measure how infor-215

mative and descriptive the generated captions are.216

As our results (§5) show, there exists a tradeoff217

between faithfulness/hallucinations and informa-218

tiveness of the captions. We thus argue that the hal- 219

lucination metrics should be contextualized with 220

the measures of informativeness: factual yet non- 221

informative captions are as useless as captions with 222

a lot of hallucinated information. 223

CHAIR detects hallucinated objects using the 224

set of 80 object classes from MSCOCO (Lin 225

et al., 2014) with which the images are annotated. 226

Words from the captions are matched—using string 227

matching—against the class names (augmented 228

with synonyms). The resulting list of matched ob- 229

jects is then cross-referenced against the gold list 230

of annotated objects and all matched but not anno- 231

tated objects are considered hallucinations. Two 232

scores are produced over the dataset: (1) CHAIRi 233

divides the total number of hallucinated objects 234

across all captions with the total number of de- 235

tected objects; (2) CHAIRs is the proportion of 236

images in the dataset for which the caption con- 237

tains at least one object hallucination. CHAIRs is 238

less than ideal for longer captions as they are more 239

likely to contain at least one hallucination: the bi- 240

nary caption-level measure could camouflage sub- 241

stantial differences in hallucination extent between 242

models. Because of this, we adopt only CHAIRi 243

in this work. Following Zhai et al. (2023a), we 244

report the average number of matched objects per 245

caption as well as the gold object coverage (i.e., the 246

average percentage of annotated objects mentioned 247

in the caption) as measures of informativeness. 248

CHAIR unfortunately comes with two major 249

shortcomings. First, it is based on MSCOCO im- 250

ages and object annotations which are widely used 251

in a range of derivative datasets leveraged for train- 252

ing LVLMs (Goyal et al., 2017; Kazemzadeh et al., 253

2014; Mao et al., 2016; Liu et al., 2023c). This 254

makes LVLMs a priori less likely to hallucinate 255

on MSCOCO images, which means that CHAIR 256
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is likely overly optimistic about (i.e., it underesti-257

mates) the amount of LVLM hallucination “in the258

wild”. We thus propose to extend CHAIR to an out-259

of-distribution dataset, one that ideally also comes260

with a larger set of object classes. Second, CHAIR261

relies on exact string matching between caption262

words and synonyms of the object classes. Adapt-263

ing vanilla CHAIR based on string matching to a264

larger set of object classes would, however, require265

significant manual effort: one has to (1) create a cu-266

rated list of synonyms for all classes (without over-267

lap between related classes) to correctly account for268

recall and (2) inspect examples and create special269

rules for edge cases to limit false positives (e.g., add270

‘baby X’ synonyms to all animal classes in order271

not to falsely match the ’person’ class). Addressing272

both issues simultaneously, we propose semantic273

matching between the caption and object classes as274

an alternative to string matching for large sets of ob-275

ject classes. Our extension, dubbed CHAIR-MEN276

(from CHAIR with Matching using Embeddings277

of Noun phrases) (1) extracts all noun phrases from278

the generation,1 (2) embeds the extracted phrases279

as well as classes names with a pretrained sentence280

encoder (Reimers and Gurevych, 2019)2 and (3)281

makes matching decisions based on cosine simi-282

larity between obtained embeddings: to each noun283

phrase, we assign (i) the class amongst the image’s284

objects with the most similar embedding, if cosine285

exceeds a threshold t1, (ii) the class amongst the286

other objects (i.e., not present in the image) with287

the most similar embedding, if cosine exceeds a288

threshold t2, or otherwise c) no object. Matching289

first only against the image’s objects makes false290

negatives from a semantically related object not291

in the image less likely. We calibrate the thresh-292

olds (t1 = 0.73, t2 = 0.78) by trying to match the293

scores that CHAIR produces on MSCOCO, as an294

established measure for that dataset.295

FaithScore (Jing et al., 2023), a model-based hal-296

lucination metric, is designed with finer-grained297

evaluation in mind: it does not only consider ob-298

jects/entities but also other aspects that models299

can hallucinate about (specifically: color, relation,300

count, and ‘other’ attributes), without the need for301

human annotation. FaithScore computation is a 2-302

stage process that relies: (1) on an LLM to extracts303

‘atomic facts’ from the generated text, phrasing304

them as statements (“There is a man”) the factual-305

1With spaCy v3 EN_CORE_WEB_SM
2BAAI/BGE-BASE-EN-V1.5 (Xiao et al., 2023)

ity of which, in the context of the image, is then 306

(2) verified with a VQA model (“Is the following 307

statement correct?”). The final score is then sim- 308

ply the proportion of positive answers given by the 309

VQA model. We additionally report the average 310

number of facts produced by the LLM as a mea- 311

sure of informativeness of generated captions. The 312

original work of Jing et al. (2023) relies on GPT-4 313

to extract facts but this is too expensive for our 314

evaluation; instead, we use a smaller LLM3 after 315

verifying that it successfully follows task instruc- 316

tions. We use OFA (Wang et al., 2022) as the VQA 317

model for FaithScore, as it is much faster and only 318

marginally less accurate than Llava-1.5 (Liu et al., 319

2023b) according to Jing et al. (2023). 320

Caption Quality Metrics. We include the follow- 321

ing metrics to monitor how grounding objectives 322

affect the general caption quality: CIDEr (Vedan- 323

tam et al., 2015) is a measure based on n-gram 324

overlap with a set of reference captions. CLIP- 325

Score, a reference-free metric, is the cosine simi- 326

larity between the image and caption embeddings, 327

produced by a CLIP model (Radford et al., 2021)4. 328

4 Experimental Setup 329

We comprehensively analyze the effect of ground- 330

ing objectives on LVLM hallucination. For the 331

sake of transferability (and robustness) of our find- 332

ings, the experimental core, namely the model ar- 333

chitecture and training procedure, follows estab- 334

lished practices as closely as possible. All model 335

instances are trained according to the same proto- 336

col, that is, we control for everything other than 337

the effect of grounding, i.e., inclusion/exclusion of 338

grounding data in training. We primarily focus on 339

measuring hallucination in open-ended image cap- 340

tioning as this, we argue, better reflects LVLM’s 341

hallucination in real-world applications; for com- 342

pleteness and comparison of evaluation protocols, 343

we also perform the QA-based evaluation with 344

POPE. We benchmark LVLMs for hallucinations 345

in three different caption generation scenarios: (1) 346

in standard image captioning, with expected cap- 347

tion length of 1-2 sentences (as in MSCOCO), (2) 348

long (i.e., detailed, descriptive) caption generation, 349

and (3) grounded image captioning (with standard 350

length), where the LVLM is explicitly prompted to 351

3TEKNIUM/OPENHERMES-2.5-MISTRAL-7B which is
based on Mistral-7B (Jiang et al., 2023); inference done with
vLLM (Kwon et al., 2023) for speed

4We use VIT-B-16-SIGLIP-256 (Zhai et al., 2023b)
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interleave region coordinates into the caption.352

Evaluation Datasets. Despite the previously353

mentioned shortcomings, MSCOCO (Lin et al.,354

2014) remains the primary dataset for evaluating355

LVLM hallucination in the literature, both with QA-356

based and free-form generation metrics/protocols357

(Rohrbach et al., 2018; Li et al., 2023b). Hence,358

we include MSCOCO but complement it with the359

Objects365 (O365) (Shao et al., 2019) dataset360

which comes with a much larger inventory of ob-361

ject classes (365 classes in total, including the 80362

MSCOCO classes) and, consequently, more object363

annotations per image. We evaluate on 5000 and364

5386 images from test portion of MSCOCO and365

validation portion of O365, respectively.5366

For POPE, the QA-based hallucination metric,367

we generate two new test sets from O365, each with368

1500 examples (matching the MSCOCO POPE ex-369

amples): O365/COCO uses only the 80 classes370

from MSCOCO, and O365/non-COCO relies on371

the remaining 285 classes.372

LVLM Architecture. We adopt the architecture373

typical for most LVLMs: (1) images are encoded374

by an image encoder, (2) projected by an alignment375

module into the LLM embedding space, and (3)376

prepended to the embeddings of textual tokens (Li377

et al., 2023a). The alignment module in our exper-378

iments is a resampler (Li et al., 2023a; Bai et al.,379

2023; Alayrac et al., 2022), a type of Transformer380

(Vaswani et al., 2017) that learns to encode the vi-381

sual information from the image in a set of trainable382

query embeddings; specifically, we use a 3-layer383

perceiver-resampler (Alayrac et al., 2022). The384

number of query tokens (32 in our experiments) is385

a lot smaller than the number of visual embeddings386

at the output of the image encoder (256), which387

leads to more efficient training.6 We use a frozen388

SigLIP (Zhai et al., 2023b) (VIT-SO400M-14)389

as the image encoder and Vicuna 1.5 7B (Chiang390

et al., 2023) as LLM. The original LLM parame-391

ters are frozen and 4-bit quantized (Dettmers et al.,392

2023); instead of direct LLM updates, we learn the393

LoRA adapters (Hu et al., 2022) for all Transformer394

5We have additionally considered Open Images
(Kuznetsova et al., 2020), Visual Genome (VG) (Krishna
et al., 2017), and LVIS (Gupta et al., 2019) as datasets
with object annotations but ultimately decided against their
inclusion due to insufficient object coverage in annotations
(i.e., not all objects are annotated in every image).

6Using visual embeddings directly, without the resampler
projection, like in Llava (Liu et al., 2023c) would have more
than doubled our training time.

matrices (with r = 32, α = 64). 395

Training Mix. LVLMs are generally trained on 396

a mix of tasks and datasets. The mix we adopt 397

reflects the main goal of our empirical study: in- 398

vestigating how training with grounding affects 399

LVLMs regarding hallucination in free-form cap- 400

tion generation and comparing it to hallucinations 401

in QA. Our mix thus includes the following tasks: 402

1. Standard image captioning: we train on 403

MSCOCO and 1M examples sampled from CC3 404

(Sharma et al., 2018) and SBU (Ordonez et al., 405

2011) (with synthetic captions produced by Li et al. 406

(2022)) for a total of 1.4M image-caption pairs. 407

2. Long captioning: We use LLAVA-DETAILED 408

(Liu et al., 2023c) with 23k long captions gener- 409

ated by GPT-4 on the basis of (short) MSCOCO 410

reference captions and gold object annotations. 411

3. VQA: We select from VQAv2 (Goyal et al., 2017) 412

all 170k yes/no questions. VQA is only added to 413

the training mix for the QA-based hallucination 414

evaluation protocol (i.e., POPE). 7 415

4. Referring expressions (see §2): we combine 416

RefCOCO (Kazemzadeh et al., 2014; Mao et al., 417

2016) (320k examples) and Visual Genome (Kr- 418

ishna et al., 2017) (we sample 1M examples). 419

5. Grounded captions (see §2): we use Flickr30k- 420

Entities (Plummer et al., 2015) (150k examples). 421

We name our LVLM model variants based on 422

their respective training mix. The Base LVLM has 423

been trained only on non-grounding tasks (1-3); ad- 424

dition of the referring expressions and grounded 425

captioning tasks is indicated with +RE and +GC, re- 426

spectively. For brevity, we provide further training 427

and inference details in the Appendix A. 428

5 Results 429

We now report the observed hallucination effects 430

under both protocols: in free-form captioning and 431

in QA-based hallucination evaluation (as indicated 432

by POPE). All results are averages over three runs 433

with different random seeds. The reported CHAIR 434

results correspond to our CHAIR-MEN variant; we 435

report the results obtained with the vanilla CHAIR 436

based on string matching in Appendix B. 437

QA Hallucinations with POPE. Table 1 sum- 438

marizes the hallucination results in a QA-based 439

evaluation protocol with POPE. Generally, ground- 440

ing, based both on referring expressions (+RE) 441

7Without VQA in the training mix, the LVLM does not
follow the POPE task instruction.
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MSCOCO O365/COCO O365/non-COCO
Model rand. pop. adv. rand. pop. adv. rand. pop. adv.

Base 86.37 81.82 78.18 79.31 71.44 66.72 76.51 69.09 61.37
+RE 86.72 83.98 80.28 81.40 73.92 68.82 77.88 72.33 64.44
+GC 86.38 83.89 79.88 79.11 71.72 67.11 76.98 69.49 62.18
+RE+GC 87.03 84.43 80.98 80.49 73.50 68.37 76.11 70.66 63.32

Table 1: POPE results (accuracy) for MSCOCO, O365/COCO (using the 80 MSCOCO object classes), and
O365/non-COCO (remaining 285 classes) for random, popular, and adversarial example sets.

Model CIDEr↑ CLIPS.↑ #Words CHAIRi ↓ Coverage↑ Objects FaithScore↑ Facts

MSCOCO
Base 62.46 13.04 16.35 5.28 60.50 1.98 80.55 7.34
+RE 6.51 13.37 30.03 7.83 66.59 2.88 78.78 10.68
+GC 78.05 12.84 15.04 4.52 60.01 1.90 81.88 7.01
+RE+GC 53.49 13.09 20.00 6.43 62.53 2.27 80.59 8.26

Objects365
Base — 12.46 15.64 16.89 33.54 2.62 77.07 7.56
+RE — 12.74 28.70 21.19 39.24 3.94 76.50 11.34
+GC — 12.33 14.68 15.27 32.98 2.47 78.72 7.23
+RE+GC — 12.45 19.34 18.28 35.82 3.03 77.91 8.61

Table 2: Results on standard image captioning. CIDEr and CLIPScore indicate general caption quality; CHAIRi

and FaithScore reflect hallucination, whereas (average number of) #Words, CHAIR Coverage and Objects, and
(number of FaithScore) Facts aim to quantify informativeness. Bold: the best value in column; underline: the worst.

and grounded captions (+GC) seems to lead to442

performance gains, i.e., hallucination reduction443

(1-3 points on popular and adversarial subsets).444

RE brings more substantial gains than GC, not445

only on MSCOCO data (due to training on Ref-446

COCO) but also on out-of-distribution images, i.e.,447

on O365/non-COCO; combining the two ground-448

ing objectives, however, brings further gains only449

on MSCOCO. These results generally align well450

with the findings from prior work on grounding-451

based LVLM training (Chen et al., 2023b; You452

et al., 2023). Grounding objectives thus seem to453

improve the fine-grained image understanding, at454

least with respect to object existence. We next455

investigate whether these gains translate to halluci-456

nation reduction in free-form caption generation.457

Standard Captions. The performance of the458

LVLM variants on standard image captioning is459

shown in Table 2. Referring expressions (+RE),460

compared to the Base model, doubles the average461

caption length from 16 to 30 words. The additional462

content seems informative according to CHAIR463

Objects count, CHAIR Coverage, and FaithScore464

Facts. Unfortunately, the longer captions exhibit465

not just an absolute increase in hallucinated content466

but also a relative increase, since both CHAIRi and467

FaithScore are length-normalized metrics.468

The effect is different for training on grounded469

captions (but prompting at inference for standard470

captions without bounding boxes): +GC leads to471

slightly better CHAIRi and FaithScore, but it also 472

slightly reduces the informativeness of the captions. 473

Interestingly, GC seems to ‘counteract’ the effect 474

of RE as their combination (+RE+GC) leads to sub- 475

stantially shorter captions than +RE alone. 476

As for the common captioning metrics, we ob- 477

serve that CIDEr prefers shorter captions, whereas 478

CLIPScore slightly prefers the longer, more de- 479

scriptive captions. Finally, we consider a fine- 480

grained analysis of FaithScore in Appendix C. 481

Grounded Captions. Intuitively, we would have 482

expected that training to generate grounded cap- 483

tions, would prompt the model to only generate 484

objects that it can actually ground in the image. 485

Looking at the results in Table 3, we see that, while 486

CHAIR-based metrics indeed suggest a lower level 487

of hallucination (in comparison to Table 2), the 488

FaithScore accuracy does not improve (in fact, it 489

even slightly worsens; compare against the cor- 490

responding values for standard captioning from 491

Table 2). We also note generating grounded cap- 492

tions leads to a general reduction in informative- 493

ness, e.g., lower averages of CHAIR Objects and 494

FaithScore Facts (compare, again, against corre- 495

sponding values in Table 2). Similarly, combining 496

the two grounding objectives in training (+RE+GC) 497

leads to slightly more hallucinative grounded cap- 498

tions according to FaithScore. 499

These results add to the conclusion that ground- 500

ing objectives generally fail to reduce hallucination 501
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Model CIDEr↑ CLIPS.↑ #Words CHAIRi ↓ Coverage↑ Objects FaithScore↑ Facts

MSCOCO +GC 79.44 12.65 14.89 3.23 52.82 1.57 78.93 6.60
+RE+GC 88.04 12.47 13.54 3.15 51.58 1.51 80.51 6.14

Objects365 +GC — 12.10 14.62 12.78 28.63 2.00 77.03 6.77
+RE+GC — 11.94 13.45 12.27 27.84 1.89 77.76 6.33

Table 3: Performance on grounded image captioning. CIDEr and CLIPScore indicate overall caption quality;
CHAIRi and FaithScore reflect hallucination, whereas (average number of) #Words, CHAIR Coverage and
Objects, and (number of FaithScore) Facts aim to quantify informativeness.

Model #Words CHAIRi ↓ Coverage↑ Objects

Base 103.49 22.79 77.78 6.53
+RE 103.15 22.75 78.51 6.50
+GC 106.17 23.13 78.25 6.62
+RE+GC 104.58 22.65 78.23 6.54

Table 4: Results for long captions on MSCOCO. We
report the average number of words and CHAIR metrics.
Results with FaithScore and on O365 are qualitatively
the same so we omit them for brevity.

in caption generation. A qualitative look (see §6) re-502

veals that models trained with grounding objectives503

still incorrectly describe objects or fabricate them504

entirely (with bounding boxes). We also observe505

that on O365, more than half of the hallucinated506

objects (according to CHAIR) in the grounded cap-507

tions are also hallucinated in respective standard508

captions; this suggests that causes beyond insuffi-509

cient grounding are behind hallucination.510

Long Captions. Table 4 shows long captioning511

results. For brevity, we only report the results512

for MSCOCO with CHAIR(-MEN): for O365 and513

FaithScore the results are qualitatively the same.514

Overall, the differences between model variants are515

negligible. We believe that, due to the small num-516

ber of examples in LLAVA-DETAILED (only 23k,517

much less than for other training tasks) and their518

formulaic style (generated by GPT-4), all LVLM519

variants overfit to this style. A brief inspection of520

distributions of caption length supports this: all521

models nearly perfectly follow the training distri-522

bution. The grounding objectives (+RE and +GC)523

thus does not seem to affect long captions, in con-524

trast to standard captions. This again questions the525

extent to which improved fine-grained image un-526

derstanding from grounding actually transfers to527

hallucination reduction in open generation.528

6 Qualitative Analysis529

Standard Captions. Figure 2 shows captions530

generated by our different models. As already in-531

dicated by the automatic metrics, Base and +GC532

generate shorter captions. +RE-trained models pro- 533

duce longer and more detailed captions but they are 534

also more likely to fabricate details. 535

Grounded Captions. We show examples for 536

grounded captioning in Figure 3. Grounded cap- 537

tions are generally shorter , which coincides with 538

a decrease in hallucinations but also a decrease 539

in informativeness. However, the grounding itself 540

does not seem to prevent the model from halluci- 541

nating: in one example, one correctly grounded 542

kayak falsely becomes yellow; in the second exam- 543

ple, the caption mentions three zebras yet only two 544

are grounded; similarly, the correct bounding box 545

is generated for the wildebeest, but it is incorrectly 546

called a gazelle. The standard caption also falsely 547

describes the wildebeest as antelopes, pointing to 548

a cause other than insufficient grounding. In the 549

third example, spices, together with the bounding 550

box, are fully hallucinated by the grounded model. 551

7 Related Work 552

Large Vision-Language Models. LVLMs are es- 553

sentially Large Language Models (LLMs) (Brown 554

et al., 2020; Touvron et al., 2023; OpenAI, 2023; 555

Jiang et al., 2023) extended to “understand” visual 556

input. Recent models have shown an impressive un- 557

derstanding of images (OpenAI, 2023; Anil et al., 558

2023; Li et al., 2023a; Dai et al., 2023a; Liu et al., 559

2023c; Bai et al., 2023; Fini et al., 2023; Zhu et al., 560

2023; Laurençon et al., 2023; Geigle et al., 2023; 561

Wang et al., 2023b) and a range of models have 562

been proposed specifically for grounding and refer- 563

ring (Chen et al., 2023b; You et al., 2023; Praman- 564

ick et al., 2023; Zhang et al., 2023a; Peng et al., 565

2023; Chen et al., 2023a; Zhao et al., 2023a). 566

Measuring Object Hallucinations. A range of 567

hallucination metrics have been proposed: CHAIR 568

(Rohrbach et al., 2018) identifies hallucinated ob- 569

jects by checking captions (via string matching) 570

against a set of annotated objects (i.e., MSCOCO). 571

Wang et al. (2023a) fine-tune an LLM to identify 572
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Base: Three toy horses are standing in a row, one is brown and the other two are white with black.
+GC: Three horses standing next to each other in front of a wall.
+RE: A white, a brown and a tan horse are standing in front of a wall with polka dots on it while
one is wearing a bridle and the other two have saddles on their backs.
+RE+GC: Three toy horses are standing in a row. One is brown, one is white and the third has a
black mane and tail with a white face and legs and body.

Base: A dog is laying on the ground next to a pool with his head in the water and paws up against
the side of the pool.
+GC: A dog is laying on the ground next to a swimming pool and drinking from the water.
+RE: A dog with a long, golden coat is laying on the ground in front of a pool and has its head
down by the edge of the water as it looks at something below.
+RE+GC: A dog is laying on the ground next to a pool and looking at something in its mouth.

Base: A black dog with a plate of broccoli in front of it and another bowl on the floor.
+GC: A black dog standing next to a plate of broccoli.
+RE: A black dog with a white face and brown ears, standing on a hardwood floor in front of a
table that has a plate of broccoli on it and a bowl next to the plate, both containing food.
+RE+GC: A black dog with a plate of broccoli in front of it and another plate on the floor behind it.

Figure 2: Qualitative examples for standard captions generated by the different models. Hallucinations in red.

Standard: Two kayaks are sitting
on the beach, one yellow and one
orange.
Grounded: Two yellow kayaks
are sitting on the beach .

Standard: A herd of zebra and a
group of antelope grazing in the
grass near water with mountains
on horizon, with blue sky above
and clouds in the distance.
Grounded: Three zebras and a
gazelle graze in the grass near a
body of water.

Standard: A kitchen counter with
a pot, pans and various vegeta-
bles.
Grounded: A kitchen counter
with a variety of vegetables,
spices and cooking supplies.

Figure 3: Qualitative examples of +RE+GC for standard
and grounded captioning. Hallucinations are underlined
in red. Coordinates after the colored phrases are re-
moved for readability and shown on the image.

hallucinatory captions through comparison with573

reference captions; FaithScore (Jing et al., 2023),574

a reference-free approach, uses an LLM to extract575

verifiable facts and then tests these facts with a576

VQA model. POPE (Li et al., 2023b) indirectly577

measures hallucination with questions about object578

existence: while a good test of image understand-579

ing , which may indicate the extent of models’ ten-580

dency to hallucinate, it is not a direct measure of581

hallucination in open-ended captioning.582

Hallucination Mitigation. A range of ap-583

proaches have been proposed to mitigate hallu-584

cination: Biten et al. (2022); Dai et al. (2023b);585

Zhai et al. (2023a) propose adaptions to the train- 586

ing data and objectives. Liu et al. (2023a); Gunjal 587

et al. (2023); Zhao et al. (2023b); Yu et al. (2023) 588

use reinforcement-learning methods to reduce hal- 589

lucinations in model output. Leng et al. (2023); 590

Huang et al. (2023) propose (training-free) decod- 591

ing methods that mitigate hallucinations. Zhou et al. 592

(2023); Yin et al. (2023) create pipeline approaches 593

that post-hoc clean the generated text from hallu- 594

cinated content. Finally, for QA hallucinations, re- 595

searchers have created robust instruction data (Liu 596

et al., 2023a), VQA examples (Hu et al., 2023), and 597

additional benchmarks (Lu et al., 2023). 598

8 Conclusion 599

Object hallucinations remain one of the main obsta- 600

cles to wide-range adoption of LVLMs. Prior work 601

suggested that grounding objectives like referring 602

expressions reduce hallucinations but the empiri- 603

cal support for this claim is confined to QA-based 604

evaluation. In this work, we performed an in-depth 605

analysis of the effects of grounding objectives in 606

LVLM training on hallucination in open image cap- 607

tioning. While our extensive experiments confirm 608

that grounding objectives improve fine-grained im- 609

age understanding and show that they lead to sub- 610

stantially more detailed and informative captions, 611

we find little evidence that they actually reduce 612

hallucination in open caption generation; on the 613

contrary, they often even increase the amount of 614

hallucinated content. Our findings warrant efforts 615

towards hallucination mitigation in image caption- 616

ing that go well beyond object grounding alone. 617

8



9 Limitations618

There are two main limitations to our analysis.619

First, while we aim for a comprehensive analy-620

sis of the effects of different training objectives621

and task mixes on downstream hallucination (for622

example, we execute multiple runs for each model623

variant and average the results), there are a num-624

ber of modeling decisions that we had to fix (i.e.,625

we could not explore other variants)—primarily626

w.r.t. to the architecture of the LVLM— due to627

a limited computational budget. One could, inter628

alia, consider a different image encoder, a differ-629

ent/larger LLM, and/or alignment modules other630

than perceiver-resampler. Additionally, due to our631

limited computational budget, we train our models632

on less data and for fewer steps than a lot of other633

work that trains LVLMs (e.g. Chen et al. (2023b);634

Liu et al. (2023b); Bai et al. (2023)); we thus can-635

not rule out that a reduction in hallucination due to636

grounding objectives might emerge at some larger637

scale of grounding training.638

Second, our findings are (modulo anecdotal ev-639

idence from manual qualitative analysis of a lim-640

ited number of examples) based on reliance on641

imperfect automatic metrics. While this is a com-642

mon practice in related work as well, we increase643

the likelihood of the robustness of our findings644

and conclusions by employing two mutually com-645

plementing hallucination quantification metrics,646

CHAIR and FaithScore (see §3), as well as addi-647

tionally proposing a semantic extension to CHAIR648

(CHAIR-MEN, see §3).649
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Task Prompt

Standard Caption Briefly describe the image.
Long Caption Describe the image in detail.
Grounded Caption Describe the image and include

the bounding box coordinates for
every mentioned object.

VQA (POPE) QUESTION Answer with yes or
no.

Referring Expression Give the bounding box coordi-
nates for the region described as
"DESCRIPTION".

Referring Generation Briefly describe the region [x1,
y1, x2, y2].

Table 5: Prompts used for training and inference.

A Training and Details1085

All models were trained on a single NVIDIA1086

RTX3090s card, with training duration ranging be-1087

tween 4 and 7 GPU days, depending on the training1088

task mix. We train for one epoch (on the concatena-1089

tion of corpora from all tasks, as all tasks are—from1090

the low-level technical point of view—instances of1091

causal language modeling, i.e., next token predic-1092

tion) with AdamW optimizer (Loshchilov and Hut-1093

ter, 2019), learning rate 2e-4, weight decay 0.01,1094

batch size 128 (achieved with gradient checkpoint-1095

ing and accumulation), and a cosine schedule.1096

For generation (i.e., inference), we use greedy1097

decoding with a repetition penalty (Keskar et al.,1098

2019) of 1.15 to avoid degenerative repetitions in1099

long caption generation. We use one fixed prompt1100

per task (see Table 5) both in training and at infer-1101

ence (for the subset of tasks on which we evaluate).1102

We encode bounding boxes with 2 signif-1103

icant digits (, e.g., [0.10, 0.05, 0.64, 1.00]).1104

For grounded captions where multiple bound-1105

ing boxes are needed (e.g., for something1106

like “three zebras”), we follow Plummer1107

et al. (2015) and combine the coordinates1108

with semicolons in the same brackets (, e.g.,1109

[0.10, 0.05, 0.64, 1.00; 0.50, 0.15, 0.64, 1.00]).1110

B CHAIR and CHAIR-MEN1111

We report results based on our CHAIR-MEN ap-1112

proach in the main paper. In the following, we1113

compare them against vanilla CHAIR results based1114

on the string matching method. In Table 6, we re-1115

port string-matching CHAIR results for MSCOCO,1116

which can be compared to Table 2 (standard cap-1117

tions), Table 3 (grounded captions), and Table 41118

(long captions).1119

Model Coverage↑ CHAIRi ↓ Objects

Base 63.85 6.77 2.04
+RE 67.90 10.96 2.87
+GC 63.43 5.97 1.96
+RE+GC 65.42 8.40 2.31

(a) MSCOCO Standard Captions

Model Coverage↑ CHAIRi ↓ Objects

+GC 57.52 4.23 1.67
+RE+GC 56.44 3.96 1.60

(b) MSCOCO Grounded Captions

Model Coverage↑ CHAIRi ↓ Objects

Base 78.97 25.07 6.88
+RE 80.26 25.00 6.85
+GC 79.96 25.77 7.05
+RE+GC 79.90 25.39 6.92

(c) MSCOCO Long Captions

Table 6: CHAIR results for MSCOCO using the classic
string-matching approach.

We find that results with CHAIR-MEN are 1120

highly proportional to CHAIR: while CHAIRi 1121

and the number of overall objects found (along with 1122

the coverage) are slightly lower with CHAIR-MEN, 1123

the ranking between models are the same. This val- 1124

idates CHAIR-MEN as an alternative approach for 1125

identifying hallucinated objects and opens up the 1126

extension to other datasets like Objects365. 1127

C Additional Results 1128

Fine-grained Faithscore. Figure 4 offers a fine- 1129

grained analysis of different hallucination types, as 1130

predicted by FaithScore. While entity and relation 1131

hallucinations rates are similar across models, train- 1132

ing with referring expressions (+RE) appears to 1133

greatly reduce hallucination w.r.t. counting, color 1134

(and, to a lesser extent, other attributes): the +RE 1135

model nearly doubles the the accuracy of the Base 1136

model. This is noteworthy because the number of 1137

color/counting facts also nearly doubles for +RE; 1138

this counters the a priori likelihood of having more 1139

hallucinations on more generated facts. 1140
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(b) Average number of facts by type.

Figure 4: Fine-grained look at the different types of hal-
lucinations of FaithScore (standard MSCOCO captions).
Results on Objects365 are qualitatively the same.
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