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ABSTRACT

We consider federated learning with multiple wireless edge servers having their
own local coverages. We focus on speeding up training in this increasingly practical
setup. Our key idea is to utilize the devices located in the overlapping areas between
the coverage of edge servers; in the model-downloading stage, the devices in the
overlapping areas receive multiple models from different edge servers, take the
average of the received models, and then update the model with their local data.
These devices send their updated model to multiple edge servers by broadcasting,
which acts as bridges for sharing the trained models between servers. Even when
some edge servers are given biased datasets within their coverages, their training
processes can be assisted by coverages of adjacent servers, through the devices in
the overlapping regions. As a result, the proposed scheme does not require costly
communications with the central cloud server (located at the higher tier of edge
servers) for model synchronization, significantly reducing the overall training time
compared to the conventional cloud-based federated learning systems. Extensive
experimental results show remarkable performance gains of our scheme compared
to existing methods.

1 INTRODUCTION

With the explosive growth in the numbers of smart phones, wearable devices and Internet of Things
(IoT) sensors, a large portion of data generated nowadays is collected outside the cloud, especially at
the distributed end-devices at the edge. Federated learning (McMahan et al., 2017; Konecny et al.,
2016b;a; Bonawitz et al., 2019; Li et al., 2019a) is a recent paradigm for this setup, which enables
training of a machine learning model in a distributed network while significantly resolving privacy
concerns of the individual devices. However, training requires repeated downloading and uploading
of the models between the parameter server (PS) and devices, presenting significant challenges in
terms of 1) the communication bottleneck at the PS and 2) the nonIID (independent, identically
distributed) data characteristic across devices (Zhao et al., 2018; Sattler et al., 2019; Li et al., 2019b;
Reisizadeh et al., 2019; Jeong et al., 2018).

In federated learning, the PS can be located at the cloud or at the edge (e.g., small base stations). Most
current studies on federated learning consider the former, with the assumption that millions of devices
are within the coverage of the PS at the cloud; at every global round, the devices in the system should
communicate with the PS (located at the cloud) for downloading and uploading the models. However,
an inherent limitation of this cloud-based system is the long distance between the device and the
cloud server, which causes significant propagation delay during model downloading/uploading stages
in federated learning (Mao et al., 2017; Nguyen et al., 2019). Specifically, it is reported in (Mao
et al., 2017) that the supportable latency (for inference) of cloud-based systems is larger than 100
milliseconds, while the edge-based systems have supportable latency of less than tens of milliseconds.
This large delay between the cloud and the devices directly affects the training time of cloud-based
federated learning systems. In order to support latency-sensitive applications (e.g., smart cars) or
emergency events (e.g., disaster response by drones) by federated learning, utilization of edge-based
system is absolutely necessary.

An issue, however, is that although the edge-based federated learning system can considerably reduce
the latency between the PS and the devices, the coverage of an edge server is generally limited in
practical systems (e.g., wireless cellular networks); there are insufficient number of devices within
the coverage of an edge server for training a global model with enough accuracy. Accordingly, the
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Figure 1: FedMes: the proposed federated learning algorithm leveraging multiple edge servers (ESs). The devices
in the overlapping areas can act as bridges for sharing the trained models between ESs. When a specific ES
is given a biased dataset within its coverage, giving more weights to the devices located in the overlapping
regions (in each aggregation step at the ESs) can further speed up training. Our design targets latency-sensitive
applications where edge-based federated learning is essential, e.g., when a number of cars/drones should quickly
adapt to the current situation by cooperation (federated learning) and make the right decision.

limited coverage of a single edge server could include biased datasets and thus could lead to a biased
model after training. Thus in practice, performing federated learning with the devices in a single edge
server would result in a significant performance degradation.

Main contributions. To overcome the above practical challenges, we propose FedMes, a novel
federated learning algorithm highly tailored to the environment with multiple edge servers (ESs). Our
idea here is to utilize the devices located in the overlapping areas between the coverage of ESs, which
are typical in 5G and beyond systems with dense deployment of ESs. In the model-downloading
stage, each ES sends the current model to the devices in its coverage area; in this process the devices
in the overlapped region receive multiple models from different ESs. These devices in the overlapping
area take the average of the received models, and then update the model based on their local data.
Then each device sends its updated model to the corresponding ES or ESs, which is aggregated at
each ES. A high-level description of FedMes is given in Fig. 1.

For example, suppose that device k is located in the non-overlapped region of ES i while device l is
in the overlapped region between ES i and ES j. In conventional federated learning systems, device l
participates in the training process of only one of ES i or ES j; on the other hand, in FedMes, device l
can act as a bridge for sharing the trained models between both ESs. To be specific, the updated model
of device k is averaged only at its associated ES i. In the next step, this averaged model is sent to the
devices in its covered area, including device l. After the local model updates at the devices, device l
sends its updated model to both ES i and ES j. From this point of view, even when some training
samples are only in the coverage of a specific ES, these data can still assist the training process of
other servers. Hence, the proposed scheme does not require costly communications with the central
cloud server (located at the higher tier of ESs) for model synchronization, significantly reducing
the overall training time compared to cloud-based federated learning systems. Comparing with the
scheme which does not consider the overlapping areas, FedMes can provide a significant performance
gain, especially when the data distributions across coverages of different servers are nonIID, e.g.,
when a specific server has a biased dataset within its covered area. Especially in this nonIID setup,
giving more weights to the devices located in the overlapping areas (in each aggregation step at the
ESs) can further speed up training.

From the service provider point of view, FedMes does not require any backhaul traffic between the
ESs and the cloud server, significantly reducing the communication resources required for federated
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learning. Moreover, since the devices in the overlapping areas send their results to multiples ESs,
our scheme can reduce the number of devices participating at each global round while achieving the
desired performance.

Extensive experimental results on various datasets show that FedMes provides remarkable perfor-
mance gain compared to 1) the scheme that requires communications with the central cloud server
for model synchronization (i.e., cloud-based federated learning) and 2) the scheme that does not take
the overlapping areas between servers into account.

Related works. Thanks to the recent advent of edge computing, there has been an increased interest
in edge-facilitated federated learning systems (Tran et al., 2019; Wang et al., 2019; Lim et al., 2020;
Abad et al., 2020; Liu et al., 2019). The authors of (Wang et al., 2019) focused on optimizing federated
learning framework with a given resource budget in wireless edge networks. The authors of (Tran
et al., 2019) considered resource allocation to minimize energy consumption at the devices in wireless
networks. However, a single-server setup is considered in (Tran et al., 2019) and (Wang et al., 2019),
which is totally different from our work leveraging multiple edge servers. Only a few prior works on
federated learning (Abad et al., 2020; Liu et al., 2019) considered a setup with multiple edge servers.
However, the schemes of (Abad et al., 2020; Liu et al., 2019) still require costly communication with
the central cloud server for model synchronization, which could significantly slow down the overall
training process. If the communication period with the cloud is small, frequent model synchronization
between edge servers is possible but incurs a large communication time delay. Infrequent model
synchronization can lead to a bad performance especially with nonIID data across the servers. FedMes
overcomes these challenges by enabling fast federated learning without any help with the cloud
server, i.e., only using the edge servers. It is shown later in Section 4 that our scheme can outperform
the hierarchical scheme of (Liu et al., 2019) which requires costly communications with the central
cloud server.

2 PROBLEM SETUP

Federated learning. Let K be the number of devices in the system. Let nk be the number of data
samples in device k, with n =

∑K
k=1 nk being the total number of training samples. We also

denote the i-th sample in device k as xk,i, for i ∈ {1, 2, ..., nk}. Our goal is to solve the following
optimization problem

min
w

F (w) = min
w

K∑
k=1

nk
n
Fk(w), (1)

where Fk(w) is the local loss function of data samples in device k, written as Fk(w) =
1
nk

∑nk

i=1 `(xk,i;w). Now we briefly describe the conventional cloud-based federated averaging
(FedAvg) algorithm in (McMahan et al., 2017), a typical way to solve this problem. At step t, each
device downloads the current model w(t) from the PS, which is generally located at the cloud
covering all the devices in the system. Then each device (say device k) sets wk(t) = w(t) and
performs E local updates according to

wk(t+ i+ 1) = wk(t+ i)− ηt+i∇Fk(wk(t+ i), ξk(t+ i)), i = 0, 1, ..., E − 1, (2)
where ηt is the learning rate at step t and ξk(t) is a set of randomly selected data samples from device
k at step t. Now each device sends the updated model to the PS, and the PS aggregates the model
as w(t+ E) =

∑K
k=1

nk

n wk(t+ E). However, full device participation at each aggregation step is
impossible in practice and the PS often selects a set St+E ⊂ {1, 2, ...,K}, containing the devices
that transmit the results to the PS. Then, we have

w(t+ E) =
∑

k∈St+E

nk
n
wk(t+ E). (3)

This overall process is repeated until the model achieves the desired accuracy or some stopping
condition is met. According to the algorithm, the model of the k-th device at step t+ 1 is written as

wk(t+ 1) =


wk(t)− ηt∇Fk(wk(t), ξk(t)), if E - t+ 1∑
q∈St+1

nq
n
[wq(t)− ηt∇Fq(wq(t), ξq(t))], otherwise. (4)

Problem formulation. In contrast with the conventional cloud-based federated learning systems
having a central cloud server covering the whole devices, in this paper we consider L ESs each
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covering its own local area. We call this local coverage of each edge server a cell. Especially with
dense deployment of ESs in 5G and beyond networks, there generally exist more than one ES within
the range of a specific user that can be reliably communicate with. We call this region in which
the device can reliably communicate with multiple ESs overlapping cell area. Let Ci be the set of
indices for users located in cell i ∈ {1, 2, ..., L}. Now define Ui as the set of user indices for the
non-overlapped region of cell i, which is the subset of Ci. We also define Vi,j as the set of user indices
for the overlapping area between cell i and cell j (i 6= j and Vi,j = Vj,i), which is also the subset
of Ci. Here, the devices in Vi,j can communicate with both ES i and ES j during model download
or upload. While we can similarly define overlapped regions with more than two ESs, we consider
the case in which the coverage of at most two ESs overlapped for clarity of presentation. Then the
coverage of cell i, i.e., Ci can be written as

Ci = Ui ∪ ( ∪
j∈[L]\{i}

Vi,j) (5)

for all i ∈ {1, 2, ..., L}. The overall coverage of the system can be written as C = {1, 2, ...,K} =
∪Li=1 Ui ∪ (∪Li=1 ∪Lj=i+1 Vi,j). Note that each ES can communicate with the devices in its covered
area only. Our goal is to solve the problem in (1) in this setup, without sharing the learning models at
the higher tier of ESs (i.e., the cloud server) during training.

3 PROPOSED FEDMES ALGORITHM

Now we describe FedMes, the proposed algorithm tailored to the above setup with multiple edge
servers. At the beginning of step t, each device in cell i downloads the current model w(i)(t) from
ES i and lets wk(t) = w(i)(t) if located in the non-overlapped region, i.e., k ∈ Ui. Device k ∈ Vi,j
additionally downloads w(j)(t) from ES j and combines the two received models according to

wk(t) =
1∑

k∈S
(i)
t
nk +

∑
k∈S

(j)
t
nk

( ∑
k∈S

(i)
t

nkw
(i)(t) +

∑
k∈S

(j)
t

nkw
(j)(t)

)
, (6)

where S(i)
t and S(j)

t are the sets of devices that sent their results to ES i and ES j, respectively, at
the previous aggregation step. Here, a larger weight is given to the aggregated model of the ES that
utilized more training samples in the previous aggregation step. If the number of training samples
utilized at both ES i and ES j are the same, i.e.,

∑
k∈S

(i)
t
nk =

∑
k∈S

(j)
t
nk, then we can rewrite (6)

as
wk(t) =

1

2
(w(i)(t) +w(j)(t)). (7)

We take this assumption for the rest of the paper for ease of presentation. Now every device (say
device k) updates the model with its own local data according to equation (2) for E steps to obtain
wk(t + E). Then, device k sends its updated model wk(t + E) to the corresponding ES(s). In
particular, the devices in the overlapped region Vi,j send their results to both ES i and ES j by
broadcasting. Here, we note that this does not require additional communication time since only one
round of communication is required at each device by the broadcast nature of wireless networks.

Now every ES i collects the locally updated models from the devices in its covered area Ci, to obtain
the aggregated result. In this aggregation process, each ES takes the weighted average of the received
models, where the weight depends on the location of device k (i.e., whether device k is located in the
overlapped region or not). To be specific, let S(i)

t+E be the set of indices for devices that transmit the
results to ES i. Then, ES i obtains the aggregated result w(i)(t+E) by taking the weighted average
of the received models as

w(i)(t+ E) =
∑

k∈S
(i)
t+E

γkwk(t+ E), (8)

where γk is the normalized parameter that gives weight depending on device k’s location and the
number of data samples in it:

γk =

{
αunk, k ∈ Ui

αvnk, k ∈ Vi,j for all j
and

∑
k∈S

(i)
t+E

γk = 1. (9)

Here, αu and αv are constant values and we generally consider the case with αu ≤ αv to give larger
weights to the devices in the overlapped regions that can act as bridges for sharing the trained models
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Algorithm 1 Federated Learning with Multiple Edge Servers (FedMes)
Input: Initialized model w(0), Output: Final global model wf

Set wk(0) = w(0) for all devices k = 1, 2, ...,K

1: for each step t = 0, 1, ..., T − 1 do
2: if E - t+ 1 then
3: for each device k = 1, 2, ...,K in parallel do
4: wk(t+ 1)← wk(t)− ηt∇Fk(wk(t), ξk(t)) // Local update
5: end for
6: else
7: Each edge server i randomly selects S(i)

t+1 to receive the updated models from the devices
8: for each device k = 1, 2, ...,K in parallel do
9: if k ∈ Ui for some i ∈ {1, 2, ..., L} then

10: wk(t+ 1)←
∑

k∈S
(i)
t+1

γk[wk(t)− ηt∇Fk(wk(t), ξk(t))] // Edge aggregation
11: end if
12: if k ∈ Vi,j for i, j ∈ {1, 2, ..., L} and i 6= j then
13: wk(t+ 1)← 1

2

(∑
k∈S

(i)
t+1

γk[wk(t)− ηt∇Fk(wk(t), ξk(t))] // Average of

+
∑

k∈S
(j)
t+1

γk[wk(t)− ηt∇Fk(wk(t), ξk(t))]
)

two edge aggregations
14: end if
15: end for
16: end if
17: end for
18: wf ← 1

L

∑L
i=1

∑
k∈S

(i)
T

γkwk(T ) // Averaged model of L edge servers

between ESs. Note that by setting αu = αv , the above aggregation rule in (8) at each ES reduces to
the conventional FedAvg in (McMahan et al., 2017). This overall process at the edge servers and the
devices is repeated until some stopping condition is met, say at step T . When the overall training is
finished, the models are averaged over all ESs to obtain the final global model wf as follows:

wf =
1

L

L∑
i=1

w(i)(T ). (10)

The details of FedMes are summarized in Algorithm 1. Compared to the conventional cloud-based
federated learning systems which require communication with the cloud server (located at the
higher tier of ESs) for model synchronization, in FedMes, only the communications between the
devices and ESs are required. Fig. 1 shows an example with L = 3, |U1| = |U2| = |U3| = 2 and
|V1,2| = |V2,3| = |V3,1| = 1. As can be seen from Figs. 1(b) and 1(c), the unique characteristic
of FedMes is that the starting points of models could be different even for the devices in the same
cell, due to model average in the overlapped regions. This is totally different from typical federated
learning algorithms in which the devices have the same starting points at the beginning of each global
round. From the overall process, it can be also seen that even when some training samples are only in
the non-overlapped region of cell i, i.e., Ui, these data can still assist the training process of other
cells. We show later in Section 4 that our scheme with multiple starting points performs well by
sufficiently reflecting the data samples that are not in the coverage of a specific ES. By utilizing the
weight parameters γk in (9), the model of device k ∈ Ci at step t+ 1 can be written as follows:

wk(t+ 1) =



wk(t)− ηt∇Fk(wk(t), ξk(t)), if E - t+ 1∑
k∈S

(i)
t+1

γk[wk(t)− ηt∇Fk(wk(t), ξk(t))], if E | t+ 1 and k ∈ Ui

1

2

( ∑
k∈S

(i)
t+1

γk[wk(t)− ηt∇Fk(wk(t), ξk(t))]

+
∑

k∈S
(j)
t+1

γk[wk(t)− ηt∇Fk(wk(t), ξk(t))]
)
, if E | t+ 1 and k ∈ Vi,j

(11)

for i ∈ {1, 2, ..., L} and j ∈ {1, 2, ..., L} \ {i}.
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Figure 2: Test accuracy versus training time in a (device IID, cell IID) setup.

Remark 1. Note that our FedMes can be easily generalized to cell topologies with multiple overlap-
ping ESs (more than two), by simply adding equations in (11) for the regions with 3, 4 overlapping
ESs or more. We also note that (11) holds regardless of the device’s location, which means that (11)
is still valid even with moving devices (i.e., mobiles).

4 EXPERIMENTS

In this section, we provide experimental results for our algorithm using the MNIST (LeCun et al.,
1998), FMNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2009) datasets. We split the
MNIST and FMNIST datasets into 60,000 training samples and 10,000 test samples, and split the
CIFAR10 dataset into 50,000 training samples and 10,000 test samples. For MNIST and FMNIST, we
utilized the convolutional neural network (CNN) with 2 convolutional layers and 2 fully connected
layers, and 2 convolutional layers and 1 fully connected layer, respectively. For CIFAR10, we utilized
VGG-11 for training.

Comparison schemes. We compare our FedMes with the following schemes. First, we consider
the hierarchical FL scheme (Liu et al., 2019), which utilizes L edge servers (with no overlapping
regions) and a single cloud server. After E local updates at each device, each edge server aggregates
the models from the devices in its own covered area and then distributes across the corresponding
devices. After Tcloud aggregations at each edge server, the cloud server aggregates the models from
the edge servers and distributes across the devices. Here, the case with Tcloud = 1 can be viewed as
the cloud-based systems since communication with the cloud occurs with every E local updates at
the devices. Secondly, we consider Algorithm 1 with no overlap, where the proposed Algorithm 1 is
applied in a setup with no overlapping cell regions. Each edge server independently performs training
without any communication with the cloud, i.e., Tcloud =∞. When training is finished, the model
parameters of different cells are averaged to obtain the final global model.

Experimental setup. We consider a setup with L = 3 edge servers and K = 90 devices. We also
consider a symmetric cell geometry with |U1| = |U2| = |U3| = u and |V1,2| = |V2,3| = |V3,1| = v,
where u+ v = K/3 = 30 holds. In the aggregation step at the edge servers, we let each edge server
to collect the results of randomly selected m = 20 devices in its covered area. Considering L = 3
edge servers, a total of 60 devices participate in each aggregation step when there are no overlapping
regions (v = 0). With v > 0, each edge server has access to u+2v devices. For a fair comparison, we
let each edge server to collect the results of m = 20 devices, where um

u+2v of them are taken from the
non-overlapped region Ui, and 2vm

u+2v of them are selected from the two overlapping areas, vm
u+2v of

each. Assuming that the adjacent edge servers select the same vm
u+2v devices from the overlapping area

by cooperation, a total of 3(u+v)m
u+2v = 60(u+v)

u+2v devices participates in each aggregation step. Hence,
the number of devices participating at each global round is reduced compared to the scheme with no
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Figure 3: Test accuracy versus training time in a (device nonIID, cell IID) setup.

overlap. We let tc be the one-round delay between the device and the cloud, where the one-round
delay between the device and the edge server is normalized to 1. This one-round delay include both
the communication time for one-round trip between the server and the device, and the computation
time at each device. Mini-batch stochastic gradient descent with an initial learning rate of 0.01 is
utilized. For all experiments, we set the number of local epochs at each device to 5, and the local
mini-batch size to 10.

We consider three data allocation scenarios to test nonIID situations: The first is the (device IID, cell
IID) case, where the datasets across K devices and across L cells are IID. Secondly, we consider
(device nonIID, cell IID) case where each device randomly selects two classes for data assignment.
Hence, the datasets across devices are nonIID but across cells are IID. The last is the (device nonIID,
cell nonIID) where the devices in each cell are given with two fixed classes. Hence, the datasets
across devices and cells are both nonIID. For the first two scenarios, we only consider the case with
αu = αv since our scheme with αu = αv already shows the optimal performance in these scenarios.
For the last nonIID scenario, we consider both cases with αu = αv and αu < αv. In addition, we
ignored the batch normalization layers of the VGG model during training and testing for the last two
nonIID scenarios.

Experiments in a (device IID, cell IID) setup. In Fig. 2, we plot the test accuracy versus running
time in a (device IID, cell IID) setup. We let αu = αv for FedMes. We have the following important
observations in this setup. First, the proposed schemes with v > 0 have very similar performances.
It can be seen that FedMes with u = 20, v = 10 has almost the same performance as the scheme
with all devices in the overlapping areas (u = 0, v = 30). Comparing FedMes with Algorithm 1 with
no overlap (u = 30, v = 0), we have the following results. For the MNIST dataset, Algorithm 1
with no overlap performs almost the same with the proposed schemes, since the dataset is simple
enough to achieve the ideal performance by only utilizing the data covered by a specific cell. With
the FMNIST dataset, a slight gap between FedMes and Algorithm 1 with no overlap is observed. For
a more complicated dataset CIFAR10, we have a larger gap between them, around test accuracy of
8%. Since the proposed FedMes and Algorithm 1 with no overlap do not require any communication
with the central cloud server during training, the performances are not affected by the parameter tc.

Now we observe the hierarchical FL (Liu et al., 2019) with Tcloud = 1, where the edge servers
communicate with the cloud for model synchronization in every aggregation step at the edges. For all
three datasets, our observation is that FedMes can eventually achieve the best-test accuracy of the
cloud-based scheme, which is the ideal performance. However, the proposed schemes do not require
costly communication with the central cloud server, significantly reducing the running time to achieve
the ideal test accuracy compared to the cloud-based systems. The hierarchical FL with Tcloud > 1 can
reduce the period of communication with the cloud, while achieving the ideal performance. Hence,
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Figure 4: Test accuracy versus training time in a (device nonIID, cell nonIID) setup.

with a properly chosen Tcloud, it can be seen that hierarchical FL with Tcloud > 1 performs better
than the cloud-based scheme with Tcloud = 1. However, the hierarchical FL scheme still suffers from
communication delay with the cloud, especially when tc is large. Here, we note that a very large
Tcloud can reduce the communication time with the cloud in the hierarchical scheme, but as Tcloud
grows, it gets closer to the comparison scheme Algorithm 1 with no overlap. Therefore, significant
degradation of the accuracy with complicated datasets is expected when a large Tcloud is chosen to
reduce the communication time with the cloud. The overall results show remarkable performance
gains of FedMes compared to others, especially with on CIFAR10.

Experiments in a (device nonIID, cell IID) setup. Fig. 3 shows the result in a (device nonIID, cell
IID) setup. We set αu = αv for our schemes. Since the datasets across the devices are nonIID, the
performance of each scheme is degraded compared to the case in Fig. 2. We also observe a larger
gap between the proposed schemes and Algorithm 1 with no overlap. The trend is consistent with
the (device IID, cell IID) case, confirming the advantage of FedMes utilizing the devices in the
overlapping cell areas.

Experiments in a (device nonIID, cell nonIID) setup. Finally, the case with nonIID datasets across
both devices and cells is illustrated in Fig. 4. In this nonIID setup, we consider both cases with
αu = αv and αu < αv for FedMes. An interesting observation here is that the test accuracy of
hierarchical FL with Tcloud = 5 decreases before each aggregation step at the cloud. This is because
each edge server is given a biased dataset within its coverage due to the cell nonIIDness, which can
degrade the performance before model synchronization at the central cloud. Since Algorithm 1 with
no overlap does not allow any synchronization at the cloud during training, it has significantly low
test accuracy. In FedMes, the devices in the overlapping cell areas enable to share the trained models
between edge servers. Therefore, even when some edge servers have biased datasets within their
coverage, the model of each edge server can be assisted by various classes that are not within its
coverage. Especially in this scenario with nonIID data across cells, it is observed that giving more
weights to the devices in the overlapping cell areas (i.e., αu < αv) can further speed up training
than the scheme that gives the same weights to all devices (αu = αv). The overall results show that
FedMes is still powerful even in this nonIID setup, compared to the schemes that require costly
communication with the central cloud server for model synchronization and the scheme that does not
take the overlapping areas between edge servers into account.

Comparison with varying tc. We note that whatever computation/communication delay model we
use, one can define the ratio of (one-round delay between the devices and the cloud) to (one-round
delay between the device and the edge) as tc, based on their system parameters. Now the question is,
given a tc value of the current system, which scheme performs the best and how much performance
gain do we have? Fig. 5 provides the result on test accuracy at a specific time as a function of tc.
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Figure 5: Test accuracy versus tc. The test accuracies are computed at a specific time slot. 1) IID: time 30, 80, 80
for MNIST, FMNIST, CIFAR10. 2) (device nonIID, cell IID): time 40, 80, 400 for MNIST, FMNIST, CIFAR10.
3) device/cell nonIID: time 60, 80, 1000 for MNIST, FMNIST, CIFAR10.

It can be seen that FedMes performs the best even with a small tc value. Especially in practical
regimes where the supportable latency of cloud-based systems are much larger than that of edge-based
systems, FedMes can provide significant advantage compared to other baselines.

Comparison with varying v. The portion of devices in the overlapping area is another key metric that
determines the performance of FedMes. In Supplementary Materials, we compare the performance of
FedMes with different v values. A quick conclusion is that although there are some slight performance
degradation, FedMes performs well even with a small portion of devices in the overlapping regions
(i.e., small v). Especially in 5G and beyond systems where a large number of devices are in the
overlapping regions, FedMes can provide significant advantage compared to other schemes.

5 CONCLUSION

In this paper, we proposed FedMes, a federated learning algorithm leveraging multiple edge servers,
to speed up training without sharing the models at the higher tier of edge servers. Our key idea
was to utilize the devices in the overlapping cell areas, which act as bridges for sharing the models
between servers. Extensive experiments verified the advantage of FedMes compared to existing
methods on various datasets with different data distribution setups. Our solution enables to support
real-time applications by speeding up federated learning in real-world wireless networks 1) having
large communication time delay between the devices and the cloud server and 2) having biased
datasets within the coverage of each edge server.
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A TEST ACCURACY VERSUS GLOBAL ROUND

Fig. A.1 shows the accuracy-versus-round plots for each dataset and data distribution setup. It can be
seen that FedMes with both (u = 0, v = 30) and (u = 20, v = 10) achieve the same final accuracy
with the cloud-based system (purple line), except for the case with Fig. A.1(i). For CIFAR10 in a
(device nonIID, cell nonIID) setup, FedMes with (u = 0, v = 30) achieves the same final accuracy
with the purple line but the case with (u = 20, v = 10) does not. This indicates that a larger number
of devices should be in the overlapping areas to act as bridges, especially when the data distributions
across the cells are nonIID and the dataset is relatively complex.
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Figure A.1: Test accuracy versus global round.

B COMPARISON WITH VARYING v

In Fig. B.1, we compare the performance of FedMes with the following 4 cases: (u = 0, v = 30),
(u = 20, v = 10), (u = 25, v = 5), (u = 30, v = 0). Although there are some slight performance
degradation, FedMes performs well even with a small portion of devices in the overlapping regions.

C EFFECT OF VARYING αu, αv

In the main manuscript, we showed that giving more weights to the devices in the overlapping regions
(during aggregation step at the edge servers) can further speed up FedMes, especially in a (device
nonIID, cell nonIID) setup. In this section, we provide additional experiments to gain insights on the
effect of varying αu and αv. Consider L = 3 edge servers (ESs) and let u be the number of devices
in the non-overlapped region of each cell and v be the number of devices in the overlapped region
between any two cells.
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Figure B.1: Performance of FedMes with varying v.

Fig. C.1 shows the performance of FedMes with u = 20, v = 10 in a (device nonIID, cell nonIID)
setup. The overall settings are exactly the same as in the main manuscript. We have the following
interesting observations from Fig. C.1. First, if αv is too small, i.e., if we give too small weights to
the devices in the overlapped regions, the effect of devices in the overlapping areas are neglected;
the aggregated models of the ESs cannot be shared through the devices in the overlapping areas,
degrading the performance of learning. If αv is too large, i.e., if we give large enough weights
to the devices in the overlapped regions, the effect of devices in the non-overlapped regions are
neglected which also significantly degrades the performance of the trained model. With an appropriate
choice of αu and αv , we can speed up training compared to the simple approach that gives the same
weights to all devices in the system (αu = αv). In particular, for MNIST, αv = 1.3αu gives the best
performance, while αv = 1.5αu does it for FMNIST and CIFAR10.
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Figure C.1: Effect of varying αu, αv in a (device nonIID, cell nonIID) setup.

Fig. C.2 shows the result of FedMes with u = 20, u = 10 in a (device IID, cell IID) setup. For
MNIST, the test accuracy is not affected by αu, αv; even though some devices may be neglected
due to large/small αv , we can achieve ideal performance since the dataset is simple enough and data
distributions across the devices are IID. For FMNIST, we see slight gaps among the schemes with
different αu, αv values. On CIFAR10, accuracies jump quite a bit as αu and αv differ significantly.
Compared to the result in a nonIID setup in Fig. C.1, giving more weights to the devices in the
overlapped region does not provide additional performance gain in this IID setup.
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Figure C.2: Effect of varying αu, αv in a (device IID, cell IID) setup.

D EXPERIMENTS WITH MULTIPLE OVERLAPPING ESS

In the experiment section of the main manuscript, we considered a setup where each device is located
in the overlapping region of no more than two ESs. Here, we assume that the devices can be in regions
with more than two overlapping ESs.

Again, we focus on L = 3 ESs and define u, v as above. We also introduce w, the number of devices
in the overlapped region among all L = 3 cells (see Fig. D.1). The number of devices in the system
can be written as K = 3(u+ v) + w. Fig. D.2 shows the performance of FedMes depending on u, v
and w, in a (device nonIID, cell nonIID) setup. Here, we let each ES to give the same weights to all
devices regardless of the location. The overall results show that having more devices in the overlapped
regions can speed up training. On CIFAR10, when u > 0, the case with w > 0 can achieve a target
accuracy much faster. 1

𝑢

𝑢𝑢

𝑣 𝑣

𝑣

𝑤

Figure D.1: Number of devices located in each region with L = 3 cells.
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Figure D.2: Experiments with multiple overlapping ESs in a (device nonIID, cell nonIID) setup.
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E EXPERIMENTS IN AN ASYMMETRIC CELL TOPOLOGY

In Fig. E.1, we provide additional experimental results in an asymmetric cell topology. The number
of edge servers are L = 3, and we set the number of devices in each region as in Fig. E.2. The results
are consistent with the plots in the main manuscript, confirming the advantage of FedMes in practical
asymmetric cell topology.
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(e) FMNIST, device nonIID, cell IID

0 200 400 600 800 1000

Running time

10

20

30

40

50

60

70

T
e

s
t 

a
c
c
u

ra
c
y

Symmetric: u=0,v=30

Symmetric: u=20,v=10

Symmetric: u=30,v=0

Asymmetric

(f) CIFAR10, device nonIID, cell IID

Figure E.1: Performance of FedMes in an asymmetric cell topology.
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Figure E.2: Asymmetric topology with L = 3 cells.

F COOPERATION BETWEEN EDGE SERVERS

In the experiment section of the main manuscript, it is assumed that adjacent edge servers select the
same set of devices from the overlapping area by cooperating with each other. In practical scenarios,
we can imagine two different situations where this cooperative federated learning is available. First, if
user mobility is not very high, the system proactively determines the candidate set of devices available
to participate in the current federated learning process. Then, we can design a protocol that provides a
rule of selecting devices in overlapping areas. For example, devices whose uplink SNRs with adjacent
edge servers are larger than a given threshold value consist of the candidates set first. The candidate
devices can be arranged in order of high average of uplink SNRs with adjacent edge servers, denoted
by d1, . . . , dK where di is the device whose average uplink SNR is the i-th highest, when K devices
are in the candidate set. Then, we can use the protocol that lets d1, . . . , dN participate in the first
round of federated learning process. For the second round, dN+1, . . . , d2N can participate. Likewise,
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a variety of protocols can be designed to determine which devices will participate in each round of
federated learning process. If all edge servers agree to use certain protocol for selecting devices in
the overlapping areas before the federated learning process begins, then we don’t have to consider
cooperation among adjacent edge servers in every round of learning process.

Second, even though most studies on federated learning (including this manuscript) assume that edge
servers select devices unilaterally, participating for federated learning definitely sacrifices the devices’
resources and battery. Therefore, in practice, edge servers have to request each device to participate
first, and the devices will respond to it. In this process, we can find some devices that are willing
to help cooperation among adjacent edge servers. This request-response process is required for our
method as well as the conventional federated learning; therefore, it does not generate the additional
latency for selecting the devices in overlapping areas. Thus, we can conclude that we don’t have
to consider the additional latency for selecting the same set of devices in the overlapping areas by
cooperation among adjacent edge servers.
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