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Abstract

To migrate the remarkable successes of Large Language Models (LLMs), the
community has made numerous efforts to generalize them to the table reasoning
tasks for the widely deployed tabular data. Despite that, in this work, by showing a
probing experiment on our proposed StructQA benchmark, we postulate that even
the most advanced LLMs (such as GPTs) may still fall short of coping with tabular
data. More specifically, the current scheme often simply relies on serializing the
tabular data, together with the meta information, then inputting them through the
LLMs. We argue that the loss of structural information is the root of this shortcom-
ing. In this work, we further propose TAMO, which bears an ideology to treat the
tables as an independent modality integrated with the text tokens. The resulting
model in TAMO is a multimodal framework consisting of a hypergraph neural net-
work as the global table encoder seamlessly integrated with the mainstream LLM.
Empirical results on various benchmarking datasets, including HiTab, WikiTQ,
WikiSQL, FeTaQA, and StructQA, have demonstrated significant improvements
on generalization with an average relative gain of 42.65%.

1 Introduction

Table reasoning, the process of generating task-specific responses based on one or more pre-structured
tables text, has emerged as a key research area. This encompasses various tasks such as table question
answering [Pasupat and Liang| 2015]], table fact verification [[Chen et al., [2019]], text-to-SQL [Yu
et al., |2018]), and predictive tasks [Ye et al., 20244, L1 et al., 2022, [Van Breugel and Van Der Schaar,
2024]). Classical methods employ baselines such as BART [Lewis et al.,[2020] or T5 [Raffel et al.|
2020] to generate answers, often augmented with external retrieval frameworks [Patnaik et al., 2024].
With the advent of large language models (LLMs), like GPT-4 [[OpenAl 2023] and LLaMA [Touvron
et al.| [2023]], this field undergoes substantial transformations. These LLMs generally adopt identical
strategies, which involve serializing tables into text formats, often using markdown-like markup
languages to represent tables, occasionally accompanied by a few examples[Herzig et al.l 2020], as
shown in Figure[I]

However, through a principled and empirical observation, we find that existing serialization strategies
may cause LLMs to lose their understanding of structural semantics of tables. This observation is
conducted on a specially designed diagnostic benchmark, named StructQA. This benchmark considers
a structural semantic property unique to tabular data: permutation invariance, which means that most
tables should retain consistent semantics regardless of row and column reordering. Ideally, LLMs
should maintain approximately the same downstream task performance for structurally equivalent
tables. However, as illustrated in Figure 2] our experiments reveal: leading LLMs, including Llama2-
7B [Touvron et al.| [2023]], GPT-3.5 [OpenAl, 2022], GPT-4, and even TableLlama [Zhang et al.,
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2023b||—trained specifically for table tasks-demonstrate significant performance degradation when
presented with permuted versions of the same table. While resisting these perturbations is trivial for
humans, these models excluding GPT-4, show answer robustness below 40%. This phenomenon
indicates the significant limitations in LLMs’ generalization capability for table comprehension
through serialization.

This limitation stems from a fundamental mismatch:

tables are inherently structured data with permu- :
. . . . . . . Year Title Role Notes
tation invariance, while text serialization cannot O
. . 2010 Inception Dom Cobb Feature film
naturally preserve this property. Although this )
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concept has been recognized in previous research
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[Herzig et al., 2020, |Yang et al.l [2022], it has been

largely overlooked in contemporary LLM develop- Previous Works TaMo (Ours) Queltion
ment. When faced with structural perturbations, 'T;\(T::;eu'e:‘;:t N ;’T;l;l:g:’r'ec't“‘::;;];‘,,”;Vhat N the'\;
LLMs exhibit hallucinations [Huang et all 2023] and | 0/ veur e % 1 Value in the |
unstable reasoning patterns, indicating their limited i Role| Notes [SEPI| 11} jj column Role |
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To tackle this issue, we propose a novel perspective: [ I E— -
encode tables as an independent modality to inte- { TR LG EER NIk }
grate their complex relational structures. Just like . Amwir ) N Anlswcr .
images and audio which contain rich semantic in- ! Short mmi X :rThe PmtagonistE

formation, tables possess inherent structural nuances
that textual serialization fails to represent alone. The  Fjgure 1: Current tabular LLMs oversimpli-
multimodal large language models (MLLM) learn the  fies tables into text sequences, ignoring struc-
semantics of specialized modalities through separate  tyred information and hindering basic table
encoding architectures and align different modalities  oe] Jocalization tasks. This work is the first to
in a unified and more expressive embedding space. djrect table structure integration into LLMs.
By employing a similar approach, we can bridge the

gap in LLMs’ comprehension and achieve a holistic

understanding of tables’ structure comparable to human cognition through learnable table features.

In this paper, we propose TAMOE], a pio-
neering tabular language model framework to TableLlama Llama2-7B GPT-35 GPT4
reimagine Table representation as an indepen— Llama2-7B w/ Prompt Tuning TAMO w/ Llama2-7B (ours)
dent Modality. TAMO leverages theoretically
permutation-invariant hypergraph structures to
independently capture the intricate relationships
and global structures within tabular data. Further,
we integrate this hypergraph-based encoding into
LLMs through learnable features, achieving dy-
namic and efficient injection of structural infor-
mation without tuning the LLM’s fixed parame-
ters. We exhibit extensive empirical validation
on five table reasoning datasety’}| TAMO demon-
strates substantial performance improvements
against previous baselines—up to a 42.65% in-
crease in average performance. Meanwhile,
our methodology validates superior efficacy and
broad applicability when integrating hypergraph-
encoded tables with diverse LLMs.
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Figure 2: We evaluated LLMs’ understanding of
table structures through our StructQA dataset (Sec-
tion [3.1)). The evaluation focused on permutation
invariance by assessing answer robustness across
randomly permuted rows and columns. Results
show that TAMO achieves state-of-the-art perfor-
mance, comparable with GPT-4.

Contributions. Benchmark: We introduce

StructQA, the first open-source benchmark on the robust tabular structure understanding. Our
findings reveal that current LLMs struggle with this human-friendly task. Position: Our research
represents a pioneering step in integrating tables as an independent modality into LLMs. Method-
ology: We explore the semantic alignment of tabular structures in LLMs’ embedding space via

3Code and datasets are on https://github.com/liyaooi/TAMO,
“Hitab [Cheng et al.,[2022], WikiTQ [Pasupat and Liang] [2015[, WikiSQL [Zhong et al.,2017]], and FeTaQA
[Nan et al.}|[2022] and our proposed StructQA benchmark (Section @


https://github.com/liyaooi/TAMO

hypergraph architectures, effectively modeling complex relational patterns across diverse table tasks.
Feasibility: Experiments show that TAMO enhances LLMs’ generalization on table reasoning by
encoding structure-invariant table representations. We demonstrate the generality of our framework
in two primary aspects: (1) Robust Generalization across structural variations, such as the permuta-
tions tested in our proposed StructQA benchmark, and (2) Architectural Generality, functioning
as a “plug-and-play” module that integrates with diverse decoder-only LLMs without intrusive
architectural modifications.

2 Methodology

2.1 Problem Definition

Following |[Wang et al.|[2024b], table reasoning can

be defined as a unified task that acts on samples for- -

matted as triplets (7, Q,.A). Here, 7 represents a Stodent ST Physies

pre-structured table containing information clearly  [Swdent | Gender | Physies | vam Male

organized in rows and columns, with cell types en- f Juk | wac L 7 L 5§ oo o [ = ] »
. . . Sophia | Female 87 90 Etan | 66 | 9

compassing numerical values, text entries, and dates.

Ethan | Male 90 66 Female

Q = {q1, 42, --., gm } denotes the question or state- sophia | 0 | w
ment related to the table 7, typically in a natural lan- (a) Simple Flat Table (b) Complex Hierarchical Table
guage sequence with m tokens. Meanwhile, A is the N 2
expected answer or output of Q, usually simplified (stdent ) [ Subject A
into an n-tokens sequence {a1, as, ..., a, }. Briefly, Math\ /Physics
given the table 7 and the question Q, the objective - o "
of table reasoning is to predict the corresponding
answer A, i.e., p(A|T, Q). o » "
2.2 Hypergraph-enhanced Table Encoder [—: - ” o
& —
A table encoder is essential for our multimodal tab- (¢) Unified Hypergraph Modeling

ular LLMs paradigm. To develop the table encoder

capable of learning structural information, we first Figure 3: An example of converting arbitrary
address a fundamental question: “How to define the simple or complex tables into hypergraphs. A
structural properties in tabular data?” As illustrated ~simple flat table is a special case of the com-
in Figure 3] we provide the answer based on prior plex hierarchical table. A hyperedge (e.g., ta-
human observations: (i)-most real-world tabular data  ble headers) in the hypergraph is a set of reg-
possess a hierarchical structure, with ordinary flat ular nodes. We construct the corresponding
tables being a special case of this hierarchy; (ii)-cells hypergraph format according to the hierarchi-
within each hierarchy and hierarchies at the same cal relationships of the table.

level exhibit permutation invariance. For example,

arbitrarily swapping rows or columns in a table does

not distort its original meaning. This implies that

learning the relationships between table cells should

not be pairwise but rather set-based. Building on the inherent hierarchical structure of tables, we
introduce the hypergraph [Yadati et al.,|2019] architecture to model tabular data. This approach
incorporates both high-order hierarchical structure and permutation invariance as inductive biases,
enabling the precise modeling of complex structural properties in tabular data. For the first time, it
allows us to successfully model all types of tables, from simple flat tables to complex hierarchical
forms [[Cheng et al., 2022].

We re-construct the structure of tabular data via hypergraph. Specifically, a hypergraph G = (V, €)
consists of a set of nodes V and hyperedges £. Each hyperedge e € £ is a subset of V, i.e.,e C V.
For a table 7, we represent each leaf cell, defined as a cell that does not contain any other cells
within the hierarchy, as a node v € V and each branch cell, defined as a cell that contains other cells
within the hierarchy, as a hyperedge e € £. Each hyperedge e consists of nodes that belong to its
hierarchical level. For example, in a simple flat table, each table cell is a node, and each column or
row is a hyperedge encompassing all nodes within that column or row. Under this modeling, altering
rows or columns maintains a consistent graph structure (both nodes and edges), effectively reflecting
the permutation invariance of tables.
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Figure 4: The proposed framework for tabular LLMs, TAMO. Given a table input, the hypergraph-
enhanced table encoder (Section[2.2)) is used to capture the unique structure properties of the table
modality. Simultaneously, we serialize the original table into a formatted text sequence. Finally, we
input both the table structure and textual embeddings into LLMs, generating answers using the next
token prediction paradigm. LoRA is optional.

Furthermore, to model information propagation within the hypergraph structure, we employ Hyper-
Trans [Chen et al.| 2024], a hypergraph-structure-aware transformer, as the backbone architecture
of the hypergraph-enhanced table encoder. The encoder architecture integrates two distinct mul-
tiset functions [Chien et al., |2021] to effectively capture higher-order hierarchical structures in
hypergraphs. These multiset functions, characterized by their permutation invariance property, are
combined sequentially as depicted in Eqa[Tjand Eqa2] Each layer of the table encoder comprises two
primary components, with the initial component implementing a multiset function that aggregates
node-level information to update hyperedge representations:

xUT = Fusion(x!, Multiset, ({x} | v € e})), (1)

where t refers to the current layer number; x,, is the embedding of the node v; x. is the embedding
of the hyperedge e; the fusion layer is employed to integrate hyperedge information from the last
layers, typically utilizing a multilayer perceptron (MLP) network.

The second part is another multiset function that aggregates hyperedge information to update node
representations:

x5 = Multiseto({x5T | v e el). @

Finally, we use the Set Transformer [Lee et al.,[2019] to parameterize these multiset functions for
learning. Each set attention block is defined as:

Multiset(X) = Layer Norm(H + r FF(H))

H = LayerNorm(X + MultiHead(S, X, X)), ©)
where S is a trainable parameter vector; 7 F'F is the row-wise feedforward layer; Layer Norm is
layer normalization [Ba et al.,[2016|]; M ultiH ead is the multi-head attention mechanism [[Vaswani
et al.,|2017]. By facilitating the mutual propagation of information between nodes and hyperedges,
the model effectively learns the complex hierarchical relationships among table cells thus outputting
learnable table features. This approach conceptually reframes the table from a serialized string into a
distinct modality, which we position as a complete multimodal reasoning framework distinct from
modality-specific encoders. A detailed discussion on this positioning is provided in Appendix



2.3 A Modality Interface for Integrating Table Structure Representations with LL.Ms

Most LLMs [Meta, 2024] Jiang et al.| [2023a), |OpenAll 2022} [2023]] are pre-trained on large-scale
unlabeled corpora in an autoregressive manner, thereby learning rich linguistic structures and patterns.
To maximize the utilization of LLMs’ powerful text understanding and reasoning capabilities for table
reasoning tasks, we design a fully autoregressive interface to integrate structure representations from
the tabular modality with LLMs for table reasoning tasks. The overall framework of our proposed
TAMO is shown in Figure d] We inject the structure representations learned by the hypergraph-
enhanced table encoder in Section [2.2]into the LLMs in a manner similar to the soft prompt [Lester]
et al.l 2021]]. This allows the LLMs to globally perceive the structural information of the tabular data
before reading the textual information, thereby enhancing their understanding and reasoning abilities
regarding tabular tasks.

Aligning Table Structure Representations to LLM Semantic Space. Assuming the node repre-
sentations obtained through the table encoder are Xy, = {%,|v € V} € RIVI*% and the hyperedge

representations are X¢ = {X.|e € £} € RI€1Xds_q, is the hidden dimension of the table encoder.
We use a multilayer perceptron (MLP) network to learn the transformation of table structure represen-
tations X; into the semantic space, where we adopt a single-layer MLP as the alignment projector
for simplicity and efficiency:

Xt = MLP(Pooling(Xy,Xe)) € R*, “)

where pooling is an information aggregation function for nodes and hyperedges, set up as mean
pooling in our experiment; d; is the hidden dimension of LLM:s.

Generating Answers based on both Tabular and Textual Modality Information. Following
previous works [Zhang et al., [2023b}, Wang et al.| 2024b| [Herzig et al.| 2020], we serialize tabular
data into formatted text sequences and obtain the text embeddings of tabular data X, € REsxd
through the LLMs’ embedding layer. L is the length of text sequences. For questions in natural
language form, we obtain the corresponding question tokens X; € R%Za*d: through the embedding
layer similarly. L, is the length of question sequences. The final answer is generated following the
next token prediction paradigm:

p(A|Ta Q) = l_Ip(a‘2 | XStaxtt7XQt7a]'<i)a )

k3

where n is the number of answer tokens A = {ay, as, ..., a,}. During training on downstream
table reasoning datasets, we can choose to freeze the parameters of the LLMs and only learn the
table encoder and alignment layers. We retain both input streams as they serve complementary,
non-redundant roles. The serialized text X;; provides the fine-grained semantic content (the “what”),
which LLMs are exceptionally skilled at processing. The hypergraph-based structure embedding X 4
provides the global relational context (the “where”), such as row-column relationships and hierarchies,
which is inherently lost during serialization. The necessity of both modalities is empirically validated
in our ablation study (Appendix [C.4), which shows that the graph-only approach fails on generative
tasks and the full TAMO model significantly outperforms the text-only counterpart, confirming the
synergistic benefit. This method allows us to capture structure representations in the tabular modality
while integrating them with LLMs in a cost-effective and scalable manner.

3 Experiments

In this section, we will demonstrate the advantages of treating tables as an independent modality.
Section @] introduces our novel benchmark, StructQA, designed to evaluate LLMs’ understanding
of table structures and their robustness. Sections[3.3|presents the performance gains of our approach
across mainstream datasets and fine-tuning methods. Section [3.4]explores the interpretability of our
method through attention visualization. Section [3.5|showcases the robust performance of our method
under different fine-tuning techniques. Section [3.6]discusses the ability of the hypergraph-enhanced
table encoder to extract table structure information.



3.1 StructQA: Table Structure Understanding

We present StructQA, a novel benchmark focusing on table structure understanding, containing 7500
QA pairs from 500 tables across 5 structural reasoning tasks as described in Table[I} Unlike prior table
QA datasets [Pasupat and Liang}, 2015, (Cheng et al., [2022]], StructQA evaluates models’ capabilities
through three dimensions: direct performance, permutation accuracy under row/column shuffling,
and answer robustness before and after permutation. This benchmark also addresses potential data
contamination concerns [Ye et al.|[2024b]| present in existing datasets.

Figure [2)indicates the performance of mainstream LLMs on StructQA. We find that current text-based
method do not perform well on this dataset, with overall answer robustness below 40%. This
phenomenon may suggest that current approaches face significant limitations in understanding tabular
data.

3.2 Experimental Setup

To enhance the model’s comprehension of structured
da}ta, we p r0p0§e TAMO .(refer t.O Section @] for de- (1) Cell location: identify cell value by row number and
tails). This section primarily outlines the experimental column name.

setup for the experiments of TAMoO. (2) Column lookup: identify the column based on row
number and cell value.

Datasets & Metrics. To conduct a more comprehensive (3) Row lookup: identify the row based on the column

assessment, we choose five datasets’} including Struc- ~ nameand cell value. A o

tQA HiTab WikiTableQuestions (WlleQ) WlleQL (4) Column comprehension: summarize all distinct val-
’ ’ 2 P ’ ues in a column based on the column name.

Fe TaQA’ for our experiments. To es}abhsh the pejrfor— (5) Row comprehension: summarize all distinct values

mance upper bounds of TAMO for different tasks inde-  in arow based on the row number.

pendently, we trained separate instances from scratch

on each task-specific training set and evaluated them on  Table 1: Five different types of structure
the corresponding test set reasoning tasks in the StructQA dataset.

More details are in Appendix E}

Competing Methods. To demonstrate that incorporat-
ing tabular modality into LLMs, referred to as tabular
language models, can enhance performance in table rea-
soning tasks, we compare TAMO against using only pure text modality in four different settings: (i)
Inference Only (Zero-shot): directly reasoning on serialized table sequences and questions; serves
as a diagnostic baseline (primary claims rely on stronger tuned comparisons). (ii)-Frozen LLM: com-
paring with prompt tuning [Lester et al.,[2021]], which adds some parameterized and trained tokens
in front of serialized table sequences. (iii)-Tuned LLM (LoRA): using LoRA [Hu et al.| [2021]] to
finetune the parameters of LLMs. We add optional LoRA in our method as TAMO7 4. (iv)-Tuned

LLM (SFT): supervised finetuning of all parameters of LLM:s. TAMO%L - means supervised training
of TAMO and LLMs jointly.

A key baseline in our comparison is TableLlama [Zhang et al., 2023b], which represents the current
state-of-the-art (SOTA) across multiple table reasoning tasks through supervised fine-tuning (SFT)
on extensive tabular datasets. For a fair comparison with TableLlama, we implement TAMO using
the same base model, Llama2-7B. We provide additional performance analysis across more advanced
LLMs in Appendix [C.8] We further evaluate our approach against powerful general-purpose LLMs
like GPT-3.5-turbo-0125, GPT-4-turbo-2024-04-09, GPT-4.1 and DeepSeek-R1 [Guo et al.,|2025].
Regarding the “Specialist SOTA” results presented in Table 2] these refer to state-of-the-art methods
specifically tailored for each dataset: TableLlama [Zhang et al.,[2023b] for HiTab, CABINET [Patnaik
et al.l 2024] for WikiTQ and FetaQA, and SeaD [Xu et al., 2022]] for WikiSQL. We included these
to highlight different methodological directions, contrasting with TAMO’s focus on enhancing the
LLM’s end-to-end understanding via modality integration. Unlike TAMO’s approach, these specialist
methods often rely on external modules (like scorers or specific pre-processing steps) or task-specific
objectives, which limit their direct applicability across the full range of table reasoning tasks without
adaptation.

SDetails of these datasets can be found in Appendix
6Appendixdemonstrates that TAMO exhibits notable cross-dataset generalization capabilities.



Dataset StructQA HiTab WikiTQ WikiSQL FetaQA
Setting Task Type Structural QA Hierarchical QA Table QA Table QA Free-form QA
Evaluation Metric Accuracy Accuracy Accuracy Accuracy BLEU
Inference Only | Zero-shot | 8.60 7.77 14.50 21.44 20.08
Prompt tuning 37.80 26.26 29.86 61.24 29.94
Frozen LLM TAMo 59.07 48.86 37.06 76.45 36.52
A Prompt tuning 1 56.27% 1 86.06% 124.11% 1 24.84% 121.98%
LoRA 45.67 50.76 37.13 57.10 35.80
Tuned LLM
“LoRA) TAMO; 14 70.80 59.22 43.53 84.43 37.43
ALoRrA 1 55.03% 116.67% 1 17.24% 1 47.86% 1 4.55%
TableLlama[2023b)| 6.47 63.76 31.22 46.26 38.12
Tuned LLM SFT 62.73 54.80 43.28 79.86 37.37
(SFT) TAMO} .y 71.60 63.89 45.81 85.90 39.01
Aspr 114.14% 116.59% 15.85% 1 7.56% 14.39%
GPT-3.5 41.93 43.62* 53.13* 41.91* 26.49*
GPT-4 51.40 48.40* 68.40* 47.60* 21.70*
Others GPT-4.1 60.33 60.54 68.14 71.21 36.75
DeepSeek-R1 57.47 63.89 75.76 71.91 13.10
Specialist SOTA . 64.71[2023b)  69.10[2024] 92.07(2022]  40.50[2024]

Table 2: Results on our table structure understanding dataset StructQA and four table reasoning
benchmarks. TAMO adds additional table modality information compared to the pure text baseline.
Specialist SOTA refers to methods that design models and training tasks specifically for each dataset.
“*” indicates data sourced from Zhang et al.| [2023b]]. The first best result for each task is highlighted
in bold and the second best result is highlighted with an underline.

3.3 Main Results

Main results are exhibited in Table[2] we conclude that:(i)- Explicitly inputting the table modality
significantly enhances LLM’s performance in various table reasoning tasks; (ii)-TAMO significantly
outperforms the SFT models that rely solely on the text modality; (ii1)-TAMO is competitive with
specialist SOTA methods, highlighting the utility of using hypergraphs to model complex table
structure relationships.

Across all datasets, TAMO achieves substantial improvements in both frozen and tuned LLM settings.
For example, TAMO shows an average improvement of +42.65% over inputting pure text modality
on the frozen LLM setting, with a maximum improvement of +86.06 % on the HiTab dataset. In the
tuned LLM setting, both TAMO} ., and TAMO, . show substantial improvements, outperforming
the pure text modality by an average of +28.27% and +9.71%, respectively. Meanwhile, TAMOgCFT
achieves SOTA performance across all tasks under our settings and TAMOEO Rra Secures a close
second on 3 out of 5 datasets . This reveals that TAMO provides LLMs with more comprehensive
table embeddings that remains unattainable through text sequences regardless of training setting.

The Llama2-7B based TAMO}'FT achieves closed SOTA performance on HiTab, FetaQA, and
WikiSQL, where HiTab is a complex hierarchical table dataset. This indicates that hypergraph-
enhanced table encoder can effectively learn complex hierarchical relationships within tables, thus
further improving the model’s accuracy in table reasoning tasks. Although slightly behind the
specialist SOTA methods on the other datasets, it’s worth noting that they all utilized dataset-specific
model architectures, training methods, or other enhancement tricks. Additionally, TAMO‘EO na and
TAMOY, .- consistently surpass GPT-3.5 and GPT-4 on 4 out of 5 datasets. For example, TAMOZ .,
achieves an average improvement of over +19.83 score compared to GPT-3.5. When compared
against the more recent powerful foundation models, GPT-4.1 and DeepSeek-R1, our 7B-parameter
TAMogFT demonstrates strong competitiveness, particularly on structure-centric benchmarks. As
shown in Table TAMOj{FT significantly outperforms both GPT-4.1 (71.60 vs 60.33) and DeepSeek-
R1 (71.60 vs 57.47) on StructQA, and notably surpasses them on WikiSQL (85.90 vs 71.21 and
71.91, respectively). While these larger models show stronger performance on knowledge-intensive
tasks like WikiTQ (e.g., DeepSeek-R1 achieves 75.76), the competitive results achieved by our
much smaller model underscore the effectiveness of the TAMO architecture in enhancing structural
reasoning capabilities.
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Figure 5: A real visualization case in the WikiSQL dataset results of attention weights from other
input tokens to the label answer cell ‘‘Canada’’. Intuitively, the darker the color, the more closely
the token is associated with ‘‘Canada’’. We observe that with the ¢‘[table_structure_token]”’
of TAMO, the LLM better focuses on information relevant to the correct answer, as indicated by the
darker background colors associated with those tokens.

3.4 Case Study

To further investigate the table encoder’s comprehension of tabular data, we conduct a visual analysis
of specific cases. Specifically, we visualize the attention importance of all input tokens for the correct
answer as perceived by the LLMs. During this process, we adopt the visualization method from the
PromptBench [Zhu et al.|[2023b], which uses the gradients of the input embeddings to estimate token
importance. We randomly select a sample from the WikiSQL test sets for visualization analysis,
where the base method (inference only) is incorrect but TAMO is correct.

As shown in Figure [5] we can find: (i)-TAMO thinks ‘‘Canada’’ (correct answer) and ‘US HL”’
(relevant contextual information) tokens are more important for the final answer, while the base
method largely ignores these crucial tokens. (ii)-TAMO shows a certain level of attention to
‘‘[table_structure_token]”’, and adding ‘‘[table_structure_token]’’ affects the impor-
tance distribution of other input tokens, prompting LLMs to focus more on tokens relevant to
the correct answer. We observed some error cases with the LoRA setting that resemble those shown
above. For example, when the correct answer is far from the question in the serialized input, TAMO
can utilize the overall table structure to locate the correct answer, compared to LoRA in text-only
mode, which primarily focuses on the content immediately before and after the question. This case
study indicates that the structural information learned from TAMO enhances LLMs’ reasoning
capabilities by optimizing attention relationships for key table information, thereby indicating
potential for mitigating hallucination phenomena.

3.5 Generalization to Structural Variations

Compared to image/text data, permutation invari-
ance—any permutation of the rows and columns
does not change the original interpretation of the ta-
ble—is a unique structural property of tabular data.
To further explore whether TAMO can effectively
perceive table structure information, we construct
experiments to assess its robustness regarding per-
mutation invariance. Specifically, we use the permu-
tation version test set by randomly shuffling the rows 0.001—,
and columns of tables in the StructQA test set (the &
training set is unchanged). In the frozen LLM setting,
we compare the performance of TAMO with pure
text modality methods (inference only & prompt tun-
ing) on the new test set and check the consistency
of answers after permutation. Results are shown in
Figure 2] and Figure[6] we find that for both frozen
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Figure 6: Evaluate the robustness of TAMO
to permutation invariance on the StructQA
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LLMs and tuned LLMs (LoRA and SFT), TAMO
consistently outperforms pure text modality methods.
Additionally, TAMO demonstrates the best robust-
ness in maintaining consistent results after permuta-

rows and columns in the StructQA test set.
Robustness: the proportion of samples that
remain consistent after random permutation.



tion. These indicate that TAMO can enable superior generalization of LLMs across diverse table
structural variations.

3.6 Generalizable Table Encoding Analysis

To further validate the table encoder’s effectiveness in learning table structure, we conduct a series of
additional experiments. Specifically, we propose a binary classification task to predict whether cells
belong to specific rows or columns. For this experiment, we use the WikiTQ [Pasupat and Liang,
20135 as base dataset, train all models for 50 epochs with a learning rate of 3e-4. Finally, we evaluate
them with F1 metric.

The results are shown in Table [3] Without table representation
learned from the encoder, a baseline MLP classifier only achieve

5.39% F1 score, while a randomly initialized table encoder with Settings ‘ F1 Score
MLP head reach 49.73%. Most notably, when using our pre- MLP head 5.39
trained table encoders from various datasets (StructQA, HiTab, + randomly enc. 49.73
WikiTQ, WikiSQL, and FetaQA) with an MLP classifier, all mod- -

els exceed 60% F1 score, with StructQA achieving the highest at - pr;:ttrrlzll::rtlgckenc. 71.32
71.32% . The superior performance on StructQA can be attributed HiTab 66.39
to its focused structural learning with minimal reasoning complex- WikiTQ 62.63
ity. These results, evaluated consistently on the WikiTQ test set, WikiSQL 68.00
demonstrate that TAMO’s hypergraph-based table embeddings FetaQA 64.99
effectively encode and generalize structural relationships across

different datasets. Table 3: Evaluation of table

Combined with the interpretability analysis in Section these Structure representations learned
findings suggest that table structure representations can enhance {rom encoders pretrained on dif-
LLMs’ understanding of table and answer localization capabili- ferent datasets, measured on the
ties during reasoning, aligning with observations from previous WikiTQ test set.

work [[Yang et al.| |2022]. Additional ablation studies are provided

in Appendix

4 Related Work

LLM-based Table Reasoning. Recent advances in Large Language Models (LLMs) have led to
their widespread adoption in tabular reasoning tasks [Zhang et al., [2024], establishing Tabular Large
Language Models as the dominant approach. These methods primarily follow two strategies: fine-
tuning on tabular data and prompt engineering. The fine-tuning approach enhances LLMs’ structured
data capabilities through supervised training on tables [Zhang et al.| [2023b, [Zhuang et al., 2024,
'Wu and Fengl [2024] |[Sarkar and Lausen, |[2023]], exemplified by TableLlama’s [Zhang et al., [2023b|]
generalist model trained on diverse real-world tables. Several recent parallel studies [Long et al.|
2025, Jin et al.| 2025, [Xu et al., 2025, Majee et al.l [2025]] have independently explored modeling
fine-grained table semantics (e.g., cell-level or column-level embeddings), typically in task-specific
contexts such as text-to-SQL or table type classification. However, these methods generally rely on
heavy pretraining or multi-stage training pipelines. In contrast, our method adopts a plug-and-play
design that provides global tabular representations and does not require any pretraining. A detailed
comparison is provided in Appendix The prompt engineering approach instead leverages
carefully crafted prompts to enhance LLMs’ reasoning over tables in specific scenarios [Ni et al.,
2023| [Wang et al.| |2024b, Jiang et al.,2023b} Zhang et al.|[2023b| |Cheng et al.| [2023]]. Representative
works include Dater [ Ye et al.| 2023]], which decomposes tables into subtables, and Chain-of-Table
[Wang et al.,[2024b]], which integrates chain-of-thought reasoning with programmatic methods.

Table Encoder. In recent years, numerous studies have explored effective methods for encoding
and understanding tabular data. TaBert [[Yin et al., [2020] adopts a dual-encoder framework that
separately processes textual and structural elements of tables, improving table comprehension through
masked language modeling. TabNet [Arik and Pfister, [2021]] utilizes a novel iterative masking
attention mechanism to select important features. HyTrel [Chen et al.l 2024] extends this concept by

7 Appendix presents the relatively low computational overhead introduced by the TAMO framework.
8 Appendix demonstrates the notable performance gain of TAMO in the multi-table QA setting.



using hyperedges to capture richer interactions among simple flat table cells, resulting in enhanced
representations for relational data. However, all these table encoders cannot handle joint text and
table understanding tasks like table question answering. They are primarily used to encode raw
tabular data into a low-dimensional vector space to get better table representation. As discussed in
Section([I] existing approaches often serialize tables into text, losing structural information. To address
this, we propose TAMO, a multimodal framework that integrates structural and textual semantics
into LLMs. TAMO is compatible with various table encoders; in this work, we use HyTrel for its
effectiveness. While above encoders focus on learning effective table representations, seminal works
such as TAPAS [Herzig et al., 2020] (BERT-based) and TAPEX [Liu et al., 2022] (BART-based)
successfully integrated structural awareness within the then-dominant encoder-only or encoder-
decoder language model frameworks. Our work, TAMO, differs by proposing a modality interface
specifically designed for integrating table structure into modern decoder-only LLMs. We provide
empirical comparisons against TAPAS and TAPEX on our StructQA benchmark in Appendix [C.5]
to highlight the advancements and specific challenges addressed within this newer architectural
paradigm.

5 Limitations

While TAMO enhances frozen-parameter LLMs’ table reasoning capabilities via hypergraph encoders
and learnable features, it has several limitations. First, it relies on pre-structured tables following the
TableQA paradigm [Pasupat and Liang), |2015]]; for tables embedded in unstructured text, existing
text-to-table techniques [Wu et al., 2022, Deng et al., [2024] are required as a preprocessing step.
Second, TAMO currently focuses on static table understanding in a single-turn setting. Extending it
to support dynamic multi-step reasoning, complex table editing, and multi-turn dialogue over tables
remains an open challenge. Third, we differentiate our work from layout-aware models such as
DocLLM [Wang et al. 20244, Liao et al.l2025]. These models are designed to understand tables
presented as images within documents, focusing on layout and OCR challenges. TAMO addresses
a different and complementary problem: reasoning over pre-structured tabular data. Fourth, our
experiments utilized a consistent serialization format. A systematic study of how different text
serialization templates (e.g., markdown vs. SQL-based) interact with our structural modality remains
an important direction for future work. Finally, extensive multimodal instruction data is required
to develop robust, out-of-the-box multimodal capabilities, which we leave for future work. These
limitations highlight the early stage of our research and the need for further exploration to fully
integrate table modalities with LLMs.

6 Conclusion

In this work, we introduced a novel framework, TAMO, which leverages a hypergraph-enhanced
table encoder to boost frozen-parameter LLMs’ generalization on tabular data. By adhering to
the principle of table structure permutation invariance, TAMO effectively encodes table structures
into LLM-comprehensible representations using learnable features. This enables the handling of
tasks involving both text and table understanding, such as table QA. Additionally, we presented
StructQA, a dataset focused on table structure understanding, and validated our framework’s efficacy
and versatility across four other public table QA benchmarks.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The claims in the abstract and introduction—namely the limitations of current
LLM:s in handling table structures and the proposal of TAMO as a multimodal solution—are
supported throughout the methodology and experimental results sections (Sections [2] and 3).
The claimed improvements and the StructQA benchmark are also thoroughly evaluated.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section [5]("Limitations") discusses several limitations, including dependency
on pre-structured tables, lack of support for multi-turn reasoning, and the need for extensive
instruction data for robust generalization.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theoretical theorems or proofs; instead, it
focuses on empirical and architectural contributions.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section [3]and Appendix [C]describe dataset details, hyperparameters, model
training setups, and evaluation metrics. We also release code and datasets at https!
//github.com/liyaocoi/TAMO.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and datasets are openly provided through an anonymous link included
in the paper: https://github.com/liyaooi/TAMO,

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [3.2] and Appendix [C| provide comprehensive details about training
setups, hardware used, optimizer settings, and dataset splits.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

15


https://github.com/liyaooi/TAMO
https://github.com/liyaooi/TAMO
https://github.com/liyaooi/TAMO

10.

11.

12.

13.

14.

Justification: Due to the high computational cost associated with large-scale experiments
involving LL.Ms, we did not conduct repeated runs to report error bars. However, we used
consistent random seeds and standardized settings across all experiments to ensure fairness
and comparability.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix [C.T|and [C.2]reports usage of NVIDIA A100-80G GPUs, batch size,
number of epochs, and training time per epoch, fulfilling reproducibility requirements.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research uses publicly available datasets and does not involve human
subjects or sensitive data, conforming to ethical standards.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section [T]and the conclusion discuss the benefits of enhancing LLMs’ capabil-
ity for structured data reasoning. Potential misuse is implicitly addressed by not releasing
any tuned LLM weights.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The released code are research-focused and the datasets used are publicly
available, posing no risk of misuse.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites all datasets and models used (e.g., Llama2, WikiTQ, WikiSQL,
etc.) with appropriate references and usage guidelines.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The StructQA benchmark is introduced and documented in Section [3.T]and
Appendix [A] with code and data made available for replication.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: The paper does not involve crowdsourcing or research with human participants.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research with human subjects was conducted.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We used LLMs (e.g., ChatGPT) only for minor language refinement during
manuscript preparation. No LLM was involved in the design, implementation, or evaluation
of the core methodology.
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A StructQA Dataset Details

As mentioned in Section@ we construct a table structure understanding dataset StructQA, which
has 5 types of table structure tasks. Here, we provide the construct details. Specifically, we randomly
select 500 tables from WikiTQ [Pasupat and Liang, |2015]], creating 3 question templates for each
table per task, resulting in 7500 question-answer pairs. We chose tables from WikiTQ as the source
for StructQA due to its large, diverse collection of high-quality, real-world tables. Crucially, these
tables are structurally simple for humans to understand. The fact that modern LLMs struggle with
these seemingly simple structures makes their failure more pronounced and powerfully demonstrates
the core problem we aim to solve. We split the data into training, validation, and test sets with a ratio
of 60%, 20%, and 20%, respectively. The question templates for each task are as follows:

(1) Cell location

e What is the value in the column {column name} of sample row {row number}?

e Can you tell me the value of the column {column name} in sample row {row number}?

e In sample row {row number}, what is the value for the column {column name}?

(2) Column lookup

e In sample row {row number}, which columns contain the value {cell value}?

e Can you identify the columns in sample row {row number} that have the value {cell value}?
e Which columns in sample row {row number} are associated with the value {cell value}?
(3) Row lookup

e Which rows in the column {column name} have a value of {cell value}?

e Can you identify the sample rows where the column {column name} equals {cell value}?
e In the column {column name}, which rows contain the value {cell value}?

(4) Column comprehension

e What are the distinct values in the column {column name}?
e Could you list the unique values present in the column {column name}?
e In the column {column name}, what various values can be found?

(5) Row comprehension

e What are the values of each cell in row {row number} of the sample?
e Could you provide the cell values for each column in sample row {row number}?

o In sample row {row number}, what are the respective cell values?

B Public Datasets Details

HiTab [Cheng et al.l 2022] is a table question answer dataset on hierarchical tables, which have
a multi-level structure in the table header. It comprises 10,672 questions over 3,597 hierarchical
tables. We use execution accuracy as the evaluation metric. Experiments on HiTab can effectively
demonstrate the superiority of hypergraphs in modeling arbitrary hierarchical tables.

WikiTableQuestions (WikiTQ) [Pasupat and Liang| [2015] is a large-scale dataset for complex question
answering over tables. It consists of 22,033 questions over 2,108 Wikipedia tables. The questions
often require complex reasoning and aggregation operations. The primary evaluation metric for
WikiTQ is the accuracy of the predicted answers compared to the ground truth.

WikiSQL [Zhong et al.} 2017] is a dataset designed for natural language to SQL query generation. It
contains 80,654 natural language questions paired with SQL queries and their corresponding answers
over 24,241 tables from Wikipedia. We use the execution accuracy (the correctness of the query
results) as the evaluation metric for WikiSQL.

18



FeTaQA [Nan et al.| [2022] is a free-form table question answering dataset that emphasizes generating
comprehensive, free-text answers. It comprises 10,279 questions over 3,641 tables, primarily sourced
from Wikipedia. BLEU metric [Papineni et al.l |2002] is recommended officially to evaluate the
similarity between generated and reference answers.

C Experiments

C.1 Implementation Settings

Experiments are conducted using 2 NVIDIA A100-80G GPUs. All experiments are conducted using
the same set of random seeds for reproducibility.

The table encoder. We set the hidden dimension of the table encoder
to 768 and use a 3-layer hypergraph transformer to model global
table structure. To initialize each cell’s semantic representation 0.6
before hypergraph construction, we adopt the embedding of “‘[CLS]*’
token output from the pretrained RoBERTa-base model applied to
the cell’s textual content. The alignment projector is implemented
as a single-layer MLP, which maps the encoder outputs to the LLM
embedding space.

LLMs. We use the open-sourced Llama2-7tﬂ as the LLM backbone.
In fine-tuning the LLM with LoRA, the lora_r parameter (dimension
for LoRA update matrices) is set to 8, and the lora_alpha (scaling F O N0

factor) is set to 16. The dropout rate is set to 0.05. In prompt tuning, N

the LLM is configured with 8 virtual tokens. The number of max

text length is 1024. The number of max new tokens, the maximum Figure 7: Training time effi-
number of tokens to generate, is 128. We use Mistral-7 for some ciency comparison under dif-
experiments. ferent settings for 1 epoch on
WikiTQ dataset.

0.4+

Hour

0.2

0.0 T T T T T T

Optimization. We use the AdamW optimizer. We set the initial
learning rate at 1e-5, with a weight decay of 0.05. The learning rate
decays with a half-cycle cosine decay after the warm-up period. The
batch size is 8, and the number of epochs is 10. To prevent overfitting and ensure training efficiency,
an early stopping mechanism is implemented with a patience setting of 3 epochs.

C.2 Efficiency Analysis of TAMO

To further demonstrate the practicality of TAMO, we evaluate
its operational efficiency. In our experiments, we utilize a server e Liama27B = Mistral-7B
equipped with 2 A100 GPUs. Only SFT uses 2 GPUs while con-
ducting all other experimental setups with single GPU training.

We measure the time required to run 1 epoch on the WikiTQ %1 _ . . . =
dataset. The results are shown in Figure [7] We found that 5 os
(i)-TAMO has a faster runtime efficiency compared to LoRA; < ] ==+ >

(ii)-TAMO} ., shows only a slight increase in runtime com-
pared to LoRA, as does TAMOEr pp compared to SFT. There-
fore, injecting learnable table features does not significantly Number of tokens
add to the computational burden in practical applications.

We clarify that our “cost-effective” claim is relative to the Figure 8: Analysis study of differ-
computational cost of fine-tuning the whole LLM itself. As ent numbers of table structure to-
shown in Figure[7, TAMO (in the frozen LLM setting) requires  kens on the WikiTQ dataset.
significantly less training time than LoRA or full SFT, as we

only train the lightweight table encoder and alignment projector.

‘https://huggingface.co/meta-1lama/Llama-2-7b-hf
""https://huggingface.co/mistralai/Mistral-7B-v0.1
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C.3 Ablation of Table Token Number Parameter

We further explore the impact of the table structure token quantity parameter on the model’s per-
formance. Specifically, in the frozen LLM setting, we evaluate TAMO on the WikiTQ dataset with
varying numbers of table structure tokens. Due to limited computational resources, we randomly
select 6000 samples from the WikiTQ training set for the experiments, keeping the validation and test
sets unchanged. The experimental results are shown in Figure 8] The final performance of the model
is consistently similar when the number of tokens is two or more {2, 3,5, 7,9}, which indicates that
a minimum of one token is sufficient to explain the structural information in the table.

C.4 Ablation Study on Modality Components

To rigorously assess the contribution of each input modality in TAMO, as discussed in Section [2.3]
we conducted an ablation study comparing three configurations: (1) Graph-only, using only the
structural embeddings X ;; (2) Text-only, using only the serialized text Xy;; and (3) TAMO, our full
multimodal approach combining both X, and X;,. We evaluated these across all tuning settings (PT,
LoRA, SFT) on the StructQA benchmark.

The results are presented in Table [d] The Graph-only pipeline consistently fails on this generative
QA task (e.g., accuracy below 8% across settings), confirming that structural information alone
is insufficient without semantic grounding. The 7ext-only model performs substantially better but
exhibits lower accuracy and robustness compared to the full model, especially in parameter-efficient
settings (PT, LoRA). Only the complete TAMO framework achieves the highest performance and
robustness, empirically validating the synergistic necessity of combining both structural and textual
modalities.

Tuning Modality StructQA  Permute  Robustness
Graph-only 7.00 7.13 14.60
PT Text-only 37.80 29.93 31.07
TAMO (Both) 59.07 43.47 43.80
Graph-only 7.93 7.00 14.80
LoRA  Text-only 45.93 35.87 39.67
TAMO (Both) 67.67 42.77 53.73
Graph-only 6.93 6.33 16.53
SFT Text-only 62.00 42.86 51.53
TAMO (Both) 69.40 43.74 64.07

Table 4: Ablation on Modality Components (StructQA - Accuracy / Permutation Acc. / Robustness)

C.5 Comparison with Structure-Aware Baselines (TAPAS/TAPEX)

To further situate TAMO relative to prior paradigms focused on table encoding, we conducted a direct
comparison against established structure-aware encoder models, TAPAS [Herzig et al., 2020] and
TAPEX [Liu et al.,[2022]], on our StructQA benchmark (Table E]) TAMO dramatically outperforms
these baselines on the core structural understanding tasks (StructQA and Permutation Accuracy),
showcasing the advancements achieved by integrating structural information directly into modern
LLMs.

We observe that while TAPAS and TAPEX show higher robustness scores, this is largely an artifact
of their very low base accuracy (e.g., 4.67% for TAPAS). It is easier to maintain consistency when
a model is consistently incorrect. TAMO’s performance demonstrates a far superior grasp of table
structure.

C.6 Evaluation of Cross-Dataset Generalization of TAMO

In Table @ we demonstrated that TAMO, when trained individually on each dataset, achieves
significant improvements on the corresponding test sets. This raised the question of whether TAMO’s
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Model StructQA (Acc.) Permute (Acc.) Robustness

TAPAS 4.67 4.67 65.47
TAPEX 12.33 9.60 54.73
TAMo (PT) 59.07 43.47 43.80

Table 5: Comparison with TAPAS/TAPEX on StructQA

table structure embeddings are generalizable to other datasets. To address this, we evaluated TAMO
models trained on one dataset against the test sets of other datasets, as shown in Table @

Theoretically, TAMO’s table structure embeddings are designed to model general table structures.
However, the training process also relies on task-specific instruction data, and the loss for learning
table structure representations is tied to QA objectives. This means the table embeddings can be
influenced by the types of instructions used during training, introducing task-specific biases. For
example, embeddings trained on StructQA, which involves simpler table structures, tend to perform
well on structural recognition tasks but lack the complexity required for reasoning-heavy tasks like
WikiTQ. Consequently, while table structure embeddings trained on individual tasks consistently
outperform baselines without structure embeddings, they fall short of matching the performance
of embeddings trained directly on the target task. We also observed that datasets with significant
differences, such as FetaQA—which uses BLEU as an evaluation metric for free-text answers—show
limited cross-dataset transferability. The model trained on FetaQA fail to provide improvements
on other datasets, and vice versa. However, for QA datasets with similar formats and objectives,
such as WikiTQ and WikiSQL, we observed some degree of transferability, suggesting that TAMO
can leverage shared patterns among related tasks. These observations are consistent with findings
in TableLlama [Zhang et al., |2023b]], where differences in task formats and reasoning complexity
limited cross-task generalization.

Evaluation Dataset | StructQA HiTab WikiTQ  WikiSQL FetaQA

Metric Accuracy Accuracy Accuracy Accuracy BLEU

Base \ 8.60 7.77 14.50 21.44 20.08
StructQA 59.07 16.73 18.74 32.57 8.38
HiTab 17.53 48.86 27.46 38.83 1.78
WikiTQ 16.40 29.29 37.06 38.74 0.95
WikiSQL 18.73 24.43 23.85 76.45 1.18

FetaQA 0.00 0.00 0.02 0.00 36.52

Table 6: Generalization results of each TAMO separately trained on different dataset.

To isolate the effect of table structure representations from task-specific biases, we conducted
additional experiments focusing solely on table structure prediction tasks. As shown in Table |3} table
encoder trained on one dataset achieved F1 scores above 60% on structure prediction tasks from the
other dataset. This demonstrates that TAMO’s table encoder captures a unified representation of table
structures and validates the generalizability of our approach.

A key factor is the absence of large-scale, task-agnostic pretraining for TAMO’s table encoder.
Similar to how CLIP [Radford et al.l |2021]] decouples modality-specific representations through
extensive pretraining, a dedicated pretraining phase for TAMO’s table encoder—focusing purely on
table-related structural information—could mitigate task-specific biases. This remains an important
direction for future work to enhance generalization across domains and datasets.

C.7 Effectiveness on Multiple-Table Scenarios

To validate TAMO in multiple-table scenarios, we have conducted additional experiments on the
MultiTabQA-geoQuery [[Pal et al.,|2023]] dataset. This dataset involves multiple-table queries with
total token lengths reaching up to 4K, relatively larger than current TableQA benchmarks. Specifically,
we evaluated its cell selection task using precision, recall, and F1 score as metrics. Due to the
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Setting Method | Precision Recall F1 score
Inference Only | One-shot |  9.68 5.96 7.38
Prompt tuning 4.83 3.46 4.03
Frozen LLM TAMO 6.82 4.86 5.67
A Prompt tuning | 141.20% 1 40.46% 140.69%
LoRA 30.56 10.30 15.41
T LLM
“(“LGSR A TAMO7, . , 28.32 10.67 15.50
ALoRA 1+ -733% 135%% 10.58%
SFT 30.55 11.04 16.22
Tuned LLM
“‘E‘;FT) TAMO 49.36 25.46 33.59
Agpr +61.57% 1130.62% 1 107.09%

Table 7: Effectiveness on MultiTabQA-geoQuery.

unique output format requirements of this task, we adopted a one-shot setting across the following
experiments while keeping other parameters unchanged. As shown in Table [/, TAMO achieves over
40% and 100% improvements under frozen LLM and SFT LLM settings, respectively, demonstrating
its effectiveness in multi-table scenarios. While TAMO shows only marginal advantages in the LoRA
setting, we will investigate the detailed configurations in future work.

C.8 Effectiveness for Different LLMs

In our previous experiments, we choose Llama2-7B as the baseline for a fair comparison with prior
works. However, it is undeniable that, as a new modality, TAMO should theoretically enhance the
performance of various LLMs. In this section, we examine the issue of the baseline. Briefly, we
introduce three advanced baselines—TableLlama [Zhang et al., 2023b]], Mistral-7B, and LLaMA 3.1
8B—and conducted experiments under the frozen LLM setting.

Table [§] and Table 9] demonstrate that: (i)-The minimal gap (0.0016 acc.) between the base and
prompt tuning on TableLlama indicates that the supervised fine-tuned LLMs already possess a strong
capability to follow tabular format instructions. Consequently, prompt tuning has a limited effect.
However, incorporating global table structure information through TAMO further enhances table
reasoning capabilities. (ii)-The ultimate performance of TAMO is influenced by the capability of
the LLMs. For instance, Llama3 shows significantly better performance than TableLlama (based on
Llama2). (iii)-while LLaMA 3.1 8B achieves a stronger baseline than LLaMA 2 7B, adding the table
encoder consistently improved performance, with gains reaching over 10% on certain datasets. This
further validates the unique benefits of hypergraph-based structural representation of tables across
more advanced open-source LLMs.

Method ‘ Llama2  TableLlama  Mistral
Inference Only (Base) ‘ 14.50 31.22 18.44
Prompt tuning 29.86 31.38 44.98
TAMO 37.06 39.85 47.33

T 124.11%  126.99%  15.22%

Table 8: Evaluate the scalability for different LLMs of our proposed TAMO on the frozen LLM
setting (prompt tuning) on the WikiTQ dataset.
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Dataset StructQA HiTab WikiTQ  WikiSQL FetaQA
Setting Task Type Structural QA Hierarchical QA Table QA Table QA Free-form QA
Evaluation Metric Accuracy Accuracy Accuracy  Accuracy BLEU
Inference Only |  Llama 3.1 8B 15.73 19.51 23.80 31.60 14.05
Prompt tuning 71.53 69.38 53.71 77.06 36.16
Frozen LLM TAMoO 78.00 73.73 56.93 85.44 38.09
Apromptituning 19.05% 16.27% 16.00% 110.87% 15.34%

Table 9: Results on advanced LLM.

D Discussions

D.1 Positioning of TAMO

While both HyTrel [[Chen et al.|,|2024]] and TAMO adopt a hypergraph-based framework, there are
significant distinctions. HyTrel focuses on general tabular representation learning and, as stated in its
limitations, cannot handle joint text-table reasoning tasks like TableQA. In contrast, it is non-trivial for
TAMO to pioneer treating tables as an independent modality within LLMs, aligning hypergraph-based
table representations with text representations to tackle complex reasoning tasks.

This distinction parallels advancements in other domains. For example, in vision, ViT [Dosovitskiy
et al., [2020] and CLIP [Radford et al., 2021]] act as modality encoders, while GPT-4v [[OpenAl,
2023]] and LLaVA [Liu et al., [2023] integrate these encodings into multimodal frameworks. In the
audio domain, there is a similar phenomenon, as shown in Table For the first time, TAMO fills
this gap in the table domain, going beyond a table encoder to a multimodal reasoning framework.
This cross-modal fusion makes TAMO a significant advancement, not an incremental improvement.
Notably, while TAMO and HyTrel share a similar network architecture, their training tasks and
optimization objectives are entirely different, further underscoring the contribution of our approach.

Domain | Modality Encoder | Multimodal LLMs

Vision Domain ‘ ViT [2020], CLIP [2021] ‘ GPT-4v [2023], LLaVA [2023], MiniGPT-4 [2023a]
Audio Domain \ Whisper [2023] \ SpeechGPT [2023a], AudioPalLM [2023]

Table Domain | HyTrel [2024] | TAMO (Ours)

Modality alignment with LLMs
to obtain corresponding
domain-specific multimodal models

Encoding domain-

Role specific data

Ability for Generative
Tasks (e.g., QA)

No ‘ Yes

Table 10: Positioning of TAMO in the table domain.

D.2 Comparison with Potential Approaches

We acknowledge that there are several alternative approaches to incorporating table structure into
LLM-based models. These include: (1) using 2D positional embeddings to capture row and column
information, (2) data augmentation techniques to enforce permutation invariance, and (3) injecting
fine-grained structural representations tailored to specific downstream tasks. Below, we discuss the
applicability and limitations of these strategies in contrast to our proposed approach.

Using 2D positional embeddings to capture row and column information. Using 2D positional
embeddings is indeed a natural approach, as it captures row and column information directly. However,
implementing this method often requires intrusive modifications to the position encoding layer of
LLMs (e.g., as in TableFormer [ Yang et al.,|2022]]), demanding extensive re-training of these position
encodings. Such re-training is highly dependent on specific LLM architectures, and the learned
modifications are not theoretically transferable to other LLMs. In contrast, our proposed table encoder
is designed to operate as an external plugin of tabular modality, minimizing modifications to the
LLM itself.
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Data augmentation techniques to enforce permutation invariance. While data augmentation
techniques to enforce permutation invariance are intuitive, they present practical challenges. For
tables with dimensions n X m, the number of possible permutations grows factorially as n! x m/!.
Training on such a large augmented dataset is computationally prohibitive, and the resulting models
are prone to overfitting due to the enormous training data requirements. TAMO is designed to be
data-efficient, achieving structural permutation invariance without relying on large-scale data
augmentation.

Injecting task-specific fine-grained structural representations. Several recent parallel studies
have proposed injecting fine-grained table semantics into LL.Ms for specific structured reasoning
tasks. For example, TNT [Long et al., 2025] targets the TEXT-TO-SQL task and models the database
schema using column embeddings, enabling the LLM to generate accurate SQL queries. However,
it ignores row-level semantics, making it less suitable for tasks like TABLEQA. HeGTa [Jin et al.|
2025]] adopts a heterogeneous graph encoder to capture rich structural features in complex tables
(e.g., merged cells), but its graph encoding depends on the original table layout and lacks permutation
invariance, making it sensitive to row/column reordering. Recent LLaSA [Xu et al., 2025]] introduces
a parameter-heavy G-Former module to unify various structured data formats (e.g., knowledge graphs,
databases), yet it is primarily tailored for clean, schematic data and struggles with the irregular
formats in real-world tables such as HiTab. Moreover, these methods all require extensive pretraining.
In contrast, our proposed TAMO framework is designed to be pretraining-free and plug-and-play,
requiring only task-level training data for effective adaptation.

D.3 Beyond Row and Column Permutations

While row and column permutations are the most prominent cases in tabular data, other forms of
order permutations can arise in more complex table structures. These include:

Nested Table Structures. In hierarchical or grouped tables, sub-tables are often nested within a
broader table structure. Permutations can occur within these nested sub-tables, reflecting changes in
the ordering of hierarchical levels. Such structures are common in multi-level reports and datasets
with grouped summaries.

Composite Attributes. Tables may contain multi-column attributes where relationships or depen-
dencies exist between columns. For instance, in a table representing geographic data, attributes such
as latitude and longitude might form a composite structure. Permutations within such attributes could
represent alternative orderings of these dependent fields, requiring specialized handling to maintain
semantic coherence.

Cell-Level Permutations. In some cases, individual cells may contain structured or semi-structured
data, such as lists, arrays, or key-value pairs. Order changes within these cell values represent another
form of permutation, particularly relevant in domains where embedded structured data is prevalent
(e.g., JISON-like entries or lists of items within a cell).

While these forms of permutations are significant in certain contexts, they are most commonly
observed in complex hierarchical datasets, such as HiTab [[Cheng et al.| [2022]. In this study, we
focus primarily on flat table structures from mainstream TableQA datasets, where row and column
permutations are the predominant concerns. Addressing these additional forms of permutation is
an important direction for future work, particularly for datasets with more complex organizational
patterns.
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