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Abstract
Large Language Models (LLMs) have shown strong performance
on text-attributed graphs (TAGs) due to their superior semantic
understanding ability on textual node features. However, their ef-
fectiveness in the semi-supervised setting, where labeled nodes are
rather limited, remains constrained since fine-tuning LLMs usually
requires sufficient labeled data, especially when the TAG shows
complex structural patterns. In essence, this paper targets two key
challenges: (i) the difficulty of generating reliable pseudo labels on
TAGs for LLMs, and (ii) the need to mitigate potential label noise
when fine-tuning LLMs with pseudo labels. To counter the chal-
lenges, we propose a new framework, GNN-as-Judge, which can
unleash the power of LLMs for semi-supervised learning on TAGs
by incorporating the structural inductive bias of Graph Neural Net-
works (GNNs). Specifically, GNN-as-Judge introduces a collabora-
tive pseudo-labeling strategy that exploits both the agreement and
disagreement between LLMs and GNNs, and a weakly-supervised
LLM fine-tuning algorithm that can distill the knowledge from in-
formative pseudo labels while mitigating the potential label noise.
Experiments on different TAG datasets demonstrate that GNN-as-
Judge significantly outperforms existing methods, especially under
low-resource regimes.

CCS Concepts
• Computing methodologies→Artificial intelligence; •Math-
ematics of computing→ Graph algorithms.

Keywords
Semi-supervised Learning, Graph Neural Networks, Large Lan-
guage Models

ACM Reference Format:
Ruiyao Xu and Kaize Ding. 2025. GNN-as-Judge: Unleashing the Power of
LLMs for Graph Semi-Supervised Learning with GNN Feedback. In Pro-
ceedings of Machine Learning on Graphs in the Era of Generative Artificial
Intelligence (MLoG-GenAI@KDD ’25). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MLoG-GenAI@KDD ’25, Toronto, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/10.1145/XXXXXXX.XXXXXXX

1 Introduction
Text-Attributed Graphs (TAGs), where nodes correspond to text
documents and edges represent their relationships, are pervasive
across various applications such as citation networks, social media
platforms, and e-commerce ecosystems [7, 21, 52]. Unlike conven-
tional attributed graphs, TAGs encode raw textual contents rather
than numerical values, which requires more dedicated mechanisms
to effectively capture semantic information while preserving struc-
tural relationships. Recent advances in Large Language Models
(LLMs) have shown exceptional capabilities in text understanding
[6, 12, 35], driving growing interest in leveraging their exceptional
text understanding capabilities to address TAG-related tasks [9, 52].

It is noteworthy that current research of LLMs for node classifi-
cation on TAGs primarily focuses on the supervised setting where
abundant labeled data is accessible, mainly due to the reason that
fine-tuning LLMs on TAGs requires sufficient supervision signals
to align the graph and text token spaces [8, 47, 56]. However, real-
world graphs are usually sparsely labeled, directly applying existing
methods to such semi-supervised setting will easily lead to overfit-
ting and poor generalization [47, 52, 56]. Although one can leverage
pseudo-labeling techniques to augment the limited labeled training
data with unlabeled data [29, 41], it remains unclear how to solve
the following two critical challenges in LLMs for semi-supervised
node classification on TAGs:
• C1: How to go beyond the knowledge of LLMs and obtain reliable
pseudo-labeled data? Since LLMs are inherently difficult to inter-
pret complex graph structural patterns [17, 24], solely relying on
LLMs with no structural inductive bias to generate pseudo labels
is less desirable. Although text-based serialization methods try to
encode structural context into the prompts, those methods could
still struggle with self-generated pseudo labels due to the hallu-
cination and self-bias of LLMs [9, 14, 31, 32]. Generating reliable
pseudo-labeled examples that encode not only textual but also
structural inductive bias is therefore crucial for enabling LLMs
to transcend their inherent knowledge limitations on graphs.
• C2: How to extract the knowledge from pseudo-labeled data while
mitigating the potential label noise during LLM fine-tuning? De-
spite pseudo-labeling showing its empirical effectiveness in many
fields, the potential label noise has been a longstanding prob-
lem. Especially for those “hard” pseudo-labeled examples that
are more valuable for training the model, they could also bring
more label noise if the labels are incorrect. Simply performing
LLM supervised fine-tuning with the noisy pseudo labels can lead
to performance degradation [10, 26, 45], which necessitates the
need to develop a new learning algorithm that can effectively dis-
till the knowledge and mitigate the label noise when fine-tuning
with pseudo-labeled data.
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In this paper, we propose GNN-as-Judge, a novel framework that
fine-tunes LLMs on sparsely labeled graphs using feedback from
GNNs. Instead of mining the easy and hard pseudo-labeled nodes
solely based on LLM confidence, at its core, a GNN with structural
inductive bias acts as a judge to provide additional guidance for
LLM to generate reliable pseudo-labels. GNN-as-Judge strategically
leverages both agreement and disagreement between GNN and
LLM as signals to identify not only “easy”, but more remarkably,
“hard” pseudo labels that LLMs are more likely to make mistakes. To
further mitigate the potential label noise, especially in the harder ex-
amples, we develop aweakly-supervised LLMfine-tuning algorithm
that jointly performs fine-tuning on the two selected pseudo-labeled
node sets. Specifically, in addition to applying supervised LLM in-
struction tuning on the agreement (easy) node set, we propose to
conduct preference tuning on the disagreement (hard) node set,
which allows LLM to learn relative preferences between predictions
from the two models. In this manner, LLM can effectively leverage
additional supervision signals that encode structural inductive bi-
ases from GNNwhile circumventing overfitting to incorrect pseudo
labels. To summarize, our contributions are mainly three-folds:
• We study the problem of LLMs for graph semi-supervised learn-
ing, a fundamental but underexplored research problem, where
the key challenges lie in selecting reliable pseudo labels and
mitigating label noise during fine-tuning.
• We propose GNN-as-Judge, a novel framework that positions
GNNs as judges to select reliable pseudo labels for fine-tuning
LLMs.GNN-as-Judge is also equippedwith a newweakly-supervised
fine-tuning algorithm that can further mitigate label noise during
LLM fine-tuning.
• We conduct comprehensive experiments on different TAGdatasets
with various scales. Results demonstrate that GNN-as-Judge sig-
nificantly outperforms both traditional GNN-based approaches
and other LLM-based baselines, especially in extreme low-resource
scenarios.

2 Preliminaries and Related Work
Text-Attributed Graphs. A text-attributed graph is defined as
G = (V, E,A,X), where V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } denotes the set of
nodes and E ⊆ V × V the set of edges. The adjacency matrix
A ∈ R𝑁×𝑁 encodes the graph structure, with A𝑖 𝑗 = 1 indicating
the presence of an edge between nodes 𝑣𝑖 and 𝑣 𝑗 . Each node 𝑣𝑖 is
associated with a feature vector x𝑖 ∈ R𝐹 , typically derived from
unstructured text such as descriptions, documents, or user profiles.
The node features for all nodes collectively form a feature matrix
X ∈ R𝑁×𝐹 , which provides rich semantic information for down-
stream tasks.

LLMs for Graph Learning. Recent research has extensively ex-
plored applying LLMs to TAG-based tasks, yielding significant
advancements in feature encoding, node classification, and link
prediction [8, 9, 22, 47, 52, 56]. A predominant approach in this
domain focuses on transforming graph structures and their asso-
ciated textual attributes into carefully designed prompts, thereby
enabling LLMs to leverage their language understanding and gen-
eration capabilities to serve as a direct predictor for TAG-related
tasks [8, 9, 47].

In this paper, we focus on node classifiction which serves as the
fundamental task of graph semi-supervised learning. LLM-based
node classification is framed as a text-conditioned prediction prob-
lem. For each node 𝑣𝑖 ∈ 𝑉 , a prompt P(𝑣𝑖 ) is constructed using its
textual attribute x𝑖 , and optionally additional structural informa-
tion such as neighbor features {x𝑗 : 𝑣 𝑗 ∈ N (𝑣𝑖 )}. A language model
M𝜃 processes the prompt and outputs a predicted class label:

𝑦𝑖 =M𝜃 (P(𝑣𝑖 )),

where 𝑦𝑖 ∈ {1, . . . ,𝐶} and 𝐶 is the number of classes. Depending
on the setup,M𝜃 may operate in zero-shot, few-shot, or fine-tuned
mode using prompt-label pairs {(P(𝑣𝑖 ), 𝑦𝑖 )}𝑣𝑖 ∈𝑉train . For instance,
LLaGA [8] introduces a template-based methodology that encodes
graph structures into textual prompt and subsequently trains a
specialized projector for improved graph structure comprehension.

It is worth mentioning that while these approaches have demon-
strated impressive performance by leveraging the language un-
derstanding capabilities of LLMs, they rely heavily on sufficient
amounts of labeled data to perform instruction tuning on LLMs
or train potential graph-text projectors for aligning between the
graph and the semantic token space. Therefore, the application of
LLMs for graph semi-supervised learning, where labeled data is
scarce, remains largely unexplored despite its practical importance.

Pseudo Label Selection. In semi-supervised learning (SSL), pseudo-
labeling [29, 43] serves as an effective solution by augmenting lim-
ited labeled datasets with generated labels for unlabeled data. To
mitigate the potential label noise, previous research usually lever-
ages model’s confidence to select “easy” samples that are considered
to be clean [28, 33]. Recent research, however, argues that there
is little information to gain with these “easy” examples [36] and
merely relying on high-confidence examples may make the model
self-biased [31, 41]. Consequently, current research emphasizes
the importance of mining both “easy” and “hard” samples during
training to maximize model performance [31, 36, 44]. Nevertheless,
identifying the “easiness” or “hardness” of samples is often non-
trivial, especially for LLMs.

Large Language Models Preference Alignment. Preference
alignment refers to the process of aligning the outputs of language
models with human preferences, often focusing on safety, helpful-
ness, and factuality [2, 38]. Reinforcement Learning from Human
Feedback (RLHF) [30, 46] is a prevalent method for aligning LMs
with human preferences. The RLHF pipeline typically involves col-
lecting human preference data, training a reward model, and using
reinforcement learning to optimize the language model against this
reward function [4, 11].

While RLHF has proven effective, its reliance on a separate re-
ward model introduces computational and methodological complex-
ities. To address these challenges, Direct Preference Optimization
(DPO) [40] has emerged as a more efficient alternative, eliminating
the need for an explicit reward model by directly optimizing prefer-
ence probabilities. Several extensions and refinements of DPO have
since been proposed. For instance, KTO [13] incorporates insights
from prospect theory to enhance preference learning. Other vari-
ants, such as GPO [57], ΨPO [3], and ODPO [1], further improve
or generalize DPO in different theoretical and practical aspects.
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Figure 1: Framework of GNN-as-Judge for semi-supervised node classification on TAGs.

Recent advancements, including ORPO [19] and SimPO [34], sim-
plify the alignment pipeline by removing the need for a reference
model while maintaining competitive performance. Despite these
advancements, the application and adaptation of preference align-
ment techniques to structured tasks such as graph-based learning
remain underexplored.

3 Proposed Approach
In this section, we propose an LLM-GNN pseudo co-labeling frame-
work GNN-as-Judge that addresses LLM pseudo-labeling challenges
through two core designs as shown in Figure 1: (i) a collaborative
pseudo label selection mechanism that leverages GNN as comple-
mentary signal sources for LLM to generate high-quality pseudo
labels, and (ii) a weakly-supervised fine-tuning algorithm that mit-
igates label noise when fine-tuning LLM with generated pseudo
labels.

3.1 GNN-as-Judge for LLM Pseudo Labeling on
Graphs

To break the bottleneck of using LLM-generated pseudo labels, our
approach tries to mine “easy” and “hard” pseudo labels based on
the agreement and disagreement between LLM and GNN, in or-
der to provide reliable pseudo labels for fine-tuning the LLMs. We
use complementary strengths of two distinct models: a structure-
aware GNNMGNN and a text-centric LLMMLLM, both trained on
the labeled set 𝑉𝐿 . For each unlabeled node 𝑣𝑖 ∈ 𝑉𝑈 , we generate
two pseudo labels using both models:𝑦GNN

𝑖
= argmax𝑗 𝑀𝜃

GNN (𝑥𝑖 ) 𝑗
from the GNN, and𝑦LLM

𝑖
= Parse(MLLM (𝑥𝑖 )) from the LLM. Based

on prediction agreement, we partition the unlabeled set into two
disjoint subsets: the agreement node set Vagreed = {𝑣𝑖 ∈ 𝑉𝑈 |
𝑦GNN
𝑖

= 𝑦LLM
𝑖
} contains “easy” samples and the disagreement node

set Vdisagreed = {𝑣𝑖 ∈ 𝑉𝑈 | 𝑦GNN𝑖
≠ 𝑦LLM

𝑖
} represents “hard” sam-

ples. To improve the reliability of the pseudo-labeled nodes, we

further refine those two node sets based on GNN feedback as fol-
lows.

Agreement Node Set Selection with GNN Feedback. While we
assume that nodes in agreement set are more likely to have correct
pseudo labels as agreement between models with distinct inductive
biases suggests higher label reliability, potential noisy labels may
still exist within the agreement node set and need further refine-
ment. In semi-supervised learning (SSL), prediction confidence is
often used as an indicator of a model’s certainty in its own outputs
[29, 43]. However, directly estimating the confidence of LLM pre-
dictions is computationally expensive and prone to be self-biased
[45, 53]. To address these challenges, we treat the GNN as an pseudo
label judge and further refine the agreement node setVagreed into
a high-quality, diverse subsetV′agreed based on GNN confidence.
Class-dependent Confidence-Based Selection. We first apply a confi-
dence-based filtering to eliminate potentially unreliable pseudo-
labels. For each node 𝑣𝑖 ∈ Vagreed, we quantify the GNN’s certainty
using its maximum softmax probability assigned to the agreed-upon
class 𝑐 = 𝑦GNN

𝑖
:

𝐶GNN (𝑣𝑖 ) = 𝑃GNN (𝑐 |𝑣𝑖 ) = max
𝑗∈{1,...,𝐾 }

𝑃GNN ( 𝑗 |𝑣𝑖 ), (1)

where 𝑃GNN ( 𝑗 |𝑣𝑖 ) denotes the probability assigned by the GNN to
class 𝑗 for node 𝑣𝑖 . We define a confidence threshold 𝜏conf and retain
only the nodes satisfying 𝐶GNN (𝑣𝑖 ) ≥ 𝜏conf, forming a filtered set:
Vfiltered = {𝑣𝑖 ∈ Vagreed | 𝐶GNN (𝑣𝑖 ) ≥ 𝜏conf}. This ensures that
all candidate pseudo-labels meet a minimum reliability standard
according to the GNN.

Although confidence filtering improves overall label quality, it
may inadvertently create class imbalance by excluding more sam-
ples from classes that inherently yield lower confidence scores. To
preserve class diversity and avoid selection bias toward classes with
inherently higher confidence values, we further implement class-
aware selection within each class. Specifically, we partition the
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filtered set by predicted class as 𝑅′𝑐 = {𝑣𝑖 ∈ Vfiltered | 𝑦GNN𝑖
= 𝑐},

and within each 𝑅′𝑐 , we select the top 𝛽 percent of nodes ranked by
descending GNN confidence, where the number of selected nodes is
𝑘′𝑐 = ⌈𝛽 · |𝑅′𝑐 |⌉, for each 𝑐 ∈ {1, . . . , 𝐾}, and 𝛽 is a predefined hyper-
parameter controlling the selection ratio. The final pseudo-labeled
subset is then given by:

V′agreed =

{
𝑣𝑖 ∈ Vfiltered

����� Rank𝐶GNN (𝑣𝑖 ) ≤ 𝛽 · |𝑅
′
𝑐 |, 𝑦GNN𝑖 = 𝑐

}
(2)

where Rank𝐶GNN (𝑣𝑖 ) denotes the ranking position of node 𝑣𝑖 within
class 𝑐 based on descending 𝐶GNN (𝑣𝑖 ).

Disagreement Node Set Selection with GNN Feedback. LLMs
and GNNs exhibit fundamentally different inductive biases: LLMs
are designed for extracting rich semantic information from raw
text, while GNNs are strong at capturing structural knowledge
through message-passing. Since our goal is to fine-tune the LLM to
improve its performance, simply using easy, self-generated labels
where the LLM already predicts correctly provides limited new
learning signals and may lead to overfitting. Instead, we further
utilize the disagreement node setVdisagreed, where the LLM is more
likely to produce incorrect pseudo labels due to its lack of structural
awareness.
Preference Assessment with GNN Feedback. GNN’s probability dis-
tribution over different classes provides a natural indicator of its
preference strength. For each node 𝑣𝑖 ∈ Vdisagreed, we compute a
preference score measuring how strongly the GNN favors its own
prediction over the LLM’s prediction: 𝑆pref (𝑣𝑖 ) = 𝑃GNN (𝑦GNN𝑖

|
𝑣𝑖 ) − 𝑃GNN (𝑦LLM𝑖

| 𝑣𝑖 ), where 𝑃GNN (𝑦GNN𝑖
| 𝑣𝑖 ) is the GNN’s pre-

dicted probability for its top class, and 𝑃GNN (𝑦LLM𝑖
| 𝑣𝑖 ) is the

probability assigned to the LLM’s predicted class. A larger prefer-
ence score indicates a stronger conviction by the GNN in its own
prediction relative to the LLM’s alternative.
Structural Importance Refinement. We also want to prioritize nodes
with rich structural information. GNNs rely on message-passing
mechanisms that aggregate information from neighbors to learn
representative embeddings [27, 54]. Due to the power-law distribu-
tion of node degrees in many real-world graphs, low-degree nodes
receive less information during aggregation, potentially leading
to higher error rates [48]. Inspired by this idea, we hypothesize
that LLMs – lacking access to graph topology – are more prone to
errors on nodes rich in structural information, whereas GNNs can
leverage such connections for improved predictions. We further
validate this hypothesis through a detailed case study presented
in Appendix F, where we analyze the correlation between node
structural properties and the respective performances of LLMs and
GNNs. To capture the structural importance of nodes, we compute
the PageRank score [39] 𝑆PR (𝑣𝑖 ):

𝑆PR (𝑣𝑖 ) = (1 − 𝛼) ·
1
|𝑉 | + 𝛼

∑︁
𝑣𝑗 ∈𝑁𝑖𝑛 (𝑣𝑖 )

𝑆PR (𝑣 𝑗 )
|𝑁𝑜𝑢𝑡 (𝑣 𝑗 ) |

, (3)

where 𝛼 is a damping factor, |𝑉 | is the total number of nodes,
𝑁𝑖𝑛 (𝑣𝑖 ) is the set of nodes with edges pointing to 𝑣𝑖 , and |𝑁𝑜𝑢𝑡 (𝑣 𝑗 ) |
is the out-degree of node 𝑣 𝑗 . This recursive definition quantifies

each node’s centrality and influence, with higher scores indicating
nodes that leverage more extensive graph connections.

To create a balanced selection that accounts for both preference
strength and structural importance, we convert each metric to
percentile ranks and combine them as 𝑆combined (𝑣𝑖 ) = 𝛽1 ·𝑟pref (𝑣𝑖 )+
𝛽2 ·𝑟PR (𝑣𝑖 ), where 𝑟 (𝑣𝑖 ) denotes the high-to-low ranking percentage,
and 𝛽1 and 𝛽2 control the relative importance of preference signals
and structural information, respectively. We then select the final
disagreement nodes based on this combined score:

V′disagreed = {𝑣𝑖 ∈ Vdisagreed | Rank𝑆combined (𝑣𝑖 ) ≤ 𝛾 · |Vdisagreed |},
(4)

where 𝛾 is a hyperparameter controlling the proportion of nodes
to select from the disagreement set.

Remark: While existing works in SSL emphasize the impor-
tance of balancing between both “easy” and “hard’ samples
[5, 28, 36], directly utilizing LLMs to evaluate “easiness” or
“hardness” of unlabeled nodes on TAGs remains non-trivial.
Our strategy leverages the agreement between LLM and GNN
predictions, using the GNN as a pseudo label judge to effec-
tively identify “easy” and “hard” samples, providing a practical
method to identify reliable pseudo labels for fine-tuning LLMs
for semi-supervised node classification.

3.2 LLMWeakly-Supervised Fine-Tuning on
Graphs with GNN Feedback

Based on our selected pseudo-labeled nodes, we propose a weakly-
supervised fine-tuning algorithm that fine-tunes LLMs on graphs
using a unified objective. Our approach integrates both instruction
tuning and preference tuning into a single training framework:

L(𝜃 ) = E(𝑥𝑖 ,𝑦𝑖 )∼Dagreed′ [LIT (𝜃 ;𝑥𝑖 , 𝑦𝑖 )]
+ 𝜆E(𝑥𝑖 ,𝑦𝑤,𝑖 ,𝑦𝑙,𝑖 )∼Ddisagreed′ [LPT (𝜃 ;𝑥𝑖 , 𝑦𝑤,𝑖 , 𝑦𝑙,𝑖 )]

(5)

where Dagreed′ represents the data distribution over the selected
agreement node setV′agreed, Ddisagreed′ represents the data distri-
bution over the selected disagreement node set V′disagreed, and 𝜆
controls the contribution of the preference tuning loss.

LLM InstructionTuningwith LLM-GNNAgreement. For nodes
in the agreement setV′agreed, we apply instruction tuning [38] to
reinforce correct predictions. Given an input node text feature 𝑥𝑖
and the selected agreed pseudo label 𝑦𝑖 , the instruction tuning loss
is defined as:

LIT (𝜃 ;𝑥𝑖 , 𝑦𝑖 ) = − log𝑝𝜃 (𝑦𝑖 |𝑥𝑖 ), (6)

where 𝑝𝜃 (𝑦𝑖 |𝑥𝑖 ) represents the LLM’s probability of generating the
label 𝑦𝑖 given the node text 𝑥𝑖 , and 𝜃 denotes the model parameters.
This maximum likelihood objective reinforces patterns where both
the LLM and GNN already exhibit strong performance, consolidat-
ing the model’s understanding of straightforward cases.

LLM Preference Tuning with LLM-GNN Disagreement. For
the selected disagreed nodesV′disagreed, where GNN and LLM pre-
dictions differ, standard instruction tuning with potentially noisy
pseudo labels is suboptimal. Even though we leverage the GNN’s
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prediction as the preferred response, forcing the LLM to strictly
match a potentially incorrect or biased GNN prediction through in-
struction tuning could lead to potentially compromising its original
performance and inherent text understanding capabilities. Instead,
we leverage these informative disagreement cases through prefer-
ence tuning. Preference tuning optimizes LLM responses based on
paired examples with a preferred and non-preferred output [3, 11].
Unlike instruction tuning, which forces models to predict an ab-
solute label, preference tuning enables the model to learn from
the relative relationship between competing outputs. The general
preference tuning objective can be formulated as:

LPT (𝜃 ;𝑥𝑖 , 𝑦𝑤,𝑖 , 𝑦𝑙,𝑖 ) = − log𝜎 (𝑓𝜃 (𝑥𝑖 , 𝑦𝑤,𝑖 , 𝑦𝑙,𝑖 )) (7)

where 𝑥𝑖 represents the input prompt for node 𝑣𝑖 , 𝑦𝑤,𝑖 and 𝑦𝑙,𝑖 are
the preferred and non-preferred outputs respectively, and 𝑓𝜃 (·) is a
preference function that scores the relative preference between the
two outputs. In our implementation, we adopt Odds Ratio Preference
Optimization (ORPO) [19], which uses the log odds ratio as the
preference function:

𝑓𝜃 (𝑥,𝑦𝑤 , 𝑦𝑙 ) = log
odds𝜃 (𝑦𝑤 | 𝑥)
odds𝜃 (𝑦𝑙 | 𝑥)

(8)

where odds𝜃 (𝑦 | 𝑥) = 𝑃𝜃 (𝑦 | 𝑥)/(1 − 𝑃𝜃 (𝑦 | 𝑥)). By minimizing
this loss over the set V′disagreed, the LLM learns to increase the
relative likelihood of the GNN’s predictions over LLM’s predictions,
mitigating the potential risk of overfitting to noisy pseudo labels.

Remark: Our framework can be considered as an LLM prefer-
ence alignment framework by replacing human feedback with
signals derived from GNNs. The agreement node setV′agreed
provides supervised training data, while the disagreement set
V′disagreed is transformed into preference pairs with GNN out-
puts as preferred responses. While we implement preference
tuning using ORPO [19], our approach is also compatible with
other methods like such as DPO [40], SimPO [34], and other
variants.

4 Experiments
We conduct comprehensive experiments to validate the effective-
ness of our framework. These experiments aim to investigate the
following research questions:
• RQ1: How does our framework perform in comparison to base-
line models in node classification under various label rate condi-
tions across datasets?
• RQ2: How effectively does the model adapt to unseen datasets
in zero-shot settings?
• RQ3:What is the core contribution of our GNN-as-Judge, specif-
ically the pseudo-label selection strategy and weakly-supervised
fine-tuning pipeline, to the overall performance?
• RQ4: How do different hyperparameter choices and variants of
preference tuning losses affect our framework’s performance?

4.1 Experimental Setup
Datasets.

We train and evaluate our framework on four widely-used bench-
mark datasets for semi-supervised node classification: Cora [55],

Table 1: Summary statistics of the evaluation datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3

ogbn-arxiv 169,343 1,166,243 128 40

Citeseer [42], Pubmed [42] and ArXiv [37]. For Cora, Citeseer and
Pubmed, which are three most widely used citation networks, we
follow the experimental setup of previous work [15] and split each
dataset into training (i.e., 𝐾 nodes per class for 𝐾-shot task), valida-
tion set and test set. To evaluate performance on large-scale graphs,
we also include the ArXiv dataset from the Open Graph Bench-
mark (OGB) [21]. For ogbn-arxiv, we randomly sample different
percentages (1%, 5%, and 10%) of nodes from the training split as
labeled data, while maintaining the standard validation and test
splits from the original benchmark. Statistics for these datasets are
summarized in Table 1. More detailed statistics of all datasets are
summarized in Appendix A.

Baselines. To evaluate the effectiveness of our proposed frame-
work, we compare it against baseline methods from two primary
categories: (1)GNN-as-Predictors: We include established graph neu-
ral network models such as GCN [27], GraphSAGE [18], GAT [49],
and SGC [51]; (2) LLM-as-Predictors: Aligning with our focus, we
benchmark against various LLM-based methods. This includes
base LLMs with different prompting strategies, such as zero-shot,
chain-of-thought, and neighbor-augmented prompting, as well as
graph-focused LLM fine-tuning methods like instruction tuning,
GraphGPT [47], and LLaGA [8]. Further details on these baselines
are provided in the Appendix B.

Implementation Details. For our experiments, we maintain con-
sistent data splits across all evaluated models to ensure fair compari-
son. Performance is measured using accuracy, with results reported
as mean and standard deviation over five independent runs. For the
GNN component of our framework, we implement a 2-layer GCN
architecture [27] with 64-dimensional hidden representations. The
LLM components in our GNN-as-Judge framework utilize Llama-3-
8B-Instruct [16] and Mistral-7B-Instruct-v0.2 [25] as base models,
allowing us to evaluate performance across different model families.
We fine-tune these models using LoRA [20] with rank 8 and 𝛼 = 16
to efficiently adapt the pre-trained LLMs while maintaining compu-
tational feasibility. For experiments other than overall performance
comparisons, we employ Llama-3-8B-Instruct as our primary model
due to its stronger performance in initial tests. Additional training
details, including hyperparameters and optimization settings, are
provided in Appendix C.

4.2 Overall Performance Comparison (RQ1)
Tables 2 and 3 present the comparative performance of our ap-
proach against various baseline methods across multiple datasets
and experimental settings. From these comprehensive results, we
observe several key findings:
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Table 2: Averaged node classification accuracy (%) on the Cora, Citeseer, and Pubmed datasets with 5-shot and 10-shot learning.
Values shown are mean ± standard deviation. Best results are bolded, while second-best results are underlined.

Methods Cora Citeseer Pubmed

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

N
/A

GCN 71.72±0.22 78.22±0.89 63.24±0.87 68.38±1.49 70.58±0.49 75.33±0.94
GraphSAGE 70.66±1.09 77.98±0.32 62.35±0.83 67.02±0.56 68.59±1.01 75.12±0.55
SGC 71.48±0.35 78.44±0.37 62.08±0.77 67.44±0.60 70.74±0.94 74.98±1.91
GAT 71.70±0.57 77.58±0.23 63.48±1.54 68.10±1.77 69.56±1.55 72.84±1.36

Mi
st

ra
l

Zero-Shot 59.78±1.26 59.78±1.26 42.56±0.33 42.56±0.33 77.24±1.15 77.24±1.15
Graph-CoT 58.34±0.72 58.34±0.72 37.94±2.13 37.94±2.13 82.06±2.77 82.06±2.77
w. Neighbor 66.69±0.43 66.69±0.43 59.65±1.23 59.65±1.23 72.49±1.82 72.49±1.82
InstructTuning 64.14±1.22 65.77±0.56 61.05±0.36 68.12±0.73 85.33±0.46 84.91±1.04
LLaGA 58.93±0.72 71.17±0.25 46.78±1.02 49.96±0.64 52.03±2.35 65.23±2.56
GraphGPT 52.35±1.74 59.66±0.42 43.08±0.94 46.62±0.58 52.46±2.19 62.18±2.31
GNN-as-Judge 76.12±0.73 79.72±1.03 71.04±0.35 73.30±0.57 86.36±0.82 86.44±0.93

Ll
am

a
3

Zero-Shot 65.54±0.26 65.54±0.26 58.17±0.64 58.17±0.64 74.51±0.39 74.51±0.39
Graph-CoT 63.02±0.77 63.02±0.77 47.23±1.06 47.23±1.06 86.22±2.47 86.22±2.47
w. Neighbor 68.72±1.56 68.72±1.56 54.93±1.28 54.93±1.28 74.98±3.16 74.98±3.16
InstructTuning 69.33±1.50 69.53±1.21 68.77±2.66 69.10±1.63 83.71±0.64 85.03±0.16
LLaGA 62.88±2.19 69.25±0.97 43.71±4.36 51.22±1.43 58.63±1.05 67.29±2.26
GraphGPT 60.17±1.44 61.58±0.77 51.83±2.24 55.40±3.16 57.39±3.67 71.33±2.81
GNN-as-Judge 77.35±1.13 78.33±0.86 71.54±1.10 73.33±0.38 90.45±0.78 91.01±0.47

Figure 2: Zero-shot cross-dataset node classification results. Llama-3-8B trained on ArXiv with 1% label rate were evaluated on
Cora, Citeseer, and PubMed without fine-tuning.
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• Our GNN-as-Judge consistently outperforms both traditional
GNN architectures and existing LLM-based methods across all
datasets, demonstrating the effectiveness of our collaborative
pseudo label selection strategy and proposed weakly-supervised
fine-tuning approach. The improvements are systematic rather
than dataset-specific, indicating the robustness of our framework.
• The performance advantages of our method are particularly
pronounced in low-label ratio settings where labeled data is
extremely scarce. In the challenging 5-shot scenario, our ap-
proach shows significant improvements over competitive base-
lines across all datasets, with gains ranging from 5-8% over the
strongest baselines. Specifically, on Cora, our approach achieves
77.35% accuracy with Llama 3 in the 5-shot setting, surpassing
the best GNN baseline (GCN) by 5.63% and the best LLM baseline
(InstructTuning) by 8.02%.
• While traditional GNNs maintain relatively stable performance
as label ratios decrease due to their structural inductive bias,
most LLM-based approaches show substantial degradation when

transitioning from higher to lower resource settings. More con-
cerning, specialized graph-aware LLM methods such as LLaGA
and GraphGPT, which utilize graph tokens or structured repre-
sentations, often performworse than their zero-shot counterparts
in extreme low-resource settings.
• Our method’s consistent superior performance across different
LLM families – Mistral-7B and Llama-3-8B – confirms that
our approach achieves excellent results regardless of the under-
lying LLM architecture. This model-agnostic effectiveness makes
our framework a versatile solution applicable to various LLM
backbones, suggesting that the benefits stem from our propose
GNN-as-Judge pipeline rather than model-specific optimizations.
• The performance gap between our method and baselines tends
to be larger on datasets with more complex structural patterns
(Citeseer, ArXiv) compared to those with clearer community
structures (Cora), suggesting that our GNN-as-Judge framework
is particularly effective at leveraging structural information in
challenging graph learning scenarios where semantic and struc-
tural cues must be carefully balanced.
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Table 3: Node classification accuracy (%) on the ArXiv dataset with varying label rates, and on Cora, Citeseer, and Pubmed with
20-shot. Values shown are mean ± standard deviation. Best results are bolded, while second-best results are underlined.

Methods ArXiv Others (20-shot)

1% 2.5% 5% Cora Citeseer Pubmed

N
/A

GCN 59.75±1.28 62.36±0.78 66.17±0.34 81.30±0.59 69.75±0.42 79.64±0.98
GraphSAGE 59.93±0.89 61.42±0.62 64.29±0.41 81.37±0.43 69.95±0.66 77.64±0.92
SGC 55.72±0.55 59.86±0.47 62.93±0.38 79.84±0.68 70.92±0.77 78.45±0.56
GAT 59.48±1.86 63.05±0.91 66.21±0.34 80.94±0.56 70.02±0.44 78.37±0.38

Mi
st

ra
l

Zero-Shot 43.06±2.45 43.06±2.45 43.06±2.45 59.78±1.26 42.56±0.33 77.24±1.15
Graph-CoT 53.89±3.18 53.89±3.18 53.89±3.18 58.34±0.72 37.94±2.13 82.06±2.77
w. Neighbor 42.57±1.38 42.57±1.38 42.57±1.38 66.69±0.43 59.65±1.23 72.49±1.82
InstructTuning 53.43±1.02 59.32±0.84 64.83±0.36 70.02±1.56 66.77±1.56 86.64±1.32
LLaGA 59.55±1.37 67.79±1.49 69.95±1.77 77.91±1.12 63.57±0.56 68.37±2.05
GraphGPT 65.67±1.03 66.35±1.64 68.06±2.45 64.16±0.98 65.27±1.39 79.91±1.47
GNN-as-Judge 64.72±0.74 66.93±0.82 69.78±1.24 81.28±1.94 74.05±0.47 90.87±2.16

Ll
am

a
3

Zero-Shot 50.18±1.44 50.18±1.44 50.18±1.44 65.54±0.26 58.17±0.64 74.51±0.39
Graph-CoT 52.49±1.32 52.49±1.32 52.49±1.32 63.02±0.77 47.23±1.06 86.22±2.47
w. Neighbor 49.28±2.09 49.28±2.09 49.28±2.09 68.72±1.56 54.93±1.28 74.98±3.16
InstructTuning 57.32±0.83 60.54±0.95 66.76±0.79 71.89±1.76 68.44±0.93 88.16±2.17
LLaGA 57.65±0.82 65.19±1.08 67.63±0.44 76.51±0.22 66.17±0.43 68.77±0.35
GraphGPT 64.38±0.75 67.68±0.45 69.56±0.77 63.25±0.34 62.84±0.49 78.36±1.24
GNN-as-Judge 67.57±0.94 68.42±0.65 70.28±0.81 81.96±1.43 73.79±1.69 91.04±0.77

4.3 Cross-Dataset Zero-Shot Node Classification
(RQ2)

In this section, we evaluate the zero-shot generalization capabilities
of GNN-as-Judge. We trained various LLM-based graph learning
models on the ArXiv dataset (1% label rate) and evaluated their zero-
shot performance on Cora, Citeseer, and Pubmedwithout additional
fine-tuning. Unlike traditional GNNs that require task-specific clas-
sification heads, LLM-based methods can perform zero-shot learn-
ing across different label sets. As shown in Figure 2, GNN-as-Judge
demonstrates superior zero-shot transfer performance across all
target datasets. It substantially outperforms GraphGPT and LLaGA,
which struggle with cross-dataset generalization. Their approach
of encoding graph structure into tokens appears to constrain the
LLM’s generalization capabilities, resulting in performance worse
than untuned base LLMs. These results indicate that GNN-as-Judge
is more robust to distribution shifts between graph datasets and bet-
ter preserves the LLM’s inherent generalization capabilities while
incorporating graph-based insights. This makes our approach par-
ticularly valuable for practical applications where labeled data may
be scarce or available only for specific domains, necessitating mod-
els that can effectively generalize to new, unseen graph structures.

4.4 Ablation Study (RQ3)
In this section, we conduct an ablation study to analyze the con-
tribution of our proposed GNN-as-Judge, specifically the pseudo
label selection strategy and weakly-supervised fine-tuning pipeline
to the overall performance. In our experiments, InstructionTuning
refers to the standard instruction tuning using ground truth labels,
while All Agreed Nodes trains on all nodes where GNN and LLM
predictions match. Agreed Nodes w/ Selection utilizes nodes selected

by our proposed selection strategy, and All w/o Selection uses all
nodes without any selection criteria.
Effectiveness of Pseudo Label Selection.As shown in left panels
of Figure 3 (a) and (b), training on all nodes without selection leads
to degraded performance across all four datasets, with particularly
notable drops on Citeseer and ArXiv. This observation strongly
underscores the crucial problem of label noise when attempting
to train using pseudo labels derived from the entire graph. Con-
versely, focusing instruction tuning on a carefully selected subset
of agreed nodes consistently improves performance over training
on all nodes across Cora, Citeseer, Pubmed, and ArXiv datasets,
demonstrating the fundamental benefit of selection. Furthermore,
our proposed GNN-as-Judge selection strategy yields superior per-
formance compared to methods that only use selected agreed nodes
on all four datasets. This indicates that the GNN-as-Judge is ef-
fective not just at finding easy training samples, but crucially, it
leverages the structural information from the GNN signals to iden-
tify a higher-quality, more informative set of training nodes across
diverse graph domains and scales.
Effectiveness of Weakly-Supervised Fine-Tuning. The right
panels of Figure 3 (a) and (b) present results comparing different
fine-tuning strategies applied after node selection. Our full GNN-
as-Judge approach consistently outperforms standard instruction
tuning on selected nodes (IT on All Selected Nodes) across all datasets,
with particularly notable gains on Citeseer due to potentially more
label noise in the disagreement set. This demonstrates the effec-
tiveness of our specifically designed weakly-supervised fine-tuning
strategy that combines instruction tuning with preference learning
to distill knowledge while mitigating noise. Unlike standard instruc-
tion tuning on pseudo-labeled data, our approach is better equipped
to handle the inherent uncertainty or potential noise present in the
pseudo labels of the selected nodes.
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Figure 3: Ablation studies: (a) results on Cora and Citeseer datasets; (b) results on Pubmed and ArXiv datasets.
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(a) Left: Ablation study showing the effectiveness of our proposed pseudo label selection approach on Cora and
Citeseer. Right: Ablation study showing the effectiveness of our proposed weakly-supervised fine-tuning algorithm
on Cora and Citeseer.
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(b) Left: Ablation study showing the effectiveness of our proposed pseudo label selection approach on Pubmed and
ArXiv. Right: Ablation study showing the effectiveness of our proposed weakly-supervised fine-tuning algorithm
on Pubmed and ArXiv.

4.5 Analysis of Preference Tuning Variants and
Parameter Sensitivity (RQ4)

In this section, we further analyze hyperparameter choices for
proposed weakly-supervised fine-tuning approach and evaluate
the framework’s robustness to different preference optimization
algorithms.

Figure 4: Left: Sensitivity to the 𝜆 parameter controlling the
balance between instruction tuning and preference tuning.
Right: Comparison of different preference tuning losses.
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Sensitivity to 𝜆. In our approach, the hyperparameter 𝜆 controls
the balance between standard instruction tuning and preference
tuning as shown in Eq. 5. Figure 4 (left) illustrates how different 𝜆
values affect performance on Cora, Citeseer and Pubmed datasets
in 5-shot settings. We observe a clear trend where lower 𝜆 values
yield significantly better results on both datasets, with performance
declining as 𝜆 increases. This suggests that using a moderate weight
for preference tuning loss will maintain better model performance.

Adaptation toDifferent Preference Tuning Losses.We evaluate
the performance of our GNN-as-Judge framework across different
preference tuning losses, comparing DPO [40], SimPO [34], and
ORPO [19] on Cora, CiteSeer and Pubmed datasets in 5-shot set-
ting. As shown in Figure 4 (right), these preference tuning methods
demonstrate relatively comparable performance, with ORPO show-
ing slightly higher accuracy on both Cora and Citeseer datasets.
Notably, all variants of our framework incorporating various pref-
erence tuning losses consistently outperform performing standard
instruction tuning on all selected data, with particularly pronounced
improvements on the CiteSeer dataset where noisy labels are more
prevalent. This observation highlights that our GNN-as-Judge is a
plug-and-play framework where different preference tuning losses
can be seamlessly integrated without compromising overall perfor-
mance.

5 Conclusion
In this paper, we present GNN-as-Judge, a novel framework that
addresses the challenge of applying LLMs to semi-supervised graph
learning with limited labeled data. Our approach leverages com-
plementary strengths from both GNNs and LLMs through two key
mechanisms: (i) a strategic pseudo-label selection strategy that iden-
tifies both high-confidence agreement and structurally informative
disagreement nodes, and (ii) a weakly-supervised fine-tuning al-
gorithm combining instruction tuning with preference tuning to
mitigate label noise.
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A Dataset Statistics

Table 4: Summary statistics of the evaluation datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
ogbn-arxiv 169,343 1,166,243 128 40

Table 4 presents the detailed statistics of the datasets used in
our experiments, including the number of nodes, edges, features,
and classes for each dataset. These datasets all consist of nodes
representing academic papers, with edges indicating citation rela-
tionships. The associated text attributes include each paper’s title
and abstract.

Within each dataset, nodes are labeled according to their aca-
demic category, as detailed in Table 5. For example, the arXiv dataset
includes 40 computer science sub-categories such as cs.AI (Artificial
Intelligence) and cs.DB (Databases).

B Baseline Methods
To evaluate the effectiveness of our proposed framework, we com-
pare it against established methods from two primary categories:
GNN-as-Predictors and LLM-as-Predictors.

B.1 GNN-as-Predictors Methods
In this category, we include four classic graph neural network
architectures:
• GCN [27]: Graph Convolutional Networks perform neighbor-
hood aggregation through spectral convolutions, using a simple
and effective message-passing scheme.
• GraphSAGE [18]: This inductive framework samples and ag-
gregates features from a node’s local neighborhood, enabling
generalization to previously unseen nodes.
• GAT [49]: GraphAttentionNetworks leveragemasked self-attentional
layers to weight neighbor importance, allowing the model to fo-
cus on the most relevant connections.
• SGC [51]: Simple Graph Convolution simplifies GCNs by remov-
ing nonlinearities between layers and collapsing weight matrices,
resulting in a single linear transformation followed by a soft-
max classifier, while maintaining competitive performance with
significantly reduced computational complexity.

These models serve as strong baselines that rely primarily on graph
structure and node features without leveraging the reasoning capa-
bilities of language models.

B.2 LLM-as-Predictors Methods
LLMs’ strong reasoning abilities make them effective for direct
downstream classification tasks. In the LLM-as-Predictor paradigm,
a node’s textual and structural information, along with task-specific
instructions, are tokenized and input into an LLM for prediction.
We evaluate both fine-tuned and zero-shot LLM approaches:

Fine-tuned LLM Methods:
• LLaGA [8]: Employs a multi-step approach where node text
is first encoded via a language model, then processed through
a GNN, concatenated across layers, projected into the LLM’s
dimensionality, and finally combined with instructions for label
prediction. Only the projection layer parameters are tuned using
next-token-prediction loss.
• GraphGPT [47]: Implements a more complex framework with
three distinct pre-training and instruction tuning stages to effec-
tively integrate graph structure with language understanding.
Zero-shot LLM Methods:

• Chain-of-Thought [50]: Enables step-by-step reasoning by break-
ing down complex graph-related problems into sequential rea-
soning steps.
• Neighbor-Augmented Prompting [23]: Enriches prompts with
structural information from node neighborhoods, providing con-
text about graph topology to enhance zero-shot performance.

These LLM-based methods represent the state-of-the-art in lever-
aging large language models for graph-related tasks, with varying
approaches to integrating structural information and text under-
standing.

C Implementation Details
This section provides comprehensive details about the implementa-
tion, hyperparameter settings, and training procedures used in our
experiments.
Data Splits. For the Cora, Citeseer, and Pubmed datasets, we follow
standard node classification protocols using 5-shot, 10-shot, and
20-shot settings, where n-shot refers to n labeled nodes per class for
training. We use 500 nodes for validation and 1,000 nodes for testing
across all datasets to ensure consistency with prior work [8, 47].
For the larger ArXiv dataset, we evaluate model performance under
varying supervision levels using label ratios of 1%, 2.5%, and 5%. We
adopt the original split for both validation and testing [21]. Due to
computational constraints during inference, we randomly sample
30,000 nodes from the remaining unlabeled set for pseudo-label
generation and model training.
GNN Component. For the GNN component of our GNN-as-Judge
framework and other GNN-based baselines, we implement a 2-layer
GCN architecture [27] with 64-dimensional hidden representations.
We perform a limited grid search on dropout rates, exploring values
in [0.3, 0.5, 0.7], and include batch normalization in our architecture.
We set the learning rate to 1e-2 and train for up to 500 epochs with
a patience of 100 for early stopping. For optimization, we use the
Adam optimizer with a weight decay of 5e-4, following standard
practices in graph neural network training.
LLM Component. Our GNN-as-Judge framework utilizes two lan-
guage models as base models: Llama-3-8B-Instruct [16] and Mistral-
7B-Instruct-v0.2 [25]. For both models, we implement parameter-
efficient fine-tuning using LoRA [20] with rank 8 and alpha value
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Table 5: Label spaces of the datasets used in our experiments.

Dataset Label Space

Cora Rule Learning, Neural Networks, Case Based, Genetic Algorithms, Theory, Reinforcement Learning,
Probabilistic Methods

Citeseer Agents, ML (Machine Learning), IR (Information Retrieval), DB (Databases), HCI (Human-Computer
Interaction), AI (Artificial Intelligence)

Pubmed Experimentally induced diabetes, Type 1 diabetes, Type 2 diabetes

arXiv cs.NA, cs.MM, cs.LO, cs.CY, cs.CR, cs.DC, cs.HC, cs.CE, cs.NI, cs.CC, cs.AI, cs.MA, cs.GL, cs.NE, cs.SC,
cs.AR, cs.CV, cs.GR, cs.ET, cs.SY, cs.CG, cs.OH, cs.PL, cs.SE, cs.LG, cs.SD, cs.SI, cs.RO, cs.IT, cs.PF, cs.CL,
cs.IR, cs.MS, cs.FL, cs.DS, cs.OS, cs.GT, cs.DB, cs.DL, cs.DM

of 16, which enables efficient adaptation of the pre-trained weights
while maintaining computational feasibility. We set the dropout
rate to 0.1 and use a batch size of 8.
• Instruction Tuning Configuration. We apply model-specific learn-
ing rates and training schedules based on our empirical findings:
We use a learning rate of 5e-6 for Llama-3 models. Training du-
ration varies by dataset size: 15 epochs for small-scale datasets
(Cora, Citeseer) and 3 epochs for the larger ArXiv dataset. For
Mistral-7B, we use a slightly higher learning rate of 1e-5. The
training schedule includes 15 epochs for Cora, Citeseer, and
PubMed, while the larger ArXiv dataset requires only 3 epochs.
• Weakly-Supervised Fine-Tuning Configuration.Our GNN-as-Judge
approach uses carefully tuned hyperparameters for each model:
We maintain a learning rate of 5e-6 with 5 epochs for smaller
datasets Cora, Citeseer, 3 epochs for medium size dataset Pubmed
and 2 epochs for ArXiv. For weakly supervised fine-tuning with
Mistral-7B, we use a learning rate of 1e-5 with 8 epochs for Cora
and Citeseer, and 3 epochs for both PubMed and ArXiv. The
hyperparameter 𝜆 in Eq. 5, which balances instruction tuning
and preference tuning losses, is set to 0.1 across all datasets and
settings based on our parameter sensitivity analysis.

Selection Hyperparameters. For our proposed GNN-as-Judge
pseudo-label selection mechanism described in Section 3 and out-
lined in Algorithm 1, we employ several key hyperparameters. We
use dataset-specific confidence thresholds (𝜏conf): 0.3 for Cora and
Citeseer, 0.95 for PubMed, and 0.7 for ArXiv, whichwere determined
empirically based on GNN prediction confidence distributions. The
class-aware selection ratio (𝛽) is set to 0.8 across all datasets, re-
taining the top 80% most confident predictions within each class to
maintain class diversity. For the disagreement selection proportion
(𝛾 ), we use 0.4 for Cora and Citeseer, and 0.2 for PubMed and ArXiv,
selecting different proportions of disagreement nodes based on
dataset characteristics. To balance preference strength and struc-
tural importance in the combined score calculation, we set 𝛽1 = 0.5
and 𝛽2 = 0.5, giving equal weight to both factors. For computing
structural importance, we employ the standard PageRank algorithm
with a damping factor of 𝛼 = 0.85.
Computing Environment and Resources. The computational
resources includes four NVIDIA A100 GPUs, each with 80GB of
memory.

D Prompts
Illustration of Prompts

Cora Dataset:

Instruction: Given a node-centered graph with centric node
description: ⟨raw_text⟩, each node represents a paper, we need
to classify the center node into 7 classes: ⟨labels⟩, please tell me
which class the center node belongs to?
Answer: ⟨Predicted Label⟩

Citeseer Dataset:

Instruction: Given a node-centered graph with centric node
description: ⟨raw_text⟩, each node represents a paper, we need
to classify the center node into 6 classes: ⟨labels⟩, please tell me
which class the center node belongs to?
Answer: ⟨Predicted Label⟩

PubMed Dataset:

Instruction: Given a node-centered graph with centric node
description: ⟨raw_text⟩, each node represents a scientific publi-
cation, we need to classify the center node into 3 classes: ⟨labels⟩,
please tell me which class the center node belongs to?
Answer: ⟨Predicted Label⟩

ArXiv Dataset:

Instruction: Given a node-centered graph with centric node
description: ⟨raw_text⟩, each node represents a scientific paper,
we need to classify the center node into one of 40 arXiv CS sub-
categories: ⟨labels⟩, please tell me which category the center
node belongs to?
Answer: ⟨Predicted Label⟩

E Algorithm Details for GNN-as-Judge

F Case Study
To better understand why our GNN-as-Judge approach is effective,
we conduct a case study on the Cora dataset analyzing how graph
structural importance affects the predictive performance of both
GNNs and LLMs. Figure 5 presents our analysis of model behavior
specifically on disagreement cases—nodes where GNN and LLM
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Algorithm 1 GNN-as-Judge for LLM Semi-supervised Learning on
Graphs
Require: Labeled node set𝑉𝐿 , Unlabeled node set𝑉𝑈 , GNN model
MGNN, LLM modelMLLM

Require: Hyperparameters: confidence threshold 𝜏conf, selection
ratios 𝛽,𝛾 , preference weight 𝜆, importance weights 𝛽1, 𝛽2

1: // Step 1: Train base models on labeled data
2: Training GNNMGNN on labeled set 𝑉𝐿
3: Instruction tuning LLMMLLM on labeled set 𝑉𝐿
4: // Step 2: Generate pseudo-labels for unlabeled nodes
5: for each node 𝑣𝑖 ∈ 𝑉𝑈 do
6: 𝑦GNN

𝑖
← argmax𝑗MGNN (𝑣𝑖 ) 𝑗 // GNN prediction

7: 𝑦LLM
𝑖
← Parse(MLLM (𝑥𝑖 )) // LLM prediction

8: 𝐶GNN (𝑣𝑖 ) ← max𝑗 𝑃GNN ( 𝑗 |𝑣𝑖 ) // GNN confidence
9: end for
10: // Step 3: Partition unlabeled nodes based on prediction agree-

ment
11: Vagreed ← {𝑣𝑖 ∈ 𝑉𝑈 | 𝑦GNN𝑖

= 𝑦LLM
𝑖
}

12: Vdisagreed ← {𝑣𝑖 ∈ 𝑉𝑈 | 𝑦GNN𝑖
≠ 𝑦LLM

𝑖
}

13: // Step 4: Select high-quality agreement nodes with class-aware
filtering

14: Vfiltered ← {𝑣𝑖 ∈ Vagreed | 𝐶GNN (𝑣𝑖 ) ≥ 𝜏conf}
15: V′agreed ← ∅
16: for each class 𝑐 ∈ {1, . . . , 𝐾} do
17: 𝑅′𝑐 ← {𝑣𝑖 ∈ Vfiltered | 𝑦GNN𝑖

= 𝑐} // Nodes of class 𝑐
18: 𝑘′𝑐 ← ⌈𝛽 · |𝑅′𝑐 |⌉ // Number of nodes to select
19: Add top-𝑘′𝑐 nodes from 𝑅′𝑐 ranked by 𝐶GNN (𝑣𝑖 ) toV′agreed
20: end for
21: // Step 5: Select informative disagreement nodes with structural

importance
22: Compute PageRank scores 𝑆PR (𝑣𝑖 ) for all 𝑣𝑖 ∈ Vdisagreed
23: for each node 𝑣𝑖 ∈ Vdisagreed do
24: 𝑆pref (𝑣𝑖 ) ← 𝑃GNN (𝑦GNN𝑖

| 𝑣𝑖 ) − 𝑃GNN (𝑦LLM𝑖
| 𝑣𝑖 )

25: 𝑟pref (𝑣𝑖 ) ← PercentileRank(𝑆pref (𝑣𝑖 ))
26: 𝑟PR (𝑣𝑖 ) ← PercentileRank(𝑆PR (𝑣𝑖 ))
27: 𝑆combined (𝑣𝑖 ) ← 𝛽1 · 𝑟pref (𝑣𝑖 ) + 𝛽2 · 𝑟PR (𝑣𝑖 )
28: end for
29: V′disagreed ← Top 𝛾 · |Vdisagreed | nodes ranked by 𝑆combined
30: // Step 6: Weakly-supervised fine-tuning
31: Construct instruction tuning dataset:Dagreed′ ← {(𝑥𝑖 , 𝑦GNN𝑖

) |
𝑣𝑖 ∈ V′agreed}

32: Construct preference tuning dataset: Ddisagreed′ ←
{(𝑥𝑖 , 𝑦GNN𝑖

, 𝑦LLM
𝑖
) | 𝑣𝑖 ∈ V′disagreed}

33: Fine-tune LLM by minimizing:
34: L(𝜃 ) = E(𝑥𝑖 ,𝑦𝑖 )∼Dagreed′ [LIT (𝜃 ;𝑥𝑖 , 𝑦𝑖 )] +

𝜆E(𝑥𝑖 ,𝑦𝑤,𝑖 ,𝑦𝑙,𝑖 )∼Ddisagreed′ [LPT (𝜃 ;𝑥𝑖 , 𝑦𝑤,𝑖 , 𝑦𝑙,𝑖 )]
35: return Fine-tuned LLM modelM∗LLM

predictions differ—revealing when each model’s predictions should
be trusted.

The top-left panel shows the distribution of PageRank values
across the Cora dataset, revealing a characteristic right-skewed
distribution where most nodes have relatively low centrality, while
a small number of nodes maintain higher PageRank scores. This

Figure 5: Analysis of structural importance and model per-
formance on disagreement cases in the Cora dataset.
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aligns with the power-law distribution commonly observed in cita-
tion networks.

The top-right panel demonstrates how model accuracy varies
across PageRank quantiles for disagreement cases. We observe a
clear pattern: GNNs increasingly outperform LLMs as nodes be-
come more structurally central in the graph. While both models
achieve comparable accuracy for nodes with low centrality, their
performance diverges significantly for highly central nodes. GNNs
maintain robust accuracy cross higher centrality quantiles, whereas
LLM performance deteriorates to 0.3-0.35, highlighting GNNs’ su-
perior ability to leverage structural information.

The bottom-left panel quantifies this performance gap by plot-
ting the accuracy difference (GNN minus LLM) across PageRank
quantiles. The consistently positive values demonstrate that for
disagreement cases, GNNs provide more reliable predictions than
LLMs across all structural importance levels. Notably, this advan-
tage becomes more pronounced for highly central nodes, with
accuracy differences of 0.2-0.3 in the higher quantiles. This con-
firms our hypothesis that GNNs derive particular advantage from
graph topology when classifying structurally important nodes.

The bottom-right panel showcases the effectiveness of our com-
bined score—a novel metric that integrates both structural impor-
tance and prediction preference. This visualization reveals a striking
divergence in model performance:
• GNN accuracy shows a consistent, strong upward trend as the
combined score increases, rising from approximately 0.3 to 0.75
across quantiles, confirming that our score effectively identifies
nodes where GNNs excel.
• In contrast, LLM accuracy steadily deteriorates for higher-scored
nodes, dropping from around 0.6 to approximately 0.15 for the
highest quantiles, revealing the limitations of text-only approaches
for structurally significant nodes.
These findings provide compelling empirical support for our

GNN-as-Judge approach. The combined score effectively identifies
cases where GNN predictions should be trusted over LLM out-
puts, particularly for nodes that are structurally important within
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Figure 6: Comparison of GNN and LLM prediction accuracy
across different PageRank quantiles and confidence levels
in the 5-shot setting. Top: GNN accuracy tends to increase
with both node centrality (higher PageRank) and prediction
confidence. Bottom: LLM accuracy decreases significantly for
nodes with higher PageRank values.
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the graph topology. This analysis validates our pseudo-labeling
strategy, which leverages the complementary strengths of both

model types by using GNNs’ structural awareness to guide LLM
fine-tuning, especially for nodes where graph topology provides
critical classification signals that pure text-based models cannot
capture.

G Limitations
While GNN-as-Judge demonstrates strong performance, several
limitations exist. First, GNN-as-Judge incorporates several hyper-
parameters related to pseudo-label selection and loss weighting
that require selection to achieve optimal performance. For future
work, developing automatic methods to select the optimal num-
ber of pseudo-labels and reducing hyperparameter dependence
could address these limitations. Additionally, updating the model
concurrently with pseudo-label generation may further improve
performance.

H Broader Impacts
In this paper, we proposeGNN-as-Judge, a framework that addresses
challenges of utilizing LLMs for graph semi-supervised node clas-
sification. In real-world applications, labeled data are expensive
and hard to obtain, thus our proposed approach could facilitate
efficiency for many practical tasks such as social network analysis,
citation network mining, and recommendation systems. By en-
abling more effective knowledge extraction from unlabeled nodes,
ourmethod could significantly reduce annotation costs and improve
model performance when working with limited supervision.
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