
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFUSION ATTRIBUTION SCORE:
EVALUATING TRAINING DATA INFLUENCE IN DIFFU-
SION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

As diffusion models become increasingly popular, the misuse of copyrighted and
private images has emerged as a major concern. One promising solution to miti-
gate this issue is identifying the contribution of specific training samples in gen-
erative models, a process known as data attribution. Existing data attribution
methods for diffusion models typically quantify the contribution of a training
sample by evaluating the change in diffusion loss when the sample is included
or excluded from the training process. However, we argue that the direct us-
age of diffusion loss cannot represent such a contribution accurately due to the
calculation of diffusion loss. Specifically, these approaches measure the diver-
gence between predicted and ground truth distributions, which leads to an in-
direct comparison between the predicted distributions and cannot represent the
variances between model behaviors. To address these issues, we aim to measure
the direct comparison between predicted distributions with an attribution score
to analyse the training sample importance, which is achieved by Diffusion At-
tribution Score (DAS). Underpinned by rigorous theoretical analysis, we eluci-
date the effectiveness of DAS. Additionally, we explore strategies to accelerate
DAS calculations, facilitating its application to large-scale diffusion models. Our
extensive experiments across various datasets and diffusion models demonstrate
that DAS significantly surpasses previous benchmarks in terms of the linear data-
modelling score, establishing new state-of-the-art performance. Code is available
at https://anonymous.4open.science/r/Diffusion-Attribution-Score-411F.

1 INTRODUCTION

Diffusion models, highlighted in key studies (Ho et al., 2020; Song et al., 2021b), are advancing
significantly in generative machine learning with broad applications from image generation to artis-
tic creation (Saharia et al., 2022; Hertz et al., 2023; Li et al., 2022; Ho et al., 2022). As these
models, exemplified by projects like Stable Diffusion (Rombach et al., 2022), become increasingly
capable of producing high-quality, varied outputs, the misuse of copyrighted and private images
has become a significant concern. A key strategy to address this issue is identifying the contribu-
tions of training samples in generative models by evaluating their influence on the generation, a task
known as data attribution. Data attribution in machine learning is to trace model outputs back to
influential training examples, which is essential to understand how specific data points affect model
behaviors. In practical applications, data attribution spans various domains, including explaining
predictions (Koh & Liang, 2017; Yeh et al., 2018; Ilyas et al., 2022), curating datasets (Khanna
et al., 2019; Jia et al., 2021; Liu et al., 2021), and dissecting the mechanisms of generative models
like GANs and VAEs (Kong & Chaudhuri, 2021; Terashita et al., 2021), serving to enhance model
transparency and explore the effect of training data on model behaviors.

Data attribution methods generally fall into two categories. The first, based on sampling (Shapley
et al., 1953; Ghorbani & Zou, 2019; Ilyas et al., 2022), involves retraining models to assess how
outputs change with the a data deletion. While effective, this method requires training thousands
of models. The second approach uses approximations to assess the change in output function for
efficiency (Koh & Liang, 2017; Feldman & Zhang, 2020; Pruthi et al., 2020) by proposing attribu-
tion score function. TRAK (Park et al., 2023) introduced a innovative estimator, which considers
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the inverse-sigmoid function as model output and computes attribution scores to assess its change.
Building on this, Zheng et al. (2024) proposed D-TRAK, adapting TRAK to diffusion models by
following TRAK’s derivation and replacing the inverse-sigmoid function with the diffusion loss.
Moreover, D-TRAK reported counterintuitive findings that the output function could be replaced
with alternative functions without altering the score’s form. These empirical designs outperformed
theoretically motivated diffusion losses in experiments, emphasizing the need for a deeper under-
standing of the attribution properties on diffusion models.

In this paper, we define the objective of data attribution in diffusion models as evaluating the impact
of training samples on generation by measuring shifts in the predicted distribution after remov-
ing specific samples and retraining the model. From this perspective, directly applying TRAK to
diffusion models by replacing the output function with the diffusion loss leads to indirect compar-
isons between predicted distributions, as the diffusion loss represents the KL-divergence between
predicted and ground truth distributions (Ho et al., 2020). We also address the counter-intuitive find-
ings in D-TRAK, which manually removes the effect of data distributions in attribution but treats the
diffusion model’s output as a scalar, failing to capture the unique characteristics of diffusion models.
Our analysis indicates that TRAK’s derivation cannot be directly extended to diffusion models, as
they fundamentally differ from discriminative models. To address this, we propose the Diffusion
Attribution Score (DAS), a novel metric designed specifically for diffusion models to quantify the
impact of training samples by measuring the KL-divergence between predicted distributions when a
sample is included or excluded from the training set. DAS computes this divergence through changes
in the noise predictor’s output, which, by linearization, can be represented as variations in the model
parameters. These parameter changes are then measured using Newton’s Method. Since directly
computing the full form of DAS is computationally expensive, we propose several techniques, such
as compressing models and datasets, to accelerate computation. These enhancements enable the
application of DAS to large-scale diffusion models, significantly improving its practicality. Our
experiments across ranges of datasets and diffusion models demonstrate that DAS significantly out-
performs previous benchmarks, including D-TRAK and TRAK, achieving superior results in terms
of the linear data-modeling score. This consistent performance across diverse settings highlights its
robustness and establishes DAS as the new state-of-the-art method for data attribution in diffusion
models. The primary contributions of our work are summarized as follows:

1. We provide a comprehensive analysis of the limitations of directly applying TRAK to dif-
fusion models and evaluate D-TRAK’s empirical design, highlighting the need for more
effective attribution methods tailored to diffusion models.

2. We introduce DAS, a theoretically solid metric designed to directly quantify discrepancies
in model outputs, supported by detailed derivations. We also discuss various techniques,
such as compressing models or datasets, to accelerate the computation of DAS, facilitating
its efficient implementation.

3. DAS demonstrates state-of-the-art performance across multiple benchmarks, notably ex-
celling in linear datamodeling scores.

2 RELATED WORKS

2.1 DATA ATTRIBUTION

The training data exerts a significant influence on the behavior of machine learning models. Data
attribution aims to accurately assess the importance of each piece of training data in relation to the
desired model outputs. However, methods of data attribution often face the challenge of balancing
computational efficiency with accuracy. Sampling-based approaches, such as empirical influence
functions (Feldman & Zhang, 2020), Shapley value estimators (Ghorbani & Zou, 2019; Jia et al.,
2019), and datamodels (Ilyas et al., 2022), are able to precisely attribute influences to training data
but typically necessitate the training of thousands of models to yield dependable results. On the
other hand, methods like influence approximation (Koh & Liang, 2017; Schioppa et al., 2022) and
gradient agreement scoring (Pruthi et al., 2020) provide computational benefits but may falter in
terms of reliability in non-convex settings (Basu et al., 2021; Akyurek et al., 2022).
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2.2 DATA ATTRIBUTION IN GENERATIVE MODELS

The discussed methods address counterfactual questions within the context of discriminative models,
focusing primarily on accuracy and model predictions. Extending these methodologies to genera-
tive models presents complexities due to the lack of clear labels or definitive ground truth. Re-
search in this area includes efforts to compute influence within Generative Adversarial Networks
(GANs) (Terashita et al., 2021) and Variational Autoencoders (VAEs) (Kong & Chaudhuri, 2021).
In the realm of diffusion models, earlier research (Dai & Gifford, 2023) has explored influence
computation by employing ensembles that necessitate training multiple models on varied subsets
of training data—a method less suited for traditionally trained models. Wang et al. (2023) sug-
gest an alternative termed ”customization,” which involves adapting or tuning a pretrained text-to-
image model through a specially designed training procedure. MONTAGE (Brokman et al., 2025)
integrates a novel technique to monitor generations throughout the training via internal model rep-
resentations. In this paper, we mainly focus on post-hoc data attribution method, which entails
applying attribution methods after training. Recently, Park et al. (2023) developed TRAK, a new at-
tribution method that is both effective and computationally feasible for large-scale models. Journey
TRAK (Georgiev et al., 2023) extends TRAK to diffusion models by attributing influence across
individual denoising timesteps. Moreover, D-TRAK (Zheng et al., 2024) has revealed surprising
results, indicating that theoretically dubious choices in the design of TRAK might enhance per-
formance, highlighting the imperative for further exploration into data attribution within diffusion
models. In DataInf (Kwon et al., 2024), influence function using the loss gradient and Hessian have
been improved for greater accuracy and efficiency in attributing diffusion models. These studies
are pivotal in advancing our understanding and fostering the development of instance-based inter-
pretations in unsupervised learning contexts. We give a more detailed theoretical discussion about
the existing data attribution methods in diffusion model in Appendix E.3. Besides, we provide an
introduction about application of data attribution in diffusion model in Appendix I.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Our study concentrates on discrete-time diffusion models, specifically Denoising Diffusion Proba-
bilistic Models (DDPMs) (Ho et al., 2020) and Latent Diffusion Models (LDMs) which are foun-
dational to Stable Diffusion (Rombach et al., 2022). This paper grounds all theoretical derivations
within the framework of unconditional generation using DDPMs. Below, we detail the notation
employed in DDPMs that underpins all further theoretical discussions.

Consider a training set S = {z(1), ...,z(n)} where each training sample z(i) := (x(i), y(i)) ∼ Z
is an input-label pair1. Given an input data distribution q(x), DDPMs aim to model a distribution
pθ(x) to approximate q(x). The learning process is divided into forward and reverse process, con-
ducted over a series of timesteps in the latent variable space, with x0 denoting the initial image and
xt the latent variables at timestep t ∈ [1, T ]. In the forward process, DDPMs sample an observation
x0 from S and add noise on it across T timesteps: q(xt|xt−1) := N (xt;

√
1− βtxt−1, βtI), where

β1, ..., βT constitute a variance schedule. As indicated in DDPMs, the latent variable xt can be
express as a linear combination of x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where αt := 1 − βt, ᾱt :=
∏t

s=1 αs and ϵ ∼ N (0, I). In the reward process, DDPMs model a
distribution pθ(xt−1|xt) by minimizing the KL-divergence from data at t:

DKL[pθ(xt−1|xt)∥q(xt−1|xt,x0)] = Eϵ∼N (0,I)[
β2
t

2αt(1− ᾱt)
||ϵ− ϵθ(xt, t)||2], (2)

where ϵθ is a function implemented by models θ which can be seen as a noise predictor. A simplified
version of objective function for a data point x used to train DDPMs is:

LSimple(x, θ) = Eϵ,t[||ϵθ(xt, t)− ϵ||2]. (3)
1In text-to-image task, z := (xi, yi) represents an image-caption sample, whereas in unconditional gener-

ation, it solely contains an image z := (x).
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3.2 DATA ATTRIBUTION

Given a DDPM trained on dataset S, our objective is to trace the influence of the training data on
the generation of sample z. This task is referred to as data attribution, which is commonly solved
by addressing a counterfactual question: removing a training sample z(i) from S and retraining a
model θ\i on the subset S\i, the influence of z(i) on z can be assessed by the change in the model
output, computed as f(z, θ) − f(z, θ\i). The function f(z, θ), which represents the model output,
has a variety of choices, such as the direct output of the model or the loss function.

To avoid the high costs of model retraining, some data attribution methods compute a score function
τ(z,S) : Z × Zn → Rn to reflect the importance of each training sample in S on the sample z.
For clarity, τ(z,S)(i) denotes the attribution score assigned to the individual training sample z(i)

on z. TRAK (Park et al., 2023) stands out as a representative data attribution method designed for
large-scale models focused on discriminative tasks. TRAK defines the model output function as:

fTRAK(z, θ) = log[p̂(x, θ)/(1− p̂(x, θ))], (4)

where p̂(x, θ) is the corresponding class probability of z. TRAK then introduces attribution score
τTRAK(z,S)(i) to approximate the change in fTRAK after a data intervention, which is expressed as:

τTRAK(z,S)(i) := ϕ(z)⊤(Φ⊤Φ)−1ϕ(z(i))r(i) ≈ fTRAK(z, θ)− fTRAK(z, θ\i), (5)

where r(i) := [1−p̂(x(i), θ)] denotes the residual for sample z(i). Here, ϕ(z) := P⊤∇θfTRAK(z, θ)
and Φ := [ϕ(z(1)), ..., ϕ(z(n))] represents the matrix of stacked gradients on S. P ∼ N (0, 1)d×k

is a random projection matrix (Johnson & Lindenstrauss, 1984) to reduce the gradient dimension.

To adapt TRAK in diffusion models, D-TRAK (Zheng et al., 2024) first followed TRAK’s guidence,
replacing the output function with Simple Loss: fD-TRAK(z, θ) = LSimple(x, θ), and simplifies the
residual term to an identity matrix I . The attribution function in D-TRAK is defined as follows:

τD-TRAK(z,S)(i) = ϕ(z)⊤(Φ⊤Φ)−1ϕ(z(i))I ≈ fD-TRAK(z, θ)− fD-TRAK(z, θ\i), (6)

where ϕ(z) := P⊤∇θfD-TRAK(z, θ). Interestingly, D-TRAK observed that substituting Simple
Loss with other functions can yield superior attribution performance. Examples of these include
LSquare(z, θ) = Et,ϵ[||ϵθ(xt, t)||2] and LAverage(z, θ) = Et,ϵ[Avg(ϵθ(xt, t))].

4 METHODOLOGY

4.1 RETHINKING OUTPUT FUNCTION IN DIFFUSION MODELS

For the goal of data attribution within diffusion models, we want to measure the influence of a spe-
cific training sample z(i) on a generated sample zgen. This task can be approached by addressing the
counterfactual question: How would zgen change if we removed z(i) from S and retrained the model
on the subset S\i? This change can be evaluated by the distance between predicted distribution
pθ(x

gen) and pθ\i(x
gen) in DDPM, where the subscript denotes the deletion of z(i).

Reviewing D-TRAK, they proposes using τD-TRAK to approximate this difference on the Simple Loss
by setting output function as fD-TRAK = LSimple. In details, the difference is computed as:

τD-TRAK(z
gen,S)(i) ≈ fD-TRAK(z

gen, θ)− fD-TRAK(z
gen, θ\i)

= Eϵ,t[||ϵθ(xgen
t , t)− ϵ||2]− Eϵ,t[||ϵθ\i(x

gen
t , t)− ϵ||2]. (7)

However, from the distribution perspective, this approach conducts an indirect comparison of KL-
divergences between the predicted distributions by involving the data distribution q(xgen):

τD-TRAK(z
gen,S)(i) ≈ DKL[pθ(x

gen)∥q(xgen)]−DKL[pθ\i(x
gen)∥q(xgen)]

= DKL[pθ(x
gen)∥pθ\i(x

gen)]−
∫

[pθ(x
gen)− pθ\i(x

gen)] log q(xgen)dx. (8)

Compared to directly computing the KL-divergences between predicted distributions pθ and pθ\i ,
D-TRAK involves a Cross Entropy between the predicted distribution shift pθ−pθ\i and data distri-
bution q, where the crossing term is generally nonzero unless are identical distributions. This setting
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involves the influence of the data distribution q in the attribution process and may introduce errors
when evaluating the differences. We can consider the irrationality of this setting through a practical
example: the predicted distributions might approach the data distribution q(xgen) from different di-
rections while training, yet exhibit similar distances. In this case, D-TRAK captures only minimal
loss changes, failing to reflect the true distance between the predicted distributions.

To isolate the effect of the removed data on the model, we propose the Diffusion Attribution Score
(DAS), conducting a direct comparison between pθ and pθ\i by assessing their KL-divergence:

τDAS(z
gen,S)(i) ≈ DKL[pθ(x

gen)||pθ\i(x
gen)]

≈ Eϵ,t[||ϵθ(xgen
t , t)− ϵθ\i(x

gen
t , t)||2]. (9)

The output function in DAS is defined as fDAS(z, θ) = ϵθ(x
gen
t , t), which is able to directly reflect

the differences between the noise predictors of the original and the retrained models. Eq. 9 also
validates the effectiveness of employing Lsquare as the output function, which is formulated as:

τSquare(z
gen,S)(i) ≈ Eϵ,t[||ϵθ(xgen

t , t)||2]− Eϵ,t[||ϵθ\i(x
gen
t , t)||2]. (10)

The effectiveness of τSquare lies in manually eliminating the influence of q; however, this approach has
its limitations since the output of diffusion model is a high dimensional feature. Defining the output
function as LSquare or using average and L2 norm, treats the latent as a scalar, thereby neglecting
dimensional information. For instance, these matrices might exhibit identical differences across var-
ious dimensions, an aspect that scalar representations fail to capture. This dimensional consistency
is crucial for understanding the full impact of training data alterations on model outputs.

4.2 DIFFUSION ATTRIBUTION SCORE

Since we define the output change as KL-divergence, which differs from TRAK, fDAS cannot be di-
rectly applied to TRAK and τDAS needs to be specifically derived on diffusion models. In this section,
we explore methods to approximate Eq. 9 at timestep t without retraining the model. The derivation
is divided into two main parts: First, we linearize the output function, allowing the difference in the
output function to be expressed in terms of difference in model parameters. The second part is that
approximating this relationship using Newton’s method. By integrating these two components, we
derive the complete formulation of DAS to attribute the output of diffusion model at timestep t.

Linearizing Output Function. Computing the output of the retrained model ϵθ\i(x
gen
t , t) is compu-

tationally expensive. For computational efficiency, we propose linearizing the model output function
around the optimal model parameters θ∗ at convergence, simplifying the calculation as follows:

fDAS(zt, θ) ≈ ϵθ∗(xt, t) +∇θϵθ∗(xt, t)
⊤(θ − θ∗). (11)

By substituting Eq. 11 into Eq. 9, we derive:

τDAS(z
gen,S)(i)t ≈ Eϵ[||∇θϵθ∗(xgen

t , t)⊤(θ∗ − θ∗\i)||
2]. (12)

The subscript t indicates the attribution for the model output at timestep t. Consequently, the influ-
ence of removing a sample can be quantitatively evaluated through the changes in model parameters,
which can be measured by the Newton’s method, thereby reducing the computational overhead.

Estimating the model parameter. Consider using the leave-one-out method, the variation of the
model parameters can be assessed by Newton’s Method (Pregibon, 1981). The counterfactual pa-
rameters θ∗\i can be approximated by taking a single Newton step from the optimal parameters θ∗:

θ∗ − θ∗\i ← −[∇θϵθ∗(S\it, t)
⊤∇θϵθ∗(S\it, t)]

−1∇θϵθ∗(S\i, t)⊤R\it, (13)

where ϵθ∗(St, t) := [ϵθ∗(x
(1)
t , t), ..., ϵθ∗(x

(n)
t , t)] represents the stacked output matrix for the set S

at timestep t, and Rt := diag[ϵθ(x
(i)
t , t)− ϵ] is a diagonal matrix describing the residuals among S.

A detailed proof of Eq. 13 is provided in Appendix A.

Let gt(x(i)) = ∇θϵθ∗(x
(i)
t , t) and Gt(S) = ∇θϵθ∗(St, t). The inverse term in Eq. 13 can be

reformulated as:

Gt(S\i)⊤Gt(S\i) = Gt(S)⊤Gt(S)− gt(x
(i))⊤gt(x

(i)). (14)

5
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Applying the Sherman–Morrison formula to Eq. 14 simplifies Eq. 13 as follows:

θ∗ − θ∗\i ←
[Gt(S)⊤Gt(S)]−1gt(x

(i))r
(i)
t

1− gt(x(i))⊤[(Gt(S)⊤Gt(S)]−1gt(x(i))
, (15)

where r
(i)
t is the i-th element of Rt. A detailed proof of Eq 15 in provided in Appendix B.

Diffusion Attribution Score. By substituting Eq.15 into Eq.12, we derive the formula for comput-
ing the DAS at timestep t:

τDAS(z
gen,S)(i)t = Eϵ[||

gt(x
gen)[Gt(S)⊤Gt(S)]−1gt(x

(i))r
(i)
t

1− gt(x(i))⊤[(Gt(S)⊤Gt(S)]−1gt(x(i))
||2]. (16)

This equation estimates the impact of training samples at a specific timestep t. The overall influence
of a training sample z(i) on the target sample zgen throughout the entire generation process can be
computed as an expectation over timestep t. However, directly calculating these expectations is
extremely costly. In the next section, we discuss methods to expedite this computation.

4.3 EXTEND DAS TO LARGE-SCALE DIFFUSION MODEL

Calculating Eq. 16 for large-scale diffusion models poses several challenges. The computation of the
inverse term is extremely expensive due to the high dimensionality of the parameters. Additionally,
gradients must be calculated for all training samples in S, further increasing computational demands.
In this subsection, we explore techniques to accelerate the calculation of Eq. 16. These methods can
be broadly categorized into two approaches: The first focuses on reducing the gradient computation
by minimizing the number of expectations and candidate training samples. The second aims to
accelerate the computation of the inverse term by reducing the dimensionality of the gradients.

Reducing Calculation of Expectations. Computing t times the equation specified in Eq. 16 is
highly resource-intensive due to the necessity of calculating inverse terms. To simplify, we use the
average gradient g(x) and average residual r over entire generation, enabling a single computation
of Eq.16 to assess overall influence. However, during averaging, these terms may exhibit varying
magnitudes across different timesteps, potentially leading to the loss of significant information. To
address this, we normalize the gradients and residuals over the entire generation before averaging:

g(x(i)) =
1

T

∑
t

gt(x
(i))√∑T

j=1[gj(x
(i))]2

, r(i) =
1

T

∑
t

r
(i)
t√∑T

j=1[r
(i)
j ]2

. (17)

Thus, to attribute the influence of a training sample z(i) on a generated sample zgen throughout the
entire generation process, we redefine Eq. 16 as follows:

τDAS(z
gen,S)(i) = || g(x

gen)⊤[G(S)⊤G(S)]−1g(x(i))r(i)

1− g(x(i))⊤[G(S)⊤G(S)]−1g(x(i))
||2. (18)

Reducing Dimension of Gradients by Projection. The dimension of gt(x(i)) matches that of the
amount of diffusion model’s parameter, posing a challenge in calculating the inverse term due to
its substantial size. One effective method of reducing the dimensionalit is to apply the Johnson
and Lindenstrauss Projection (Johnson & Lindenstrauss, 1984). It involves multiplying the gradient
vector gt(x(i)) ∈ Rp by a random matrix P ∼ N (0, 1) ∈ Rp×k(k ≪ p), which can preserve
inner product with high probability while significantly reducing the dimension of the gradient. This
projection method has been validated in previous studies (Malladi et al., 2023; Zheng et al., 2024),
demonstrating its efficacy in maintaining the integrity of the gradients while easing computational
demands. We summarize our algorithms in Algorithm 1 with normalization and projection.

Reducing Dimension of Gradients by Model Compression In addition to projection methods,
other techniques can be employed to reduce the dimension of gradients in diffusion models. For
instance, as noted by Ma et al. (2024), the up-block of the U-Net architecture in diffusion models
plays a pivotal role in the generation process. Therefore, we can focus on the up-block gradients for
dimension reduction purposes, optimizing computational efficiency. Furthermore, various strate-
gies have been proposed to fine-tune large-scale diffusion models efficiently. One such approach

6
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Table 1: LDS (%) on CIFAR-2/CIFAR-10 with timesteps (10 or 100).

Method
CIFAR2 CIFAR10

Validation Generation Validation Generation
10 100 10 100 10 100 10 100

Raw pixel (dot prod.) 7.77±0.57 4.89±0.58 2.50±0.42 2.25±0.39
Raw pixel (cosine) 7.87±0.57 5.44±0.57 2.71±0.41 2.61±0.38
CLIP similarity (dot prod.) 6.51±1.06 3.00±0.95 2.39±0.41 1.11±0.47
CLIP similarity (cosine) 8.54±1.01 4.01±0.85 3.39±0.38 1.69±0.49

Gradient (dot prod.) 5.14±0.60 5.07±0.55 2.80±0.55 4.03±0.51 0.79±0.43 1.40±0.42 0.74±0.45 1.85±0.54
Gradient (cosine) 5.08±0.59 4.89±0.50 2.78±0.54 3.92±0.49 0.66±0.43 1.24±0.41 0.58±0.42 1.82±0.51
TracInCP 6.26±0.84 5.47±0.87 3.76±0.61 3.70±0.66 0.98±0.44 1.26±0.38 0.96±0.40 1.39±0.54
GAS 5.78±0.82 5.15±0.87 3.34±0.56 3.30±0.68 0.89±0.48 1.25±0.38 0.90±0.41 1.61±0.54

Journey TRAK / / 7.73±0.65 12.21±0.46 / / 3.71±0.37 7.26±0.43
Relative IF 11.20±0.51 23.43±0.46 5.86±0.48 15.91±0.39 2.76±0.45 13.56±0.39 2.42±0.36 10.65±0.42
Renorm. IF 10.89±0.46 21.46±0.42 5.69±0.45 14.65±0.37 2.73±0.46 12.58±0.40 2.10±0.34 9.34±0.43
TRAK 11.42±0.49 23.59±0.46 5.78±0.48 15.87±0.39 2.93±0.46 13.62±0.38 2.20±0.38 10.33±0.42
D-TRAK 26.79±0.33 33.74±0.37 18.82±0.43 25.67±0.40 14.69±0.46 20.56±0.42 11.05±0.43 16.11±0.36

DAS 33.90±0.69 43.08±0.37 20.88±0.27 30.68±0.76 24.74±0.41 33.23±0.35 15.24±0.51 23.69±0.47

is LoRA (Hu et al., 2022), which involves freezing the pre-trained model weights while utilizing
trainable rank decomposition matrices. This significantly reduces the number of trainable parame-
ters required for fine-tuning. Consequently, when attributing the influence of training samples in a
fine-tuned dataset, we can compute the DAS with gradients on the trainable parameters.

Reducing the amount of timesteps. Computing Eq. 17 requires performing back propagation T
times, making it highly resource-intensive. Sampling fewer timesteps can also approximate the
expectation and estimate gradient behavior while significantly lowering computational overhead.

Reducing Candidate Training Sample. The necessity to traverse the entire training set when
computing the DAS poses a significant challenge. To alleviate this, a practical approach involves
conducting a preliminary screening to identify the most influential training samples. Techniques
such as CLIP (Radford et al., 2021) or cosine similarity can be effectively employed to locate sam-
ples that are similar to the target. By using these methods, we can form a preliminary candidate set
and concentrate DAS computations on this subset, rather than on the entire training dataset.

5 EXPERIMENTS

5.1 DATASETS AND MODELS

In this section, we present a comparative analysis of our method, Diffusion Attribution Score (DAS),
against existing data attribution methods across various experimental settings. Our findings demon-
strate that DAS significantly outperforms other methods in attribution performance, validating its
ability to accurately identify influential training samples. We provide an overview of the datasets
and diffusion models used in our experiments, with detailed descriptions available in Appendix E.1.

CIFAR10 (32×32). We conduct experiments on the CIFAR-10 (Krizhevsky, 2009), containing
50,000 training samples across 10 classes. For computational efficiency on ablation studies, CIFAR-
2, a subset with 5,000 samples randomly selected from 2 classes is proposed. We use a 35.7M
DDPM (Ho et al., 2020) with a 50-step DDIM solver (Song et al., 2021a) on these settings.

CelebA (64×64). From original CelebA dataset training and test sets (Liu et al., 2015), we extracted
5,000 training samples. Following preprocessing steps outlined by Song et al. (2021b), images were
initially center cropped to 140x140 and then resized to 64x64. The diffusion model used mirrors the
CIFAR-10 setup but includes an expanded U-Net architecture with 118.8 million parameters.

ArtBench (256×256). ArtBench (Liao et al., 2022) is a dataset of 50,000 images across 10 artistic
styles. For our studies, we derived two subsets: ArtBench-2, with 5,000 samples from 2 classes
and ArtBench-5, with 12,500 samples from five styles. We fine-tuned a Stable Diffusion model on
these datasets using LoRA (Hu et al., 2022) with 128 rank and 25.5M parameters. During inference,
images are generated using a DDIM solver with a classifier-free guidance (Ho & Salimans, 2021).
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Table 2: LDS (%) on ArtBench-2/ArtBench-5 with timesteps (10 or 100)

Method
ArtBench2 ArtBench5

Validation Generation Validation Generation
10 100 10 100 10 100 10 100

Raw pixel (dot prod.) 2.44±0.56 2.60±0.84 1.84±0.42 2.77±0.80
Raw pixel (cosine) 2.58±0.56 2.71±0.86 1.97±0.41 3.22±0.78
CLIP similarity (dot prod.) 7.18±0.70 5.33±1.45 5.29±0.45 4.47±1.09
CLIP similarity (cosine) 8.62±0.70 8.66±1.31 6.57±0.44 6.63±1.14

Gradient (dot prod.) 7.68±0.43 16.00±0.51 4.07±1.07 10.23±1.08 4.77±0.36 10.02±0.45 3.89±0.88 8.17±1.02
Gradient (cosine) 7.72±0.42 16.04±0.49 4.50±0.97 10.71±1.07 4.96±0.35 9.85±0.44 4.14±0.86 8.18±1.01
TracInCP 9.69±0.49 17.83±0.58 6.36±0.93 13.85±1.01 5.33±0.37 10.87±0.47 4.34±0.84 9.02±1.04
GAS 9.65±0.46 18.04±0.62 6.74±0.82 14.27±0.97 5.52±0.38 10.71±0.48 4.48±0.83 9.13±1.01

Journey TRAK / / 5.96±0.97 11.41±1.02 / / 7.59±0.78 13.31±0.68
Relative IF 12.22±0.43 27.25±0.34 7.62±0.57 19.78±0.69 9.77±0.34 20.97±0.41 8.89±0.59 19.56±0.62
Renorm. IF 11.90±0.43 26.49±0.34 7.83±0.64 19.86±0.71 9.57±0.32 20.72±0.40 8.97±0.58 19.38±0.66
TRAK 12.26±0.42 27.28±0.34 7.78±0.59 20.02±0.69 9.79±0.33 21.03±0.42 8.79±0.59 19.54±0.61
D-TRAK 27.61±0.49 32.38±0.41 24.16±0.67 26.53±0.64 22.84±0.37 27.46±0.37 21.56±0.71 23.85±0.71

DAS 37.96±0.64 40.77±0.47 30.81±0.31 32.31±0.42 35.33±0.49 37.67±0.68 31.74±0.75 32.77±0.53

5.2 EVALUATION METHOD FOR DATA ATTRIBUTION

Various methods are available for evaluating data attribution techniques, including the leave-one-out
influence method (Koh & Liang, 2017; Basu et al., 2021) and Shapley values (Lundberg & Lee,
2017). In this paper, we use the Linear Datamodeling Score (LDS) (Ilyas et al., 2022) to assess data
attribution methods. Given a model trained θ on datset S, LDS evaluates the effectiveness of a data
attribution method τ by initially sampling a sub-dataset S′ ⊂ S and retraining a model θ′ on S′. The
attribution-based output prediction for an interested sample ztest is then calculated as:

gτ (z
test,S′,S) :=

∑
z(i)∈S′

τ(ztest,S)(i) (19)

The underlying premise of LDS is that the predicted output gτ (z,S′,S) should correspond closely
to the actual model output f(ztest, θ′). To validate this, LDS samples M subsets of fixed size and
predicted model outputs across these subsets:

LDS(τ,ztest) := ρ ({f(ztest, θm) : m ∈ [M ]}, {gτ (ztest,Sm;D) : m ∈ [M ]}) (20)

where ρ denotes the Spearman correlation and θm is the model trained on the m-th subset Sm. In our
evaluation, we adopt the output function setup from D-TRAK (Zheng et al., 2024), setting f(ztest, θ)
as the Simple Loss described in Eq. 3 for fairness. Although the output functions differ between D-
TRAK and DAS, fDAS can also evaluate the Simple Loss change, where we elaborate on the rationale
in Appendix D. Further details about LDS benchmarks are described in Appendix E.2.

5.3 EVALUATION FOR SPEED UP TECHNIQUES

The diffusion models used in our experiments are significantly complex, with parameter counts of
35.7M, 118.8M, and 25.5M respectively. These large dimensions pose considerable challenges in
calculating the attribution score efficiently. To address this, we evaluate speed-up techniques as dis-
cussed in Section 4.3 on CIFAR-2. The results of these evaluations are reported in the Appendix E.4.

Normalization. We evaluate the normalization of gradients and residuals, as proposed in Eq. 17, to
stabilize gradient variability across timesteps and enhance computational accuracy. By normalizing
across generation before averaging, the performance for both DAS and D-TRAK improve (Table 4).

Number of timesteps. Computing DAS requires balancing effectiveness and computational effi-
ciency, as more timesteps improve performance through averaging but increase back-propagation
costs. Experiment shows that while increasing timesteps enhances LDS results (Table 5), using 100
or 10 timesteps achieves comparable performance to 1000 timesteps with much lower computational
demands. Thus, subsequent experiments will default to 10 and 100 timesteps for optimal efficiency.

Projection. We apply the projection technique to reduce gradient dimensions and analyzed the
impact of projection dimension k on LDS performance. As Johnson & Lindenstrauss (1984) disuc-
ssed, higher projection dimensions better preserve inner products but increase computational costs.
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Figure 2 shows that LDS scores for both D-TRAK and DAS improve with increasing k before
plateauing. Based on these results, we set k = 32768 as the default for experiments.

Compress Model Parameters. We also explore techniques to reduce the gradient dimension at
the model level. We conduct experiments focusing on using the up-block of the U-Net to compute
gradients. The results in Table 6 indicate that using only the up-block can achieve competitive
performance compared to the full model . Moreover, experiments on ArtBench, which fine-tune a
Stable Diffusion model with LoRA, further demonstrated the effectiveness of this approach.

Candidate Training Sample. Another technique to speed up the process involves reducing the
number of training samples considered. We using CLIP to identify the top 1,000 training samples
most similar to the target samples to form a candidate dataset We then computed the attribution
scores for this candidate set, assigning a score of 0 to all other samples, and calculated the LDS. The
results, detailed in Table 7, validate the efficacy of this method.

5.4 EVALUATING OUTPUT FUNCTION EFFECTIVENESS

In this paper, we define the output function as fDAS = ϵθ(x
gen
t , t) to evaluate the difference between

predicted distributions after data intervention. We argue that using Simple Loss for comparison
introduces error as it involves the effect of data distribution during attribution. To support this
theoretical claim, we conduct a toy experiment to measure the alignment between shifts in Simple
Loss and changes in generated images. We train an unconditional DDPM on CIFAR-2 to generate
60 images. For each image, we retrain the model after randomly deleting 1,000 training samples. In
total, we have 60 different synthesized image pairs generated by the original and retrained models
with the same random seed, where the L2 distance is calculated to directly measure their differences.

The original images are first noised to timestep T and the two models are used to denoise the latent
at T . At the entire denoising process, we compute the average difference of loss and the noise
predictor output. For the 60 pairs of generated samples, we calculate the rank correlation between
the differences and the L2 distance. The Pearson correlation between the L2 distance and the average
loss difference is only 0.257, while the correlation with the average noise predictor output difference
reaches 0.485. The noise predictor’s output differences align more closely with L2-distances than
loss value differences. We report the details of toy experiment in Appendix H.

This result is unsurprising. Consider an extreme scenario: a model trained on a dataset of cats and
dogs generates a cat image. If all cat samples are removed and the model is retrained, it would
generate a dog image under the same random seed. Despite this significant change, the loss values
for both images might remain the same, as the simple loss reflects the model optimization, not the
generated image itself. Thus, loss value shifts fail to capture the extent of image changes. In contrast,
differences in the noise predictor’s outputs effectively trace changes in the diffusion model’s outputs.

5.5 EVALUATING LDS FOR VARIOUS ATTRIBUTION METHODS

In this section, we evaluate the performance of the Diffusion Attribution Score (DAS) against exist-
ing attribution baselines applicable to our experimental settings, as outlined by Zheng et al. (2024),
with detailed explanations provided in Appendix E.3. Our primary focus is on comparing with post-
hoc data attribution methods. To ensure fair comparisons, we limit the use of acceleration techniques
for DAS to projection only, excluding others like normalization. The results on CIFAR, ArtBench
and CelebA, presented in Tables 1, 2, demonstrate that DAS consistently outperforms existing meth-
ods, where the result of CelebA is reported in the appendix in Appendix E.4 at Table 3.

Compared to D-TRAK, DAS shows substantial improvements. On a validation set utilizing 100
timesteps, DAS achieves improvements of +9.33% on CIFAR-2, +8.39% on ArtBench-2, and
+5.1% on CelebA. In the generation set, the gains continue with +5.01% on CIFAR-2, +5.78%
on ArtBench-2, and +9.21% on CelebA. Notably, DAS also achieves significant improvements on
larger datasets like CIFAR10 and ArtBench5, outperforming D-TRAK by +12.67% and +10.21%
on validation sets and +7.58% and +8.92% on generation samples.

Other methods generally underperform on larger datasets such as ArtBench5 and CIFAR10 com-
pared to smaller datasets like CIFAR2 and ArtBench2. Conversely, our method performs better on
ArtBench5 than on ArtBench2. Remarkably, our findings suggest that while with more timesteps for
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Random D-TRAK DAS Random D-TRAK DAS

Figure 1: We conduct an visualization experiment to explore DAS effectiveness described in Sec 5.6.
Removing the influential samples identified by DAS produces the most significant differences in the
generated images after retraining the model. DAS is the most effective methods for attribution.

calculating gradients generally leads to a better approximation of the expectation Et, DAS, employ-
ing only a 10-timestep computation budget, still outperforms D-TRAK, which uses a 100-timestep
budget in most cases, which underscores the effectiveness of our approach. Additionally, the mod-
est improvements on CIFAR10 and CelebA may be attributed to the LDS setup for these datasets,
which employs only one random seed per subset for training a model, whereas other datasets uti-
lize three random seeds, potentially leading to inaccuracies in LDS evaluation. Another observation
is that DAS performs better on the validation set than on the generation set. This could indicate
that the quality of generated images may have a significant impact on data attribution performance.
However, further investigation is needed to validate this hypothesis.

5.6 COUNTER FACTUAL VISUALIZATION EVALUATION

To more intuitively assess the faithfulness of DAS, we conduct a counter factual visualization exper-
iment. We use different attribution methods, including TRAK, D-TRAK and DAS, to identify the
the top-1000 positive influencers on 60 generated images on ArtBench2 and CIFAR2. We sample
100 timesteps and a projection dimension of k = 32768 to identify the top-1000 influencers. These
training samples identified by each method are subsequently removed and the model is retrained.
Additionally, we conduct a baseline setting where 1,000 training images are randomly removed be-
fore retraining. We re-generate the images with same random seed and compare the L2-Distance
and CLIP cosine similarity between the origin and counter-factual images. For the pixel-wise L2-
Distance, D-TRAK yields values of 8.97 and 187.61 for CIFAR-2 and ArtBench-2, respectively,
compared to TRAK’s values of 5.90 and 168.37, while DAS results in values of 10.58 and 203.76.
In terms of CLIP similarity, DAS achieves median similarities of 0.83 and 0.71 for ArtBench-2 and
CIFAR-2, respectively, which are notably lower than TRAK’s values of 0.94 and 0.84, as well as
D-TRAK’s values of 0.88 and 0.77, demonstrating the effectiveness of our method. An illustration
of the experiment is in Figure 1, where removing the influencers detected by DAS results in a biggest
difference compared to baseline methods. A detailed result in box-plot is reported in Appendix G.

6 CONCLUSION

In this paper, we introduce the Diffusion Attribution Score (DAS) to address the existing gap in data
attribution methodologies for generative models. We conducted a comprehensive theoretical anal-
ysis to elucidate the inherent challenges in applying TRAK to diffusion models. Subsequently, we
derived DAS theoretically based on the properties of diffusion models for attributing data throughout
the entire generation process. We also discuss strategies to accelerate computations to extend DAS
to large-scale diffusion models. Our extensive experimental evaluations on datasets such as CIFAR,
CelebA, and ArtBench demonstrate that DAS consistently surpasses existing baselines in terms of
Linear Datamodeling Score evaluation. This paper underscores the crucial role of data attribution in
ensuring transparency in the use of diffusion models, especially when dealing with copyrighted or
sensitive content. Looking forward, our future work aims to extend DAS to other generative models
and real-world applications to further ascertain its effectiveness and applicability.
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A PROOF OF EQUATION 13

In this section, we provide a detailed proof of Eq. 13. We utilize the Newton Method (Pregibon,
1981) to update the parameters in the diffusion model, where the parameter update theta′ is defined
as:

θ′ ← θ +H−1
θt

(LSimple(θ))∇θLSimple(θ), (21)

Here, Hθt(LSimple(θ)) represents the Hessian matrix, and ∇θLSimple is the gradient w.r.t the Simple
Loss in the diffusion model. At convergence, the model reaches the global optimum parameter
estimate θ∗, satisfying:

H−1
θt

(LSimple(θ
∗))∇θLSimple(θ

∗) = 0. (22)

Additionally, the Hessian matrix and gradient associated with the objective function at timestep t
are defined as:

Hθ∗ = ∇θϵθ∗(St, t)⊤∇θϵθ∗(St, t), ∇θL(θ∗) = ∇θϵθ∗(St, t)⊤Rt, (23)

where ϵθ∗(St, t) := [ϵθ∗(x
(1)
t , t), ..., ϵθ∗(x

(n)
t , t)] denotes a stacked output matrix on S at timestep

t and Rt := diag[ϵθ(x
(i)
t , t) − ϵ] is a diagonal matrix on S describing the residual among S. Thus,

the update defined in Eq. 21 around the optimum parameterθ∗ is:

θ′ − θ ← [∇θϵθ∗(St, t)⊤∇θϵθ∗(St, t)]−1∇θϵθ∗(St, t)⊤Rt. (24)

Upon deleting a training sample x(i) from S, the counterfactual parameters θ∗\i can be estimated by
applying a single step of Newton’s method from the optimal parameter θ∗ with the modified set S\i,
as follows:

θ∗ − θ∗\i ← −[∇θϵθ∗(S\it, t)
⊤∇θϵθ∗(S\it, t)]

−1∇θϵθ∗(S\it, t)
⊤R\it. (25)

B PROOF OF EQUATION 15

In this section, we provide a detailed proof of Eq. 15. The Sherman-Morrison formula is defined as:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
. (26)

Let H = Gt(S)⊤Gt(S) and u = gt(x
(i)). Applying Eq. 26 in Eq. 14, we derive:

[Gt(S\i)⊤Gt(S\i)]−1 = [H − uu⊤]−1 = H−1 +
H−1uu⊤H−1

1− u⊤H−1u
. (27)

Additionally, we have:

Gt(S\i)⊤R\it = Gt(S)⊤Rt − gt(x
(i))⊤r(i)t = −u⊤r

(i)
t . (28)

Applying Eq. 27 and Eq. 28 to Eq. 25, we obtain:

θ∗ − θ∗\i = [H−1 +
H−1uu⊤H−1

1− u⊤H−1u
]u⊤r

(i)
t . (29)

Let α = u⊤H−1u. Eq. 29 simplifies to:

θ∗ − θ∗\i = H−1u · (1 + α

1− α
)r

(i)
t

= H−1u · 1

1− α
r
(i)
t

=
[Gt(S)⊤Gt(S)]−1gt(x

(i))r
(i)
t

1− gt(x(i))⊤[(Gt(S)⊤Gt(S)]−1gt(x(i))
. (30)
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C ALGORITHM OF DAS

In this section, we provide a algorithm about DAS in Algorithm 1.

Algorithm 1 Diffusion Attribution Score
1: Input: Learning algorithm A, Training dataset S of size n, Training data dimension p, Max-

imum timesteps for diffusion model T , Unet output in diffusion model ϵθ(x, t), Projection
dimension k, A standard gaussian noise ϵ ∼ N (0, I), Normalization and average method N , A
generated sample zgen

2: Output: Matrix of attribution scores T ∈ Rn

3: θ∗ ← A(S) ▷ Train a diffusion model on S
4: P ∼ N (0, 1)p×k ▷ Sample projection matrix
5: R← 0n×n

6: for i = 1 to n do
7: for t = 1 to T do
8: ϵ ∼ N (0, 1)p ▷ Sample a gaussian noise
9: gt(x

(i))← P⊤∇θϵθ∗(x
(i)
t , t) ▷ Compute gradient on training set and project

10: r
(i)
t ← ϵθ∗(x

(i)
t , t)− ϵ ▷ Compute residual term

11: end for
12: g(x(i)) = N(gt(x

(i))) ▷ Normalize projected gradient term
13: r(i) = N(r

(i)
t ) ▷ Normalize residual term

14: end for
15: G(S)← [g(x(i)), ..., g(x(n))]⊤

16: R← diag(r(1), ..., r(n))
17: for t = 1 to T do
18: ϵ ∼ N (0, 1)p ▷ Sample a gaussian noise
19: gt(x

gen)← P⊤∇θϵθ∗(xgen
t , t) ▷ Compute gradient for generated sample and project

20: end for
21: g(xgen) = N(gt(x

gen))

22: T ← ||g(x
gen)⊤(G(S)⊤G(S))−1G(S)R

1−G(S)⊤(G(S)⊤G(S))−1G(S) ||
2 ▷ Compute attribution matrix

23: return (T )

D EXPLANATION ABOUT THE CHOICE OF MODEL OUTPUT FUNCTION IN
LDS EVALUATION

In the LDS framework, we evaluate the ranking correlation between the ground-truth and the pre-
dicted model outputs following a data intervention. In our evaluations, the output function used in
JourneyTRAK and D-TRAK is shown to provide the same ranking as our DAS output function.
Below, we provide a detailed explanation of this alignment.

Defining the function f(z, θ) as LSimple, D-TRAK predicts the change in output as:

f(zgen, θ)− f(zgen, θm) = Eϵ,t[||ϵ− ϵθ(z
gen
t , t)||2]− Eϵ[||ϵ− ϵθm(zgen

t , t)||2], (31)
where θ and θm represent the models trained on the full dataset S and a subset Sm, respectively.
With the retraining of the model on subset Sm while fixing all randomness, the real change can be
computed as:

f(zgen, θ)− f(zgen, θm) =Eϵ,t[||ϵθ(zgen
t , t)− ϵθm(zgen

t , t)||2]
+ 2Eϵ[(ϵθ(z

gen
t , t)− ϵθm(zgen

t , t)) · (ϵ− ϵθm(zgen
t , t))]. (32)

The first expectation represents the predicted output change in DAS as well as the ground truth
output, while the term (ϵ− ϵθm(zgen

t , t)) is recognized as the error of the MMSE estimator.

In our evaluations, the sampling noise ϵ is fixed and ϵθ(z
gen
t , t) is a given value since the model θ

is frozen. Therefore, the second term equals zero, following the orthogonality principle. It can be
stated as a more general result that,

∀f ,E[f(ϵθm , zgen) · (ϵ− ϵθm(zgen))] = 0. (33)
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Figure 2: The LDS(%) on CIFAR-2 under different projection dimension k. We consider 10 and 100
timesteps selected to be evenly spaced within the interval [1, T ], which are used to approximate the
expectation Et. For each sampled timestep, we sample one standard Gaussian noise ϵ ∼ N (ϵ|0, I)
to approximate the expectation Eϵ.

The error (ϵ− ϵθm(zgen)) must be orthogonal to any estimator f . If not, we could use f to construct
an estimator with a lower MSE than ϵθm(xgen), contradicting our assumption that (ϵ − ϵθm(zgen))
is the MMSE estimator. Applications of the orthogonality principle in diffusion models have been
similarly proposed (Kong et al., 2024; Banerjee et al., 2005). Thus, given that we have a frozen
model θ, fixed sampling noise ϵ and a specific generated sample zgen, the change in the output
function in DAS provides the same rank as the one in JourneyTRAK and D-TRAK.

E IMPLEMENTATION DETAILS

E.1 DATASETS AND MODELS

CIFAR10(32×32). The CIFAR-10 dataset, introduced by Krizhevsky (2009), consists of 50,000
training images across various classes. For the Linear Datamodeling Score evluation, we utilize
a subset of 1,000 images randomly selected from CIFAR-10’s test set. To manage computational
demands effectively, we also create a smaller subset, CIFAR-2, which includes 5,000 training images
and 1,000 validation images specifically drawn from the ”automobile” and ”horse” categories of
CIFAR-10’s training and test sets, respectively.

In our CIFAR experiments, we employ the architecture and settings of the Denoising Diffusion
Probabilistic Models (DDPMs) as outlined by Ho et al. (2020). The model is configured with ap-
proximately 35.7 million parameters (d = 35.7× 106 for θ ∈ Rd). We set the maximum number of
timesteps (T ) at 1,000 with a linear variance schedule for the forward diffusion process, beginning at
β1 = 10−4 and escalating to βT = 0.02. Additional model specifications include a dropout rate of
0.1 and the use of the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay of 10−6.
Data augmentation techniques such as random horizontal flips are employed to enhance model ro-
bustness. The training process spans 200 epochs with a batch size of 128, using a cosine annealing
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Figure 3: The LDS(%) on CIFAR-2 varies across different checkpoints. We analyze the data using
10 and 100 timesteps, evenly spaced within the interval [1, T ], to approximate the expectation Et.
At each sampled timestep, we introduce one standard Gaussian noise ϵ ∼ N (0, I) to approximate
the expectation Eϵ. We set the projection dimension k = 32768.

learning rate schedule that incorporates a warm-up period covering 10% of the training duration,
beginning from an initial learning rate of 10−4. During inference, new images are generated using
the 50-step Denoising Diffusion Implicit Models (DDIM) solver (Song et al., 2021a).

CelebA(64×64). We selected 5,000 training samples and 1,000 validation samples from the orig-
inal training and test sets of CelebA (Liu et al., 2015), respectively. Following the preprocessing
method described by Song et al. (2021b), we first center-cropped the images to 140×140 pixels and
then resized them to 64×64 pixels. For the CelebA experiments, we adapted the architecture to ac-
commodate a 64×64 resolution while employing a similar unconditional DDPM implementation as
used for CIFAR-10. However, the U-Net architecture was expanded to 118.8 million parameters to
better capture the increased complexity of the CelebA dataset. The hyperparameters, including the
variance schedule, optimizer settings, and training protocol, were kept consistent with those used
for the CIFAR-10 experiments.

ArtBench(256×256). ArtBench (Liao et al., 2022) is a dataset specifically designed for gener-
ating artwork, comprising 60,000 images across 10 unique artistic styles. Each style contributes
5,000 training images and 1,000 testing images. We introduce two subsets from this dataset for
focused evaluation: ArtBench-2 and ArtBench-5. ArtBench-2 features 5,000 training and 1,000 val-
idation images selected from the ”post-impressionism” and ”ukiyo-e” styles, extracted from a total
of 10,000 training and 2,000 test images. ArtBench-5 includes 12,500 training and 1,000 valida-
tion images drawn from a larger pool of 25,000 training and 5,000 test images across five styles:
”post-impressionism,” ”ukiyo-e,” ”romanticism,” ”renaissance,” and ”baroque.”

For our experiments on ArtBench, we fine-tune a Stable Diffusion model (Rombach et al., 2022)
using Low-Rank Adaptation (LoRA) (Hu et al., 2022) with a rank of 128, amounting to 25.5 million
parameters. We adapt a pre-trained Stable Diffusion checkpoint from a resolution of 512×512
to 256×256 to align with the ArtBench specifications. The model is trained conditionally using
textual prompts specific to each style, such as ”a class painting,” e.g., ”a romanticism painting.”
We set the dropout rate at 0.1 and employ the AdamW optimizer with a weight decay of 10−6.
Data augmentation is performed via random horizontal flips. The training is conducted over 100
epochs with a batch size of 64, under a cosine annealing learning rate schedule that includes a 0.1
fraction warm-up period starting from an initial rate of 3 × 10−4. During the inference phase, we
generate new images using the 50-step DDIM solver with a classifier-free guidance scale of 7.5 (Ho
& Salimans, 2021).

E.2 LDS EVALUATION SETUP

Various methods are available for evaluating data attribution techniques, including the leave-one-out
influence method (Koh & Liang, 2017; Basu et al., 2021) and Shapley values (Lundberg & Lee,
2017). In this paper, we use the Linear Datamodeling Score (LDS) (Ilyas et al., 2022) to assess data
attribution methods. Given a model trained θ on datset S, LDS evaluates the effectiveness of a data
attribution method τ by initially sampling a sub-dataset S′ ⊂ S and retraining a model θ′ on S′. The
attribution-based output prediction for an interested sample ztest is then calculated as:

gτ (z
test,S′,S) :=

∑
z(i)∈S′

τ(ztest,S)(i) (34)

The underlying premise of LDS is that the predicted output gτ (z,S′,S) should correspond closely
to the actual model output f(ztest, θ′). To validate this, LDS samples M subsets of fixed size and
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Figure 4: LDS (%) on CIFAR-2 under different λ. We consider 10, 100, and 1000 timesteps selected
to be evenly spaced within the interval [1, T ], which are used to approximate the expectation Et. We
set k = 4096.

predicted model outputs across these subsets:

LDS(τ,ztest) := ρ ({f(ztest, θm) : m ∈ [M ]}, {gτ (ztest,Sm;D) : m ∈ [M ]}) (35)

where ρ denotes the Spearman correlation and θm is the model trained on the m-th subset Sm. For
the LDS evaluation, we construct 64 distinct subsets Sm from the training dataset S, each constituting
50% of the total training set size. For CIFAR-2, ArtBench-2, and ArtBench-5, three models per
subset are trained using different random seeds for robustness, while for CIFAR-10 and CelebA, a
single model is trained per subset. A validation set, comprising 1,000 samples each from the original
test set and a generated dataset, serves as ztest for LDS calculations. Specifically, we evaluate the
Simple Loss LSimple(z, θ) as defined in Eq 3 for samples of interest from both the validation and
generation sets. To better approximate the expectation Et, we utilize 1,000 timesteps, evenly spaced
within the range [1, T ]. At each timestep, three instances of standard Gaussian noise ϵ ∼ N (0, I)
are introduced to approximate the expectation Eϵ. The calculated LDS values are then averaged
across the selected samples from both the validation and generation sets to determine the overall
LDS performance.

E.3 BASELINES

In this paper, our focus is primarily on post-hoc data attribution, which entails applying attribution
methods after the completion of model training. These methods are particularly advantageous as
they do not impose additional constraints during the model training phase, making them well-suited
for practical applications (Ribeiro et al., 2016).

Following the work of Hammoudeh & Lowd (2024), we evaluate various attribution baselines that
are compatible with our experimental framework. We exclude certain methods that are not fea-
sible for our settings, such as the Leave-One-Out approach (Cook, 1977) and the Shapley Value
method (Shapley et al., 1953; Ghorbani & Zou, 2019). These methods, although foundational, do
not align well with the requirements of DDPMs due to their intensive computational demands and
model-specific limitations. Additionally, we do not consider techniques like Representer Point (Yeh
et al., 2018), which are tailored for specific tasks and models, and thus are incompatible with
DDPMs. Moreover, we disregard HYDRA (Chen et al., 2021), which, although related to Trac-
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Figure 5: LDS (%) on ArtBench-2 under different λ. We consider 10 and 100 timesteps selected to
be evenly spaced within the interval [1, T ], which are used to approximate the expectation Et. We
set k = 32768.

InCP (Pruthi et al., 2020), compromises precision for incremental speed improvements as critiqued
by Hammoudeh & Lowd (2024).

Two works focus on diffusion model that also fall outside our framework. Dai & Gifford (2023) pro-
pose a method for training data attribution on diffusion models using machine unlearning; however,
their approach necessitates a specific machine unlearning training process, making it non-post-hoc
and thus unsuitable for standard settings. Similarly, Wang et al. (2023) acknowledge the current
challenges in conducting post-hoc training influence analysis with existing methods. They suggest
an alternative termed ”customization,” which involves adapting or tuning a pretrained text-to-image
model through a specially designed training procedure.

Building upon recent advancements, Park et al. (2023) introduced an innovative estimator that lever-
ages a kernel matrix analogous to the Fisher Information Matrix (FIM), aiming to linearize the
model’s behavior. This approach integrates classical random projection techniques to expedite the
computation of Hessian-based influence functions (Koh & Liang, 2017), which are typically compu-
tationally intensive. Zheng et al. (2024) adapted TRAK to diffusion models, empirically designing
the model output function. Intriguingly, they reported that the theoretically designed model output
function in TRAK performs poorly in unsupervised settings within diffusion models. However, they
did not provide a theoretical explanation for these empirical findings, leaving a gap in understanding
the underlying mechanics.

Our study concentrates on retraining-free methods, which we categorize into three distinct types:
similarity-based, gradient-based (without kernel), and gradient-based (with kernel) methods. For
similarity-based approaches, we consider Raw pixel similarity and CLIP similarity (Radford et al.,
2021). The gradient-based methods without a kernel include techniques such as Gradient (Charpiat
et al., 2019), TracInCP (Pruthi et al., 2020) and GAS (Hammoudeh & Lowd, 2022). In the domain
of gradient-based methods with a kernel, we explore several methods including D-TRAK (Zheng
et al., 2024), TRAK (Park et al., 2023), Relative Influence (Barshan et al., 2020), Renormalized
Influence (Hammoudeh & Lowd, 2022), and Journey TRAK (Georgiev et al., 2023).
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Figure 6: LDS (%) on ArtBench-5 under different λ. We consider 10 and 100 timesteps selected to
be evenly spaced within the interval [1, T ], which are used to approximate the expectation Et. We
set k = 32768.

We next provide definition and implementation details of the baselines used in Section 5.5.

Raw pixel. This method employs a naive similarity-based approach for data attribution by using
the raw image data itself as the representation. Specifically, for experiments on ArtBench, which
utilizes latent diffusion models (Rombach et al., 2022), we represent the images through the VAE
encodings (Van Den Oord et al., 2017) of the raw image. The attribution score is calculated by
computing either the dot product or cosine similarity between the sample of interest and each training
sample, facilitating a straightforward assessment of similarity based on pixel values.

CLIP Similarity. This method represents another similarity-based approach to data attribution.
Each sample is encoded into an embedding using the CLIP model (Radford et al., 2021), which cap-
tures semantic and contextual nuances of the visual content. The attribution score is then determined
by computing either the dot product or cosine similarity between the CLIP embedding of the target
sample and those of the training samples. This method leverages the rich representational power of
CLIP embeddings to ascertain the contribution of training samples to the generation or classification
of new samples.

Gradient. This method employs a gradient-based approach to estimate the influence of training
samples, as described by Charpiat et al. (2019). The attribution score is calculated by taking the
dot product or cosine similarity between the gradients of the sample of interest and those of each
training sample. This technique quantifies how much the gradient (indicative of the training sample’s
influence on the loss) of a particular training sample aligns with the gradient of the sample of interest,
providing insights into which training samples most significantly affect the model’s output.

τ(z,S)i = (P⊤∇θLSimple(x, θ))
⊤ · (P⊤∇θLSimple)(x

(i), θ∗),

τ(z,S)i =
(P⊤∇θLSimple(x, θ))

⊤ · (P⊤∇θLSimple(x
(i), θ))

||P⊤∇θLSimple(x, θ)||⊤||P⊤∇θLSimple(x(i), θ)||
.
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Table 3: LDS (%) on CelebA with timesteps (10 or 100)
Results on CelebA

Method Validation Generation

10 100 10 100

Raw pixel (dot prod.) 5.58±0.73 -4.94±1.58
Raw pixel (cosine) 6.16±0.75 -4.38±1.63
CLIP similarity (dot prod.) 8.87±1.14 2.51±1.13
CLIP similarity (cosine) 10.92±0.87 3.03±1.13

Gradient (dot prod.) 3.82±0.50 4.89±0.65 3.83±1.06 4.53±0.84
Gradient (cosine) 3.65±0.52 4.79±0.68 3.86±0.96 4.40±0.86
TracInCP 5.14±0.75 4.89±0.86 5.18±1.05 4.50±0.93
GAS 5.44±0.68 5.19±0.64 4.69±0.97 3.98±0.97
Journey TRAK / / 6.53±1.06 10.87±0.84
Relative IF 11.10±0.51 19.89±0.50 6.80±0.77 14.66±0.70
Renorm. IF 11.01±0.50 18.67±0.51 6.74±0.82 13.24±0.71
TRAK 11.28±0.47 20.02±0.47 7.02±0.89 14.71±0.70
D-TRAK 22.83±0.51 28.69±0.44 16.84±0.54 21.47±0.48
DAS 29.38±0.51 33.79±0.23 28.73±0.49 30.68±0.31

TracInCP. We implement the TracInCP estimator, as outlined by Pruthi et al. (2020), which quan-
tifies the influence of training samples using the following formula:

τ(z,S)i =
1

C
ΣC

c=1(P
⊤
c ∇θLSimple(x, θ

c))⊤ · (P⊤
c ∇θLSimple(x

i, θc)),

where C represents the number of model checkpoints selected evenly from the training trajectory,
and θc denotes the model parameters at each checkpoint. For our analysis, we select four specific
checkpoints along the training trajectory to ensure a comprehensive evaluation of the influence over
different phases of learning. For example, in the CIFAR-2 experiment, the chosen checkpoints occur
at epochs 50, 100, 150, and 200, capturing snapshots of the model’s development and adaptation.

GAS. The GAS method is essentially a ”renormalized” version of TracInCP that employs cosine
similarity for estimating influence, rather than relying on raw dot products. This method was intro-
duced by Hammoudeh & Lowd (2022) and aims to refine the estimation of influence by normalizing
the gradients. This approach allows for a more nuanced comparison between gradients, considering
not only their directions but also normalizing their magnitudes to focus solely on the directionality
of influence.

TRAK. The retraining-free version of TRAK (Park et al., 2023) utilizes a model’s trained state to es-
timate the influence of training samples without the need for retraining the model at each evaluation
step. This version is implemented using the following equations:

ΦTRAK =
[
Φ(x1), · · · ,Φ(xN )

]⊤
, where Φ(x) = P⊤∇θLSimple(x, θ),

τ(z,S)i = (P⊤∇θLSimple(x, θ))
⊤ ·

(
ΦTRAK

⊤ΦTRAK + λI
)−1

· P⊤∇θLSimple(x
i, θ),

where λI is included for numerical stability and regularization. The impact of this term is further
explored in Appendix F.

D-TRAK. Simliar to TRAK, as elaborated in Section 3, we adapt the D-TRAK (Zheng et al., 2024)
as detailed in Eq 6. We implent the model output function f(z, θ) as LSquare. The D-TRAK is
implemented using the following equations:

ΦD-TRAK =
[
Φ(x1), · · · ,Φ(xN )

]⊤
, where Φ(x) = P⊤∇θLSimple(x, θ),

τ(z,S)i = (P⊤∇θLSimple(x, θ))
⊤ ·

(
ΦTRAK

⊤ΦTRAK + λI
)−1

· P⊤∇θLSimple(x
i, θ),

where λI is also included for numerical stability and regularization as TRAK. Additionally, the
output function f(z, θ) could be replaced to other functions.
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Table 4: We compare D-TRAK and our methods DAS with the normalization and without normal-
ization on CIFAR2. Besides, we also select 10, 100 and 1000 timesteps evenly spaced within the
interval [1, T ] and calculate the average of LDS(%) among the timesteps.

Method Normalization Validation Generation
10 100 1000 10 100 1000

D-TRAK No Normalization 24.78 30.81 32.37 16.20 22.62 23.94
Normalization 26.11 31.50 32.51 17.09 22.92 24.10

DAS No Normalization 33.04 42.02 43.13 20.01 29.58 30.58
Normalization 33.77 42.26 43.28 21.24 29.60 30.87

Relative Influence. Barshan et al. (2020) introduce the θ-relative influence functions estimator,
which normalizes the influence functions estimator from Koh & Liang (2017) by the magnitude
of the Hessian-vector product (HVP). This normalization enhances the interpretability of influence
scores by adjusting for the impact magnitude. We have adapted this method to our experimental
framework by incorporating scalability optimizations from TRAK. The adapted equation for the
Relative Influence is formulated as follows:

τ(z,S)(i) =
(P⊤∇θLSimple(x, θ))

⊤ ·
(
Φ TRAK

⊤Φ TRAK + λI
)−1

· P⊤∇θLSimple(x
(i), θ∗)

||
(
ΦTRAK

⊤Φ TRAK + λI
)−1

· P⊤∇θLSimple(x(i), θ∗)||
.

Renormalized Influence. Hammoudeh & Lowd (2022) propose a method to renormalize influence
by considering the magnitude of the training sample’s gradients. This approach emphasizes the rel-
ative strength of each sample’s impact on the model, making the influence scores more interpretable
and contextually relevant. We have adapted this method to our settings by incorporating TRAK’s
scalability optimizations, which are articulated as:

τ(z,S)(i) =
(P⊤∇θLSimple(x, θ))

⊤ ·
(
Φ TRAK

⊤Φ TRAK + λI
)−1

· P⊤∇θLSimple(x
(i), θ)

||P⊤∇θLSimple(x(i), θ)||
.

Journey TRAK. Journey TRAK (Georgiev et al., 2023) focuses on attributing influence to noisy
images xt at a specific timestep t throughout the generative process. In contrast, our approach aims
to attribute the final generated image xgen, necessitating an adaptation of their method to our context.
We average the attributions across the generation timesteps, detailed in the following equation:

τ(z,S)(i) =
1

T ′Σ
T ′

t=1(P
⊤∇θLt

Simple(xt, θ))
⊤ ·

(
Φ TRAK

⊤Φ TRAK + λI
)−1

· P⊤∇θLSimple(x
(i), θ),

where T ′ represents the number of inference steps, set at 50, and xt denotes the noisy image gener-
ated along the sampling trajectory.

E.4 EXPERIMENTS RESULT

In this subsection, we present the outcomes of experiments detailed in Section 5.3. The results,
which illustrate the effectiveness of various techniques designed to expedite computational pro-
cesses in data attribution, are summarized in several tables and figures. These include Table 4,
Table 5, Table 6, and Table 7, as well as Figure 2. Each of these displays key findings relevant to the
specific speed-up technique tested, providing a comprehensive view of their impacts on attribution
performance.

F ABLATION STUDIES

We conduct additional ablation studies to evaluate the performance differences between D-TRAK
and DAS. In this section, CIFAR-2 serves as our primary setting. Further details on these settings
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Table 5: We compare our methods with TRAK and D-TRAK by LDS method on CIFAR-2 among
different selected timesteps. The projected dimension k = 4096.

Method Validation Generation
10 100 1000 10 100 1000

TRAK 10.66 19.50 22.42 5.14 12.05 15.46

D-TRAK 24.91 30.91 32.39 16.76 22.62 23.94

DAS 33.04 42.02 43.13 20.01 29.58 30.58

Table 6: We compute DAS only with the Up-Block gradients in U-Net and evaluate by LDS method
on CIFAR-2 among different selected timesteps. The projected dimension k = 32768.

Method Validation Generation
10 100 10 100

D-TRAK 24.91 30.91 16.76 22.62

DAS(Up-Block) 32.60 37.90 18.47 27.54

DAS(U-Net) 33.77 42.26 21.24 29.60

are available in Appendix E.1. We establish the corresponding LDS benchmarks as outlined in
Appendix E.2.

Checkpoint selection Following the approach outlined by Pruthi et al. (2020), we investigated the
impact of utilizing different model checkpoints for gradient computation. As depicted in Figures 3,
our method achieves the highest LDS when utilizing the final checkpoint. This finding suggests that
the later stages of model training provide the most accurate reflections of data influence, aligning
gradients more closely with the ultimate model performance. Determining the optimal checkpoint
for achieving the best LDS score requires multiple attributions to be computed, which significantly
increases the computational expense. Additionally, in many practical scenarios, access may be
limited exclusively to the final model checkpoint. This constraint highlights the importance of de-
veloping efficient methods that can deliver precise attributions even when earlier checkpoints are
not available.

Value of λ In our computation of the inverse of the Hessian matrix within the DAS framework, we
incorporate the regularization parameter λ, as recommended by Hastie (2020), to ensure numerical
stability and effective regularization. Traditionally, λ is set to a value close to zero; however, in our
experiments, a larger λ proved necessary. This is because we use the generalized Gauss-Newton
(GGN) matrix to approximate the Hessian in the computation of DAS. Unlike the Hessian, the GGN
is positive semi-definite (PSD), meaning it does not model negative curvature in any direction. The
main issue with negative curvature is that the quadratic model predicts unbounded improvement in
the objective when moving in those directions. Without certain techniques, minimizing the quadratic
model results in infinitely large updates along these directions. To address this, several methods
have been proposed, such as the damping technique discussed in (Martens, 2020). In our paper, we
adopt the linear damping technique λI used in (Zheng et al., 2024; Georgiev et al., 2023), which
has proven effective on diffusion models. We show how λ influence the LDS result in Figure 4,
Figure 5, Figure 6, Figure 7 and Figure 8.

G COUNTER FACTUAL EXPERIMENT

Hu et al. (2024) discuss some limitations of LDS evaluation in data attribution. To further validate
the effectiveness of DAS, we also conduct an counter-factual experiment, that 60 generate images
are attributed by different attribution method, including TRAK, D-TRAK and DAS. We detect the
top-1000 positive influencers identified by these methods and remove them from the training set and
re-train the model. We utilize 100 timesteps and a projection dimension of k = 32768 to identify the
top-1000 influencers for TRAK, D-TRAK and DAS. Additionally, we conduct a baseline experiment
where 1000 training images are randomly removed before retraining. The experiment is conducted
on ArtBench2 and CIFAR2. We generate the new images with same random seeds and compute
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Figure 7: LDS (%) on CIFAR-10 under different λ. We consider 10 and 100 timesteps selected to
be evenly spaced within the interval [1, T ], which are used to approximate the expectation Et. We
set k = 32768.
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Figure 8: LDS (%) on CelebA under different λ. We consider 10 and 100 timesteps selected to be
evenly spaced within the interval [1, T ], which are used to approximate the expectation Et. We set
k = 32768.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 7: We compute DAS only with the Up-Block gradients in U-Net and evaluate by LDS method
on CIFAR-2 among different selected timesteps. The projected dimension k = 32768.

Method Validation Generation
10 100 10 100

D-TRAK 24.91 30.91 16.76 22.62

DAS(Candidate Set) 31.53 37.75 17.73 23.31

DAS(Entire Training Set) 33.77 42.26 21.24 29.60
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Figure 9: Boxplots of counterfactual evaluation on CIFAR2 and ArtBench2. We assess the impact
of removing the 1,000 highest-scoring training samples and retraining the model using Random,
TRAK, D-TRAK, and DAS. The evaluation metrics include pixel-wise L2-Distance and CLIP co-
sine similarity between 60 generated samples and the corresponding images generated by the re-
trained models, sampled from the same random seed.

the pixel-wise L2-Distance and CLIP cosine similarity between the re-generated images and their
corresponding origin images. The result is reported in Figure 9 with boxplot. For the pixel-wise
L2-Distance, D-TRAK yields values of 8.97 and 187.61 for CIFAR-2 and ArtBench-2, respectively,
compared to TRAK’s values of 5.90 and 168.37, while DAS results in values of 10.58 and 203.76.
DAS achieves median similarities of 0.83 and 0.71 for ArtBench-2 and CIFAR-2, respectively, which
are notably lower than TRAK’s values of 0.94 and 0.84, as well as D-TRAK’s values of 0.88 and
0.77, demonstrating the effectiveness of our method.

H EVALUATING OUTPUT FUNCTION EFFECTIVENESS

Here, we present a toy experiment to validate our theoretical claims: using the Simple Loss Value
to represent changes in generated images is inadequate, as it relies on an indirect distributional
comparison, as discussed in Eq. 8. Instead, we propose using changes in the noise predictor output
of the diffusion model. In the toy experiment, we first train a unconditional DDPM on CIFAR2.
The origin and each retrained model are to generate an image pair where one random seed for a
re-trained model. In total, we have 60 different generated images pairs. The L2 distance between
the generated and original images is calculated to directly measure their differences.
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Figure 10: The result of Toy Experiment in Appendix H. Scatter plot showing the relationship
between L2 distance and two metrics: loss difference and noise predictor output difference over
entire generation. The noise predictor output difference exhibits a stronger correlation with L2

distance, indicating its effectiveness in capturing image variation.

(a) Origin (b) Counter Factual (c) Origin (d) Counter Factual

Figure 11: Figures 11(a) and 11(b) represent a pair of generated images, while 11(c) and 11(d) form
another pair. Despite the loss difference between 11(a) and 11(b) being only 0.0007, the L2 distance
is 15.261. Similarly, the loss difference between 11(c) and 11(d) is also 0.0007, yet the L2distance
is 14.485, showing that the loss value fail to trace the change on generated images.

The original images are first noised to timestep T , and the two models are then used to denoise the
latent variables at T . At the entire denoising process, we compute the average loss difference and
the average noise predictor output difference. For the 60 pairs of generated samples, we calculate
the rank correlation between these differences and the L2 distance. The results reveal that the Pear-
son correlation between the L2 distance and the average loss difference is only 0.257, while the
correlation with the average noise predictor output difference reaches 0.485. This indicates that the
noise predictor output difference aligns better with the L2 distance than the loss value difference.
Larger noise predictor output differences correspond to larger L2 distances, reflecting greater image
variation. A scatter plot of these results is shown in Figure 10.

Figure 11 provides two specific examples. For images 11(a) and 11(b), as well as 11(c) and 11(d),
the loss differences between the models are only 0.0007, the smallest among all pairs. However,
the L2 distance between 11(a) and 11(b) is 15.261, and between 11(c) and 11(d) is 14.485, making
them among the top five pairs with the largest L2 distances in the toy dataset, which means the loss
difference fails to measure the difference on images. Meanwhile, the noise output differences for
these two pairs align closely with the trend line in Figure 10(b), showing a correlation with the L2

distance.

This result is unsurprising. Consider an extreme scenario: a model trained on a dataset containing
cats and dogs generates an image of a cat. If all cat samples are removed, and the model is retrained,
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the new model would likely generate a dog image under the same random seed. In such a case, the
loss values for both images might both remain v, resulting in a loss difference of 0. This may occurs
because the simple loss reflects the model’s convergence for the generation, not the image itself.
Thus, the shift on loss value fail to capture the extent of image changes. By contrast, analyzing
the differences in the noise predictor’s outputs at each timestep allows us to effectively trace the
diffusion model output on the images.

I APPLICATION

Recent research has underscored the effectiveness of data attribution methods in a variety of ap-
plications. These include explaining model predictions (Koh & Liang, 2017; Ilyas et al., 2022),
debugging model behaviors (Shah et al., 2023), assessing the contributions of training data (Ghor-
bani & Zou, 2019; Jia et al., 2019), identifying poisoned or mislabeled data (Lin et al., 2022), most
influential subset selection (Hu et al., 2024) and managing data curation (Khanna et al., 2019; Liu
et al., 2021; Jia et al., 2021). Additionally, the adoption of diffusion models in creative industries,
as exemplified by Stable Diffusion and its variants, has grown significantly (Rombach et al., 2022;
Zhang et al., 2023). This trend highlights the critical need for fair attribution methods that appro-
priately acknowledge and compensate artists whose works are utilized in training these models.
Such methods are also crucial for addressing related legal and privacy concerns (Carlini et al., 2023;
Somepalli et al., 2023).

J LIMITATIONS AND BROADER IMPACTS

J.1 LIMITATIONS

While our proposed Diffusion Attribution Score (DAS) showcases notable improvements in data
attribution for diffusion models, several limitations warrant attention. Firstly, although DAS reduces
the computational load compared to traditional methods, it still demands significant resources due
to the requirement to train multiple models and compute extensive gradients. This poses challenges
particularly for large-scale models and expansive datasets. Secondly, the current implementation
of DAS is tailored primarily to image generation tasks. Its effectiveness and applicability to other
forms of generative models, such as those for generating text or audio, remain untested and may not
directly translate. Furthermore, DAS operates under the assumption that the influence of individual
training samples is additive. This simplification may not accurately reflect the complex interactions
and dependencies that can exist between samples within the training data.

J.2 BROADER IMPACTS

The advancement of robust data attribution methods like DAS carries substantial ethical and practi-
cal implications. By enabling a more transparent linkage between generated outputs and their corre-
sponding training data, DAS enhances the accountability of generative models. Such transparency is
crucial in applications involving copyrighted or sensitive materials, where clear attribution supports
intellectual property rights and promotes fairness. Nonetheless, the capability to trace back to the
data origins also introduces potential privacy risks. It could allow for the identification and extrac-
tion of information pertaining to specific training samples, thus raising concerns about the privacy of
data contributors. This highlights the necessity for careful handling of data privacy and security in
the deployment of attribution techniques. The development of DAS thus contributes positively to the
responsible use and governance of generative models, aligning with ethical standards and fostering
greater trust in AI technologies. Moving forward, it is imperative to continue exploring these ethical
dimensions, particularly the balance between transparency and privacy. Ensuring that advancements
in data attribution go hand in hand with stringent privacy safeguards will be essential in maintaining
the integrity and trustworthiness of AI systems.
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