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Abstract
The grammatical error correction (GEC) task001
aims to detect and correct grammatical errors002
in text to enhance its accuracy and readabil-003
ity. Current GEC methods primarily rely on004
grammatical labels for syntactic information,005
often overlooking the inherent usage patterns006
of language. In this work, we explore the poten-007
tial of construction grammar (CxG) to improve008
GEC by leveraging constructions to capture009
underlying language patterns and guide cor-010
rections. We first establish a comprehensive011
construction inventory from corpora. Next, we012
introduce a construction prediction model that013
identifies potential constructions in ungrammat-014
ical sentences using a noise-tolerant language015
model. Finally, we train a CxGGEC model016
on construction-masked parallel data, which017
performs GEC by decoding construction to-018
kens into their original forms and correcting019
erroneous tokens. Extensive experiments on020
English and Chinese GEC benchmarks demon-021
strate the effectiveness of our approach.022

1 Introduction023

Grammatical Error Correction (GEC) is the task024

of automatically detecting and correcting errors in025

text (Bryant et al., 2023), which after the advent026

of Transformer (Vaswani et al., 2017), has been027

categorized into two main types: Seq2Edit method028

and Seq2Seq method (Sun et al., 2021; Zhang et al.,029

2022b).030

Seq2Edit method typically involves converting031

source sentences into a sequence of edit operations032

(Stahlberg and Kumar, 2020; Omelianchuk et al.,033

2020), which offers specific advantages in the GEC034

task due to its higher inference efficiency, while035

limited to manually selecting dictionaries (Awasthi036

et al., 2019; Malmi et al., 2019). Seq2Seq method037

treats GEC as a monolingual translation problem038

(Junczys-Dowmunt et al., 2018a; Sun et al., 2021)039

and demonstrates a better correction ability. Recent040

advances have enabled language models (LMs)041

to more adequately capture syntactic phenomena 042

(Jawahar et al., 2019; Wei et al., 2022), making 043

them capable GEC systems when little or no data is 044

available (Zhang et al., 2022b). However, because 045

the use of syntactic information of prior works is 046

limited to the application of grammatical labels, we 047

observe that currently no method can fully lever- 048

age the syntactic information and semantic usage 049

patterns inherent to perform the GEC task. 050

Construction Grammar (CxG) (Goldberg, 1995, 051

2003) regards constructions (i.e., form-meaning 052

pairs) as the fundamental units of linguistic knowl- 053

edge, with each construction modeled as a se- 054

quence of slot-constraints (Dunn, 2017). For exam- 055

ple, “Subject-Verb–Object1–Object2” is a ditransi- 056

tive construction (Goldberg, 1995) that represents 057

the abstract meaning of transferring. CxG claims 058

that our knowledge of language is captured by net- 059

work of constructions (Goldberg, 2003). Grammat- 060

ical errors stem from a lack of sufficient knowledge 061

about language usage (Bryant et al., 2023), mak- 062

ing constructions beneficial for enhancing the GEC 063

task. Some examples are demonstrated in Table 1, 064

which shows the improvements of the GEC task by 065

identifying potential constructions in the sentence. 066

Based on the above observation, we propose the 067

following technical approach: (1) establishing a 068

construction inventory from corpora, (2) identify- 069

ing constructions from ungrammatical sentences, 070

and (3) training models using ungrammatical sen- 071

tences augmented with constructions for the GEC 072

task. 073

However, realizing the above approach presents 074

the following three challenges: 075

(Q1) What types of constructions are most effec- 076

tive in improving the performance of the GEC 077

task? 078

(Q2) How can constructions be identified from un- 079

grammatical sentences? 080

(Q3) How can the identified constructions be effec- 081
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Ungrammatical Sentence Identified Construction Corrected Sentence

The book which I bought it yesterday is
very interesting.

DET–NOUN–PRON–SUBJ–VERB
The book which I bought yesterday is
very interesting.

The students in the library preparing for
their exams.

DET–NOUN–ADP–DET–NOUN–AUX
The students in the library are preparing
for their exams.

Some important departments
need strict administration of their
members.

VBP–ADJ–NOUN–ADP
Some important departments
need strict administration for their
members.

Table 1: Examples of three error types demonstrating the improvement of the GEC task using CxG: unnecessary,
missing, replacement. (DET, NOUN, PRON, SUBJ, VERB, ADP, AUX, ADJ, and VBP denote determiner, noun,
pronoun, subject, verb, preposition, auxiliary verb, adjective, and non-3rd person singular present verb, respectively.)

tively utilized to guide the GEC task?082

As for (Q1), an observation is that the guiding083

effectiveness of constructions is maximized when084

they overlap with or are adjacent to grammatical085

errors in sentences. Current methods for construc-086

tion extraction can be categorized into manual ex-087

traction and automatic extraction (Xu et al., 2023).088

Manual extraction is limited by scale. Two primary089

automatic methods exist: one calculates bidirec-090

tional association scores between adjacent words091

(Dunn, 2017), while the other, CxGLearner (Xu092

et al., 2024), leverages LM token prediction proba-093

bilities. The former produces shorter constructions094

with limited structural completeness due to adja-095

cent calculation method, whereas the latter, using096

LMs, generates more complete constructions with097

well-distributed lengths because it allows extended098

distances when assessing slot constraints. Thus, we099

adopt CxGLearner for constructing the construc-100

tion inventory.101

Regarding (Q2), current construction generation102

methods are only applicable to grammatical sen-103

tences. Inspired by Jiang et al. (2021) that LMs104

are insensitive to subtle differences between se-105

quences, which means LMs exibit a certain degree106

of tolerance toward noise, we propose a LM-based107

approach to identify expected constructions from108

ungrammatical sentences.109

To answer (Q3), we train a CxGGEC model110

based on a construction-augmented vocabulary.111

Through concatenating ungrammatical sentences112

with responding construction-masked sentences,113

CxGGEC is able to decode constructions into cor-114

rect tokens by the Seq2Seq method.115

Extensive experiments have been conducted to116

illustrate the superiority of CxGGEC on the GEC117

task, while multilingual experiments further indi-118

cate construction is beneficial across languages.119

2 System Overview 120

Our CxGGEC framework can be devided into three 121

steps: (1) construction generation, (2) construction 122

masking, (3) CxG-guided GEC. Figure 1 displays 123

the entire framework. 124

2.1 Construction Generation 125

Construction Inventory Establishment. Con- 126

struction is represented as a sequence of slot- 127

constraints. We annotate the part-of-speech tags 128

in corpus from various domains, and employ Cx- 129

GLearner (Xu et al., 2024) to extract constructions 130

from annotated corpus, which assesses the associ- 131

ation strength among slots based on LM. There- 132

fore, we establish a well-distributed construction 133

inventory, which will be taken as a construction 134

vocabulary in subsequent training phase. 135

Identifying Construction in Ungrammatical Sen- 136

tences. Because ungrammatical sentences may 137

damage constructions, the construction inventory 138

we obtained cannot be applied to identify ex- 139

pected constructions from ungrammatical sen- 140

tences. Therefore, based on the tolerance of LMs 141

for noise, we leverage the construction inventory 142

to train a construction prediction model to iden- 143

tify constructions from ungrammatical sentences. 144

The training details of the prediction model are 145

demonstrated in Section 3. 146

2.2 Construction Masking 147

To guide the GEC task with CxG, firstly we identify 148

expected constructions from ungrammatical sen- 149

tences through the construction prediction model, 150

and then we construct the parallel training corpus 151

by concatenation of the ungrammatical sentences 152

with their construction-masked counterparts and 153
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the corresponding ground-truth sentences. Finally,154

we train a CxGGEC model by the Seq2Seq method.155

2.3 CxG-guided GEC156

For inference process, we concatenate the ungram-157

matical sentences with their construction-masked158

versions, forming a combined input just as the159

training phase. Specifically, construction mask-160

ing serves as a context-aware signal that directs161

the model to locate parts requiring correction and162

output grammatical sentences by decoding con-163

struction tokens into original tokens and decod-164

ing error tokens into correct tokens. Through this165

construction-guided approach, the model aligns the166

grammatical error with the language usage patterns167

inherent in constructions, thereby improving the168

effects on GEC tasks.169

3 Model170

3.1 Construction Prediction Model171

Construction Selection Strategy. Since con-172

structions are often stored redundantly at different173

levels of abstractness, overlapping constructions174

can be captured by the grammar induction algo-175

rithm (Dunn, 2017, 2019). Xu et al. (2024) summa-176

rize the phenomenon of overlap into two scenarios:177

Inclusion and Intersection, which can lead to issues178

like redundancy and imbalanced encoding.179

Based on our Seq2Seq training approach, it180

is essential to ensure that the constructions used181

to mask within the training sentences do not ex-182

hibit overlap or intersection. Drawing inspiration183

from RoBERTa’s (Liu, 2019) dynamic masking184

approach, we randomly retain the overlapping sec-185

tions for each sentence, while keeping the other186

parts intact. This method prevents overlaps and187

allows the model to learn diverse combinations188

of constructions, helping to mitigate the risk of189

the construction prediction model overfitting to190

specific construction patterns. The algorithm is191

depicted in Algorithm 1. CHECKOVERLAP(·) in-192

spects whether a given construction c overlaps193

with any constructions in the set C, returning a194

boolean value. We RANDOMKEEP(·) resolves con-195

flicts by stochastically retaining either c or the con-196

flicting construction in C. ADD(·) appends non-197

overlapping constructions c to C. This process is198

iteratively applied to all constructions in C. The199

algorithm generates N sets of optimized construc-200

tions, S = {C1, C2, . . . , CN}, by applying the dy-201

namic masking strategy N times. Finally, S cap-202

Algorithm 1: Dynamic Masking for Multi-
ple Construction Schemes

Input: The set of all constructions C. Number
of schemes N .

Output: A set of construction schemes
S = {C1, C2, . . . , CN}.

1 S ← {}
2 for i ∈ {1, 2, . . . , N} do
3 Ci ← INITIALIZE()
4 foreach construction c ∈ C do
5 if CHECKOVERLAP(c, Ci) then
6 RANDOMKEEP(c, Ci)
7 end
8 else
9 ADD(c, Ci)

10 end
11 end
12 S ← S ∪ {Ci}
13 end
14 return S

tures diverse valid construction schemes. 203

Input and Output Definition. For a given gram- 204

matical sentence Sc, constructions are extracted to 205

produce a masked sentence Sm: 206

Sm = fc(Sc, C), (1) 207

where fc(·) handles dynamic construction masking. 208

Training. The Seq2Seq model learns the map- 209

ping: 210

Ŝm = Seq2Seq(Sc), (2) 211

optimizing the difference between Ŝm and the tar- 212

get Sm. 213

Inference. During inference, the model inputs 214

a sentence S, applies construction-based masking 215

similarly, and outputs a CxG-masked sentence Ŝm 216

by aligning them with learned construction pat- 217

terns: 218

Ŝm = Seq2Seq(S) (3) 219

3.2 CxGGEC Model 220

In this section, we present the training of CxGGEC 221

models and the construction-guided GEC process. 222

Our method includes three key steps: extend- 223

ing the vocabulary with constructions, preparing 224

construction-masked parallel training data, and pre- 225

training the model with the parallel data. 226
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Figure 1: Overview of the proposed CxGGEC framework.

Construction Augmented Vocabulary. To inte-227

grate constructions into LMs, we explicitly extend228

their input vocabularies. Let C denote the set of all229

constructions extracted during preprocessing. Each230

construction ci ∈ C is treated as a new token and231

added to the existing vocabulary V . The updated232

vocabulary is denoted as V ′ = V ∪ C.233

For the vocabulary extension, the embedding234

matrix E ∈ R|V|×d, where d is the embedding235

dimension, is updated to E′ ∈ R|V ′|×d. All added236

construction embeddings are initialized randomly237

and fine-tuned during training. Specifically, for238

each construction ci, its embedding is defined as:239

eci = Initialize(rand(e);∀ci ∈ C), (4)240

where rand(e) generates random values sampled241

from a uniform distribution over [−
√
d,
√
d].242

Construction-Augmented Input Representation.243

To better leverage multiple construction predictions244

during training, we modify the input representation245

by concatenating the ungrammatical sentence xug246

with its masking-augmented sentences generated247

by construction prediction model.248

Let {m1,m2, . . . ,mT } denote the set of249

masked sentences generated by applying construc-250

tion prediction model T times to xug. The aug-251

mented input x′ is then defined as:252

x′ = xug ⊕m1 ⊕m2 ⊕ · · · ⊕mT , (5)253

where ⊕ denotes sequence concatenation.254

The inclusion of multiple masked sentences al-255

lows the model to benefit from diverse masking256

strategies and improves generalization.257

The corresponding target sentence y is the stan-258

dard grammatical correction for xug. The parallel259

training pair is defined as ⟨x′,y⟩, where x′ is the 260

construction-augmented input and y is the gram- 261

matical ground truth. This process generates a 262

construction-augmented parallel corpus. 263

Pretraining with Construction-Augmented 264

Examples. The pretraining phase uses the 265

construction-augmented parallel corpus. The 266

model’s objective is to minimize the negative 267

log-likelihood of the target sequence y conditioned 268

on the input x′. Formally, the loss function is 269

defined as: 270

L = −
N∑
i=1

T∑
t=1

logP (yti | x′
i, y

<t
i ; Θ), (6) 271

where yti is the token at timestep t in the target 272

sequence yi, T is the length of yi, and Θ are the 273

model parameters. The probability P (yti | ·) is 274

computed via the decoder’s autoregressive output 275

during training. 276

Pre-trained embeddings for vocabulary tokens 277

remain initialized using the original model weights, 278

while the embeddings for newly added construction 279

tokens are learned adaptively. 280

4 Experiments 281

4.1 Experiments Setup 282

Datasets and Evaluation. For the English, we 283

use the clean version of the original Lang-8 cor- 284

pus (Mizumoto et al., 2011; Tajiri et al., 2012) 285

as train sets. Specifically for the model based on 286

Bart-Large model (Lewis et al., 2020), we use the 287

W&I+LOCNESS train-set (Bryant et al., 2019) for 288

model fine-tuning following Zhang et al. (2022b). 289

Following Zhang et al. (2022b), Li et al. (2023) 290
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and Li and Wang (2024), we use BEA-Dev (Bryant291

et al., 2019) as the development dataset, and use292

BEA-Test set and CoNLL14-Test set (Ng et al.,293

2014) as test datasets. For Chinese, following Li294

and Wang (2024), the models are fine-tuned on the295

Chinese Lang8 dataset (Zhao et al., 2018) and the296

HSK dataset (Zhang, 2009), and on the FCGEC297

training set (Xu et al., 2022) respectively. The298

models are evaluated on MuCGEC (Zhang et al.,299

2022a) and FCGEC test sets. For English evalu-300

ation, following Yuan et al. (2021a), we use ER-301

RANT and M2 (Dahlmeier and Ng, 2012) to eval-302

uate GEC models on BEA-Test set and CoNLL14-303

Test set, respectively. For Chinese experiments,304

following Li and Wang (2024), models are eval-305

uated on MuCGEC and FCGEC test sets using306

ChERRANT (Zhang et al., 2022a; Xu et al., 2022).307

Precision, recall, and F0.5 values are reported met-308

rics for all the experiments. Dataset details are309

listed in Appendix A.310

Implementation. We train construction predic-311

tion model based on the BART-Base model(Lewis312

et al., 2020). For English GEC models, we train313

models based on the BART-Large (Lewis et al.,314

2020) and T5-Large (Raffel et al., 2020) models.315

Specifically, for the model based on the BART-316

Large, we refer to the training strategy of Zhang317

et al. (2022b). For the T5-Large model, we adopt318

the training strategy of Li et al. (2023). Both take319

Fairseq (Ott et al., 2019) as training framework.320

Due to the absence of a Chinese version of the T5321

model, the experiments conducted in Chinese do322

not incorporate the use of the T5 model. For creat-323

ing Chinese construction inventory, we use Python324

library jieba (Feng, 2012) for sentence segmenta-325

tion and part-of-speech tagging.326

Baselines. (1) GECToR (Omelianchuk et al.,327

2020) represents the Seq2Edit models. (2) BART328

(Lewis et al., 2020) and T5 (Raffel et al., 2020) are329

backbones of Seq2Seq GEC methods. (3) SynGEC330

(Zhang et al., 2022b) incorporates syntactic infor-331

mation into the BART model. (4) Multi-Encoder332

(Yuan et al., 2021b) encodes error categories as333

auxiliary information. (5) GEC-DePend (Yakovlev334

et al., 2023) integrates error detection with cor-335

rection by the MLM. (6) TemplateGEC (Li et al.,336

2023) uses the output of the GECToR model as337

supplementary information for Seq2Seq models.338

(7) DeCoGLM (Li and Wang, 2024) promotes per-339

formace of the GEC model by combining detection340

and collection tasks to mutually boost each other.341

The performance of GECToR and BART model 342

on the Chinese dataset is reported by Li and Wang 343

(2024), and the results for BART on the English 344

dataset are reported by Zhang et al. (2022b). 345

4.2 Main Results 346

The main results of our experiments are listed in 347

Table 2. It can be observed that our CxGGEC mod- 348

els achieve comparable performance across vari- 349

ous benchmarks. Our framework demonstrates im- 350

provements across all benchmarks compared to the 351

BART and T5 backbones. We achieve better perfor- 352

mance than existing methods on the CoNLL14-Test 353

set and FCGEC-Test set. The results show the ef- 354

fectiveness of our framework. Notably, our model 355

based on the T5 backbone outperforms BART due 356

to the basic idea of Raffel et al. (2020) to treat every 357

text processing problem as a “text-to-text” problem, 358

which can easily adapt to different inputs. 359

CxGGEC performs well on both English and 360

Chinese GEC tasks, showcasing its generalizabil- 361

ity in error correction across these two major lan- 362

guages. Compared with SynGEC, our method 363

achieves further improvement on English datasets 364

with less parameters added (13M), highlighting 365

that constructions, as sets of slots, encode more 366

semantic and syntactic information than only gram- 367

matical labels. This enables the model to achieve a 368

deeper understanding of language usage and further 369

enhances its GEC performance. 370

4.3 Analysis Study 371

Analysis on construction length. To explore 372

the impact of construction length on the perfor- 373

mance of GEC tasks, we apply two distinct meth- 374

ods to establish the construction inventory to sup- 375

port CxGGEC. First is the method of grammarin- 376

duction algorithm (Dunn, 2017), we refer to it as 377

GIA for simplicity. The second method is Cx- 378

GLearner (Xu et al., 2024). 379

The construction length distribution displayed in 380

Figure 2 originates from the construction inventory 381

covered in the CLang8-train dataset, a widely-used 382

dataset for GEC models to align with the distribu- 383

tion patterns of sentences in English. The average 384

construction length generated by GIA is approxi- 385

mately 3.0, while the constructions generated by 386

CxGLearner exhibit a higher average length of 4.1. 387

Notably, the lengths produced by CxGLearner ex- 388

hibit a more balanced distribution. As shown in Ta- 389

ble 3, the constructions generated by CxGLearner 390

provide more significant guidance for the LM GEC 391
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English Chinese
CoNLL-14 test BEA-19 test MuCGEC test FCGEC test

Method Parameters P R F0.5 P R F0.5 P R F0.5 P R F0.5

GECToR 110M 77.5 40.1 65.3 79.2 53.9 72.4 46.72 27.14 40.83 46.11 34.35 43.16
BART 400M 73.6 48.6 66.7 74.0 64.9 72.0 41.90 29.48 38.64 38.38 37.62 38.23
T5 770M - - 66.1 - - 72.1 - - - - - -
SynGEC 110M+400M 74.7 49.0 67.6 75.1 65.5 72.9 54.69 29.10 46.51 - - -
Multi-Encoder 110M+107M 71.3 44.3 63.5 73.3 61.5 70.6 - - - - - -
GEC-DePenD 253M 73.2 37.8 61.6 72.9 53.2 67.9 - - - - - -
TemplateGEC 125M+770M 74.8 50.0 68.1 76.8 64.8 74.1 - - - - - -
DeCoGLM 335M 75.1 49.4 68.0 77.4 64.6 74.4 45.01 31.77 41.55 55.75 37.91 50.96
CxGGEC (Bart-large) 13M+400M 73.8 50.5 67.6 74.8 65.3 72.7 47.90 29.94 42.78 59.90 35.92 52.84
CxGGEC (T5-large) 13M+770M 74.9 50.7 68.3 75.7 65.8 73.5 - - - - - -

Table 2: Results on English and Chinese GEC benchmarks. The highest metric is indicated in bold.

Strategy BEA-19 CoNLL-14

P R F0.5 P R F0.5

GIA 73.7 50.2 67.4 74.0 65.2 72.1
CxGLearner 74.9 50.7 68.3 75.7 65.8 73.5

Table 3: Performance of CxGGEC (T5-large) with dif-
ferent construction inventory establishing strategies on
BEA-19 test and CoNLL-14 test benchmarks.

2 3 4 5 6 7
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Figure 2: Length distribution of construction inventories
extracted from GIA (Dunn, 2017) and CxGLearner (Xu
et al., 2024) .

task compared to GIA.392

This observation implies that CxGLearner393

achieves more comprehensive coverage of construc-394

tions inherent in corpus. While both methods gen-395

erate useful constructions for GEC, constructions396

extracted with GIA tend to be relatively short or397

incomplete, because GIA is prone to truncate the398

constructions too early. This result indicates that399

long and well-distributed constructions tend to per-400

form better on GEC tasks, because they align with401

the usage patterns in the corpus and contain more402

knowledge of language usage.403

Analysis on Construction Coverage. To reveal404

how construction coverage contributes to GEC405

1 2 3
30

40

(a) CoNLL-14
1 2 3

(b) FCGEC

67.0

67.5

68.0

51

52

Number of Construction PredictionsC
on

st
ru

ct
io

n 
C

ov
er

ag
e 

R
at

e 
(%

)

F 0
.5

 S
co

re

Coverage (%) F0.5 Score

Figure 3: Construction coverage rate and F0.5 score
across prediction steps.

Strategy BEA-19 CoNLL-14
P R F0.5 P R F0.5

CxGGEC 74.9 50.7 68.3 75.7 65.8 73.5
w/o DM 73.5 49.8 67.1 74.1 66.9 72.5

Table 4: Comparison of the performance of CxGGEC (T5-
large) with and without dynamic masking.

tasks, we perform experiements on number of con- 406

struction predictions in Figure 3. We observe a 407

gradual improvement in GEC performance as the 408

number of predictions increases. The construction 409

coverage rate is defined as the ratio of the number 410

of sentences of which the constructions identified 411

cover the error positions to the total number of 412

sentences. The result shows that increasing con- 413

struction predictions enhances the model’s ability 414

to cover sentence errors effectively, and therefore 415

improve the overall performance of GEC tasks. 416

Analysis on Construction Masking Strategy. 417

To figure out the impact of dynamic masking strat- 418

egy on GEC tasks, we analyze the results of the 419

GEC task without dynamic masking strategy com- 420

pared to results of CxGGEC in Table 4. We refer to 421

dynamic masking as DM for simplicity. The results 422
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Type Baseline CxGGEC

P R F0.5 P R F0.5

M 72.4 65.8 71.0 74.2 70.0 73.3
R 72.0 60.6 69.4 73.4 63.0 71.1
U 75.0 69.5 73.8 75.2 70.6 74.2

Table 5: Results of error types in BEA-Test. Baseline
is the T5-Large model. (M, R, and U stand for missing,
replacement, and unnecessary errors, respectively.)

demonstrate that DM yields superior model perfor-423

mance compared to fixed masking. This can be424

attributed to the ability of DM to prevent construc-425

tion prediction model from overfitting to specific426

masking patterns and to enhance the model’s ca-427

pacity to adapt to diverse contexts.428

Analysis on Error Types. To reveal what types429

of error can CxG guide GEC tasks better, we com-430

pare results of error types on the BEA-Test bench-431

mark in Figure 5. The baseline is T5-large model432

and the CxGGEC model is based on T5-Large433

model. M, R, and U stand for missing, replace-434

ment, and unnecessary errors, respectively. Over-435

all, CxGGEC demonstrates higher performance on436

three error types, particularly in missing and re-437

placement errors but achieves subtle improvement438

in unnecessary errors. The potential reason is that439

constructions identified by the prediction model440

may fail to include unnecessary errors. This re-441

quires the model to expend effort on error detec-442

tion and correction, thereby resulting in only subtle443

improvement.444

Analysis on POS Tags. We intend to explore the445

impact of part-of-speech (POS) tags on the BEA-446

Test dataset. UPOS stands for Universal POS tags447

and XPOS stands for Language-Specific POS tags.448

We compare the results of using only UPOS, using449

only XPOS, and combining the two with a specified450

proportion during training construction prediction451

model to evaluate their effectiveness . As shown in452

Table 6, using only UPOS performs slightly worse453

than using only XPOS, because XPOS is better454

at capturing fine-grained grammatical and struc-455

tural information. The combination of UPOS and456

XPOS yields better results because adding a certain457

proportion of UPOS provides high-level abstrac-458

tion that aids in capturing generalized linguistic459

patterns. This combination enables the model to460

balance generalization and specificity, ultimately461

enhancing its overall performance.462

BEA-19 CoNLL-14
UPOS XPOS P R F0.5 P R F0.5

69.2 48.4 66.5 71.1 47.7 65.1
71.4 63.2 69.6 73.3 47.4 66.1
72.8 64.4 70.9 74.5 48.7 67.4
75.7 65.8 73.5 74.9 50.7 68.3

Table 6: Results of POS tags.

Analysis on Visualization. To explain why CxG 463

can effectively guide GEC tasks from the per- 464

spective of language models, we compare the at- 465

tention matrices of a baseline LM (Bart-Large) 466

and CxGGEC model based on Bart-Large model 467

in Figure 4. Tokens identified as constructions 468

(construction-masked segments) are highlighted 469

in red, while the shaded area further emphasizes 470

the attention on these tokens. The result shows 471

that attention of CxGGEC model focuses around 472

phrases, especially those involving constructions 473

(highlighted parts). This reflects the ability of the 474

CxGGEC model to incorporate constructional in- 475

formation from constructions, guiding the model 476

to focus on meaningful sections of the sentence 477

rather than isolated tokens. This allows CxGGEC 478

to better interpret the overall context, particularly in 479

ungrammatical sentences, where individual tokens 480

may not provide sufficient information. 481

5 Related Works 482

GEC Methods. Two widely used approaches 483

in GEC are Seq2Edit and Seq2Seq. In Seq2Edit 484

methods, Seq2Edits (Stahlberg and Kumar, 2020) 485

predicts a sequence of span-level edit opera- 486

tions applied to the source text, while GECToR 487

(Omelianchuk et al., 2020) extends traditional op- 488

erations with custom transformations, such as suf- 489

fix changes and token merging. The advantage 490

of the Seq2Edit approach is its faster speed com- 491

pared to Seq2Seq. However, a key limitation is 492

its reliance on manually curated editing operations, 493

which can reduce transferability and fluency (Li 494

et al., 2022). Seq2Seq models (Lewis et al., 2020; 495

Raffel et al., 2020) have demonstrated high perfor- 496

mance in GEC (Junczys-Dowmunt et al., 2018b; 497

Choe et al., 2019; Zhao et al., 2019; Katsumata and 498

Komachi, 2020), though their inference efficiency 499

is lower compared to Seq2Edit. Mallinson et al. 500

(2020) and Yakovlev et al. (2023) utilize Masked 501

Language Models (Kenton and Toutanova, 2019) 502

to generate corrections, aiming to benefit from self- 503

supervised pretraining. Previous studies have also 504
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Figure 4: Comparison of attention maps based on Bart-Large and CxGGEC (Bart-Large).

incorporated error detection results (e.g., detection505

labels from a Seq2Edit model) as auxiliary informa-506

tion to enhance GEC performance (Kaneko et al.,507

2020; Yuan et al., 2021b; Li et al., 2023). State-508

of-the-art models further incorporate syntactic in-509

formation to improve performance. For example,510

SynGEC (Zhang et al., 2022b) integrates depen-511

dency syntax into GEC models, while CSynGEC512

(Zhang and Li, 2022) enhances GEC tasks by lever-513

aging constituent-based syntax. However, current514

methods rely on grammatical labels for syntactic515

information, failing to fully capture the structural516

and semantic usage patterns of a language. There-517

fore, we introduce construction grammar to address518

the issue.519

Applications of CxG in NLP. Construction520

Grammar (CxG) has been explored in natural lan-521

guage processing tasks. Kiselev (2020) constructs522

a CxG-based knowledge network for a deeper un-523

derstanding of text. Dunn (2023) employs con-524

structions to model variation across and dialects.525

Xu et al. (2023) leverage constructional informa-526

tion to enrich language representation for natural527

language understanding tasks. Subsequently, Xu528

et al. (2024) encode constructions as inductive bi-529

ases to explicitly embed constructional semantics530

and guide language modeling. However, there has531

been no effort to ascertain whether constructions532

can provide benefits in guiding GEC tasks. Our533

work aims to bridge this gap.534

Construction Inventory Establishment. An in-535

ventory of constructions serves as a valuable re-536

source for CxG-based research. Several construc-537

tion inventories have been created for various538

languages (e.g., English, German) by lexicogra- 539

phers and linguists (Lyngfelt et al., 2018), primar- 540

ily through manual development, which is labor- 541

intensive and depends on expert experience. Weis- 542

sweiler et al. (2024) utilize GPT-3.5 and propose 543

a hybrid human-LLM corpus construction method, 544

with a focus on the caused-motion construction. To 545

establish a comprehensive construction inventory 546

automatically from corpora, Dunn (2017) proposes 547

a grammar induction algorithm based on the com- 548

putation of associations between adjacent words 549

using a hard threshold. To generate more com- 550

plete constructions, Xu et al. (2024) introduce a 551

LM-based approach to assess slot constraints over 552

longer distances. However, these methods are un- 553

able to extract potential constructions from ungram- 554

matical sentences. To this end, we propose a con- 555

struction prediction model designed to identify ex- 556

pected constructions directly from ungrammatical 557

sentences. 558

6 Conclusion 559

In this paper, we propose a construction-guided 560

grammatical error correction approach (CxGGEC) 561

that leverages construction grammar (CxG) to en- 562

hance error detection and correction. Our frame- 563

work involves three key steps: (1) generating a 564

comprehensive construction inventory using Cx- 565

GLearner, (2) identifying constructions in ungram- 566

matical sentences through a noise-tolerant language 567

model, and (3) guiding the GEC task by integrat- 568

ing construction-masked sentences into the training 569

process. Extensive experiments on both English 570

and Chinese GEC benchmarks demonstrate the ef- 571

fectiveness of CxGGEC. 572
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Limitations573

In this study, the limitations can be summarized574

into two major aspects:575

(1) Increased input length and slower inference576

speed. Incorporating constructional information577

into the model input increases the overall input578

length, which inevitably slows down the inference579

speed. This trade-off between additional linguistic580

information and computational efficiency poses a581

challenge, especially for real-time or large-scale582

applications.583

(2) Randomness in construction prediction. The584

construction-prediction model exhibits a degree585

of randomness. Even though the use of dynamic586

masking strategies improves the model’s ability to587

generate diverse constructions, it cannot guarantee588

that the generated constructions fully cover all er-589

rors in every prediction. To address this limitation,590

multiple rounds of inference could be applied to en-591

hance construction coverage for uncovered errors,592

potentially further improving GEC performance.593

Ethics Statement594

In this work, we use publicly available corpora and595

benchmarks under their licenses. These publicly596

available data are checked to ensure that they do597

not include any offensive and illegal content.598
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Algorithm 2: Fixed Masking Using Maxi-
mum Coverage

Input: A set of construction schemes
S = {C1, C2, . . . , CN}. Sentence Ssent.

Output: The optimal set CO.
1 CO ← {}
2 maxCoverage← 0
3 foreach scheme Ci ∈ S do
4 coverage← CALCULATECOVERAGE(Ci,

Ssent)
5 if coverage > maxCoverage then
6 maxCoverage← coverage
7 CO ← Ci
8 end
9 end

10 return CO

A Datasets Used in GEC Models906

Dataset #Sentences %Error Usage
CLang8 2,372,119 57.8 Pre-training (†, ‡)
W&I+LOCNESS 34,308 66.3 Fine-tuning (†)

BEA19-Dev 4,384 65.2 Validation (†,‡)
CoNLL14-Test 1,312 72.3 Testing (†,‡)
BEA19-Test 4,477 - Testing (†,‡)

Table 7: Statistics of English GEC datasets. #Sentences
denotes the number of sentences.%Error refers to the
proportion of erroneous sentences. †: indicates usage
for model based on BART-Large model. ‡: indicates
usage for model based on T5-Large model.

Dataset #Sentences %Error Usage

Lang8 1,220,906 89.5 Training
HSK 15,687 60.8 Training
FCGEC-train 36,340 54.5 Training

MuCGEC-dev 1,125 95.1 Validation
MuCGEC-test 5,938 92.2 Testing
FCGEC-test 3,000 54.5 Testing

Table 8: Statistics of Chinese GEC datasets.

B Training Data Examples907

We use construction-masked sentences concate-908

nated with the original ungrammatical sentences909

as inputs to the GEC model and pair them with910

ground-truth sentences to form parallel corpora for911

GEC model training. Examples are shown in Ta-912

ble ??.913

C Fixed Masking Strategy 914

Compared to dynamic masking to the train con- 915

struction prediction model, fixed masking we use 916

can be demonstrated in Algorithm 2. The algo- 917

rithm examines a predefined set of construction 918

schemes and selects the one that maximizes the 919

area of constructions within the given sentence. 920

The input to the algorithm consists of a set of con- 921

struction schemes S = {C1, C2, . . . , CN} and a 922

sentence Ssent. The algorithm iteratively evalu- 923

ates each construction scheme Ci ∈ S to calculate 924

its coverage over the input sentence, relying on 925

the function CALCULATECOVERAGE. The goal is to 926

identify the construction scheme CO that achieves 927

the highest coverage with respect to the construc- 928

tions inherent in the sentence. The ‘maxCoverage‘ 929

value is updated whenever a scheme Ci with higher 930

coverage is encountered, and CO is set to Ci. Fi- 931

nally, the algorithm returns CO, which represents 932

the optimal construction masking scheme. How- 933

ever, fixed masking is not conducive to improving 934

the construction prediction model’s generalization 935

performance. Therefore, in comparison, dynamic 936

masking was chosen as a better alternative accord- 937

ing to results in Table 4. 938
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Example Input Sentence (Original Sentence + Construction-Masked Sentence) Ground-Truth Sentence

Example 1 About winter [SEP] <ADP>–<NN>–<NOUN> About winter
Example 2 This is my second post . [SEP] This <VBZ>–<PRON>–<ADJ> post . This is my second post .
Example 3 People usually get this kind of hypertesion after they become adult . [SEP] People

usually get this kind of hypertesion <IN>–Ġthey–<VBP> adult .
People usually get this kind of hypertesion when
they become adult .

Example 4 After the initial ceremony , the group photo was taken . [SEP] After <DT>–<JJ>–
<NOUN> , <DET>–<NN>–<NOUN> was taken .

After the initial ceremony , the group photo was
taken .

Example 5 One time , I had an Japanese examination . [SEP] One time , I had <DT>–<JJ>–
<NOUN> .

One time , I had a Japanese examination .

Table 9: Examples of construction-masked sentences paired with ground-truth sentences for GEC training.

13


	Introduction
	System Overview
	Construction Generation
	Construction Masking
	CxG-guided GEC

	Model
	Construction Prediction Model
	CxGGEC Model

	Experiments
	Experiments Setup
	Main Results
	Analysis Study

	Related Works
	Conclusion
	Datasets Used in GEC Models
	Training Data Examples
	Fixed Masking Strategy

