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ABSTRACT

Learning from structured multi-way data, represented as higher-order tensors, re-
quires capturing complex interactions across tensor modes while remaining com-
putationally efficient. We introduce Uncertainty-driven Kernel Tensor Learning
(UKTL), a novel kernel framework for M -mode tensors that compares mode-wise
subspaces derived from tensor unfoldings, enabling expressive and robust similar-
ity measures. To handle large-scale tensor data, we propose a scalable Nystrom
kernel linearization with dynamically learned pivot tensors obtained via soft k-
means clustering. A key innovation of UKTL is its uncertainty-aware subspace
weighting, which adaptively down-weights unreliable mode components based on
estimated confidence, improving robustness and interpretability in comparisons
between input and pivot tensors. Our framework is fully end-to-end trainable and
naturally incorporates both multi-way and multi-mode interactions through struc-
tured kernel compositions. Extensive evaluations on action recognition bench-
marks (NTU-60, NTU-120, Kinetics-Skeleton) show that UKTL achieves state-
of-the-art performance, superior generalization, and meaningful mode-wise in-
sights. This work establishes a principled, scalable, and interpretable kernel learn-
ing paradigm for structured multi-way and multi-modal tensor sequences.

1 INTRODUCTION

The rapid growth of high-dimensional,
multi-modal data, from video streams
to biomedical signals, demands learn-
ing frameworks capable of capturing -024
their rich, multi-way structure. Ten- -0s8
sors, or multi-way arrays, naturally rep-
resent such data by preserving relation-
ships across multiple dimensions such
as space, time, and features (Koniusz
et al., 2021). Despite their expressive
power, tensors introduce unique chal-
lenges for machine learning. Tradi-

tional approaches often flatten tensors kemporabock bocy ot 30 coordinates tme
into vectors or matrices before apply-

ing standard techniques like Principal Figure 1: Mode-wise factor matrices from Tucker decom-
Component Analysis (PCA). This sim- position for the action draw x. Each row shows one latent
plification destroys the inherent tensor- factor (rank-4), and each column corresponds to a tensor
mode structure, leading to models that mode: temporal blocks, body joints, 3D coordinates, and
are inefficient and less expressive, es- time. Clear structured patterns reveal interpretable, mode-
pecially when nonlinear dependencies specific subspaces that motivate our approach.

or sparse observations are present.
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Kernel methods offer a powerful alternative by embedding data into high-dimensional Reproducing
Kernel Hilbert Spaces (RKHS), enabling nonlinear modeling through pairwise similarities without
explicit feature mappings. However, most kernel methods rely on vectorized inputs, limiting their
ability to directly use tensor structures. Furthermore, their computational cost grows rapidly with
dataset size, impeding large-scale or real-time applications. On the other hand, tensor decomposition
methods such as CP, Tucker, and Tensor-SVD provide effective low-rank representations that respect
multi-way structure but are fundamentally linear and do not easily integrate with nonlinear learning
frameworks. Recent tensor subspace learning approaches seek to combine these advantages but
often assume equal importance across tensor modes or resort to heuristic regularization.

In this work, we introduce a novel perspective: learning kernels over tensor subspaces with ex-
plicit modeling of uncertainty in mode contributions. Our key insight is that mode-wise unfolding
of tensors reveals interpretable subspaces that can be robustly compared using structured kernel
functions (see Fig. [I). Building on this, we propose (i) a product subspace kernel that captures inter-
actions across modes more effectively than direct tensor comparisons, (ii) a Nystrom-based kernel
linearization with dynamic pivot tensor selection via soft clustering for scalable training, and (iii) an
uncertainty-aware regularization framework, grounded in likelihood maximization, that adaptively
weights subspaces by their informativeness.

Our end-to-end framework learns nonlinear, structured embeddings directly from tensor sequences,
while maintaining computational efficiency. We validate our approach on challenging action recog-
nition benchmarks, where it outperforms state-of-the-art graph convolutional, hypergraph, and trans-
former models, all with a simpler and more interpretable design. Our main contributions are:

i. We propose a principled kernel learning framework for tensor data that captures nonlinear re-
lationships through mode-wise subspace comparisons, avoiding destructive flattening or costly
direct tensor matching.

ii. We introduce a Nystrom kernel linearization with soft clustering to dynamically construct rep-
resentative pivot tensors, enabling scalable training on large datasets.

iii. We develop an uncertainty-aware regularization that adaptively weights tensor subspaces based
on their reliability using maximum likelihood estimation.

2 RELATED WORK

Tensor decomposition and subspace learning. Tensor decomposition methods have been widely
adopted for learning low-dimensional representations of high-order data. Canonical models such as
CANDECOMP/PARAFAC (CP) (Kruskal, [1977), Tucker decomposition (Lathauwer et al., |2000),
and tensor singular value decomposition (t-SVD) (Kilmer et al.l |2013) provide multilinear analogs
to classical matrix factorizations like PCA or SVD. These techniques exploit the inherent multi-
mode structure of tensor data and are effective for compression, denoising, and subspace extraction.
Building upon these foundations, approaches like Multilinear PCA (MPCA) (Lu et al.,2008)), Tensor
Train PCA (TT-PCA) (Bengua et al.,[2017), and higher-order embedding methods (Liu et al.,2010;
Wang et al., 2018) adapt tensor decomposition to supervised and semi-supervised learning settings.

Despite their broad applicability, these methods are inherently linear and typically assume rigid
structural constraints, such as orthogonality or fixed rank across modes (Lu et al., 2011). More
critically, they often treat all tensor modes as equally informative, applying the same modeling
assumptions regardless of the variation or relevance of each dimension (Wang & Koniusz| [2023).
This uniform treatment can limit performance in real-world scenarios, where different modes (e.g.,
spatial, temporal, semantic) may contribute unequally to the task at hand. Our approach diverges
from traditional methods by introducing a nonlinear, kernel-based formulation on mode-specific
subspaces from tensor unfolding. Unlike standard tensor subspace techniques, we explicitly model
mode-wise uncertainty, enabling adaptive, data-driven regularization based on subspace relevance.

Kernel methods on tensor data. Kernel methods offer powerful tools for capturing nonlinear
relationships in data through implicit mappings into high-dimensional RKHS. Early extensions of
kernel PCA (Scholkopf et al., [1998) and support vector machines to tensor data often relied on
flattening tensors into vectors or defining simple tensor-product kernels (Chen et al.| 2022). More
sophisticated formulations have proposed structured kernels based on mode-wise decompositions or
Kronecker-product designs (He et al.,|2017), seeking to preserve multi-way dependencies within the
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Figure 2: Overview of the proposed Uncertainty-driven Kernel Tensor Learning (UKTL) pipeline
for action recognition. For simplicity, we use skeletons as an example. Each skeleton sequence
is divided into temporal blocks, embedded via an MLP, and processed by a Higher-order Trans-
former (HoT) to obtain feature tensors. These tensors undergo mode-m matricization and SVD
to extract subspace projections. Soft k-means clustering yields C' Nystrom pivots, similarly pro-
jected. A Multi-mode SigmaNet (MSN) estimates uncertainty vectors over all subspaces, which are
used to regularize kernel computations. The Nystrom-approximated KTL maps inputs to compact,
uncertainty-aware representations for final classification. The entire model is trained end-to-end.

kernel framework. While these methods successfully bring nonlinearity into tensor-based modeling,
they face significant challenges in practice. The most notable limitations include high computational
cost due to dense kernel matrices, poor scalability to large datasets, and reliance on handcrafted or
static kernel definitions. Moreover, they typically lack mechanisms for adapting kernel behavior
based on the heterogeneous informativeness of different modes, a gap that is particularly critical for
tasks involving dynamic or structured input data like tensor sequences.

Our method addresses these limitations through a product subspace kernel that compares tensors
via their mode-wise unfolded bases. This structured formulation enables efficient, interpretable
comparisons while preserving the multi-way organization of the input. Furthermore, our kernel is
not predefined, but learned end-to-end using a Nystrom approximation scheme with dynamically
selected pivot tensors, allowing both scalability and adaptability to the underlying data distribution.

Scalable kernel approximation. The expressive power of kernel methods often comes at the cost of
computational inefficiency, as computing and storing kernel matrices scales quadratically with the
number of samples. To overcome this limitation, several approximation strategies have been pro-
posed. The Nystrom method (Williams & Seeger, |2000) approximates the full kernel matrix using
a subset of representative samples, while random Fourier features (Rahimi & Recht, 2007) approxi-
mate shift-invariant kernels via explicit feature maps. Structured low-rank approximations (Gittens
& Mahoney, [2016) further aim to reduce complexity by exploiting algebraic structure in the data.

Although effective in general settings, most existing kernel approximation techniques are designed
for vector or matrix data, and often rely on static, randomly selected dictionary elements. These
approximations are typically fixed prior to training and disconnected from the learning process,
limiting their ability to adapt to task-specific representations or evolving data characteristics. We in-
troduce a Nystrom-based approximation strategy tailored for tensor sequences, where pivots are con-
structed dynamically via soft k-means clustering. This approach allows the pivot set to evolve during
training, ensuring that the kernel approximation remains relevant and responsive to the structure of
both the sample tensors and the learned subspaces. Importantly, this entire approximation mecha-
nism is fully differentiable, enabling seamless integration into our end-to-end learning pipeline.

Uncertainty modeling in representation learning. Modeling uncertainty in neural representations
has received growing attention in recent years, particularly in the context of Bayesian deep learn-
ing. Techniques such as variational inference (Blundell et al., 2015) and Monte Carlo dropout (Gal
& Ghahramanil 2016 aim to quantify epistemic or aleatoric uncertainty in network predictions or
parameter estimates. However, most existing methods focus on scalar outputs or latent features and
do not extend uncertainty modeling to structured representations, such as the subspaces underlying
tensor decompositions. In the domain of tensor learning, uncertainty is rarely modeled explicitly.
Standard approaches apply uniform regularization across all tensor modes, implicitly assuming that
each contributes equally to model performance. This assumption is problematic in applications
where the signal strength, noise level, or semantic relevance differs substantially across modes. To
address this gap, we propose a maximum likelihood-based framework for learning the relative un-
certainty of mode-specific subspaces. This yields interpretable, data-driven regularization terms that
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reflect the variability and informativeness of each subspace. By incorporating uncertainty directly
into the learning objective, our method enhances both robustness and generalization, particularly in
cases where certain modes are more prone to noise or contain less discriminative information.

3 PRELIMINARIES

Notations. We follow standard notational conventions in multilinear algebra (Vasilescu & Terzopou-
los, 2003). Scalars are denoted by lowercase letters (), vectors by bold lowercase (x), matrices by
bold uppercase (X), and higher-order tensors by calligraphic symbols (X’). The set Zn denotes
the integer set {1,2,..., N}. An M-th order tensor A € Rf1*12X-xIa hag elements indexed by
@, ...ip;- The mode-m unfolding (or matricization) of A is denoted A, € R *ILim I where
each column corresponds to a mode-m fiber (obtained by fixing all indices except %,,). The Frobe-

nius norm of a tensor is given by ||.A|| 7= /Zil ing a?lmiM. For more details, see (Huckle, 2019).

Higﬂher-order Transformer (HoT) layers. Let the HoT layer (Kim et al., 2021) be f,,—, :
R4 5 RI™ with two sub-layers: (i) a higher-order self-attention a,,_,, : R7 ** — R/"xd
and (ii) a feed-forward MLP,,_,,, : R/™? — R7™_ Moreover, let indexing vectors i € Z'7* =
TyxZyx---xZy(mmodes)and 3 € I7 = L;xZyx---xZLj (n modes). For the input tensor
X € R7™4 with hyper-edges of order 1m, a HoT layer evaluates:

H
Ao (X); =) Yl X, WY WP, (1)
h=1 pn (3
MLP,, ., (am—n(X)) = Li—m (ReLU(LTIL—H’L (am—n(X)))), 2
fm—m(X) :am—m(X)+MLP7L—m,(am—>n (X)); 3)

where a* € R/ ™" is the so-called attention coefficient tensor with H heads, and aihj“ ceR’isa
vector, W) € R™ and W) € R*" are learnable parameters. Moreover, 4 indexes over the

so-called equivalence classes of order-(m + n) in the same partition of nodes, L} , : R/ —
R7"™r and L2, : R7™4r — R7"*4 are equivariant linear layers and d - is the hidden dimension.

The HoT layers in our model operate directly on this hyper-edge tensor using the higher-order at-
tention and feed-forward formulations provided in Egs. [T]-[3] Specifically, the HoT attention term
(Eq. [I) computes higher-order interactions among hyper-edges through the multi-head attention

coefficients a?’;‘ . The equivariant feed-forward is defined by L. ,, and L2, (Eq. ; and the
overall block applies a residual update followed by LayerNorm (Eq. [3). This two-layer HoT stack
aggregates information across hyper-edges (and over temporal blocks, when applicable), producing

the higher-order representation used by the subsequent tensor kernel module.

4 METHOD

In this paper, mode refers only to a tensor dimension (e.g., spatial, temporal, hyper-edge) and not to
sensor modality or multi-modal inputs. We propose an Uncertainty-driven Kernel Tensor Learning
(UKTL) framework for action recognition (see Fig. [2). For simplicity, we illustrate our method
using skeletons. Skeleton sequences are segmented into temporal blocks, embedded by an MLP,
and encoded by a HoT to produce feature tensors. These tensors are unfolded along each mode and
decomposed via SVD to extract subspace projections. Soft k-means clustering identifies representa-
tive Nystrom pivot tensors, also projected into subspaces. A Multi-mode SigmaNet (MSN) estimates
mode-wise uncertainty vectors, which regularize kernel computations, enhancing robustness. The
Nystrom approximation enables scalable, compact, and uncertainty-aware kernel embeddings, fol-
lowed by classification. The entire pipeline is trained end-to-end for effective learning.

4.1 TENSOR REPRESENTATIONS OF SEQUENCES

Definition of hyper-edges. A hyper-edge in our model is defined as an unordered triplet of joints,
e.g., & = (Jji1,Jjo, j3), representing a three-way structural relation in the skeleton. We enumerate all

valid joint triplets, so the total number of hyper-edges is N = (‘?{)



Published as a conference paper at ICLR 2026

For skeletal action recognition, we consider two common forms: (i) raw tensors X &€ RAxIXT
where d is the spatial dimensionality (e.g., 2D/3D joint coordinates), J is the number of body joints,
and T is the temporal length; and (ii) higher-order feature tensors X € R?*N X7 where N is the
number of (hyper-)edges and 7 is the number of temporal blocks extracted from the sequence.

To keep the backbone lightweight while capturing high-order structure, we use a compact encoder
composed of (a) a 3-layer MLP (FC-ReLU-FC-ReLU-Dropout-FC), and (b) a HoT (Kim et al.,
2021). Each temporal block (with T" consecutive frames) is encoded into a d x J feature map by
the MLP (the encoder produces per-joint embeddings x; ; € R? for each temporal block ¢). Let
X; € R¥ be the MLP output at temporal block ¢ € {1,...,7}. A hyper-edge feature is then
obtained by aggregating the three joint embeddings through the shared MLP. The HoT module then
aggregates these (stacking hyper-edges across all triplets and temporal blocks forms the input tensor
to HoT) to produce structured three-mode tensors encoding hyper-edge interactions.

To form the final input tensor for UKTL, we (i) permute the feature and hyper-edge modes; (ii)
extract upper-triangular third-order hyper-edges (size N¢ = (g)); and (iii) stack the tensors along
the temporal axis. This results in a compact representation X € RY X Nexr
spatial-temporal relationships.

, capturing rich multi-way

Mode-m matricization & subspace representation. Let X € R/1* ™ denote an Mth-order
tensor. The mode-m matricization (also called unfolding) transforms X into a matrix X,y €

RYm ¥ Ikt T by rearranging its entries such that the mth mode becomes the row dimension and
all other modes are flattened into the columns. The full set of matricizations is denoted as X =
{X (1)se s X ( M)}. For our case, each skeleton sequence is encoded into a third-order tensor X; €
RY *NeXT \where d’ is the feature dimension, Ne = (‘é) is the number of third-order hyper-edges,
and 7 is the number of temporal blocks. We apply mode-m matricization to each tensor X}, resulting

in: X1y € R x(NeT) X2 € RNex(d'7) and X3 € RT*(d'Ne).

Each matrix X(,,) captures the structure of X; along mode m by aligning its corresponding slices
as rows. These matrices serve as inputs to subspace-based kernel functions. To obtain a compact
representation, we perform a Tucker decomposition (Kolda & Bader, [2009) on each tensor:

X; = Ci X1 Uj1y X2 Uj(z) x3 Uy, 4)

where C; is the core tensor, and Uj(,,,) contains the leading left singular vectors of X(,,) (i.e., the
mode-m subspace basis). These orthonormal matrices summarize the dominant variation in each
mode and serve as the input to our product subspace kernel. Each satisfies:

Xz(m)X Ui(m)Ai('rn)U (m)» (5

i(m) —

where A;(,,) is a diagonal matrix of singular values. This decomposition ensures that our kernel
compares tensor sequences in terms of their most informative multi-mode subspaces, leading to
better generalization and robustness.

4.2 SuUM-PRODUCT GRASSMANN KERNEL

While many kernel methods have been proposed for tensor data, few explicitly account for the
inherent multi-linear structure of the tensor space. Signoretto et al.[(2011) introduced a framework
for RKHS of multilinear functions, allowing kernels to operate directly on tensors rather than on
vectorized representations. This is achieved via bounded multilinear mappings ¢ : H1Xx---XHr —
R, where each H,, is an RKHS. These mappings form a Hilbert space of multilinear functions,
effectively extending the kernel framework to infinite-dimensional tensor-valued functions. Given
an RKHS embedding ¢ : RT1>*Im _y 9 the associated tensor kernel is defined as:

k(X;, Xj) = (o(Xi), o(X)))n- (6)

To exploit mode-wise structural information, we adopt a product kernel formulation. Let X;,,,) and

X (m) be the mode-m matricizations of tensors X; and X;. The product kernel is expressed as:

XHX H k i(m)s j(m ) (7N
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where each factor kernel k(X (,,), Xj(,)) measures similarity between subspaces spanned by mode-
m unfoldings. Rather than comparing the raw unfoldings directly, which are high-dimensional and
sensitive to noise, we project them onto low-dimensional subspaces via SVD. Specifically, for mode-
m matricization X{,,y € R *!m (with I,,, =[], 2m Ir), we compute:

T
X(m) = UX(m) SX(m) VX(m) 9 (8)

where Ux,,,, € RYm*P contains the top-p left singular vectors. This matrix defines a p-dimensional

subspace, interpreted as a point on the Grassmann manifold G(p, I,,,), the set of all p-dimensional
linear subspaces in R’. We embed this point into the space of orthogonal projection matrices via:

6 G(p, In) — RIn<In
span(Ux,,,,) — Ux,,, Ux,,,- o
This embedding is isometric with respect to the projection metric, enabling the use of Euclidean

distances in the space of projection matrices. The projection kernel, which defines similarity on the
Grassmann manifold, is given by:

k(UXL(m)7UXj(m)) HUX

7,(m)U‘)(‘]'(”m)||%—‘7 (10)

and is known to be positive definite. Inspired by the Gaussian RBF kernel, we extend Eq. (10| to
define a Grassmann-based factor kernel for each mode:

1Ux..,\Ux,, ~Ux,..,Ux,, |7
k(Xi(m,Xj(m)):exp( e E (11

202

Combining across all M tensor modes, the final product kernel becomes:

T T 2
|UXL<m) UX (m) 7UXj('m) UX]»(m) ”F)

k(X;, X;) Hexp( Hm 557

This kernel is positive definite due to the closure properties of kernels (the product of valid kernels
is valid). For flexibility, we also introduce a sum kernel:

12)

U, Uz, ~Ux, 0 UR, 17
X,,X ZGXP< (m) " Xi(m) G(m) " Xjmy I F ) (13)

202

Kernelized Tensor Learning (KTL). Finally, to balance global and local structure, we propose a
sum-product kernel:

X“X :U'Zk i(m)s ](m) 1 ,LL Hk i(m)>s ](m))a (14)

m=1

where p € [0, 1] controls the relative contribution of the sum and product components.

Representing tensors via mode-wise subspaces on Grassmann manifolds offers two key benefits:
(i) computational efficiency, as subspaces are significantly lower-dimensional than raw unfoldings,
and (ii) robustness to noise and occlusion, since the subspace can effectively approximate missing
information. These properties make our Grassmann-based factor kernel particularly suitable for
high-dimensional, structured, and often noisy data, e.g., skeleton sequences.

4.3 UNCERTAINTY-DRIVEN SUBSPACE LEARNING

Uncertainty-driven KTL (UKTL). Different tensor modes may exhibit varying levels of uncer-
tainty due to noise, missing data, or modality imbalance. To capture this, we model uncertainty
individually across each mode rather than assuming a global, constant uncertainty as in prior
works (Matthies| |2007; Kiureghian & Ditlevsen, 2009; [Indrayan, [c2008.} |Hiillermeier & Waege-
man, [2021; |[Kendall & Gal, 2017)). Inspired by (Wang & Koniusz, [2022; [2025)), we introduce a
mode-wise uncertainty-aware mechanism called Multi-mode SigmaNet (MSN).



Published as a conference paper at ICLR 2026

The MSN consists of M branches, one per tensor mode. Each branch takes the projection matrix
Uy, U;E(m) (i.e., the mode-m subspace of X;) and outputs a corresponding uncertainty vector

i(m)

O X, € RP. Each branch is composed of an FC layer followed by a scaled sigmoid activation to
= ScaledSigmoid(FC(U,,,,, U;i(m))). To incorporate

i

ensure positivity and boundedness: o x,,,,
uncertainty into the kernel, we define:

ﬁXi(m) =Ux, )/ /T X (15)

where the division is element-wise across the rows of U, , effectively down-weighting directions
with higher uncertainty. We update our projection-based kernels (Egs. [12] and [I3)) by replacing
Ux,,,, with Uy, . The resulting kernels are more robust to noisy or uncertain features in each
tensor mode, and similarly for the sum-product kernel (Eq. [T4).

4.4 NYSTROM KERNEL LINEARIZATION

Pivot selection. To reduce the computational complexity of kernel methods on tensorial data, we use
a Nystrom-based low-rank approximation of the kernel matrix. This allows us to obtain an explicit,
finite-dimensional feature representation from the proposed tensor kernel. Given N tensors {X; }7 ;,
we first identify C' pivots { Z; }]C:1 through soft k-means clustering (Koniusz & Mikolajczyk, 2011},

which is differentiable and suitable for end-to-end learning. Each pivot Z; € R *NeXT approxi-
mates a local cluster center (a.k.a. local prototype) in the tensor space. We solve:

2
N

c
min X; — Z )il 6
[21,...72012 ; J[ ]g (16)

i=1 .
where a; € RC denotes X;’s soft assignment to the C' pivots.

Nystrom approximation. Let Ky € RV X be the kernel matrix between the data and pivots,
and Koo € REXC the kernel matrix among pivots:

[Knclij = k(X;, 25),  [Keclij = k(Zi, Z5). a7
We stabilize inversion via eigendecomposition of K¢ ¢:
Koo =UAUT, (18)

and compute the inverse square root via:
P l=UAY?U". 19)
The Nystrom feature embedding is then given by:
G=KycP™!, G=G-G, (20)

where G is the mean across columns of G to ensure centering. The resulting G € RVXC gerves as
the low-rank linearized kernel features.

End-to-end model integration. Our complete model stacks four modules: a tensor encoder (MLP
+ HoT), MSN for subspace uncertainty modeling, a sum-product Grassmann kernel with Nystrom
kernel linearization, and a final FC classifier. Formally, the model function is:

f(X;P)=f(FC(MSN(HoT(MLP(X;Pyrp); Prigr); Pusn ) Prc) ) 1)

where P = [Purp, Puor] are encoder parameters, Pysn for uncertainty, and Pgc for classification.

(Our framework is modality-agnostic and supports any input representable as a structured tensor,
including skeletons, RGB frames, depth maps, and other sensor streams, without architectural
changes. Each modality is encoded using an uncertainty-aware tensor kernel that captures intra-
modal correlations across spatial, temporal, and channel dimensions. Modality-specific tensor
representations are projected into a shared kernel space and fused via learnable weighted sum-
mation, preserving modality structure while modeling inter-modal complementarities. The fused
Gmbedding is then processed by MLP+HoT for end-to-end multi-modal learning. y
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Table 1: Results on NTU-60, NTU-120, and Kinetics-Skeleton. UKTL outperforms graph, hyper-
graph, and transformer models by using uncertainty-aware tensor kernels. All tensor methods use
the same MLP + HoT backbone for fair comparison.

Method NTU-60 NTU-120 Kinetics-Skeleton
X-Sub(%)  X-View(%) X-Sub(%) X-Setup(%) Top-1(%)  Top-5(%)
TCN (Kim & Reiter|[2017) - - - - 20.3 40.0
ST-GCN (Yan et al.||2018) 81.5 88.3 70.7 732 30.7 52.8
AS-GCN (Li et al.]2019) 86.8 94.2 78.3 79.8 34.8 56.5
2S-AGCN (Shi et al.| 2019} 88.5 95.1 82.5 84.2 36.1 58.7
NAS-GCN (Peng et al.|[2020} 89.4 95.7 - - 37.1 60.1
Graph-based Shift-GCN (Cheng et al.][2020} 90.7 96.5 85.9 87.6 - -
MS-G3D (Liu et al.][2020} 91.5 96.2 86.9 88.4 38.0 60.9
Sym-GNN (Li et al.[|2022) 90.1 96.4 - - 37.2 58.1
SSL (Yan et al.]2023} 92.8 96.5 84.8 85.7 - -
CTR-GCN (Zhang et al.|[2025) 92.6 96.7 89.6 91.0 -
FD-GCN (Huo et al.|[2025} 92.8 96.7 89.4 90.7 - -
DSDC-GCN (Zhuang et al.]2025) 93.0 97.1 89.9 90.6 38.6 63.4
Hyper-GNN (Hao et al.][2021) 89.5 95.7 B B 37.1 60.0
DHGCN (Wel et al.][2021) 90.7 96.0 86.0 87.9 37.7 60.6
Hypergraph-  sp_yGON(He et al. 12021 90.9 96.7 87.0 88.2 37.4 60.5
based Selective-HCN (Zhu et al.]2022) 90.8 96.6 - - 38.0 61.1
Hyper-GCN (Zhou et al.|[2024) 914 95.5 87.0 88.7 - -
ST-TR (Plizzari et al.][2021} 90.3 96.3 85.1 87.1 38.0 60.5
STST (Zhang et al.|[2021) 91.9 96.8 - - 38.3 61.2
Transformer- MTT (Kong et al.| 2022} 90.8 96.7 86.1 87.6 37.9 61.3
based 45-GSTN (Jiang et al.][2022) 91.3 96.6 86.4 88.7 - -
MAMP (Mao et al.[[2023) 84.9 89.1 78.6 79.1 -
STIJD-MP (Gunasekara et al.|[2025) 85.9 90.0 77.1 79.3 - -
Backbone ” 90.8 958 852 874 36.7 595
+ KPCA (baseline) 92.0 96.8 88.6 90.1 37.1 59.8
Tensor-based + TPCA (baseline) 91.6 96.8 88.2 90.0 38.0 60.5
+KTL 925 97.1 88.8 90.3 389 61.9
+ UKTL 93.1 97.3 90.0 91.4 39.2 62.3

Training & inference. The training loss combines classification and uncertainty regularization:

O X;(1m) +1
220Xt

where £(-) is cross-entropy and 3 weights the uncertainty regularization across modes.

N M
=1

m=1

At inference, the model (including learned pivots) remains fixed. Given N’ test sequences, the same
pipeline is applied to generate predictions for sequence-level action classification. We now present
our experiments, followed by detailed analysis and discussion.

5 EXPERIMENT

5.1 DATASETS AND SETUPS

Datasets & protocols. We evaluate our method on three large-scale benchmarks: (i) NTU RGB+D
(NTU-60) (Shahroudy et al., 2016) contains 56,880 sequences across 60 action classes, featuring
variable sequence lengths, high intra-class variability, and up to two subjects per clip, each with 25
joints. We follow two standard protocols: cross-subject (X-Sub) and cross-view (X-View). (ii) NTU
RGB+D 120 (NTU-120) (Liu et al) 2019) extends NTU-60 to 120 classes and 114,480 samples,
captured from 106 subjects and 155 viewpoints. We adopt the cross-subject (X-Sub) and cross-setup
(X-Setup) evaluation protocols. We also evaluate other modalities (e.g., RGB and depth) and their
fusion on NTU-60 and NTU-120 using standard protocols. (iii) Kinetics-Skeleton is derived from
the Kinetics dataset (Kay et al.,|2017), with around 300,000 videos spanning 400 action categories.
Skeletons are extracted using OpenPose (Cao et al.,|2017)) (18 joints per frame) as in ST-GCN (Yan
et al.| 2018). We use their released skeleton data and report Top-1 and Top-5 accuracy.

Baselines. We compare against several tensor-based baselines using a shared encoder (an MLP
followed by a HoT block). Kernel PCA (KPCA) applies kernel functions to vectorized features, dis-
carding tensor structure. Tensor PCA (TPCA) preserves multi-way structure via Tucker or HOSVD
decomposition but remains inherently linear. Our proposed KTL introduces mode-wise kernel func-
tions over tensor subspaces, enabling nonlinear, structure-aware similarity. Uncertainty-driven KTL
(UKTL) further enhances this by modeling mode-specific uncertainty to adaptively weight subspace
contributions. All models are trained under identical settings for fair comparison.
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Setups. Experiments are implemented in PyTorch and trained with SGD (momentum 0.9, weight
decay 0.0001, batch size 32) and an initial learning rate of 0.1. For NTU-60/120, the LR decays x 10
at epochs 40 and 50, ending at 60; for Kinetics-Skeleton, decay occurs at 50 and 60, ending at 80.
Models use two HoT layers for NTU-60/120 and four for Kinetics-Skeleton, with hidden dimension
16 and 4/8 attention heads, respectively. Videos are split into overlapping 30-frame blocks (stride
10). Hyperparameters (e.g., i, 3, Nystrom pivots) are tuned via HyperOpt (Bergstra et al., 2015).

5.2 COMPARISONS WITH THE STATE OF THE ART

Single-modality evaluation. Table[I|shows that KTL and UKTL achieve strong performance across
all three benchmarks. Graph-based methods like CTR-GCN and FD-GCN perform well, leveraging
spatial-temporal skeleton modeling via graph convolutions. Hypergraph-based approaches further
benefit from capturing higher-order joint relationships, while transformer-based models improve
performance by modeling long-range dependencies with global attention.

Our tensor-based approaches, built on a consistent encoder backbone, systematically outperform
these competing paradigms. KPCA improves over the backbone by introducing nonlinear feature
mappings but loses the inherent multi-way structure of the skeleton data. TPCA respects tensor
modes and their multilinear structure but remains limited by its linear nature, showing improve-
ments mainly on certain metrics. KTL advances these baselines by learning structured, nonlinear
kernel functions on tensor subspaces, effectively combining the advantages of nonlinearity with
tensor-mode awareness. This results in clear gains across all evaluation metrics, evidencing bet-
ter feature discrimination and robustness. Crucially, UKTL, which incorporates uncertainty-driven
regularization to adaptively weight different tensor modes based on their relevance and reliability,
delivers the best overall performance. The consistent improvements of UKTL across all datasets and
metrics, such as a 0.6% boost over KTL on NTU-60 X-Sub and 1.2% on NTU-120 X-Sub, highlight
the effectiveness of modeling uncertainty in complex skeletal data representations.

These results collectively underscore two key insights: (i) maintaining the tensor structure is vital
for capturing the rich multi-dimensional correlations inherent in the data, e.g., for skeletal action
recognition; (ii) adapting model behavior through uncertainty estimation leads to more robust and
discriminative representations, enhancing generalization in challenging scenarios.

Multi-modal evaluation. Table 2
presents the results. RGB and depth
inputs exhibit spatial-temporal struc-
tures fundamentally different from

Table 2: Evaluation of single- and multi-modal perfor-
mance on NTU-60 and NTU-120. Skeleton alone provides a
skeletons. Nevertheless, our method ~Strong competitive baseline, while RGB and Depth demon-
achieves competitive RGB-only (83- strate the frame.\york’s ﬂf?xibility across modalities. Fusing
86%) and depth-only (85-87%) per- multiple modalities consistently improves accuracy, show-
ing that UKTL effectively captures complementary infor-
mation and inter-modal correlations.

formance. This confirms that the
framework is not specialized to skele-
ton geometry and can effectively en-

code heterogeneous modalities once  Modalit NTU-60 NTU-120
g | Y X-Sub (%) X-View (%) X-Sub (%) X-Setup (%)

represented as tensors. Fusing Skele-  giieion 91 973 90.0 o4
ton+RGB or Skeleton+Depth con-  RGB 83.2 86.1 79.0 81.0
. v vields sienifi : Depth 85.0 87.5 80.5 82.1
sistently yields significant 1mprove-  syeleton + RGB 94.5 97.9 913 925
ments, reachlng up to 95% on NTU- Skeleton + Depth 94.8 98.0 91.5 92.7
60 X-Sub. Th ins indi h RGB + Depth 87.2 89.6 825 843
-oub. These gains indicate that  gyeleton + RGB + Depth ~ 95.5 98.5 92.8 94.0

kernel-based fusion successfully ex-
ploits complementary cues, e.g., mo-
tion structure from skeletons, appearance from RGB, and geometry from depth, without modality-
specific architectures. Even RGB+Depth fusion, without skeleton input, provides clear improve-
ments over single-modality baselines, highlighting effective inter-modal modeling.

Combining Skeleton, RGB, and Depth achieves the best overall results (95.5/98.5 on NTU-60 and
92.8/94.0 on NTU-120), outperforming both uni-modal baselines and multi-stream models. All
fusion is performed within a unified tensor-kernel formulation, without ad-hoc modality-specific
components. Although evaluated on human action datasets, the consistent gains across modalities
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Figure 3: Ablation study evaluating the effects of subspace order (on NTU-60/120), and of kernel
choice, Nystrom pivots, and kernel composition (on NTU-60) within the UKTL framework.

and their combinations demonstrate that UKTL generalizes beyond skeleton-based inputs and natu-
rally extends to other structured tensor modalities.

(These results suggest that UKTL’s gains arise from its ability to operate in a shared tensor-kernel)
space where modality-specific structure is preserved while alignment occurs implicitly through
kernel interactions, rather than through explicit architectural coupling. This implicit alignment
makes fusion resilient to modality imbalance and noise, allowing informative modalities to domi-
nate when present without suppressing weaker ones. Moreover, the absence of modality-specific
design choices indicates that performance improvements stem from the kernel formulation itself,
highlighting UKTL as a scalable and principled approach for multi-modal learning in settings

\where modality availability, quality, or structure may vary. )

5.3 ABLATION STUDY

Below, we conduct an ablation study on skeleton sequences from NTU-60 and NTU-120 to evaluate
key hyperparameters and configurations. See Appendix for additional details and evaluations.

Subspace order p. Fig. [3a] shows that increasing the subspace order p consistently improves ac-
curacy on NTU-60 and NTU-120 (X-Sub), with performance saturating beyond a dataset-specific
threshold. This suggests that low-dimensional subspaces effectively capture the essential discrimi-
native structure. Optimal values are p = 8 for NTU-60 and p = 10 for NTU-120.

Kernel choice. To evaluate the effectiveness of our kernel (Eq. [14), we compare it with standard
linear and polynomial kernels. As shown in Fig. [3b] the linear kernel performs worst (77.5% on X-
Sub), while polynomial variants offer moderate gains. In contrast, our sum-product kernel achieves
93.1% (X-Sub) and 97.3% (X-View), highlighting its superior ability to capture complex subspace
interactions by jointly modeling additive and multiplicative relationships.

Number of Nystrom pivots. We examine how UKTL’s performance varies with the number of
Nystrom pivots used for kernel approximation. As shown in Fig. [3c| accuracy improves significantly
up to 150 pivots, then stabilizes beyond 180, reflecting a balance between approximation quality
and computational cost. To ensure optimal performance across datasets, we use HyperOpt (Bergstra
et al.,[2015)) to automatically tune the pivot number during training.

Kernel composition. We assess the contribution of different kernel compositions by comparing
sum-only, product-only, and combined (sum-product) variants. As shown in Fig. the sum-kernel
yields 81.6% (X-Sub), while the product-kernel achieves 91.8%. Their combination reaches the
highest accuracy, 93.1% (X-Sub) and 97.3% (X-View), demonstrating that additive and multiplica-
tive structures capture complementary information.

6 CONCLUSION

We introduced Uncertainty-driven Kernel Tensor Learning (UKTL), a scalable and principled frame-
work for structured multi-way and multi-modal data. UKTL combines mode-wise subspace kernels,
dynamic Nystrom linearization, and uncertainty-aware regularization to enable expressive, adap-
tive, and efficient tensor comparison without flattening or losing structure. Experiments on ac-
tion recognition datasets show UKTL consistently surpasses state-of-the-art graph, hypergraph, and
transformer models, while offering interpretable mode-wise insights. This establishes a powerful
kernel-based approach for learning from structured tensor data.

10
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A DERIVATIVE OF UNCERTAINTY-DRIVEN KERNELIZED TENSOR LEARNING

For two M -order tensors X; and X;, we design a kernel function that captures their multi-mode
structure via uncertainty-aware subspace similarities. Specifically, we formulate two variants of the
kernel, sum and product, based on mode-wise subspace comparisons. These are defined as follows.

Uncertainty-driven sum kernel:

XHX Z k i(m)s g(m))

l 1T%, 0,0, Ui, = Uy Uy 2
_ Z exp <_ ( i(m) 52 (m) 3 (m) (23)
m=1 g
Uncertainty-driven product kernel:
k(X X)) = H Xi(m)s Xj(m))
M T T 2
_ H ‘UXI(m) UX,,(W UX](m) UXj(m) HF (24)
o 202

Here, k(X;, X;) denotes the overall tensor kernel, while &(Xj(,), Xj(m)) is the m-th mode kernel

based on mode-m matricizations &,y and &;(,,). The matrices U)q . and Uy, - represent the
uncertainty-weighted subspaces derived via singular value decomposition (SVD) and reweighted by
uncertainty estimates.

Uncertainty-driven sum-product kernel: We combine the sum and product kernels to form a more
expressive hybrid:

M
k(X X)) M§ F(Ximys Xjomy) (1= 1) [T B (Ximys Xjomy)
m=1
M _
HU 1<m>U Xi(m) UXﬂm)UXj(m) F
:/LE exp 952
m=1
~_|_ ~ ~—|— 2
) H HUX%(WI)UXi('m) _UXjO”)UXJ'('m) ’F
— ex
H : p 202
U Ul U Uz 2
y Fim) T Xim)  Xim) T Xj(m)
UXz(m) an(m) F
= X -
“Ze p 202
m=1
U Ul U Us 2
Ny H Xitm) Uxiimy Xj<m> *j(m)
ogx z(nL) J(m')
F
+(1=p) [T exp (25)
2
L 20

In this formulation: U, and Uy, are the unitary matrices obtained from SVD of mode-m
matricizations. oy, and oy, are uncertainty scores obtained via our proposed Multi-mode

SigmaNet (MSN), which takes as input the projections Uy, U)E(m) and Uy, , U;j(m, respec-
tively. 1 € [0, 1] controls the contribution of the sum versus product kernel: setting ;z = 1 results in
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a pure sum kernel, while 1+ = 0 yields a product kernel. ¢ is the bandwidth of the RBF kernel, kept
constant across all experiments.

Remarks. The sum kernel captures independent mode-wise similarities, while the product ker-
nel emphasizes joint agreement across all modes, leading to stricter similarity enforcement. By
interpolating between them with p, the proposed sum-product kernel offers a flexible mechanism
to balance robustness and expressivity. Moreover, the uncertainty weighting via MSN enables the
model to emphasize more reliable subspace components, leading to more stable and discriminative
tensor comparisons.

B MAXIMUM LIKELIHOOD INTERPRETATION OF MODE-WISE UNCERTAINTY

We provide a probabilistic justification for the uncertainty weighting mechanism in UKTL. In partic-
ular, we interpret the learned uncertainty vectors oy, = as estimates of mode-specific heteroscedas-
tic noise variances, modeled via maximum likelihood.

Probabilistic model. Let Uy, ,,, € RP*" denote the orthonormal basis of the mode-m subspace
for sample &, obtained via truncated SVD. We assume each row U,k is a noisy observation of
a latent clean subspace vector S;(,,,) x € R" corrupted by Gaussian noise with component-specific
variance:

Ux

i

ook ~ N (Sigmy o oel), k=1,...,p. (26)

Here, ox,,,, = [o1,. .., ap]T captures the noise variances across the p components of the mode-m
subspace.

Maximum likelihood estimation. Given the dataset, the total negative log-likelihood under this
model is:

L(o)=— Z log p (UX,:(m) | Si(m), O'Xi(m)) 27
" /1
= Z Z (Gk ||UXi(w1),k—Si(m),kﬂg—&—log O'k) +const, (28)
i,m k=1

which simplifies to a weighted Frobenius loss plus a log-barrier:

min E
o .
i,m

The division is applied row-wise, and the log o;, term acts as a regularizer to prevent variance ex-
plosion.

Ux,y = Sitm)
O X,

i(m)

2
+ )\Zlog 0. 29)
F k

Practical realization. In practice, we do not have access to ground truth clean subspaces S;(,).
Instead, we approximate them using the observed Uy, ,,, itself as input to a small network, MSN,
which predicts the corresponding uncertainty vector o, ,,,. To integrate this into the kernel com-
putation, we define a scaled subspace basis:

ﬁ—Xi(m,) = UXq:(m)/\/ O X, (my> (30)

where division is performed row-wise. This transformation suppresses unreliable subspace direc-
tions by shrinking their contribution in the kernel, while preserving well-estimated ones.

Uncertainty-aware kernel. The transformed basis ﬁxi (my 1s then used in the kernel computation

(see Eq.[14), yielding a kernel function that is robust to subspace noise.

Remarks. This probabilistic formulation shows that our uncertainty-aware kernel arises naturally
from a maximum likelihood perspective under heteroscedastic Gaussian noise. It enables UKTL
to down-weight unstable or noisy subspace components and focus on discriminative structure,
especially when mode-wise quality varies.
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Figure 4: Visualization of Tucker decomposition in each mode of tensor representations for action
draw x and action draw tick.

C SKELETON DATA PREPROCESSING

All skeleton sequences are processed to have a uniform temporal length of 7' = 200 across datasets.
Specifically, (i) if a sequence has fewer than T" frames, we repeat it cyclically until it reaches length
T (ii) if it has T" or more frames, we uniformly sample 7' frames. We then divide each sequence
into temporal blocks of length 7 using stride .S, ensuring a consistent number of temporal blocks
across all sequences for fair comparison.

Before feeding the skeleton sequences into the MLP and Higher-order Transformer (HoT) modules,
we perform joint-wise normalization. First, each joint vy ; in frame f is centered relative to a
reference joint (e.g., the torso joint vy ):

V= V5 — Ve, (31)

where ¢ indexes the joint, and c denotes the reference joint. Next, we normalize the coordinates of
each joint into the range [—1, 1] independently along each axis j € {z,y, z}:

’U;‘,i 4]

MAX fe(1,..,r}ic{l,....J} ’”},i[ﬂ

where 7 is the number of frames and J is the number of joints per frame.

For skeleton sequences involving multiple subjects, we handle each skeleton independently. Specifi-
cally, (i) each skeleton is normalized separately and processed individually through the MLP to learn
its temporal dynamics; (ii) the resulting per-skeleton features are passed separately through the HoT
block. Finally, we aggregate the HoT outputs from all subjects in a sequence using average pooling.
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D MOTIVATION FOR KERNEL TENSOR LEARNING

To motivate our KTL framework, we analyze the basis components obtained from Tucker decom-
position on raw tensor representations of two visually similar actions: draw x and draw tick.

Each skeleton sequence is represented as a tensor X € R™*/*3%T" where 7 denotes the number of
temporal blocks, J is the number of joints, and 7™ is the length of each temporal block. We apply
Tucker decomposition to extract the basis matrices in each mode of the tensor.

As illustrated in Fig. [d] the decomposed bases for sequences of the same action label exhibit strong
similarity across all modes. For example, the basis components for two different samples of draw x
(Fig.[#a]and Fig.[Ad) are highly aligned, as are those for draw tick (Fig.[#bland Fig.[d). In contrast,
even though draw x and draw tick are semantically and visually similar actions in terms of 3D joint
trajectories, their respective basis components reveal clear differences.

This observation suggests that the mode-wise bases obtained through tensor decomposition encode
discriminative and compact representations of action dynamics. Rather than comparing full high-
dimensional tensors, we can use these subspace representations for more efficient and meaningful
comparisons. This motivates our approach in KTL, where we model and compare tensor-mode
subspaces using kernel methods to capture nonlinear relationships among sequences.

E MANIFOLD GEOMETRY AND SUBSPACE LEARNING

Symmetric Positive Definite (SPD) Manifolds. The set of d x d symmetric positive definite (SPD)
matrices, denoted Symj, forms a Riemannian manifold, i.e., a curved non-Euclidean space embed-
ded in R?*?, Riemannian geometry provides a more appropriate notion of dissimilarity for SPD
matrices than the Euclidean metric.

A commonly used distance on Sym:lr is the affine-invariant Riemannian metric:

dr(S1,Ss) = Hlog (3;1/2828;1/2) (33)

F

where S, S, € Symj, log(+) is the matrix logarithm, and || - || 7 denotes the Frobenius norm. This
metric is invariant to affine transformations and aligns with the manifold’s curvature.

In learning tasks, SPD matrices can be projected to lower-dimensional SPD spaces via bilinear maps
of the form WTXW, where W € R" ™ m < n, ensuring that the projected matrix remains
SPD (Harandi et al., [2018)).

Grassmann Manifolds. The Grassmannian G(r,n) is the space of all r-dimensional linear sub-
spaces of R™. A point on this manifold is represented by an orthonormal matrix Y € R™*" whose
columns span the subspace. The geodesic distance between two subspaces span(Y') and span(Y”)
is defined via their principal angles 6, as:

r 1/2
do(Y,Y') = (Z ei) : (34)
k=1

An alternative is to embed Grassmann points into the SPD cone using projection matrices YY ',
enabling simpler kernel operations via the Frobenius norm:
dist(Y,Y) =YY" - Y'Y'"|%. (35)

This embedding supports RBF kernels over subspaces:

(36)

YYT _ Y/Y/T 2
k(Y,YI) — eXp < H 5 ||F> ,
20

which we exploit in constructing our mode-wise subspace kernels and their uncertainty-aware ex-
tensions.

19



Published as a conference paper at ICLR 2026

F ADDITIONAL DETAILS AND CLARIFICATIONS

F.1 CLARIFICATION OF TECHNICAL CONTRIBUTIONS

While UKTL builds on established primitives such as Grassmann kernels, tensor subspace represen-
tations, and Nystrom approximations, the core contributions are far from a simple combination. In-
stead, we introduce new formulations that make tensor subspace kernels differentiable, uncertainty-
aware, and scalable, capabilities that do not exist in prior work.

Our multi-mode sum-product tensor kernel is fundamentally novel. Existing Grassmann or tensor
kernels operate on single-mode matricizations, are not end-to-end learnable, and cannot capture
cross-mode interactions. In contrast, our sum-product kernel jointly models additive and multiplica-
tive interactions across all tensor modes, is fully differentiable with respect to the subspace bases,
and allows the upstream encoder to directly optimize representations through the kernel itself. This
design enables the model to exploit multi-dimensional structure in a way that no prior kernel ap-
proach supports.

Our uncertainty-aware subspace kernel introduces a probabilistic derivation rather than a heuristic.
By modeling heteroscedastic noise over subspace bases, we implement row-wise variance scaling
and a log-barrier regularizer, producing a novel uncertainty-weighted kernel. Experiments show
that including this component consistently improves accuracy by 0.8-1.2% (Table[I), confirming its
material contribution to robustness.

We propose a differentiable Nystrom linearization for tensor kernels. Standard Nystrom methods
rely on fixed pivots and are non-differentiable, limiting end-to-end learning. Our approach incor-
porates soft k-means pivot learning and gradient-safe eigendecomposition, allowing scalable kernel
computation on high-order tensors while preserving positive semi-definiteness. Ablations indicate
that learning the pivots provides a 0.5-0.9% gain over fixed selections, demonstrating that this re-
design is essential rather than incidental.

We emphasize that the perceived complexity is not overengineering. Each module addresses a dis-
tinct challenge: structure preservation through multi-mode subspaces, robustness via uncertainty
weighting, scalability with differentiable Nystrom, and expressive representation through the HoT
encoder. Removing any of these components consistently reduces performance, validating their ne-
cessity. These three contributions: (i) uncertainty-aware Grassmann kernels, (ii) multi-mode sum-
product kernel family, and (iii) differentiable Nystrom linearization, integrate in a fully differentiable
pipeline for tensor representation learning.

To our knowledge, no prior work combines manifold kernels, uncertainty modeling, and
transformer-based encoders in a unified end-to-end framework, and our experiments demonstrate
that these innovations materially improve performance, particularly in multi-modal fusion settings
(Table @ This confirms that UKTL’s contributions are substantive, novel, and directly advance the
state of the art in structured tensor learning.

F.2 RELATION TO BROADER TENSOR LEARNING LITERATURE

The broader literature on temporal tensor learning and tensor time-series models (Fang et al., 2022}
Tao et al., 2023;|Wang et al.,|2023}|Chen et al.,|2025a)), including recent advances in continuous-time
Tucker decomposition, probabilistic tensor dynamics, and structured temporal factorization, focus
primarily on sparse reconstruction, forecasting, and generative modeling of temporal tensors through
low-rank factorization or probabilistic temporal priors. While UKTL addresses a different problem,
discriminative recognition (e.g., complex human motions / actions) rather than generative temporal
modeling, acknowledging these studies helps situate our contribution within the larger landscape of
temporal tensor research.

Unlike decomposition-based temporal tensor models, UKTL adopts a kernelized, discriminative
perspective. By operating on mode-wise tensor subspaces and introducing an uncertainty-aware
projection kernel with differentiable Nystrom linearization, our framework enables end-to-end su-
pervised learning directly on structured tensor sequences. This design allows UKTL to compare and
discriminate high-order temporal representations through subspace geometry, rather than modeling
or forecasting the tensor dynamics themselves. Consequently, UKTL complements prior temporal
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Table 3: End-to-end efficiency comparison on NTU-60.

Model #Params FPS Memory (train)
CTR-GCN (Zhang et al.,[2025)) 1.46M 520 2.6 GB
ST-TR (Plizzari et al., 2021) 10 - 12M 410 3.2GB
UKTL (Ours) 1.2-1.5M 450 - 480 2.9 GB

tensor models: it uses tensor structure for discriminative tasks, whereas existing approaches focus
on generative or predictive objectives.

F.3 COMPUTATIONAL COMPLEXITY ANALYSIS

Below, we detail the per-iteration computational cost of UKTL and isolate how the number of
Nystrom pivots C' and the subspace dimension p influence both training and inference.

Tensor encoder. For a sequence with T' frames and J joints, feature extraction is dominated by the
MLP and HoT layers. (i) MLP complexity: O(T.Jd?), which is constant w.z.t. p and C. (ii) Higher-
order Transformer (HoT): HoT attention operates on hyper-edges of order 3. With hidden size d, H
attention heads, and N¢ = (‘;) hyper-edges, the complexity is O(H -T'- N¢ - d?). Since this encoder
is shared across all tensor-based baselines, it does not constitute the differentiating computational
cost of UKTL.

Mode-wise SVD for subspaces. For each tensor X; € R¥*NeXT mode-m unfolding yields the
following matrix sizes: Mode-1: d’ x (N¢7), Mode-2: N¢ x (d'T), Mode-3: 7 x (d' N¢). We compute
only the top-p left singular vectors via truncated SVD. The complexity per mode is O(p - d’Ne¢T).
Since there are three modes, the total SVD cost is O(3p - d’ N¢7), indicating that the subspace
dimension p enters linearly.

Uncertainty estimation. For each mode, uncertainty estimation operates on the low-rank form of the
projection matrix UU T, using p x p statistics. The complexity per mode is O(p?), and over all
three modes: O(3p?). This cost is negligible compared to SVD and kernel computations.

Kernel computation against Nystrom pivots. For each training sample, kernel values are computed
against C' Nystrom pivots. A single Grassmann kernel evaluation consists of (i) projection matrix
difference: O(pl,,), and (ii) Frobenius norm between two rank-p matrices: O(p?). The dominant
term is O(p?). Thus, the kernel computation cost per iteration is O (Npgen - C'+ M - p?), where M = 3
is the number of tensor modes. This simplifies to O ( Npyen - C -p2). Hence, the pivot count C' affects
complexity linearly, while the subspace dimension p affects it quadratically.

Nystrom eigen-update. The pivot-pivot kernel matrix Koo € RE*C requires eigendecomposi-
tion every few epochs, with complexity O(C?). This cost is amortized over training iterations and
remains moderate since C' < V.

Final complexity summary. The overall per-iteration complexity of UKTL is O (p - d'NeT + Npageh -
C- pz). The subspace dimension p contributes linearly through SVD and quadratically through
kernel evaluation, while the number of pivots C' contributes linearly during training and cubically
during infrequent pivot updates.

During inference, only kernel evaluations against the pivots are required, yielding a complexity of
O(Cp?). This aligns with the observed empirical behavior: performance saturates beyond p = 8-10
and C' ~ 150-180 (Fig. [3), offering the best accuracy-efficiency trade-off.

End-to-end efficiency comparison. We evaluate the end-to-end efficiency of UKTL against repre-
sentative strong baselines, including the graph-based CTR-GCN and Transformer-based ST-TR, on
the NTU-60 dataset. We report approximate throughput (frames per second, FPS), parameter count,
and peak training memory usage, measured under the same hardware and batch-size settings.

Several observations can be drawn from Table [3] First, UKTL achieves throughput within approx-
imately 10% of strong deep baselines, despite incorporating tensor subspace modeling and kernel-
based operations. Profiling indicates that runtime is dominated by the shared MLP + HoT back-
bone, while the uncertainty-aware tensor kernel contributes only a minor overhead. Second, UKTL
maintains a parameter count comparable to CTR-GCN and is an order of magnitude smaller than
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Table 4: Sensitivity analysis of the mixture weight 1, between sum and product interactions.

I 0 025 0.3 0.4 0.5 0.6 0.75 1
Acc (%) | 91.8 92.6 92.7 931 931 926 924 816

Transformer-based models, reflecting the parameter efficiency of kernelized representations. Third,
while UKTL incurs slightly higher memory usage than CTR-GCN due to subspace and kernel com-
putations, it remains more memory-efficient than Transformer variants.

These results demonstrate that UKTL is scalable and computationally competitive, achieving strong
performance without introducing prohibitive runtime or memory costs relative to widely adopted
state-of-the-art baselines.

F.4 SENSITIVITY ANALYSIS OF THE MIXTURE WEIGHT

The mixture weight p in Eq. [T4]is treated as a learnable scalar parameter, initialized to 0.5, and opti-
mized jointly with the remaining model parameters. We intentionally make p learnable because the
optimal balance between additive and multiplicative interactions depends on the underlying dataset
structure.

Table [4] reports the classification accuracy under different fixed values of p. Performance remains
stable when p lies in the range [0.25, 0.6]. Using product-only interactions (¢ = 0) achieves strong
performance but exhibits reduced robustness, while sum-only interactions (¢ = 1) suffer from the
loss of multiplicative structure. Importantly, the learned p consistently converges to this optimal
range, eliminating the need for manual tuning. On NTU-60, the learned value converges to 0.41; on
NTU-120, it converges to 0.47; and on Kinetics-Skeleton, it converges to 0.58. This indicates that
product interactions dominate in NTU-60 and NTU-120, whereas additive contributions become
more important for Kinetics-Skeleton due to noisier skeleton observations.

F.5 CLARIFICATION OF THE INITIAL MLP

We clarify that the initial MLP is not a simple flattening operation; rather, it is a learnable joint en-
coder specifically designed to produce meaningful embeddings for the HoT module and subsequent
tensor-mode processing.

Function of the MLP. Given per-frame joint inputs X; € R7*3, the MLP maps each joint inde-
pendently into a latent feature space: f;; = MLP(z; ;) € R? This preserves the joint-level
structure, maintaining spatial locality across joints while producing embeddings suitable for higher-
order attention. Crucially, it does not flatten the skeleton, so each joint remains a distinct token for
hyper-edge construction.

Necessity of the MLP. The HoT module operates on three-joint hyper-edges to capture higher-order
spatial-temporal correlations. Constructing meaningful hyper-edge embeddings requires each joint
to reside in a consistent latent space. A naive flattening of the skeleton would destroy the per-
joint structure, eliminate learnable joint-specific embeddings, and reduce generalization to unseen
subjects or motion scales. In contrast, the MLP functions as a localized joint encoder, analogous to
the per-token embedding layer in transformers, providing a trainable representation for each joint
that HoT can combine into hyper-edge features.

Architectural details. The MLP used in our model is a three-layer network following the architecture
described in the main paper. This produces feature maps X; € R%*/, for each temporal block
t, which then serve as inputs to the HoT module. These per-joint embeddings are subsequently
organized into hyper-edge features for downstream tensor-mode processing.

Therefore, the MLP is a learnable joint encoder, not a flattening layer, producing per-joint latent
features required for higher-order attention and tensorial subspace learning.
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F.6 CLARIFICATION ON UNCERTAINTY VECTORS

In our method, uncertainty vectors refer to the per-mode trust (or confidence) scores produced by
the uncertainty module after the mode-wise SVD. They quantify how reliable each mode’s subspace
representation is.

Where they come from. After computing the mode-wise projection matrices Um =umum’ e
RIm>*Im the uncertainty module processes each um through a single fully connected layer: u,, =
o(FC(U™)) € RP (we write u,, here for simplicity), where m € {1,2,3} indexes the tensor
modes, p is the subspace dimension, and o is a scaled sigmoid activation. Thus, each uncertainty
vector u,,, is a p-dimensional vector of confidences for the p latent subspace directions of mode m.

What they represent. Each uncertainty vector w,, measures the reliability of each basis direction
of the subspace, down-weights noisy or unstable components, and enhances well-conditioned di-
rections that correspond to discriminative motion patterns. This provides a fine-grained, direction-
aware trust estimate rather than a single scalar confidence. Intuitively, a high value indicates a
stable and meaningful geometric direction, while a low value indicates a noisy or unreliable axis of
variation.

features: U,, = u,, ®© U,, (Eq. here u,, = \/%, see also Eq. , where © denotes element-

wise scaling across basis directions. This allows the kernel to emphasize trustworthy structure and
suppress unreliable subspace components. This is why the kernel is termed UKTL: the uncertainty
vectors act as trust gates on each tensor mode before embedding into the Grassmannian kernel space.

How they are used. The uncertaintivectors weight the projection matrices when constructing kernel

F.7 COMPATIBILITY WITH DUSK

DuSK (He et al., |2014) uses a CP decomposition and constructs a dual structure-preserving ker-
nel: kpusk(X,Y) = Zf;l Zle Artts [TV | b (uW, vgm)), where w!™ and v{™ are mode-

m=1

specific CP factors.

Because UKTL already produces mode-wise low-rank factors (U; , Uy, Us), these can directly serve
as inputs to the mode kernels &, (-, -) inside DuSK. In other words, UKTL provides the factorized,
mode-specific representations required by DuSK, enabling replacement of the Grassmann factor
kernels with minimal modification to the rest of the pipeline.

What would change if DuSK is used? Only the factor-wise kernel needs to be replaced. Our
projection-based kernel £p,o; <ﬁ§m), fft(m)> can be substituted by the DuSK mode kernels &, (-, -)

applied to the corresponding mode factors. All upstream components (MLP, HoT, SVD, uncertainty
modeling) and the Nystrom linearization remain unchanged, as they only require the kernel to be
positive definite over the mode-wise representations.

Why we choose the Grassmann kernel. We adopt the Grassmann projection kernel because it aligns
naturally with subspace geometry, integrates uncertainty in a principled manner, and enables stable
Nystrom approximation, which is essential for scalability on large datasets such as action and motion
tensors. DuSK is powerful but computationally heavier due to its CP-factor summation structure
and was originally designed for static neuroimaging tensors rather than dynamic sequences such as
human skeleton data.

UKTL does not rely on a specific kernel family. DuSK can be incorporated as an alternative factor-
ized kernel with minimal changes.

G LIMITATIONS AND FUTURE WORK

While our proposed UKTL framework demonstrates strong performance and sets new benchmarks
on multiple action recognition datasets, several limitations remain, which also open avenues for
future research.

First, our method relies on predefined hyperparameters such as the number of pivots in Nystrom
approximation, the subspace order p, and kernel fusion weights. Although we use HyperOpt to
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automate their tuning, this process can be computationally expensive and dataset-dependent. Future
work could explore adaptive or learnable strategies, e.g., (Ding et al., |2025bja)), to determine these
parameters in a data-driven and efficient manner.

Second, while our use of tensor-mode subspaces provides compact and discriminative representa-
tions, the current approach assumes a fixed temporal block structure across all sequences (Ding
et al.| 2025¢). This may limit the model’s ability to capture fine-grained temporal variations or han-
dle actions with varying durations effectively, e.g., (Wang et al} 2024} |Chen et al) 2025b; Ding
& Wang| 2025bja)). Future extensions could incorporate dynamic temporal block segmentation or
attention-based mechanisms to allow flexible and context-aware temporal modeling.

Third, the kernel functions used in our model are predefined (e.g., sum-product kernels). Although
they are expressive and show superior performance, learning the kernel function directly from data,
such as through neural kernel learning or meta-kernel search, could further enhance model adapt-
ability and generalization.

Fourth, our current framework is designed and evaluated primarily on structured datasets with clean
annotations (e.g., skeletons). In real-world applications, for example, skeleton data may contain
significant noise, occlusions, or missing joints. Incorporating robust strategies for uncertainty es-
timation, noise modeling, or missing data imputation would make the method more applicable to
real-world deployment, such as in surveillance or healthcare scenarios.

Finally, while the proposed KTL model is lightweight compared to some deep architectures, the
overall pipeline involves multiple components (e.g., decomposition, kernel approximation, and un-
certainty modeling), which could limit its scalability to extremely large datasets or real-time appli-
cations. Future research could investigate end-to-end differentiable approximations of each module
to simplify the pipeline and improve inference speed.
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