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Abstract

Learning and reasoning about 3D molecular structures with varying size is an
emerging and important challenge in machine learning and especially in the de-
velopment of biotherapeutics. Equivariant Graph Neural Networks (GNNs) can
simultaneously leverage the geometric and relational detail of the problem domain
and are known to learn expressive representations through the propagation of infor-
mation between nodes leveraging higher-order representations to faithfully express
the geometry of the data, such as directionality in their intermediate layers. In this
work, we propose an equivariant GNN that operates with Cartesian coordinates to
incorporate directionality and we implement a novel attention mechanism, acting
as a content and spatial dependent filter when propagating information between
nodes. Our proposed message function processes vector features in a geometrically
meaningful way by mixing existing vectors and creating new ones based on cross
products. We demonstrate the efficacy of our architecture on accurately predicting
properties of large biomolecules and show its computational advantage over recent
methods which rely on irreducible representations by means of the spherical har-
monics expansion.

1 Introduction
Predicting molecular properties is of central importance to applications in pharmaceutical research
and protein design with the incentive to establish accurate computational methods to accelerate the
overall process of finding better molecular candidates in a faster and cost-efficient way. Learning
on 3D environments of molecular structures is a rapidly growing area of machine learning with
promising applications but also domain-specific challenges. While Deep Learning (DL) has replaced
hand-crafted features to a large extent, many advances are crucially determined through inductive
biases in deep neural networks. Developed neural models should maintain an efficient and accurate
representation of structures with even up to thousand of atoms and correctly reason about their 3D
geometry independent of orientation and position. A powerful method to restrict a neural network
to the functions of interest, such as a molecular property, is to exploit the symmetry of the data by
constraining equivariance with respect to transformations from a certain symmetry group [1, 2].

3D Graph Neural Networks (GNNs) have been applied on a broad field involving molecular structures,
such as in the prediction of quantum chemistry properties of small molecules [3, 4] and also on
macromolecular structures like proteins [5–8] due to the natural representation of structures as
graphs, with atoms as nodes and edges drawn based on bonding or spatial proximity. These networks
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(a) Propagation flow for central node i.
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(b) Proposed equivariant message function Ml(·).

Figure 1: (a) Visualization of the local neighbourhood of central carbon atom i. Directed edges
illustrate the message flow from neighbour j to central atom i, where scalar and vector features are
propagated along the edges. Grey boxes R represent the side-chain atoms of each residue and serve
here as visual compression that include many more atoms. Here, nodes comprise scalar and vector
features with 7 and 2 channels, respectively. (b) Proposed equivariant message function that computes
a geometric and content related feature attention filter for scalar features, while vector messages are
created based on a weighted combination of newly constructed vectors.

generally encode the 3D geometry in terms of rotationally invariant representations, such as pairwise
distances to model local interactions which leads to a loss of directional information, while including
angular information into network architecture has shown to be beneficial in representing the local
geometry [9–11].

Neural models that preserve equivariance on point clouds in 3D space have been proposed [12–15]
which can be described as Tensorfield Networks. These group-theoretic inspired models leverage
higher-order representations by means of the spherical harmonics expansion of normalized relative
positions to initially create equivariant features. While these models enable the interaction between
different-order representations, (often referred to as type-l representation), many data types are often
restricted to scalar values (type-0 e.g., temperature or energy) and 3D vectors (type-1 e.g., velocity or
forces). Another design choice is to define equivariant functions that directly operate on Cartesian
coordinates [16–19], instead on the basis provided by the spherical harmonics. Following this
approach, one could define (equivariant) transformations on Cartesian tensors, like rank 0 scalar(s)
and rank 1 vector(s), which is the scope of this work and conceptually simpler and does not require
Clebsch-Gordan tensor products of irreducible representations as commonly used in Tensorfield
Network-like architectures.

In this work, we introduce Equivariant Graph Attention Networks (EQGAT) that operate on large point
clouds such as proteins or protein-ligand complexes and show its superior performance compared to
invariant models as well as our proposed model‘s faster training time compared to recent architectures
that achieve equivariance through the usage of irreducible representations. Our model implements a
novel feature attention mechanism which is invariant to global rotations and translations of inputs
and includes spatial- but also content related information which serves as powerful edge embedding
when propagating information in the Message Passing Neural Networks (MPNNs) [4] framework.
Since we define equivariant functions on the original Cartesian space while restricting ourselves to
tensor representations up to rank 1, i.e., scalars and vectors, we aim to capture as much geometrical
information as possible through a geometrically motivated message function.
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In summary, we make the following contributions:

• We introduce a computationally efficient equivariant Graph Neural Network that leverages
geometric information by operating on vector features in Cartesian space.

• We implement a novel feature attention mechanism to propagate neighbouring node features and
we define equivariant operations to combine vector features in a geometrically meaningful way.

• We benchmark our proposed architecture on large molecular systems such as protein complexes
and show its efficacy mostly relevant to industrial applications.

2 Background
2.1 Message Passing Neural Networks (MPNNs)

MPNNs [4] generalize Graph Neural Networks (GNNs) [1, 2, 20] and aim to parameterize a mapping
from a graph to a feature space. That feature space can either be defined on the node- or graph
level. Formally, a graph G = (V, E) contains nodes i ∈ V and edges (j, i) ∈ E which represent
the relationship between nodes j and i. Since MPNNs utilize shared trainable layers among nodes,
permutation equivariance is preserved.

In this work, we consider graphs representing molecular systems embedded in 3D Euclidean space,
where atoms represent nodes and the edges are described through covalent bonds and/or by atom pairs
within a certain cutoff distance c as illustrated in Figure 1(a). In the case of protein point clouds, a
common design choice is the construction of residue graphs, where the nodes are represented through
the Cα-atom of each amino acid residue [5, 6, 18].

We refer x(l)
i = (ai, pi, s

(l)
i , v

(l)
i ) to the state of the i−th atom, where ai ∈ Z+ and pi ∈ R3 denote

atom i‘s chemical element and its spatial position, while h
(l)
i = (s

(l)
i , v

(l)
i ) ∈ R1×Fs × R3×Fv are

the hidden scalar and vector features that are iteratively refined through L message passing steps. We
distinguish between scalar and vector features because scalars can be transformed without functional
restrictions, e.g., with standard MLPs, and their domain spans the entire R, while vector features that
reside in R3 can only be transformed in certain ways to preserve rotation equivariance. In theory,
one could also only rely on vector features (with a number of Fv channels), and perform a self-dot
product reduction to make that representation invariant. This step however, restricts the domain space
of scalars onto R+ only.

A general MPNN implements a learnable message and update function denoted as Ml(·) and Ul(·) to
process atom i−th‘s hidden feature by considering its local environment N (i) through

m
(l+1)
i =

∑
j∈N (i)

Ml(x
(l)
i , x

(l)
j ), and x

(l+1)
i = (ai, pi, Ul(x

(l)
i ,m

(l+1)
i )), (1)

where N (i) = {j : ||pij ||2 = ||pj − pi||2 = dij < c} denotes central atom‘s i−th neighbour set that
is obtained through a distance cutoff c > 0.

For our 3D GNN, we wish to implement simple, yet powerful rotation equivariant transformations in
the message and update functions, to accurately describe the local environment of nodes in the point
cloud.

2.2 Invariance and Equivariance

In this work, we consider the special orthogonal group SO(3), i.e. the group of proper rotations in
three dimensions. A group element of SO(3) is commonly represented as matrix R ∈ R3×3 satisfying
R⊤R = RR⊤ = I and detR = 1.
For a node feature h = (s, v) ∈ RFs × R3×Fv , an SO(3)-equivariant function f(h) = h′ = (s′, v′)
must obey the following equation

f(g.h) = g.(s′, v′) = (Is′, Rv′) = (s′, Rv′) = g.f(h), (2)
where g.o in this work means, a group element g of SO(3) acting on the object o. As shown in
(2), invariance can be regarded as special case of equivariance, where equivariance for a scalar
representation means that the trivial representation, i.e. the identity, acts on the scalar embedding,
while vectors are transformed with R, i.e., a change of basis is performed, where the new basis is
determined by the columns in R.
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3 Related Work

Neural networks that specifically achieve E(3) or SE(3) equivariance have been proposed in Ten-
sorfield Networks (TFNs) [12] and its variants in the covariant Cormorant [13], NequIP [15] and
SE(3)-Transformer [14] which includes the attention mechanism in their architecture. With TFNs,
equivariance is achieved through the usage of equivariant function spaces such as spherical har-
monics combined with Clebsch-Gordan tensor products in their intermediate layer to allow the
multiplication of different ordered representations, while others resort to lifting the spatial space
to higher-dimensional spaces such as Lie group spaces [21]. Since no restriction on the order of
representations is imposed on these methods, sufficient expressive power of these models is guaran-
teed, but at a cost of enlarged computational calculations with increased time and memory. It was
recently analyzed by Brandstetter et al. [22] that the implementation of non-linear equivariant Graph
Neural Networks in their model, which they term Steerable E(3) Equivariant Graph Neural Networks
(SEGNN) achieves strong empirical results on small point clouds like the N-Body experiment or QM9
dataset, but also larger systems as in the OC20 dataset. One of their insights is that the construction
of their (non-linear) SEGNN-layer, allows the model to better capture the local environment and
enables the reduction of radius cutoff when constructing the neighbour list for each central atom i,
since the Clebsch-Gordan tensor products between neighbouring nodes is computationally expensive.
To circumvent the expensive computational cost, another line of research proposed to implement
equivariant operations in the original Cartesian space, providing and efficient approach to preserve
equivariance as introduced in the E(n)-GNN [16], GVP [18, 23], PaiNN [17] and ET-Transformer
[24] architectures without relying on irreducible representation of the orthogonal group by means
of the spherical harmonics basis as originally introduced in TFN and implemented in the e3nn
framework [25]. Aside of 3D atomistic GNNs, the attention mechanism has also been implemented
in the GAT [26] and GATv2 [27] architectures, where GATv2 achieves superior performance over
GAT due to the implementation of attention coefficients using a multilayer perceptron (MLP).

Our proposed model implements equivariant operations in the original Cartesian space and includes
a continuous filter through the self-attention coefficients which serve as spatial- and content based
edge embedding in the message propagation, as opposed to the PaiNN model where the filter solely
depends on the distance. Additionally, our model constructs vector features from the given point
cloud and leverages geometrical products that are efficient to compute. The E(n)-GNN architecture
does not learn vector features with several channels, but only updates a single vector feature2 through
a weighted linear combination, where the (learnable) scalar weights are obtained from invariant
embeddings. The GVP model which was initially designed to work on macromolecular structures
includes a complex message functions of concatenated node- and edge features composed with a
series of GVP-blocks that enables information exchange between scalar and vector features, through
dot product reduction of vectors, with a potential disadvantage of discontinuities through non-smooth
components for distances close to the cutoff.

4 Proposed Model Architecture

4.1 Input Embedding

We initially embed atoms of small molecules or proteins based on their element/amino acid type
using a trainable look-up table through s

(0)
i = embed(ai), which provides a starting (invariant) scalar

representation of the node prior to the message passing. As in most cases, no initial vector features
for atoms are available, we initialize them as zero tensor v(0)i = 0 ∈ R3×Fv .

4.2 Edge Filter through Feature Attention

For the two-body interaction between neighbouring node(s) j to central node i, we implement a
non-linear edge filter that depends on content related information stored in the scalar features (sj , si)
and a radial basis expansion of the Euclidean distance dji ≤ c. We choose the (orthonormal) Bessel
basis Gd : R −→ RK that projects the distance into K basis values as introduced by Gasteiger et al.
[9] and their polynomial envelope function κ : [0, c] −→ (0, 1] that smoothly transitions from 1 to 0 as

2In the E(n)-GNN architecture, Cartesian coordinates of particles p ∈ R3 are updated.
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the cutoff value c is approached. The computation of the attention edge-filter is obtained through

e
(l+1)
ji = [s

(l)
i ||s(l)j ||κ(dji)Gd(dji)] ∈ R2Fs+K

f
(l+1)
ji = MLP(e(l+1)

ji ) ∈ RFs+3Fv , (3)

where MLP refers to an 1-layer Multilayer-Perceptron with SiLU activation function [28]. The input
to the MLP is a concatenation of scalar features as well as a by κ scaled radial basis expansion of
the distance between nodes j and i. The SO(3)-invariant embedding f

(l+1)
ji represents the Fs + 3Fv

attention logits which are further split into f
(l+1)
ji = [aji, bji]

(l+1) to be used as a non-linear filter
when propagating neighbouring features. A novelty of our approach is that the attention coefficient
between two vertices j and i is in fact obtained per feature-channel instead for the entire embedding
as commonly achieved through a single scalar value, as done in GATv2 [27], albeit we also include
edge-features through distances. The feature attention for the scalar embeddings is computed using
the standard softmax activation function

αji =
exp(aji)∑

k∈N (i) exp(aki)
∈ (0, 1)Fs , (4)

where the normalization in the denominator runs over all neighbours k and the exponential function
is applied componentwise. We choose to compute a non-linear intermediate edge-filter fji due to
increased expressivity through an 1-layer MLP. The embedding bji ∈ R3Fv is processed to create
coefficients that serve as weights for a linear combination of vector quantities to compute the vector
message from j to i, which we will describe in the following subsection.

4.3 Equivariant Message Propagation

We follow the idea of standard convolution, which is a linear transformation of the input, and compute
the scalar features message for central node i as

m
(l+1)
i,s =

∑
j∈N (i)

α
(l+1)
ji ⊙W (l+1)

s s
(l)
j , (5)

where W
(l+1)
s ∈ RFs×Fs is a trainable weight matrix shared among all nodes and α

(l+1)
ji the non-

linear attention filter obtained in (4).

In context of atomistic neural network potentials (NNPs), the filter α(l+1)
ji is commonly implemented

as an MLP that only inputs the distance dji (by means of a radial basis expansion) as in SchNet
[3], PaiNN [17], NequIP [15], while recent NNPs such as Allegro [29] and BOTNet [30] implement
edge-filters that depend on the distance as well as node content, e.g., the chemical elements, unifying
the idea of MPNNs in the context of machine learning force fields.

The recent work by Brandstetter et al. [22] analyzes modern 3D equivariant GNNs with the insight
that non-linear message and non-linear update functions combined with their proposed steerable
features space leads to an improved model, which they term SEGNN. The SEGNN, in similar spirit
to Tensorfield Networks, can leverage higher-order equivariant representations up to a maximal
rotation order lmax through the spherical harmonics expansion of relative positions, which they take
as steerable feature basis. Their proposed model implements steerable MLPs into the message-
and update function to leverage non-linearity and geometric covariant information of the steerable
features that go beyond l = 0, i.e., scalar features while our architecture is only restricted to scalar
information, albeit vector information is still processed in the layers but then reduces to a scalar by
a dot product operation. Our proposed message function for scalar features in Eq. (5) can also be
formulated as a linear transformation where the weight matrix depends on distances but also hidden
scalar information. To see this, we rewrite α

(l+1)
ji ∈ (0, 1)Fs as matrix using the diagonal operator

A
(l+1)
ji = diag(α(l+1)

ji ) ∈ (0, 1)Fs×Fs and observe that the filter scales the (independent) weight

matrix W
(l+1)
s leading to the message propagation

m
(l+1)
i,s =

∑
j∈N (i)

A
(l+1)
ji W (l+1)

s s
(l)
j =

∑
j∈N (i)

W
(l+1)
ji s

(l)
j ,
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where W
(l+1)
ji defines the linear transformation matrix which depends on SO(3)-invariant informa-

tion through (s(l)i , s
(l)
j , dji). The scalar message propagation can still be interpreted as non-linear

convolution as the A(l+1)
ji weight matrix is obtained through an MLP and softmax activation function.

Building Equivariant Features. In many cases, no initial vector features are provided in raw
point cloud data. However, when working with a protein backbone, i.e., the sequence of atoms
(Cα, C,O,N)i, initial vectorial (node) features that describe the local environment of each backbone
atom can be pre-computed as described by Ingraham et al. [6] and Jing et al. [18]. In a full-atom
model, initial vector features for a node i can be obtained by averaging over relative position vectors
vi,0 = 1

|N (i)|
∑

j∈N (i) pji ∈ R3 which satisfies Eq. (2) due to linearity. In our work, we initialize
the vectors as zero tensor as described in Subsection 4.1 and calculate equivariant features by utilizing
normalized relative positions pji,n in the first layer to describe the directional interaction between
central node i and its neighbour j. In the subsequent layers, we extend the set of vectors by (1)
constructing vectors based on normalized relative positions again, (2) mixing existing vector channels
from the previous iteration, and (3) creating new vector quantities by making use of the cross product.

(1) We create equivariant vector features based on normalized relative position pji,n = 1
dji

(pi − pj)

as those provide directional information. Since we explicitly model scalar and vector features, each
equipped with Fs and Fv channels, respectively, the tensor product offers a natural way to obtain a
vector feature, by simply combining a vector and a scalar. Equivariant interactions between node j
and i are computed through

v
(l+1)
ji,0 = pji,n ⊗ b

(l+1)
ji,0 = pji,nb

(l+1)⊤
ji,0 ∈ R3×Fv , (6)

which preserves SO(3) equivariance, due to the linearity of the tensor product. We note that the
creation of ‘initial’ equivariant features in such manner is also performed in architectures, like
[12, 13, 15, 22] just to name a few, that make use of irreducible representations of the SO(3) group
by means of the spherical harmonics and implement the Clebsch-Gordan tensor product (⊗cg) that
allows the mixing of possibly higher-order embedding representations of type l > 1, while we restrict
ourselves to vector representations only, i.e. features of order l = 1 or equivalently Cartesian rank 1
tensors. The representation in Eq. (6) can be interpreted as Fv scaled relative position vectors.

(2) In similar fashion to the (independent) linear transformation of scalar channels, we mix the vector
channels using a learnable weight matrix W

(l)
v ∈ RFv×Fv which preserves SO(3) equivariance due

to the linearity property

v(l+1)
n = v(l)W (l+1)

v ,

and is shared among all nodes. For a particular neighbouring node j, we scale the linearly transformed
vectors

v
(l+1)
ji,1 = b

(l+1)
ji,1 ⊙ v

(l+1)
n,j , (7)

which can be interpreted as a gating of previously mixed vectors.

(3) To capture more geometric information, while restricting the representation to be of rank 1, we
utilize the vector cross product c = (a × b) ∈ R3 between two vectors a and b that satisfy the
following rotation invariance property

Ra×Rb = R(a× b).

The output of the cross product a × b defines a vector c that is perpendicular to plane spanned by
a and b. Here, we calculate the cross product on the same channels from the previous layer vector
features of node i and j as

ṽ
(l+1)
ji,2 = (v

(l)
i × v

(l)
j ) ∈ R3×Fv ,

to reduce the computational complexity.

We highlight that recent equivariant GNNs which work with rank 1 Cartesian tensors, such as GVP,
PaiNN or ET-Transformer do not include the cross product in their architecture and are restricted in
the creation of vector features that may span the entire R3. These architecture make use of step (1)
and (2) only. For example, when all atoms are placed on the xy-plane, using step (1) and (2) would
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always create vectors on the xy plane, while the coordinate on z axis is always 0. By leveraging the
cross product, vectors in the z direction can be computed, without increasing the rank order3.

We note that our assumption on SO(3) equivariance is attributed to the fact of using the cross product
in our architecture. For the case that practitioners care about O(3) equivariance, our proposed EQGAT
might be suboptimal for usage since we do not distinguish polar or pseudo vectors in the internal
network representation. If O(3) equivariance is desired, special care on the selection between input
vectors in the cross product have to be made, in order to correctly assign the output parity type. E.g.,
a cross product of two polar vectors will return a pseudo vector, while a cross product of a polar and
pseudo vector will return a polar vector.

In similar fashion to Eq. (6) and (7), each channel of the representation ṽ
(l)
ji,2 is weighted by the SO(3)

non-linear filter b(l)ji,2 ∈ RFv to obtain

v
(l+1)
ji,2 = b

(l+1)
ji,2 ⊙ ṽ

(l+1)
ji,2 , (8)

Finally, we define the vector message from node j to central node i as the sum of the three components
in (6) to (8) and aggregate it across all neighbouring nodes j ∈ N (i) to obtain the vector message

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ), (9)

which results into new weighted geometric vectors by utilizing the (static) relative positions as well
as neighbouring vector features and lastly, normal vectors obtained through the cross product. Since
we combine the three vector components through a gating mechanism, we do not use an attention
mechanism on vector features to avoid additional computational steps and the fact that the calculation
of attention logits had to be done using some SO(3) invariant input, which would make the model
more complicated. We provide the full proof of SO(3) equivariance of Eq. (9) in Appendix C.
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Figure 2: A gated equivariant MLP
that transforms scalar and vector
features into a new representation.
Here we used this block as update
function Ul(·).

Equivariant Update Function. After obtaining the aggre-
gated message for central node i in the representation m(l+1) ∈
RFs × R3×Fv , we implement a residual connection as interme-
diate update step

s̃i
(l+1) = s

(l)
i +m

(l+1)
i,s , and ṽi

(l+1) = v
(l)
i +m

(l+1)
i,v

while in the update layer, we implement an equivariant non-
linear transformation inspired by gated non-linearities proposed
by [31] and used in [17] with minor modification as shown in
Figure 2. Notably, the scalar features receive geometric infor-
mation by concatenating the norm of linear transformed vector
features, while the 1-layer scalar MLP is tasked to transform the
combined embeddings to update the scalar states and retrieve
non-linear weights that are used to reweight vector features. We
apply these weights by element-wise multiplying with linearly
transformed vector features as shown on the right which can
also be interpreted as variants of the Gated Linear Unit [32, 33],
followed by a linear layer to implement an equivariant MLP for
vector features.

5 Experiments and Results
We test the efficacy of our proposed EQGAT model on five publicly available molecular benchmark
datasets which pose significant challenges for the development of efficient and accurate prediction
models in protein design.

3Two rank 1 Cartesian tensors, i.e., two vectors can also be combined by computing the tensor product of the
two, which results into a rank 2 Cartesian tensor with 9 elements in the matrix. This rank 2 Cartesian tensor
contains 3 unique elements of the cross product in its antisymmetric part after a sum decomposition.
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Table 1: Benchmark results on ATOM3D tasks. We report the results for the Baseline models from
[34] and GVP-GNN [23]. We run our own experiments with the SchNet, PaiNN, SEGNN and our
EQGAT model and report averaged metrics over 3 runs. For the SEGNN model we only report the
results on a single run due longer training time. RS stands for Spearman Rank Correlation, RMSE
abbreviates Root Mean Square Deviation and ROCAUC the area under ROC curve.

Tasks PSR (↑) RSR (↑) LBA (↓) RES (↑) PPI (↑)
Metric Mean RS Global RS Mean RS Global RS RMSE Accuracy ROCAUC
CNN 0.431± 0.013 0.789± 0.017 0.264± 0.046 0.372± 0.027 1.416± 0.021 0.451± 0.002 0.844± 0.002
GNN 0.515± 0.010 0.755± 0.004 0.234± 0.006 0.512± 0.049 1.570± 0.025 0.082± 0.002 0.669± 0.001
GVP-GNN 0.511± 0.010 0.845± 0.008 0.211± 0.142 0.330± 0.054 1.594± 0.073 0.527± 0.003 0.866± 0.004
SchNet 0.448± 0.016 0.784± 0.013 0.247± 0.029 0.273± 0.017 1.522± 0.015 0.326± 0.003 0.839± 0.005
PaiNN 0.462± 0.015 0.809± 0.003 0.270± 0.062 0.462± 0.064 1.507± 0.033 0.370± 0.004 0.884± 0.002
SEGNN 0.474 0.833 −0.099 0.252 1.450± 0.011 0.454 0.854
EQGAT 0.491± 0.008 0.847± 0.006 0.316± 0.029 0.404± 0.096 1.440± 0.027 0.540± 0.017 0.908± 0.001

5.1 ATOM3D

The ATOM3D benchmark [34] provides datasets for representation learning on atomic-level 3D
molecular structures of different kinds, i.e., proteins, RNAs, small molecules and complexes. Since
proteins perform specific biological functions essential for all living organisms and hence, play a key
role when investigating the most fundamental questions in the life sciences, we focus our experiments
on the learning problems often encountered in structural biology with different difficulties due to
data scarcity and varying structural sizes. We use provided training, validation and test splits from
ATOM3D and refer the interested reader to the original work of Townshend et al. [34] for more details.
For all benchmarks, we compare against the Baseline CNN and GNN models provided by Townshend
et al. [34] from ATOM3D, GVP-GNN reported in [23] and we run experiments for SchNet [3], an
SO(3) invariant GNN architecture that has shown strong performance on small molecule prediction
tasks, PaiNN [17] as SchNet‘s improved SO(3) equivariant architecture and the recently proposed
SEGNN [22] that leverages higher-order representations by means of the irreducible representations
and Clebsch-Gordan tensor products using their official code base.

For SchNet, PaiNN and our proposed EQGAT architecture, we implement a 5-layer GNN with
Fs = 100 scalar channels and Fv = 16 vector channels for the PSR, RSR, RES and PPI benchmark, as
these benchmarks consists of more training samples and comprise larger biomolecules. For the Ligand
Binding Affinity (LBA) task, we utilize a 3-layer GNN with the same number of scalar- and vector
channels. For the SEGNN architecture, we implement a 3-layer GNN with (100, 16, 8) channels for
the embeddings of type l = (0, 1, 2) that transform according to the irreducible representation of
that order preserving SO(3) equivariance. The edges in the point clouds are constructed based on a
radius cutoff of 4.5Å. All graphs are considered as full-atom graphs, i.e., the initial node feature is
determined by the chemical element.

The Protein and RNA Structure Ranking tasks (PSR / RSR) in ATOM3D are both regression tasks
with the objective to predict the quality score in terms of Global Distance Test (GDT_TS) or Root-
Mean-Square Deviation (RMSD) for generated Protein and RNA models wrt. to its experimentally
determined ground-truth structure. The ability to reliably rank a biopolymer structure requires a model
to accurately learn the atomic environments such that discrepancies between a ground truth states
an its corrupted version can be distinguished. We evaluated our model on the biopolymer ranking
and obtained good results on the current benchmark, as reported in Table 1 in terms of Spearman
rank correlation. Our proposed model performs particularly well on the PSR task outperforming the
GVP-GNN [23] on the Global Rank Spearman correlation on the test set, while our model is more
parameter efficient (383K vs. 640K). We believe our model could be further improved by additional
hyperparameter tuning, e.g., by increasing the number of scalar or vector channels, which we did not
do in our study to compare against the baseline models.

We noticed that the RSR benchmark was particularly difficult to validate as only a few dozen
experimentally determined RNA structures are existent to date, and the structural models generated
in the ATOM3D framework are labeled with the RMSD to its native structure, which is known to be
sensitive to outlier regions, for exampling by inadequate modelling of loop regions [35], while the
GDT_TS metric might be a better suited target to predict a ranking for generated RNA structures as
in the PSR benchmark.
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Another challenging and important task for drug discovery projects is estimating the binding strength
(affinity) of a candidate drug atomistic’s interaction with a target protein. We use the ligand binding
affinity (LBA) dataset and found that among the GNN architectures, our proposed model obtains the
best results, while also being computationally cheap and fast to train. The best performing model
in the LBA-task is a 3D CNN model which works on the joint protein-ligand representation using
voxel space and enforcing equivariance through data augmentation. The inferior performance of
all equivariant GNNs might be caused by the need of larger filters to better capture the locality and
many-body effects, where 3D CNNs have an advantage when using voxel representations, while
GNNs commonly capture 2-body effects. Furthermore, as all GNN models jointly represent ligand-
and protein as one graph by connecting vertices through a distance cutoff of 4.5Å, we believe that
such union leads to an information loss of distinguishing the atom identity from the ligand and protein.
A promising direction to investigate is to incorporate a ligand and protein GNN encoder seperately
and merge the two embeddings prior the binding affinity prediction, similar to Graph Matching
Networks [36] and recently realized by Stärk et al. [37] in a slightly different context.

EQGAT outperforms the current SOTA GVP-GNN model on the Residue and Protein-Protein-
Interaction benchmarks which are both node classification tasks and require a model to accurately
capture the local environment of a selected Cα atom to serve as expressive input for a downstream
(decoder) network to obtain the final prediction.

Notably, our proposed EQGAT architecture performs on par with the SEGNN that implements
internal representations of higher order, i.e., of rotation order up to l = 2. We believe that including
the cross product in our vector message in (9) allows the model to capture more geometric detail
in a possible protein ligand binding pose for accurately predicting the binding affinity, which is
investigated in the following ablations.

5.2 Ablation Studies

To evaluate the benefits of our designed EQGAT architecture, we perform ablation studies and remove
architectural components to isolate the effect of each design choice on performance.

Table 2: Results of the ablation studies.
LBA [RMSE ↓] PSR [Mean | Global RS ↑]

No-Cross-Product 1.458 (0.011) 0.477 (0.012) | 0.827 (0.010)
No-Feature-Attention 1.466 (0.040) 0.492 (0.007) | 0.820 (0.002)

Full Model 1.440 (0.027) 0.491 (0.008) | 0.847 (0.006)

Ablation study 1 (termed No-Cross-Product) removes the contribution of vector cross product
(denoted as vji,2 in Eq. (9)). This leads to the effect that the vector message is solely constructed
based on scaled versions of normalized relative positions (vji,0) and linear combinations of existing
vector features (vji,1).

Ablation study 2 (termed No-Feature-Attention) replaces the feature attention coefficient αji ∈
(0, 1)Fs through a single coefficient αji ∈ (0, 1).

We observe that the full EQGAT architecture obtains the best performance among the two datasets
compared to the ablated models although we note that the improved performance of the full model in
RMSE on the LBA benchmark and Global RS in the PSR benchmark is difficult to attribute to the
inclusion of architectural components due to the (larger) variance obtained through the 3 runs for
each experiment.

6 Conclusion, Limitations and Future Work
In this work, we introduced a novel attention-based equivariant graph neural network for the prediction
of properties of large biomolecules that achieves superior performance on the ATOM3D benchmark.
Our proposed architecture makes use of rotationally equivariant features in their intermediate layers to
faithfully represent the geometry of the data, while being computationally efficient, as all equivariant
functions are directly implemented in the original Cartesian space without changing the representation
through the spherical harmonics basis as commonly done in Tensorfield networks. As our proposed
model operates on Cartesian tensors and we restrict the representation to be of rank 1 only, a general
promising future direction of investigation is the implementation of Cartesian equivariant GNNs that

9
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leverage higher-rank tensors in their layers, that are specifically implemented for learning purposes
involving large biomolecules. As it is up to date not clear, how much improvement higher-order
Cartesian tensors benefit for learning tasks that involve large biomolecular systems, we hope that
our work and open-source code will be useful for the graph learning and computational biology
community.

Code Availability
We provide the implementation of our model and experiments on https://github.com/
Bayer-Group/eqgat. We use PyTorch [38] as Deep Learning framework and PyTorch Geometric
[39] to implement our GNNs.
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A Appendix

Full Model Details and Hyperparameters

All EQGAT models in this paper were trained on a single Nvidia Tesla V100 GPU.

Table 3: Description of architectural parameters on the ATOM3D benchmarks.
Parameter LBA PSR RSR
Learning rate (lr.) 10−4 10−4 10−4

Maximum epochs 20 30 30
Lr. patience 10 10 10
Lr. decay factor 0.75 0.75 0.75
Batch size 16 16 16
Num. layers 3 5 5
Num. RBFs 32 32 32
Cutoff [Å] 4.5 4.5 4.5
Scalar channels Fs 100 100 100
Vector channels Fv 16 16 16

Num. parameters 238k 383k 383k

We used the ADAM optimizer [40] apart from the defined learning rate all other standard hyperpa-
rameter setting from the PyTorch library.

B Model Efficiency

Table 4: Comparison on model efficiency when passing
a batch of 10 macromolecular structures.

Dataset Model (# Param.) Inference Time [ms]

LBA EQGAT (238K) 11.94
SchNet (240K) 8.25
PaiNN (379K) 10.66
SEGNN (238K) 89.53

PSR EQGAT (383K) 49.96
SchNet (240K) 18.36
PaiNN (379K) 18.58
SEGNN (238K) 255.44

RSR EQGAT (383K) 75.45
SchNet (240K) 27.27
PaiNN (379K) 26.98
SEGNN (238K) 390.69

Model Efficiency. We assess the model
efficiency of EQGAT in terms of compu-
tation time as well as trainable parameters
and compare against SchNet, PaiNN and
SEGNN on the LBA, PSR and RSR bench-
marks. These datasets have on average 408,
1624, and 2390 nodes per graph with 9180,
26756 and 44233 directed edges, respec-
tively for the training set of LBA, PSR and
RSR.

As these datasets consist of graphs with
up to thousands of atoms, computationally-
and memory efficient models are preferred
such that batches of graphs can be stored
on GPU memory and processed fast during
training. We measure the inference time
of a random batch comprising 10 macro-
molecular structures on an NVIDIA V100
GPU. As shown in Table 4, SchNet and
PaiNN are both parameter efficient and both achieve the fastest inference time on a forward pass,
while our proposed EQGAT is slower mainly due to the softmax attention normalization in the
denominator in Eq. (4) which could be improved when the softmax attention with its normalization is
replaced by a sigmoid activation function, to obtain soft-attention weights. This step however, results
into a edge-filter αji that does not sum up to 1 when iterating over all neighbours j. The SEGNN
model has the longest runtime on the forward pass across the 3 datasets. This is mostly attributed
to the Clebsch-Cordan tensor products which can be very expensive in learning tasks that involve
proteins, as the CG product is always performed on edges.
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C Proof Equivariance
We prove the rotation equivariance in Eq. (9) which consists of the sum of three vector components,
and displayed here again

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ).

As the sum is a linear function, we require to show that each summand (vji,0, vji,1, vji,2) is equivari-
ant. For brevity, we omit all top indices. The first term is computed as tensor product of an l = 1
representation and l = 0 representation through

vji,0 = pji,n ⊗ bji,0 = pji,nb
⊤
ji,0 ∈ R3×Fv ,

where bji,0 ∈ RFv is an SO(3)-invariant representation, i.e. a scalar representation with Fv channels,
and pji,n ∈ S2 ⊂ R3 a normalized relative vector, which lies on the 2-dimensional sphere.
If the point cloud is rotated, as defined in Eq. (2), (relative) position as well as vector features change
to

p
R−→ Rp ,

v
R−→ Rv ,

while the cross product between two vector features v0, v1 is invariant to rotation, resulting to the
property

(Rv0 ×Rv1) = R(v0 × v1) .

In case a rotation is acting on the system, from Eq. (2) we know how vector and scalar quantities
transform, resulting into:

R.vji,0 −→ Rpji,n ⊗ bji,0 = R(pji,n ⊗ bji,0) = Rvji,0.

due to the linearity of the tensor product which proves SO(3) equivariance for the first term.
For the second term, we calculate

vji,1 = bji,1 ⊙ (vi × vj),

where bji,1 ∈ RFv is an SO(3)-invariant representation and the output of the cross product is a vector
representation ∈ R3×Fv . To be precise, the elementwise multiplication from the left with the bji,1
has to be rewritten, to match the shape, i.e. unsqueeze a new dimension to scale each of the Fv vector
by the scalar value, resulting into:

vji,1 = (1⊗ bji,1)⊙ (vi × vj),

where 1 is the one-vector in 3 dimensions. For a rotation acting on the system, we conclude that

R.vji,1 −→ (1⊗ bji,1)⊙ (Rvi ×Rvj)

= (1⊗ bji,1)⊙R(vi × vj) = R(1⊗ bji,1)⊙ (vi × vj)

= Rvji,1,

which proves SO(3) equivariance for the second term.
The third term is obtained through

vji,2 = (1⊗ bji,2)⊙ (vjWn),

where bji,2 ∈ RFv is a scalar representation with Fv channels and Wn a linear transformation of
shape (Fv × Fv). Due to linearity, we can see that

RvjWn = (Rvj)Wn = R(vjWn)

is SO(3) equivariant. As we elementwise multiply with a unsqueezed/expanded scalar representation,
we conclude for the last term SO(3) equivariance

R.vji,2 −→ (1⊗ bji,1)⊙ (Rvj)Wn

= (1⊗ bji,1)⊙R(vjWn) = R(1⊗ bji,1)⊙ (vjWn)

= Rvji,2.
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Since all three components in the sum are SO(3) equivariant, we conclude that the final sum is also
SO(3) equivariant.

As the reader might have noticed, we build equivariant features based on linear functions and
weighting l = 1 representations through l = 0 representations. This typical scaling is achieved
through the tensor product ⊗. Our architecure however, also performs a multiplication between two
l = 1 representations, through the cross product, which has the pleasant SO(3) invariance property
that we can exploit to prove SO(3) equivariance, when scaling the output with an l = 0 representation.

A Note on Translation Equivariance. Our proposed model is translation invariant, as all vector
features are initially created by means of a tensor product of (normalized) relative position pji,n.
To see that, for any translation vector t ∈ R3 for relative positions, we can see that the calculation of
such vectors4 pji = pj − pi, are inherently translation invariant due to

t.pji −→ (pj + t)− (pi + t) = pj − pi + t− t = pj − pi = pji.

Since we do not model absolute Cartesian coordinates, e.g., by updating the spatial coordinates
through our layers, our model is not SE(3)-equivariant, i.e. next to rotation equivariance, also
translation equivariant. We note that translation equivariance, however can be achieved through a
simple operation such as the addition of an SE(3) representation with an SO(3) representation, e.g.

pi = pi + pji,n ⊗ s,

where s ∈ R and reminiscent in the E(n)-GNN architecture, albeit the authors are not using the
notation of the tensor product.

D Synthetic Dataset
We adopt the synthetic dataset from GVP [18] with slight modifications to make it a more challenging
task. We create 50,000 ‘structures’ where each ‘structure’ consists of n = 100 random points in
R3, distributed uniformly in the ball of radius r = 10 with the constraint that no two points are less
than distance d = 2 apart. Three points are randomly chosen and are labelled as ‘special’ which will
define the vertices of a triangle. The learning task is a multitask regression of 3 targets, where the
first target is to predict the distance between the center of mass (COM) of the entire structure and the
COM of the triangles spanned by the three special points. The second and third task is the prediction
of the perimeter and surface area of the triangle. The choice of the 3 targets refers to a structural
learning task, where the model requires to learn about the global shape of the structure, while the
second and third targets are relational. An example structure is depicted in Figure 3. The evaluation
metric is the MSE of the three tasks. We split the dataset into 80% training, 10% validation and 10%
test sets.

Table 5: Evaluation of our proposed EQGAT architecture on Triangle benchmark.
Model Triangle [MSE ↓] No. Params [103]

SchNet 37.545 (1.838) 16.8
PaiNN 10.259 (0.949) 27.1

SEGNN 3.875 (0.879) 60.9
GVP 10.115 (1.210) 61.6

EQGAT-Full 6.003 (0.432) 27.4

EQGAT-No-Cross-Product 6.835 (1.066) 27.4

EQGAT-No-Feature-Attention 6.808 (0.326) 27.4

For the synthetic task of multitask regression we notice that the SEGNN architecture equipped with
higher-order equivariant features up to rotation order 2, obtains the best performance, followed by
our proposed EQGAT model that only incorporates rank 1 (vector) features. For the synthetic dataset,
we did not perform any hyperparameter tuning and set the number of layers to 3 with Fs = 32 scalar

4We omit the normalization to unit vectors for brevity.
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Figure 3: An example structure of the synthetic dataset. Three random points in the structure
determine the vertices of a triangle, which is colored in red.

and Fv = 8 vector channels and train for 50 epochs. The number of trainable parameters for SchNet,
PaiNN, SEGNN and EQGAT on the synthetic Triangle dataset are listed in the last column of Table
5.
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