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ABSTRACT

Recently, automatic medical report generation has become an active research topic
in medical imaging field. It is imperative for the model to identify normal and
abnormal regions in a medical image to generate a coherent and diverse report.
However, medical datasets are highly biased towards normal regions. This makes
most existing models tend to generate a generic report without sufficiently con-
sidering the uniqueness of individual images. In this paper, we propose a learning
framework to extract distinctive image and report features for each sample by dis-
tinguishing it from its closest peer (denoted as hard negative in this paper) and
gradually increasing the difficulty of such a task through synthesizing harder and
harder negatives during training. Specifically, a prior hard negative report, which
is the report closest to an anchor report in the dataset, is initially identified by
using a pre-trained Sentence Transformer. To force our report decoder to capture
highly distinctive and image-correlated text features, harder and harder negative
reports keep being synthesized by gradually moving the prior hard negative report
towards the anchor report in the latent space during training. The harder negative
report is used to evaluate a triplet loss that is minimized to enforce the distance
between the matched image and report to be smaller than the distance between
an image and its synthesized harder negative report. Meanwhile, the associated
images of the anchor report and its prior hard negative report form a hard negative
image pair, and a cosine similarity loss is used to capture the distinctive features
of the anchor image by pushing the hard negative image away. In this way, our
model could achieve subtle representative resolution (i.e., the ability to distinguish
two similar samples). As a general method, we demonstrate experimentally that
our framework could be readily incorporated into a variety of existing medical
report generation models, and significantly improve the corresponding baselines.
Our code will be publicly released at

1 INTRODUCTION

Medical report is a multi-sentence paragraph that precisely describes the normal and abnormal re-
gions in a medical image. Writing such reports requires proper experience and expertise (Jing et al.,
2018). Using AI to automate this process can reduce manual workload and speed up clinic pro-
cedure. Automatic medical report generation is similar to image captioning but with more subtle
correlation between medical images and corresponding reports. This could make image captioning
models (Vinyals et al., 2015; Xu et al., 2015; Anderson et al., 2018; Rennie et al., 2017; Lu et al.,
2017) fail when directly applied on medical datasets, making medical report generation more chal-
lenging (Wang et al., 2021b). Many works have been proposed for medical report generation via an
encoder-decoder framework (Jing et al., 2018; 2019; Li et al., 2018; Chen et al., 2020; 2021; Wang
et al., 2021b). They focus on improving the generated reports with the aid of medical tags (Jing
et al., 2018), large pretrain models (Huang et al., 2017; He et al., 2016; Radford et al., 2019), and
the use of relational memory (Chen et al., 2020; 2021). A detailed literature review is in Sec. 2.

Despite the effectiveness of these approaches, their generated reports could still be heavily domi-
nated by the terms describing the common contents of medical images (Jing et al., 2019). As a result,
the characteristics of an individual report could be submerged. It is therefore imperative to help the
model to generate a report that covers the distinctive features of individual images. Recently, a few
methods (Liu et al., 2021b;a) were proposed to learn sample-specific image or report features by
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Figure 1: Illustration of our proposed framework, explained in Sec. 3.1. At the inference stage, only
images are used as the input for the model to output the generated reports.

linking or contrasting the given sample to the closer ones in the training set to guide the report gen-
eration. For example, Posterior-and-Prior Knowledge Exploring and Distilling (PPKED) (Liu et al.,
2021a) utilized the detected abnormal image regions to retrieve a report from the training set, and
used this report as a reference to help generate the report of the given image. Another work (Liu
et al., 2021b) proposed a contrastive attention mechanism (denoted as CA in this paper) to capture
abnormal regions by comparing an input image with a pool of normal images while generating the
report. An aggregation attention and a differentiation attention were used to remove the significant
common information between an abnormal image and a set of normal images. Nevertheless, the
two methods still focus on distinguishing abnormal samples from the common normal ones, which
may not be able to sufficiently differentiate the subtle but critical changes across individual reports.
Moreover, the two methods use only one of the two modalities to capture abnormality-related fea-
tures, ignoring the crucial information from the other modality. For example, CA (Liu et al., 2021b)
utilizes only image modality while PPKED (Liu et al., 2021a) relies on merely text modality.

To address this situation, we argue that it is imperative to extract distinctive features and consider
both visual and text modalities so as to generate reports reflecting individual characteristics. We pro-
pose a method that captures the unique features of a given sample for both image and text modalities
by differentiating it from its closest neighbour in the training set (called hard negative in this paper)
and, more importantly, further gradually increase the hardness of discrimination via synthesizing
harder and harder negatives to enforce even finer differences to be captured. The hard negatives
are found from the perspective of reports since they reflect high-level clinic-related semantics.

Specifically, for each report in the training set, we extract the report features using Sentence Trans-
former (SBert) (Reimers & Gurevych, 2019) and calculate its cosine-similarity scores with respect
to other reports. The top-1 similar report is then picked as its prior hard negative. By observing if
two reports are similar, their paired images are likely to be also similar, we simultaneously obtain
the hard negatives for the associated images. Then we send the hard negative image pair to the two
shared encoders to extract image representations and the hard negative report pair to the two shared
decoders to extract report features. For the image modality, a cosine-similarity loss is minimized
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to ensure that the learned image representations of the hard negative image pair are dissimilar from
each other. For the text modality, in its feature space, we keep synthesizing harder and harder nega-
tive features through linearly combining the given report and its prior hard negative and making the
synthesized ones gradually closer to the given report to increase their hardness to be differentiated.
Moreover, we employ a triplet loss to explicitly align the image and the report features to be close to
each other and at the same time push the synthesized harder negative features away from the image
features in the feature embedding space. The importance of the synthesis is to have a much harder
negative so that model can learn subtle relation between image and report features with the help of
the triplet loss. For inference, only the text-aligned image features are used for report generation.

The main contributions of our paper are summarized as follows.

First, we propose a simple yet effective approach that helps the model to capture unique features
in both the image and the text modalities to generate coherent and diverse reports. It can be easily
incorporated with the existing encoder-decoder based models without modifying their core architec-
ture or mechanism, as demonstrated in our experimental study.

Second, we propose a new mechanism to leverage hard negative priors for report generation, which
gradually increases the hardness of the generated negative samples with the evolution of the training
process. By training our model to differentiate these harder negatives, the recognition resolution of
our model could be increased.

Third, we validate the effectiveness of our proposed framework upon five different backbones. On
two radiology benchmarks IU-XRay (Demner-Fushman et al., 2016) and MIMIC-CXR (Johnson
et al., 2019), Our model outperforms the state-of-the-art medical report generation methods and
integrating our framework could consistently improve the corresponding backbones. In addition,
we also show that incorporating our framework could also benefit the generic image captioning on
COCO dataset (Lin et al., 2014).

2 RELATED WORK

Image Captioning The aim of an image captioning task is to automatically generate a single or
multi-sentence description of an image using deep learning models. A basic image-captioning
model follows an encoder-decoder framework where encoder is a convolutional neural network
(CNN) and decoder is a recurrent neural network (RNN). The CNN extracts images features and
passes it to the RNN for caption generation. Later, attention mechanisms were introduced to
supervise the model to focus on the significant regions of an image while generating a caption. To
perform attention on object level and regions level, Anderson et al. (2018) combined top-down and
bottom-up attention mechanisms. To generate a multi-sentence description of an image, Krause
et al. (2017) proposed a heirarchial RNN (HRNN). Recently, much stronger Transformer replaced
RNN to improve the quality and diversity of the captions.

Medical Report Generation Earlier works adopted traditional encoder-decoder framework for re-
port generation. To generate coherent reports, (Jing et al., 2018) proposed co-attention mechanism
to localize abnormal regions and a heirarchial LSTM decoder to generate the reports. They also
adopted disease tag classification task along with report generation, making it a multi-task learning
framework. Later, (Jing et al., 2019) proposed a multi-agent model to alleviate data bias problem
between normal and abnormal regions of the medical images. (Chen et al., 2020) incorporated a
relational memory module into the vanilla Transformer to store the significant information related to
earlier generated reports and utilized this information for effective report generation. Following this
work, (Chen et al., 2021) used a relational memory matrix for cross-modal alignment of image and
text features. After the success of GPT-2 (Radford et al., 2019) in text generation tasks, (Alfarghaly
et al., 2021) used GPT-2 for report generation. First, they fine-tuned ChexNet (Rajpurkar et al.,
2017) for disease tag prediction, then used the predicted tag’s embeddings to calculate weighted
semantic features. Finally, they conditioned the GPT-2 model on semantic and visual features to
generate a report.

To improve the diversity of the generated reports in describing abnormal diseases, (Liu et al., 2021b)
proposed contrastive attention mechanism focusing on abnormal regions of the image. It consists of
two attentions - aggregate attention to summarize the information from all the reports in normality
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pool and differentiate attention to remove common information between normal and abnormal im-
age. Each abnormal image is compared with a set of normal images to get contrastive information.
This information is then used for report generation. They try to get the contrastive information from
image-level, ignoring the crucial information from text-level. Other work, PPKED (Liu et al., 2021a)
used prior knowledge, posterior knowledge and multi-domain knowledge distiller to generate the re-
port. This method tries to mimic the behaviour of a radiologist, by first predicting the disease tags
focusing on the abnormal regions of the image (posterior knowledge), utilizing the prior knowledge
by retrieving the relevant reports from the corpus, and finally using a distiller module to incorporate
the prior and posterior knowledge while doing report generation. Furthermore, (Wang et al., 2021b)
used an additional image-text matching (ITM) branch to align image and report features in the latent
space, and utilized the generated reports during training as the hard negative reports that are close to
the ground-truth to supervise ITM branch.

The main drawback of these methods is that they try to utilize the distinctive information from
just one modality. We propose an approach to utilize distinctive features from both modalities and
closely align them in the latent space by evolving hard negatives. Unlike (Wang et al., 2021b), we
achieve this without the need of an additional ITM branch, which significantly simplifies the model.
More detailed discussion is available in Section 3.

3 PROPOSED METHOD

Our learning framework is model-agnostic and suits general encoder-decoder based methods. In
this paper, we demonstrate its effectiveness on multiple models, including a basic baseline model
using DenseNet-121(Huang et al., 2017) as the encoder and GPT-2(Radford et al., 2019) as the
decoder and several recent models consisting of R2Gen (Chen et al. (2020)), R2GenCMN (Chen
et al. (2021)), XproNet (Wang et al. (2022)), and VisualGPT (Chen et al. (2022)). The input to our
model is a medical image and the output is the medical report describing the image. Each input
image is resized to 3×H ×W shape. We do not combine the frontal and lateral views of the image
and rather pass them separately.

3.1 OVERVIEW

Given an image set I = {I1, I2, · · · , In} and the corresponding ground-truth report set R =
{R1, R2, · · · , Rn}, the encoder extracts the image representation zi = f(Ii) ∈ Rd and passes it
to the decoder to generate a predicted report R̂i. To extract distinctive and significant features of
images and reports, treating each image-report pair (Ii, Ri) as an anchor, we compute its hard neg-
ative image-report pair, denoted by (I−i , R−

i ), using SBert (Reimers & Gurevych, 2019) based on
the cosine-similarity score (Sec. 3.2). The resulting two images (Ii, I−i ) are fed as the input to two
encoders whose parameters are shared while the resulting two reports (Ri, R

−
i ) are fed to two de-

coders sharing parameters also. The features extracted by the two encoders are denoted as (zi, z−i ).
To enforce the encoder to extract distinctive features, we use a cosine-similarity loss to encourage
the dissimilarity between the image features zi and z−i (Sec. 3.3). Next, we pass these extracted
image features to the decoders to extract the corresponding report features, denoted by (ui,u

−
i ). To

further enhance the discrimination of the report features u, we synthesize a series of harder negative
reports, denoted by ũi, in the embedding feature space by gradually moving the hard negative report
feature u−

i towards the report feature ui via using a convex linear combination of them (Sec. 3.4).
We then employ a triplet loss and a clip loss to align the report features ui with the corresponding
image features zi, while pushing the synthesized harder negative features ũi away from the image
features zi in the embedding feature space (Sec. 3.5). Our framework is illustrated in Fig. 1.

3.2 HARD NEGATIVE PRIORS USING SBERT

Before starting the training, for each report in the training set its closest report (referred to as the
hard negative in this paper) is identified based on the cosine similarity score. Specifically, the reports
R = {R1, R2, · · · , Rn} are passed to the SBert (Reimers & Gurevych, 2019) to extract semantically
meaningful report features {r1, r2, · · · , rn} ∈ Rd×n. For each report feature ri, its cosine similarity
score is computed against all the other report features rj in the training set, and the one with the

4



Under review as a conference paper at ICLR 2023

highest score is considered as the hard negative for that report. Formally,

cos(ri, rj) =
ri · rj

∥ri∥ · ∥rj∥
(1)

where i, j = 1, ...., n, i ̸= j. By doing so, we can create a hard negative report pair (Ri, R
−
i ) for

each report Ri. We assume if (Ri, R
−
i ) forms a hard negative report pair, then their corresponding

images (Ii, I−i ) usually also form a hard negative image pair. In this way, we obtain a pair of hard
negatives of images and their corresponding reports (Ii, I−i , Ri, R

−
i ) (where i = 1, ...., n) for all the

samples. It is noted that we create the hard negatives from the perspective of reports as they directly
contain the high-level clinic-related semantics.

The computed hard negative reports are used as a prior or a starting point. The hardness of the
negative reports is further increased gradually by moving the features of the hard negative reports
towards the anchor report features during the training, as discussed in detail in Sec. 3.4.

3.3 SIGNIFICANT IMAGE FEATURES

Once the hard negative pairs are obtained, the images Ii and I−i are sent through Encoder A and
Encoder B, respectively, to extract features zi ∈ Rd and z−i ∈ Rd. As aforementioned, the param-
eters of the two encoders are shared. A cosine-similarity loss LCS is then minimized to make the
representations of an image and its hard negative dissimilar to each other in order to learn powerful
encoders capable of differentiating two closely similar images. The loss LCS is defined as:

LCS =
zi · z−i

∥zi∥ · ∥z−i ∥
. (2)

LCS would be small if zi is very different from z−i when Encoder A and Encoder B extract distinc-
tive features for the input image Ii and its hard negative I−i , respectively. Moreover, a cross-entropy
loss used to generate reports adds another level of supervision on the encoder to extract image repre-
sentations useful for report generation. Hence, the cosine-similarity loss LCS and the cross-entropy
loss LCE together make the image representations from the encoder not only discriminative but also
significant for report generation. More details regarding the cross-entropy loss are in Sec. 3.5.

3.4 SYNTHETIC HARDER NEGATIVES

The image representations zi and z−i output from the Encoders A and B along with their corre-
sponding reports Ri and R−

i are passed to two decoders which also share parameters. The report
representations from the last hidden layer of the Decoders A and B are denoted as ui ∈ Rd and
u−
i ∈ Rd , respectively, where u−

i is the hard negative of ui as previously defined. The decoders
should be trained to be able to differentiate ui and u−

i to achieve discriminative report represen-
tations. Moreover, we argue that the efficacy of decoders could be further enhanced by increasing
the hardness of u−

i , i.e., the difficulty to differentiate u−
i from ui. We therefore introduce the hard

negative mixing strategy (Kalantidis et al., 2020) into this process.

Specifically, in the feature embedding space, given a report sample ui, our main motive is to
start from its prior hard negative report u−

i within the training set (as precomputed using SBert
in Sec. 3.2) and gradually increase the hardness of u−

i by moving it closer to the anchor ui. This is
achieved by synthesizing a series of harder negatives via the convex linear combinations of ui and
u−
i , i.e.,

ũ−
i1 = λ× u−

i + (1− λ)× ui, (3)
where ũ−

i1 denotes the synthetic harder negative of ui. The hyper-parameter λ is used to control the
rate at which the hard negative moves towards the anchor report in the feature embedding space.
The value of λ is defined as λ = e−α and it changes over the epochs so that the hardness of the
synthetic harder negative gradually increases rather than staying constant. Also, we cap the value of
λ from bottom say 0.5, so that ui does not dominate u−

i in Eq. 3. A decay parameter α is used to
control the rate of change in hardness.

Meanwhile, since ui could reciprocally be regarded as the hard negative of u−
i , we could also

compute a synthetic harder negative for u−
i in a similar way and denote it as ũ−

i2,
ũ−
i2 = λ× ui + (1− λ)× u−

i . (4)
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3.5 TRAINING PROCESS

To this end, we could form two triplets (zi,ui, ũ
−
i1) and (z−i ,u

−
i , ũ

−
i2). In order to narrate finer

visual findings in a given medical image, highly correlated image and report features are desired.
Two triplet losses in Eq. 5 and Eq. 6 are applied to align image-report features. Specifically, for the
triplet (zi,ui, ũ

−
i1), we require that in the feature embedding space, the distance between the image

zi and its corresponding report ui is smaller than the distance between the image zi and its harder
negative report ũ−

i1. This applies to the triplet (z−i ,u
−
i , ũ

−
i2) in a similar way. In other words, the

triplet loss in Eq. 5 pulls the true match ui closer to the image zi and also pushes the harder negative
report ũ−

i away from zi. The triplet loss in Eq. 6 functions similarly.

LPT = max{d(zi,ui)− d(zi, ũ
−
i,1) + ϵ, 0}, (5)

where ϵ is a small positive value, denoting the margin of distances, and

LNT = max{d(z−i ,u
−
i )− d(z−i , ũ

−
i2) + ϵ, 0}. (6)

Moreover, a triplet loss considers only one positive report (the true match) and one negative report
for an anchor image. To well align the positive with the anchor and at the same time push more
negatives away from the anchor, it is essential to consider additional negatives. This helps to prevent
the second, third or k-th closest unmatched report to the anchor from being close to the anchor,
and therefore create a strong boundary around the anchor against potential negatives in the feature
embedding space. To achieve this, we further employ a contrastive image-text pre-training (CLIP)
loss (Radford et al., 2021). Given a batch of B images and their truly matched reports, in the feature
embedding space, we could form B matched image-report pairs as well as B2−B unmatched image-
report pairs. The encoder and decoder are then jointly trained to maximize the cosine similarity of
the matched pairs while minimizing that of the unmatched pairings. We then optimize a symmetric
cross entropy loss over these similarity scores. The clip loss is denoted as LCP .

For report generation, we use the standard cross-entropy loss LCE . Our final learning objective is

LF = δ × LCE + β × (LCP + LCS) + γ × (LPT + LNT ), (7)

The hyper-parameters δ, β, and γ are simply set to balance different objective terms.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We evaluate the performance of our proposed learning framework on two radiology benchmarks IU-
XRay(Demner-Fushman et al., 2016)and MIMIC-CXR(Johnson et al., 2019) using four encoder-
decoder based backbones. In addition, although focusing on medical report generation, we also
show the generality of our framework on the image captioning benchmark COCO (Lin et al., 2014).

IU-XRay (Demner-Fushman et al., 2016) is a classic radiology dataset from Indiana University with
7,470 frontal and/or lateral X-ray images and 3,955 radiology reports. Each report consists of im-
pression, findings and indication sections. The findings section contains multi-sentence paragraphs
describing the image, and is used as the ground-truth, following the previous works (Li et al., 2018;
Jing et al., 2019; Chen et al., 2020; 2021).

MIMIC-CXR (Johnson et al., 2019) is the largest radiology dataset consisting of 377,110 images
with 227,835 reports from 64,588 patients. We use the official split that has 368,960 training sam-
ples, 2,991 validation samples and 5,159 test samples.

COCO (Lin et al., 2014) is the most widely used and standard dataset for image captioning. It
comprises of 120,000 images, each with 5 different captions. We used the split provided by Karapa-
thy (Karpathy & Fei-Fei, 2017), where 5000 images are used for validation, 5000 images for testing
and the rest of the images for training. We download and use the splitted COCO dataset from the
github repository of the meshed-memory-transformer1. For IU-XRay, samples without complete

1https://github.com/aimagelab/meshed-memory-transformer
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Table 1: Comparison of our proposed approach and state-of-the-art models on IU-XRay, MIMIC-
CXR, and COCO datasets. * indicates the results quoted from Chen et al. (2020) for IU X-Ray
and MIMIC-CXR datasets. ** indicates the results taken directly from the respective paper. ***
indicates the results obtained by running the author-released codes using the same dataset split as
our approach. Basic baseline refers to the model using DenseNet-121 as encoder and GPT-2 as
decoder. The metrics B is for BLEU, R-L for ROUGE-L, M for METEOR, C for CIDER.

Dataset Methods B-1 B-2 B-3 B-4 R-L M C

IU-XRay

ST∗ 0.216 0.124 0.087 0.066 0.306 -
ATT2IN∗ 0.224 0.129 0.089 0.068 0.308 - -
ADAATT∗ 0.220 0.127 0.089 0.068 0.308 - -
CO-ATT∗ 0.455 0.288 0.205 0.154 0.369 - -
HRGR∗ 0.438 0.298 0.208 0.151 0.322 - -
CMAS-RL∗ 0.464 0.301 0.210 0.154 0.362 - -
MedSkip∗∗ 0.467 0.297 0.214 0.162 0.355 0.187 -
CA∗∗ 0.492 0.314 0.222 0.169 0.381 0.193 -
KERP∗∗ 0.470 0.304 0.219 0.165 0.371 0.187 0.280
PPKED∗∗ 0.483 0.315 0.224 0.168 0.376 0.190 0.351
R2Gen∗∗∗ 0.438 0.283 0.205 0.152 0.347 0.176 0.408
R2Gen + Ours 0.471 0.299 0.212 0.156 0.366 0.178 0.423
R2GenCMN∗∗∗ 0.467 0.300 0.210 0.156 0.369 0.185 0.401
R2GenCMN + Ours 0.505 0.318 0.219 0.159 0.374 0.190 0.440
Basic baseline 0.467 0.300 0.215 0.161 0.379 0.192 0.369
Basic baseline + Ours 0.482 0.318 0.229 0.171 0.385 0.194 0.392
XproNet∗∗∗ 0.454 0.288 0.199 0.143 0.362 0.179 0.380
XproNet + Ours 0.455 0.306 0.224 0.169 0.382 0.196 0.410

MIMIC-CXR

ST∗ 0.299 0.184 0.121 0.084 0.263 0.124 -
ATT2IN∗ 0.325 0.203 0.136 0.096 0.276 0.134 -
ADAATT∗ 0.299 0.185 0.124 0.088 0.266 0.118 -
CA∗∗ 0.350 0.219 0.148 0.106 0.278 0.142 -
PPKED∗∗ 0.360 0.224 0.149 0.106 0.284 0.149 0.237
R2Gen∗∗∗ 0.363 0.216 0.143 0.101 0.269 0.135 0.141
R2Gen + Ours 0.360 0.218 0.146 0.105 0.270 0.139 0.253
R2GenCMN∗∗∗ 0.369 0.223 0.148 0.105 0.270 0.136 0.143
R2GenCMN + Ours 0.364 0.225 0.152 0.109 0.276 0.139 0.237
Basic baseline 0.268 0.146 0.083 0.047 0.210 0.114 0.107
Basic baseline + Ours 0.327 0.194 0.127 0.090 0.225 0.125 0.227
XproNet 0.344 0.215 0.146 0.105 0.279 0.138 0.359
XproNet + Ours 0.354 0.220 0.150 0.112 0.283 0.138 0.410

COCO VisualGPT 0.677 - - 0.236 0.486 0.221 0.768
VisualGPT + ours 0.694 - - 0.250 0.493 0.226 0.830

findings sections are removed, following (Li et al., 2018). The filtered images and reports for IU-
XRay and MIMIC-CXR are publicly available in this repository2 by (Chen et al., 2020), and they
are directly downloaded and used in our experiments.

4.2 IMPLEMENTATION DETAILS

We evaluate our framework upon four encoder-decoder backbones, including a basic baseline,
R2Gen (Chen et al., 2020), R2GenCMN (Chen et al., 2021), and XproNet (Wang et al., 2022).
While the last three are the existing state-of-the-arts (SOTA) medical report generation methods, our
basic baseline uses DenseNet-121 (Huang et al., 2017) pretrained on ImageNet as the encoder and
GPT-2 (Radford et al., 2019) as the decoder. Our model is trained using the Adam (Kingma & Ba,
2015) optimizer with a weight decay of 5 × 10−5 for 50 epochs, and a batch size of 64. The loss

2https://github.com/cuhksz-nlp/R2Gen
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Table 2: Ablation studies on component contributions (left) and the impact of the hyper-parameter
α. The metrics B is for BLEU, R-L for ROUGE-L, C for CIDER.

Model B-4 R-L C Dataset α B-4 R-L C
Basic Baseline 0.161 0.371 0.379

IU-XRay
0.1 0.165 0.372 0.379

+ LCP 0.161 0.371 0.382 0.01 0.171 0.385 0.392
+ LCP + LCS 0.164 0.375 0.383 0.001 0.165 0.374 0.388
+ LCP + LCS + LPT 0.167 0.378 0.388

COCO
0.1 0.250 0.493 0.830

+ LCP + LCS + LPT + LNT 0.171 0.380 0.392 0.01 0.239 0.485 0.766
0.001 0.235 0.481 0.760

weights in Eq. 7 are set as 0.30, 0.05, and 0.65 for δ, β and γ for all datasets. The initial learning
rate is set as 1× 10−4 and further reduced by 10 times if there is no improvement in either BLEU-3
or BLEU-4 score on the validation set. When evaluating the existing SOTA models with or without
adding our losses, we use the default hyperparameters, optimizer, scheduler, and experimental set-
tings of the original methods for fair comparison. Following the previous works in medical report
generation and image captioning, we evaluate our model on widely used Natural Language Gen-
eration (NLG) metrics: BLEU (Papineni et al., 2002), CIDER (Vedantam et al., 2015), METEOR
(Lavie & Agarwal, 2007) and ROUGE-L (Lin, 2004).

4.3 RESULTS

To validate our approach on medical report generation, we first compare our model with the SOTA
image captioners ST (Vinyals et al., 2015), ATT2IN (Rennie et al., 2017), ADAATT (Lu et al., 2017),
and medical report generation models CO-ATT (Jing et al., 2018), CMAS-RL (Jing et al., 2019),
HRGR (Li et al., 2018), R2Gen (Chen et al., 2020), R2GenCMN (Chen et al., 2021), PPKED (Liu
et al., 2021a), KERP (Li et al., 2019), XproNet (Wang et al., 2022), MedSkip (Pahwa et al., 2021),
and CA (Liu et al., 2021b). Since the models PPKED, KERP, MedSkip, and CA are not open-
sourced, we directly quote the results published in their literature. For the open-sourced models
R2Gen(Chen et al., 2020), R2GenCMN (Chen et al., 2021), and XproNet (Wang et al., 2022), we
run their codes with their default experimental settings. Moreover, to further verify if our framework
also benefits generic image captioning tasks, we also build our framework upon the image captioning
model VisualGPT Chen et al. (2022) and test it on the image captioning benchmark COCO.

4.3.1 QUANTITATIVE ANALYSIS

The results in Table 1 demonstrate the effectiveness of our approach compared with the SOTA
methods. After integrating our proposed learning framework into the basic baseline and the SOTA
models in medical report generation and generic image captioning, we consistently observe a sig-
nificant boost in the scores of evaluation metrics, especially in CIDER. The best performance is
mostly achieved when incorporating our framework into the strong backbones of the SOTA meth-
ods, showing that our way of improvement is orthogonal to the current efforts seen in the literature,
and could further benefit the latter. Moreover, mining the hard negatives in our way could also
enhance the standard image captioning on COCO dataset. Our approach significantly boosts the
performance of the very recently proposed VisualGPT across all NLG metrics. It is noteworthy that
out of all NLG metrics, our increase in CIDER scores is the most significant across all the models.
CIDER in general could reflect the diversity of the generated text as it down-weights the common
content across reports. This verifies the effectiveness of our proposed learning framework through
leveraging harder and harder negatives during training.

4.3.2 QUALITATIVE ANALYSIS

In Figure 2, we compare the example reports generated by the SOTA models with and without
our learning framework. The generated sentences are differently colored, with green indicating
semantically correct generation and red indicating incorrect generation. As can be seen, comparing
with the reports generated by XproNet, R2Gen and R2GenCMN, incorporating our framework could
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Figure 2: Examples of reports generated by various models. From top to bottom, images are taken
from the IU-XRay and MIMIC-CXR. Green colour represents the text semantically similar to the
ground-truth. Red colour represents the text incorrectly generated. Blue colour in the ground-truth
report represents the text not generated by any of the models under comparison.

reduce the incorrect sentences generated in the reports. For instance, in the example from MIMIC-
CXR, the SOTA models trained with our framework are able to identify and generate the sentence
- “abandoned pacing leads are also noted in the right chest wall extending into the right heart’,
which is missing in the generated reports without using our approach. This is consistent with the
quantitative analysis. More extensive analysis with multiple example images from all three datasets
is available in Appendix A.

4.4 ABLATION STUDY

To understand the contribution of each component of our proposed framework, we conduct an abla-
tion study on three evaluation metrics - BLEU-4, ROUGE-L and CIDER on IU-XRay. We use the
basic baseline as the backbone and add the losses of LCP , LCS , LPT , and LNT one by one. The
results are shown in Table 2 Left. By adding the clip loss LCP to the basic baseline, performance
increase is observed for all the four metrics, showing the effectiveness of using contrastive based
learning process with more hard negatives. After adding the cosine-similarity loss LCS to super-
vise the encoder to capture distinctive image features, further performance improvement could be
achieved. Finally, by adding the two triplet losses LPT and LNT , we achieve the optimal perfor-
mance compared to the baseline. Moreover, to show the influence of α which controls the rate of
hardness increase of the synthesized harder negative features computed using Eq. 3 and Eq. 4, we
investigate the performance of the model with different values of α as shown in Table 2 Right. The
optimal value of α is depends on the nature of dataset. The higher the α value, the faster will be
the rate of increase in the hardness of negative reports. For medical datasets such as IU-Xray and
MIMIC-CXR, where most of the medical images have the reports of similar nature, having a lower
α value gives better performance. On the other hand, for a diverse dataset such as COCO, slightly
higher α value gives better results.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a general framework to improve medical report generation through learn-
ing significant and unique image and report features. We demonstrate that our proposed framework
can be readily incorporated with a variety of SOTA medical report generation models, and consis-
tently boost the performance of the latter. We also show that even generic image captioners could
benefit from our proposed framework although this is not the focus of this paper. On the other hand,
currently, we compute the hard negative priors for each report in the dataset in a brute force man-
ner. Although this is an offline one-off expense, the time for this pre-computation would increase
significantly for larger datasets (> 10M samples). In future, we would explore effective ways such
as approximate nearest neighbour search to compute hard negative priors more efficiently.
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A MORE QUALITATIVE RESULT

In Figure 3 and Figure 4, we provide additional images from COCO, IU-XRay, and MIMIC-CXR
datasets for comparing the reports/captions generated by the SOTA models with and without our
framework.

Figure 3: Comparison of captions generated by VisualGPT on COCO images with and without our
framework. Green colour represents the text semantically similar to the ground-truth. Red colour
represents the text incorrectly generated. Blue colour in the ground-truth caption represents the text
not generated by any of the models under comparison.
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Figure 4: Comparison of reports generated by the SOTA models on IU-XRay and MIMIC-CXR
images with and without our framework. Green colour represents the text semantically similar to
the ground-truth. Red colour represents the text incorrectly generated. Blue colour in the ground-
truth report represents the text not generated by any of the models under comparison.
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