Under review as a conference paper at ICLR 2025

EXPLORING SELECTIVE LAYER FREEZING STRATE-
GIES IN TRANSFORMER FINE-TUNING: NLI CLASSI-
FIERS WITH SUB-3B PARAMETER MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, methods that selectively fine-tune or reduce the number of layers
in large language models (LLMs) have garnered attention as an efficient alterna-
tive to traditional fine-tuning, where all layers are trained. In this paper, we revisit
the concept of Layer Freezing, a simple yet effective fine-tuning strategy, and
introduce detailed strategies that improve the training efficiency of LLMs by se-
lectively fine-tuning only a portion of the layers. We tested various freezing ratios
and positions, and found that by freezing the bottom 25% or 50% of transformer
layers during fine-tuning of an LLM with sub 3 billion parameters, we can achieve
performance equal to or better than full model fine-tuning and Low-Rank Adap-
tation (LoRA), while significantly reducing memory usage and training time. Our
experiments on natural language inference tasks show that this approach reduces
memory consumption by about 30% and 50%, and improves training speed by
20-30%.

1 INTRODUCTION

Recent advancements in Natural Language Processing (NLP) have been largely driven by the emer-
gence of Large Language Models (LLMs) such as GPT-3 (Brown et al.| 2020), PaLM (Chowdhery
et al., |2023), and LLaMA (Touvron et al., 2023). These models leverage extensive pre-training to
learn a wide range of linguistic patterns and knowledge. They demonstrate high performance across
various tasks through techniques like prompt engineering (Liu et al., 2023) and in-context learning
(Xie et al.). As a result, LLMs have become indispensable tools in numerous NLP tasks, including
translation, question answering, and document generation.

However, several limitations are associated with the training and application of LLMs: First, high-
performing LLMs typically contain over 7 billion parameters, making them computationally expen-
sive and requiring vast resources and time for both training and inference. Additionally, LLMs tend
to exhibit inconsistent performance in unfamiliar domains or tasks that were not encountered during
pre-training (Hendrycks et al.l [2020). This is a chronic problem for pre-trained models, which are
constrained to generating outputs based on their pre-trained knowledge. To address this fundamental
issue, it is imperative to implement knowledge updates through fine-tuning processes, enhancing the
model’s adaptability (Gururangan et al.,2020). However, due to the immense size of modern LLMs,
with parameter counts ranging from billions to hundreds of billions, even fine-tuning demands sig-
nificant computational effort.

To address these computational challenges, we revisit the concept of Layer Freezing, a simple yet
effective fine-tuning strategy, and introduce detailed strategies that extend this approach. Previous
studies have explored freezing layers of small language models such as BERT (Devlin et al.| 2019)
during fine-tuning, but these efforts have mainly focused on improving speed and have encountered
challenges due to the complexity of freezing techniques (Ben Zaken et al., 2022} |Tang et al., 2024).

In contrast, we have found that simply freezing a subset of layers can achieve better computational
efficiency and superior performance compared to fine-tuning the entire model. Rather than introduc-
ing additional layers or parameters, our goal is to reduce costs and maximize training efficiency by
focusing on fine-tuning only a subset of layers within the existing LLM. The discovered method has
the following advantages:

Under review as a conference paper at ICLR 2025

» Simplicity: This approach is highly straightforward and can be easily applied without the
need for complex analysis or modifications to the model architecture.

* Universality: This method can be widely applied across various model architectures, re-
gardless of scale or structural complexity.

* Performance Improvement: Experimental results show that this method not only im-
proves computational efficiency but also enhances model performance compared to fine-
tuning all layers.

[Outputs | [Outputs | [Outputs | [Outputs |
Layern «)] [Layer n] ' Layer n q i [Layer n q)]

i I) 1
Layern-1 ¢ ﬂ [Layer n-1] l Layern-1 i [Layer n-1]

1 1
i i
1 1
1 1
1 1
i i
1 1
1 1
1 1
i i
1 1 ’ Y
Layern-2 « ﬂ ! [Layer n-2] ! i Layern-2 (' [Layern-2 ﬂ
T ! T | T
: ! : ! : = :
! ! T 0 T 'N steps 1
Layer 3 < ﬂ i [Layer 3 A ﬂ i ' Layer 3 \ i [Layer 3]
o i - I _ i
Layer2 () (Layer2) 1 Layer2 () (Layer 2)
- : - : - -
Layer 1 A)] i [Layer 1 L ﬂ i l Layer 1 \ i [Layer 1 !)]
i : i : i i
[Inputs | : [Inputs | : [Inputs | [Inputs |
1 1
(a) Full fine-tuning : (b) Fixed Freezing i (c) Adapted Freezing

Figure 1: Proposed freezing strategies. (a) is the conventional fine-tuning method, while (b) and (c)
are the proposed strategies. In (b), predetermined layers are frozen according to preset configurations
before training. In (c), after initial training, layers to freeze are selected based on the amount of
weight change.

Figure[T]illustrates a comparison between the conventional fine-tuning method that utilizes all layers
and the layer selection method tested in this study. In the Fixed Freeze scenario, a predetermined
ratio and location of layers are frozen before training begins. In contrast, the Adapted Freeze ap-
proach involves recording and analyzing the initial training process, selecting the appropriate layers
to freeze, and then completing the remaining training.

To validate our approach, we focused on LLMs with fewer than 3 billion parameters, which can be
trained on a single GPU. We conducted a comparative analysis using the Natural Language Inference
(NLI) task (Bowman et al.,[2015)), a subset of text classification problems. The NLI task was chosen
as it effectively assesses a model’s fundamental language understanding and reasoning capabilities.

In our research, we discovered a remarkably effective method to address these challenges. By freez-
ing the bottom 25% of layers in transformer models during fine-tuning, we achieved significant
improvements in both computational efficiency and model performance. This approach reduced
training memory usage by over 30% (excluding model memory) compared to full model fine-tuning,
while generally enhancing overall performance. Additionally, we observed a notable 20% increase in
training speed. Empirical comparisons revealed that this method demonstrated superior performance
metrics relative to Low-Rank Adaptation (LoRA) (Hu et al.,|2021)), while exhibiting comparable lev-
els of computational acceleration and memory reduction.

2 RELATED WORK

2.1 NATURAL LANGUAGE INFERENCE

NLI, also known as recognizing textual entailment (Dagan et al., |2005), is a fundamental task in
NLP. This task involves determining the logical relationship between a premise and a hypothesis.

Under review as a conference paper at ICLR 2025

Specifically, a model must classify this relationship as entailment (the hypothesis necessarily follows
from the premise), contradiction (the hypothesis contradicts the premise), or neutral (the hypothesis
may or may not be true given the premise).

NLI serves as a crucial indicator for evaluating a model’s language understanding and reasoning
capabilities, including comprehension of semantics, context, and logical relationships. Models that
demonstrate high performance in NLI tasks tend to excel in other language understanding tasks as
well. Success in NLI challenges often indicates a level of language understanding that generalizes
across various domains and linguistic tasks (Poliak et al.,[2018). Consequently, NLI has established
itself as a valuable benchmark for assessing language models (Wang et al.| 2018).

2.2 GENERAL FINE-TUNING APPROACHES

The traditional fine-tuning approach involves retraining all or some of the parameters of a pre-trained
model to adapt it to a new task (Howard & Ruder] [2018). This method adjusts the weights of the
pre-trained model, utilizing various strategies such as learning rate adjustment, gradual unfreezing,
and discriminative learning rates (Peters et al.l2019). While this is useful for training task-specific
models, it has limitations in terms of computational cost and resource efficiency when fine-tuning
all parameters in recent large-scale models. To address these issues, techniques that reduce the num-
ber of trainable parameters, such as LoRA, or reduce memory usage, such as LLM quantization
(Dettmers et al.| [2022), are gaining attention.

2.3 LAYER FREEZING IN FINE-TUNING

Since the emergence of language models, there have been attempts to improve the efficiency of
fine-tuning by freezing certain layers. Ben Zaken et al.| (2022) proposed a method that fine-tunes
only the bias parameters instead of the weights in transformer-based masked language models, re-
ducing memory usage and improving speed. Tang et al.|(2024) introduced a technique to accelerate
the training process by gradually freezing layers based on their impact during training. However,
both studies primarily focus on speed improvement, which often leads to performance degradation.
Additionally, these studies require complex mechanisms for layer freezing.

In contrast, our study employs a simple freezing method that can be applied to any model while
also demonstrating performance improvement. This straightforward approach stands out in that it
not only reduces computational cost but also enhances model performance.

3 LAYER SELECTION FOR FINE-TUNING

This study proposes a method to improve model training efficiency by fine-tuning only a subset of
layers in an LLM and aims to validate it experimentally. In contrast to conventional LLM fine-tuning
methods that involve training all layers, this study demonstrates that selectively freezing specific
layers and fine-tuning only the remaining ones can lead to improved performance, faster learning
speed, and reduced memory usage.

3.1 FIXED FREEZING

The main strategy used during the model training process is to freeze specific layers of the model
and fine-tune only the remaining layers. We evaluated the impact of various layer selection methods
on model performance and training efficiency.

* Bottom-Up Freezing: We experimented with a method that sequentially freezes the
model’s bottom layers, allowing only the remaining upper layers to be fine-tuned. As the
bottom layers are primarily responsible for the basic linguistic expressiveness of the lan-
guage model, while the upper layers tend to learn task-specific representations (Rogers
et al., 2020), we hypothesized that this freezing approach would preserve fixed linguistic
knowledge while enabling task-specific adaptation.

* Top-Down Freezing: We tested an approach that freezes the top layers and trains only the
bottom layers. This method anticipates that the bottom layers will be tuned to the task based
on the fixed higher-level concepts in the frozen upper layers.

Under review as a conference paper at ICLR 2025

* Interval Freezing: This method involves freezing layers at intervals of n, meaning that
every n-th layer is frozen during training. This approach aims to allow both upper and
lower layers to be appropriately adjusted simultaneously, encouraging information to be
learned evenly across various layer levels.

3.2 ADAPTED FREEZING

As an alternative to the Fixed Freezing strategy, we propose an Adaptive Freezing approach with
dynamic layer selection. In this approach, we track the weight changes of each layer during training
to identify layers with significant or minimal changes. Based on these changes, we automatically
identify the layers that play a crucial role in performance. The Top-N layers, according to the mag-
nitude of weight changes, are then selectively frozen before proceeding with training. The following
outlines the operational sequence of this adaptive layer selection method:

1. Weight Change Tracking: We calculate the change in weights for each layer by comparing
the layer-wise weights before training and after the first S steps of training. The magnitude
of weight changes for multiple parameters within a single layer was quantified as a single
scalar value by computing the L2 norm of the changes and then taking the mean across all
parameters in the layer.

2. Top-N Layer Selection: We select the top IV layers with either the largest or smallest
weight changes, freeze them, and then resume training. Through this, we aimed to under-
stand the roles that layers with large and small weight changes play in the fine-tuning.

3.3 FREEZING STRATEGIES

Through these Fixed and Adapted Freezing methods, we aim to experimentally demonstrate that
fine-tuning only a subset of layers can reduce memory and computational costs compared to fine-
tuning the entire model. We hypothesize that this approach can potentially improve performance or,
at minimum, maintain it without degradation.

@ N steps
Interval Freezing BottomFreezing TopFreezing AdaptedFreezing
(INT) (BOT) (T0P) (ADT-L,ADT-H)

Figure 2: Proposed detailed freezing strategies, with 50% freezing for each strategy.

The following are abbreviations for the freezing strategies used in this study:

* ALL: Fine-tuning using all layers, used as the baseline.

* LoRA: Fine-tuning using LoRA, also used as the baseline.

e INT (Interval): Fine-tuning by freezing layers at regular intervals.

* BOT (Bottom-Up): Fine-tuning by freezing layers starting from the bottom of the model.
* TOP (Top-Down): Fine-tuning by freezing layers starting from the top of the model.

» ADT-L (Adapted Low): Fine-tuning by freezing N layers with the smallest weight
changes.

* ADT-H (Adapted High): Fine-tuning by freezing N layers with the largest weight
changes.

Under review as a conference paper at ICLR 2025

The number following each abbreviation indicates the percentage of frozen layers. For example,
INT?25 means 25% of the layers are frozen at regular intervals, while 70O P50 means 50% of the
layers are frozen starting from the top.

Figure 2] visualizes the freezing strategies utilized in this study. When 50% of the total layers are
frozen, the layers are frozen and trained in the pattern shown in the figure for each strategy.

4 EXPERIMENTS

The primary objective of this study is to verify whether fine-tuning only a subset of layers in LLMs
can achieve sufficient training effectiveness compared to training all layers. Through our approach,
we aim to explore a methodology that reduces memory and computational resource requirements
while maintaining training effectiveness without performance degradation.

4.1 MODELS AND DATASETS

The experiments used decoder-only small LLMs with sub 3 billion parameters, such as Gemma-
2b(Gemma) (Team et al.| 2024), Phi-2 (Javaheripi et al., 2023), and MiniCPM-2b-128k(MiniCPM)
(Hu et al.,|2024), which can be trained on a single GPU. All these models are large-scale pre-trained
language models whose parameters can be fine-tuned for specific tasks.

For the experiments, we used NLI tasks, which are primarily text classification problems designed
to verify the models’ basic language understanding and reasoning abilities by determining logical
relationships between sentences. NLI-related tasks from the GLUE (Wang et al., 2018) and Super-
GLUEWang et al|(2019) benchmarks were used. The specific tasks are listed in Table|I]

Dataset Task | Number of samples Usage rate
GLUE RTE 2,500 100%
GLUE QNLI 3,200 (105,000) 3.0%
GLUE WNLI 635 100%
GLUE MNLI 3,200 (392,000) 0.8%

SuperGLUE CB 250 100%

Table 1: Number of samples in each dataset, the number in parentheses is the total number of data,
but we used only a maximum of 3,200 randomly selected data.

4.2 EXPERIMENTAL DESIGN

In this study, we conducted a series of experiments to evaluate the efficacy of fine-tuning strategies
that selectively utilize specific layers of neural networks. Our experimental design focused on var-
ious freezing techniques, enabling a comparative analysis of performance variations resulting from
each approach. The primary objective of these experiments was to conduct a comprehensive assess-
ment of model performance, memory utilization, and training efficiency to determine the optimal
freezing methodology.

Finding the Optimal Freezing Ratio: First, we conducted experiments to determine at which ratio
of frozen layers the model exhibits the highest performance. To achieve this, we froze a certain
proportion of the model’s layers and trained only the remaining layers. For the I NT strategy, we
applied freezing ratios of 25%, 33.3%, and 50%, while for the BOT, TOP, ADT-L,and ADT-H
strategies, we used ratios of 25%, 50%, and 75%. Through this approach, we aimed to identify the
threshold at which performance sharply declines when more than a certain proportion of layers are
frozen, thereby deriving the optimal freezing ratio.

Finding the Optimal Freezing Position: Next, we analyzed which positions within the model’s
layers have the most significant impact on performance when frozen. The freezing positions were
categorized as BOT (Bottom-Up; freezing layers sequentially starting from the lower layers), 7O P
(Top-Down; freezing layers sequentially starting from the upper layers), and / N'T" (Interval; freezing
layers at regular intervals). By comparing the performance for each freezing position, we examined

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

which layers play more crucial roles. Additionally, we tracked the weight changes during the training
process and adaptively froze layers to understand the significance of the weight changes.

Finding the Optimal Freezing Strategy: Finally, we aimed to identify the optimal freezing strat-
egy by comprehensively considering the performance, training speed, and memory usage of each
strategy. As it is challenging to fairly and objectively quantify these diverse aspects into a single
metric, we first evaluated each aspect quantitatively and then conducted a comprehensive analysis.

(/X7 By R e i =i e il i i
Wi
S s o e
E
Ig 0.4
&
0.2 -
0.0 - T T . . . ‘
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADTL ADT-L ADT-L ADT-HADT-HADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies
(a) Accuracy performance of Gemma on the QNLI task
0.8 -
£ 0.6 Zi[::il;::' -
c B T Tr = e e
E 0.4
&
0.2 4

0.0 -

T T T T T T
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies

(b) Accuracy performance of Phi-2 on the QNLI task

Performances
(=]
-
1

T T T T T T
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)

Freezing Strategies

(c) Accuracy performance of MiniCPM on the QNLI task

Figure 3: Accuracy performance on the QNLI task. The same colors indicate the same strategy.
The gray hatched bar represents the baseline performance achieved by fine-tuning all layers of the
model. The red dashed line represents the average performance of fine-tuning across all layers, The
blue dashed line represents the mean performance minus one standard deviation, while the green
dashed line shows the mean performance plus one standard deviation when all layers are fine-tuned.

Under review as a conference paper at ICLR 2025

4.3 HYPER-PARAMETER SETTING

For each strategy, we conducted training using five different random seeds: 42, 43, 44, 45, and 46,
and measured the average performance. We fixed the batch size at 32 and max length at 128, and
trained the model for a total of 100 steps for each experiment. The learning rate is 5¢~° and we used
cosine learning rate scheduler. For the LoRA implementation in our experiments, we set the rank
(r) to 8 and the alpha parameter to 32. A dropout rate of 0.1 was applied, and no quantization was
performed. All other hyper-parameters remained consistent across experiments.

4.4 PERFORMANCE COMPARISON BY FREEZING STRATEGY

Figure 3| shows the average performance of the three models on the QNLI task, measured five times
using different random seeds for various freezing strategies. The error bars represent the p1£ o (mean
= standard deviation). The gray bars represent the experimental results for the baseline approaches:
full fine-tuning ALL and LoRA. The red dashed line indicates the mean performance when all
layers are fine-tuned. The blue dashed line represents the mean performance minus one standard
deviation, while the green dashed line shows the mean performance plus one standard deviation
when all layers are fine-tuned.

In most cases, the I NT25, BOT'25, and T'O P25 strategies showed superior performance compared
tothe ALL and LoRA strategy. Notably, the Phi-2 model achieved even higher performance, espe-
cially with the freezing strategies. The BOT strategy consistently demonstrated excellent and solid
performance across all models and most tasks. Furthermore, the I NT strategy generally showed
lower standard deviation compared to AL L, indicating more stable learning. Contrary to expecta-
tions, the Adapted Freezing strategy did not show performance merits. Furthermore, freezing layers
with either high or low weight changes did not yield significant results. Total experimental results
can be found in Appendix [A]

4.5 TRAINING EFFICIENCY COMPARISON BY FREEZING STRATEGY

INT
0.675 A (33%)
TOP
0.650 - l2e
BOT BOT INT
(50%) (25%)(50%)
INT
0.625 4
7 (25%y
(=%
2
v
S 0.600 -
= TOP
& (50%)
&
> 0.575
g
5
E ADTH ADT-L
E 0.550 o — (50%) (50%)
(75%) (t5eR
0.525 -
ADT-H ADT-L
(25%) (25%)
0.500 -
ADT-H ADT-L
(75%) (75%)
15 20 25 30 35 40 45 50

Learning Speed (time in seconds taken for 10 steps)

Figure 4: Learning speed and CB performance of the Gemma model for different freezing strategies.
The size of the semicircles represents the relative proportion of unfrozen layers used in training. The
x-axis indicates the time (in seconds) taken for 10 steps of training, and the y-axis represents the
performance after 100 steps of training. The TOP strategy is depicted with green circles, BOT
with blue, INT with red, ADT-L with yellow, and ADT-H with orange circles.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure] shows the average performance and training time measured by training the Gemma model
on the MNLI task for 10 steps using five different random seeds. The size of the circles visually rep-
resents the proportion of layers that were frozen. From this, it can be observed that the INT', BOT,
and T'OP strategies learn faster than the ALL strategy. In particular, the BOT strategy generally
showed very fast learning speed, comparable to the TOP and INT strategies. Moreover, when
compared to LoRA, the BOT strategies showed comparable or superior learning speed. ADT-L
and ADT-H, on the other hand, exhibited relatively slower speeds due to an additional fixed time
of about 13 seconds required for selecting the initial layers to freeze. With sufficiently long training
times, this overhead becomes negligible, and their speed is expected to be comparable to that of the
INT and TOP strategies. Additional experimental results can be found in Appendix [A]

30,000 A

20,000

Memory(MB)

10,000 4

ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%)
Methods

Figure 5: GPU training memory usage for each freezing strategy. The blue color represents the
memory statically used by the model, while the red color indicates the memory utilized during the
training process. The numbers above each bar indicate the percentage reduction in GPU memory
usage compared to the ALL strategy.

Figure [5] shows the GPU memory usage of the INT and BOT strategies compared to ALL. Ex-
cluding the memory used by the fixed model, when comparing only the training memory, the INT
strategy used approximately 7%—13% less memory and the BOT strategy used approximately 12%—
25% less. In the case of BOT), as the freeze ratio increased, the GPU memory usage dramatically
decreased by about 20% at each ratio. Additionally, BOT'25 demonstrated a level of memory reduc-
tion comparable to that of LoRA. The smaller reduction in / NT is presumed to be due to inefficient
computation caused by lack of optimization during CUDA operations, depending on the location of
the frozen layers.

4.6 BEST FREEZING STRATEGY

7.5

Ranking Score
w
(=]
L

[
n
1

o
o
I

T T T T T T
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-H ADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)

Freezing Strategies

Figure 6: Overall evaluation based Ranking Score by strategy. An overall evaluation was conducted
by measuring the average ranking scores based on the reversed rankings assigned across all models,
datasets, and experimental settings used in the experiments. The red dashed line represents the score
of the ALL strategy.

Under review as a conference paper at ICLR 2025

Ranking Score = Mean(reversed rank): To determine the optimal strategy, we assigned scores
based on the performance rankings from our experiments. In this paper, a total of 17 experiments
were conducted using ALL and LoRA strategy and 15 freezing strategies. Accordingly, for each
task, the strategy that achieved the highest average performance was given 16 points, while the
strategy with the lowest average performance received 1 point. This scoring was performed for each
of the 15 experiments (3 models x 5 tasks), and the final average score was calculated.

Figure [6]shows the average scores measured in this manner, and it can be observed that BOT'25 and
TOP25 achieved the highest scores. Notably, the I NT strategy outperformed the ALL strategy
across all ratios. This confirms that strategies INT'25, INT33, INT50, BOT25, BOT50, and
TOP25 can be used as alternatives to the ALL strategy. Considering memory usage and training
speed, the BOT'25 and BOT50 strategies are judged to be the most effective.

5 DISCUSSION

Our study on NLI tasks has uncovered a remarkably simple yet effective approach to enhance learn-
ing efficiency in LLMs. Through our experiments, we have discovered that fine-tuning only specific
layers of a 3B parameter LLM can yield performance that matches or even surpasses that of full
model fine-tuning.

Enhanced Performance: Specifically, we found that freezing the bottom 25% or 50% of trans-
former layers during fine-tuning not only maintained high performance but often exceeded the re-
sults of full model fine-tuning and LoRA. This approach led to a substantial reduction in memory
usage, approximately 30% and 50% respectively, without compromising model effectiveness. No-
tably, the training speed increased by 20-30%, which can be attributed to the reduced computational
load. we posit that this phenomenon may be attributed to the model’s capacity being disproportion-
ately large relative to the complexity of the NLI task. This aligns with observations in techniques
like LoRA, where freezing the majority of the model and training only a small number of additional
parameters can lead to performance improvements.

Memory Reduction: The reduction in memory usage observed with our partial fine-tuning ap-
proach is logically consistent with the decreased number of trainable parameters. However, we no-
ticed that interval freezing strategies, where layers are frozen in a distributed pattern throughout the
model, did not yield significant memory savings. This suggests that contiguous freezing of layers is
more beneficial for memory optimization. Additionally, freezing the top layers of the model resulted
in less pronounced memory savings compared to freezing bottom layers. We conjecture that this dis-
crepancy may be related to CUDA optimization techniques and underlying hardware architectures.

Learning Speed Improvements: While the speed improvements did not completely match the re-
duction in memory usage, the observed 20-30% increase in training speed is nonetheless significant.
We attribute this to the substantial computational overhead inherent in processing large language
models.

6 CONCLUSION

In this study, we investigated the effectiveness of fine-tuning only a portion of the layers in large
language models (LLMs) for natural language inference (NLI) tasks. Our experiments, conducted
on an LLM with approximately 3 billion parameters, demonstrated that freezing the bottom 25% or
50% of transformer layers can achieve performance equal to or better than full model fine-tuning
and LoRA, while significantly reducing memory usage and increasing training speed. This indicates
that our simple application of layer freezing, despite being an existing methodology, is particularly
effective for NLI tasks. Our approach offers a practical and efficient strategy for utilizing large LLMs
in resource-constrained environments.

Future work will focus on extending this method to a broader range of NLP tasks, including text
classification, named entity recognition, and machine translation, to assess its generalizability. We
aim to investigate the scalability of this approach by applying it to larger models with parameters in
the hundreds of billions. Furthermore, we intend to explore the synergistic effects of combining this
method with other efficiency-enhancing techniques such as quantization and pruning.

Under review as a conference paper at ICLR 2025

7 LIMITATION

This study demonstrated the efficiency of fine-tuning only certain layers in LLMs. However, the
following limitations exist:

Experiments Limited to Small LLMs: This study primarily conducted experiments on small-scale
LLMs with 3 billion parameters or fewer, such as Gemma, Phi-2 and MiniCPM. This choice was
due to the experimental conditions set to enable training in a single GPU environment. Therefore,
further research is needed to determine whether the proposed methodology demonstrates similar
performance improvements and efficiency in extremely large models (such as PaLM and LLaMA).
In extremely large models, memory requirements or training patterns may differ, necessitating ex-
periments on these models to expand the scope of this research.

Dataset Limited to NLI Tasks: This study focused on Natural Language Inference (NLI) tasks,
conducting experiments only on NLI-related datasets (such as RTE and CB) from GLUE and Super-
GLUE benchmarks. While NLI tasks are specialized in evaluating a model’s ability to infer logical
relationships, other types of tasks (e.g., text generation, question answering, translation, etc.) may
have different model characteristics and learning requirements. Therefore, further experiments on di-
verse tasks and datasets are necessary to assess the effectiveness of the proposed fine-tuning method
across a broader range of natural language processing tasks.

To address these limitations, future studies should validate the generalizability and efficiency of the
proposed methodology across a range of larger-scale LLMs and diverse tasks.

REFERENCES

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 1-9, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL https:
//aclanthology.org/2022.acl-short.1l

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing. Association for Computational Linguistics,
2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877-1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0dobfcb4967418bfb8acl42f64a—Paper.pdfl

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1-113, 2023.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop, pp. 177-190. Springer, 2005.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. corr abs/2208.07339 (2022), 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and

10

https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Under review as a conference paper at ICLR 2025

Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Suchin Gururangan, Ana Marasovi¢, Swabha Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 8342—-8360, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.740. URL
https://aclanthology.org/2020.acl-main. 740\

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song.
Pretrained transformers improve out-of-distribution robustness. In Dan Jurafsky, Joyce Chai, Na-
talie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 2744-2751, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.244. URL https://aclanthology.org/
2020.acl-main.244\|

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Seyeon Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Advances in Neural
Information Processing Systems, 2021.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 2023.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1-35, 2023.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Isabelle Augenstein, Spandana Gella, Sebastian
Ruder, Katharina Kann, Burcu Can, Johannes Welbl, Alexis Conneau, Xiang Ren, and Marek
Rei (eds.), Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-
2019), pp. 7-14, Florence, Italy, August 2019. Association for Computational Linguistics. doi:
10.18653/v1/W19-4302. URL https://aclanthology.org/W19-4302.

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pp. 180-191, 2018.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about
how BERT works. Transactions of the Association for Computational Linguistics, 8:842-866,
2020. doi: 10.1162/tacl_a_00349. URL https://aclanthology.org/2020.tacl-1.
54l

Hongwei Tang, Jialiang Chen, Wenkai Zhang, and Zhi Guo. Training acceleration method based on
parameter freezing. Electronics, 13(11), 2024. ISSN 2079-9292. URL https://www.mdpi .
com/2079-9292/13/11/2140.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.244
https://aclanthology.org/2020.acl-main.244
https://aclanthology.org/W19-4302
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/2020.tacl-1.54
https://www.mdpi.com/2079-9292/13/11/2140
https://www.mdpi.com/2079-9292/13/11/2140

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupatla, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353-355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. SuperGLUE: a stickier benchmark for general-purpose language
understanding systems. Curran Associates Inc., Red Hook, NY, USA, 2019.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations.

12

https://aclanthology.org/W18-5446

Under review as a conference paper at ICLR 2025

2:3 A MODEL PERFORMANCE
22? This section presents an analysis of model performance, focusing on the effects of freezing methods

and dataset selection. Figures [7] and [§] show the performance and learning speed of the Gemma
652 model on the RTE, CB, QNLI, and WNLI datasets. Figure [J] shows Gemma model performance on
653 RTE, CB, WNLI, and MNLI dataset. Figure [I0and [TT] shows the each Phi-2 and MiniCPM model,
654 respectively, on the same datasets.

655
656
657

0.70 A

667 0.65 A

668

658 0807 .
669

659

660

661 0.75 4

662

663

= . .

670 0.60

671 (‘ ADT-H
672 (50%) (50
673 0357 ADT-LADT-H
674 (75%)75%)

665
666

675 15 20 25 30 3|5 40 45 50
676 Learning Speed (time in seconds taken for 10 steps)

Performance (after 100 steps)

677
678

679

680 oel

681 e
682 .

683
684
685
686
687
688
689
690
691
692
693
694
695 ADT-BDT-H
696 " (75%:)75%)

T T T T T T
697 10 15 20 25 30 35 40

698 Learning Speed (time in seconds taken for 10 steps)

699
700 (b) Learning speed and performance of Gemma on the MNIL task

701

(a) Learning speed and performance of Gemma on the RTE task

0.7 4

0.6 1

ADT-H ADT-L

(50%) (50%)
i o

Performance (after 100 steps)

0.54

Figure 7: Learning speed and performance of Gemma on the RTE and MNIL tasks

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

732
733
734
735
736
737
738
739
740
741

742
743
744
745
746
747
748
749
750
751

752
753
754
755

Under review as a conference paper at ICLR 2025

N .'n
- .
F
55
T 0.75 .
o
o
—
G
=
)
o 0.70 1
[¥)
e
m
£
=
& 0.65 -
0.60 - Q .
ADT-RDT-H
(75%V5%)
10 15 20 25 30 35 40 as
Learning Speed (time in seconds taken for 10 steps)
(a) Learning speed and performance of Gemma on the QNLI task
0.45 '}
=
o
2
S 0.40 -
=
]
L)
w
[¥)
c
[
E 035 .
=
&
0.30 -

15

Learning Speed (time in seconds taken for 10 steps)

T
20 25

30

(b) Learning speed and performance of Gemma on the WNLI task

Figure 8: Learning speed and performance of Gemma on the QNLI and WNLI tasks

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Performances

ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies

(a) Accuracy performance of Gemma on the RTE task

Performances

ALL LRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies

(b) Fl1-score performance of Gemma on the CB task

Performances

ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies

(c) Accuracy performance of Gemma on the WNLI task

Performances

ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies

(d) Accuracy performance of Gemma on the MNLI task

Figure 9: Accuracy performance of Gemma. The same colors indicate the same strategy. The gray
hatched bar represents the baseline performance achieved by fine-tuning all layers of the model. The
red dashed line represents the average performance of fine-tuning across all layers, The blue dashed
line represents the mean performance minus one standard deviation, while the green dashed line
shows the mean performance plus one standard deviation when all layers are fine-tuned.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

W
g
c
[}
£
t
&
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies
(a) Accuracy performance of Phi-2 on the RTE task
"]
8
c
m
g
©
&
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies
(b) F1-score performance of Phi-2 on the CB task
]
]
c
[}
£
‘©
&
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies
(c) Accuracy performance of Phi-2 on the WNLI task
v
g
c
m
2
T
&

ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies

(d) Accuracy performance of Phi-2 on the MNLI task

Figure 10: Accuracy performance of Phi. The same colors indicate the same strategy. The gray
hatched bar represents the baseline performance achieved by fine-tuning all layers of the model. The
red dashed line represents the average performance of fine-tuning across all layers, The blue dashed
line represents the mean performance minus one standard deviation, while the green dashed line
shows the mean performance plus one standard deviation when all layers are fine-tuned.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

W
g
c
[}
£
t
&
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies
(a) Accuracy performance of MiniCPM on the RTE task
"]
8
c
m
g
©
&
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies
(b) F1-score performance of MiniCPM on the CB task
0.5 I I
§ 0.4
g 0 3 -
E .
t 0.2
&
0.1
0.0 -
ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies
(c) Accuracy performance of MiniCPM on the WNLI task
"]
8
c
m
g
©
&

ALL LoRA INT INT INT BOT BOT BOT TOP TOP TOP ADT-L ADT-L ADT-L ADT-HADT-H ADT-H
(25%) (33%) (50%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%) (25%) (50%) (75%)
Freezing Strategies

(d) Accuracy performance of MiniCPM on the MNLI task

Figure 11: Accuracy performance of MiniCPM. The same colors indicate the same strategy. The gray
hatched bar represents the baseline performance achieved by fine-tuning all layers of the model. The
red dashed line represents the average performance of fine-tuning across all layers, The blue dashed
line represents the mean performance minus one standard deviation, while the green dashed line
shows the mean performance plus one standard deviation when all layers are fine-tuned.

17

	Introduction
	Related Work
	Natural Language Inference
	General Fine-tuning Approaches
	Layer Freezing in Fine-tuning

	Layer Selection for Fine-tuning
	Fixed Freezing
	Adapted Freezing
	Freezing Strategies

	Experiments
	Models and Datasets
	Experimental Design
	Hyper-parameter Setting
	Performance comparison by freezing strategy
	Training Efficiency Comparison by Freezing Strategy
	Best Freezing Strategy

	Discussion
	Conclusion
	Limitation
	Model Performance

