Multi-Task Learning for Budbreak Prediction
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Abstract

Grapevine budbreak is a key phenological stage of seasonal
development, which serves as a signal for the onset of active
growth. This is also when grape plants are most vulnerable
to damage from freezing temperatures. Hence, it is important
for winegrowers to anticipate the day of budbreak occurrence
to protect their vineyards from late spring frost events. This
work investigates deep learning for budbreak prediction using
data collected for multiple grape cultivars. While some culti-
vars have over 30 seasons of data others have as little as 4
seasons, which can adversely impact prediction accuracy. To
address this issue, we investigate multi-task learning, which
combines data across all cultivars to make predictions for in-
dividual cultivars. Our main result shows that several variants
of multi-task learning are all able to significantly improve
prediction accuracy compared to learning for each cultivar
independently.

Introduction

In temperate climates, perennial plants such as grapevines
(Vitis spp.) undergo alternating cycles of growth and dor-
mancy. During dormancy, the shoot and flower primordia
are protected by bud scales and can reach considerable lev-
els of cold tolerance or hardiness to maximize winter sur-
vival (Keller 2020). Budbreak is identified as stage 4 on the
modified E-L scale (Coombe 1995) and it is strongly influ-
enced by the dormancy period. Once the shoots start to grow
out during the process of budbreak in spring, the emerging
green tissues become highly vulnerable to frost damage.

An important issue is that ongoing climate change is in-
creasing the risk of spring frost damage in vineyards because
rising temperatures are associated with earlier budbreak and
weather patterns are becoming more variable (Poni, Sabba-
tini, and Palliotti 2022). Consequently, the ability to predict
the timing of budbreak would enable producers to timely
deploy frost mitigation measures (e.g. wind machines) and
improve the scheduling of vineyard activities such as prun-
ing to adjust crop load. Also, knowing when different grape
varieties break bud under certain temperature scenarios en-
ables investors and vineyard developers to better match more
vulnerable varieties to lower-risk sites.
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Several models have been proposed to assess the chal-
lenging task of budbreak prediction (Nendel 2010), (Fergu-
son et al. 2014), (Zapata et al. 2017), (Camargo-A. et al.
2017), (Leolini et al. 2020), (Pifia-Rey et al. 2021). As dis-
cussed by Leolini et al. these phenological models can be
classified into two main categories: forcing (F) and chilling-
forcing (CF) models. On one hand, forcing models are
based on the accumulation of forcing units from a fixed date
in the year. F models focus solely on describing the eco-
dormancy period by assuming that the endo-dormancy pe-
riod has ended and the chilling unit accumulation require-
ment has been met. On the other hand, CF models account
for both the endo- and eco-dormancy periods by consider-
ing the chilling unit and the forcing accumulation in rela-
tion to specific temperature thresholds —i.e., an estimated
base temperature 73. Although these models take into ac-
count thermal requirements, none of them include other en-
vironmental variables (e.g., solar radiation, relative humid-
ity, precipitation, dew point) besides air temperature.

The aim of this study is to investigate modern deep learn-
ing techniques for incorporating a wider range of weather
data into budbreak predictions. In particular, we develop a
Recurrent Neural Network (RNN) for budbreak prediction
from time series input of various weather features. The pro-
posed models’ performance tends to degrade in the case of
cultivars that have limited data. Multi-Task Learning has the
potential to alleviate this issue, as it can utilize data across
all cultivars to improve budbreak prediction. The main con-
tributions of this work are: 1) to frame this multi-cultivar
learning problem as an instance of multi-task learning, and
2) to propose and evaluate a variety of multi-task RNN mod-
els on real-world data. Finally, the obtained results show
that multi-task learning is able to significantly outperform
single-task learning. Due to lack of programmatic access to
existing budbreak models at the time of this writing, we re-
serve a comparison to those models for future work.

Datasets

This study used phenological data collected for 31 diverse
grape cultivars from 1988 to 2022 by the Viticulture Pro-
gram at WSU Irrigated Agriculture Research and Exten-
sion Center (IAREC). Data collection was performed in the
vineyards of the IAREC, Prosser, WA (46.29°N latitude; -
119.74°W longitude) and the WSU-Roza Research Farm,



Prosser, WA (46.25°N latitude; -119.73°W longitude). In
north-south-oriented rows, the vineyards were planted in a
fine sandy loam soil type with vine spacing of 2.7m between
rows and 1.8m within rows. A regulated deficit irrigation
system was used to drip-irrigate the vines, and they were
spur-pruned and trained to a bilateral cordon (Zapata et al.
2017).

Phenological data were collected as the day of year
(DOY) when a particular phenological stage, ranging from
bud first swell to harvest, was observed. The budbreak
stage is defined as the presence of green tissue in 50%
of previously dormant buds (Ferguson et al. 2014; Zapata
et al. 2017). Additionally, the API provided by AgWeath-
erNet was used to obtain environmental daily data from
the closest on-site weather station to each cultivar (WSU
2022). The two stations used are Prosser.NE (46.25°N lat-
itude; -119.74°W longitude) and Roza.2 (46.25°N latitude;
-119.73°W longitude). Thus, a continuously growing dataset
containing a variable number of years of daily weather data
is created for each cultivar, along with phenological stage
labels placed in the corresponding DOY when observed.

Table 1 shows a summary of the number of years of data
collected for the different cultivars. The interval of years in
parenthesis represents the years with no phenological data.

Cultivar Phenology Years P%](g:‘(‘)::)gfyn'l;(&al
Barbera 2015-2022 8
Cabernet Sauvignon | 1988-2022 (1999, 2007, 2008, 2012-2014) 29
Chardonnay 1988-2022 (1989, 1996, 1999, 2011-2014) 28
Chenin Blanc 1988-2022 (1996, 2007-2014) 26
Concord 1992-2022 (2011-2014) 27
Grenache 1992-2022 (2007-2014) 23
Malbec 1988-2022 (1996, 2004-2014) 23
Merlot 1988-2022 (1996, 2011-2014) 30
Mourvedre 2015-2022 8
Nebbiolo 2015-2022 8
Pinot Gris 1992-2022 (2007-2014) 23
Riesling 1988-2022 (1996, 2008, 2009, 2011-2014) 28
Sangiovese 2015-2022 8
Sauvignon Blanc 2004-2022 (2007-2014) 11
Semillon 1988-2022 (1996, 2007-2014) 26
Syrah 2015-2018 4
Viognier 2015-2022 8
Zinfandel 1992-2022 (1996, 2007-2014) 22

Table 1: Summary of phenology data collection of selected
cultivars.

Budbreak Prediction Models and Training

We formulate budbreak prediction as a sequence predic-
tion problem. We represent the sequential data for cultivar
i in year k by S;r = (z1,y1,%2,Y2,...,2m,ym), where
H is the number of days in the year (accounting for leap
year), x; represents the weather data, and y; represents the
ground truth budbreak label for the day ¢. The label y, is
1 if budbreak occurred before or at day ¢ and is O other-
wise. Thus, y; is a step function that rises from 0 to 1 on
the day of budbreak. A dataset for cultivar ¢ is denoted by
D; = {Six | k € {1,...,N;}}, where N; is the number
of seasons with data for cultivar 7. Based on these datasets,
our goal is to learn a model M; for each cultivar that takes
in weather features up to any day ¢ and outputs a probability
of budbreak for the day ¢. Note that in practice such a model

can be used for making budbreak projections into the future
by feeding the model with weather forecasts.

The most common learning paradigm is single-task learn-
ing (STL), which for our problem corresponds to learning
a cultivar model M; from only that cultivar’s data D;. This
paradigm can work well when enough data is available for
a cultivar. However, for low-data cultivars (e.g. 4 seasons)
we can expect prediction accuracy to suffer. To address this
issue, we consider a multi-task learning (MTL) paradigm,
which uses data across all cultivars to make predictions for
individual cultivars. Assuming that different cultivars share
common budbreak characteristics, this approach has the po-
tential to improve accuracy over STL. Below we describe
the deep-learning-based STL and MTL models that we use
in this work.

Single-Task Model

Our STL model makes causal budbreak predictions
by sequentially processing a weather data sequence
r1,Ts,...,Ts and at each step outputting the correspond-
ing budbreak probability estimate. For this purpose, we use
a recurrent neural network (RNN) (Rumelhart, Hinton, and
Williams 1985), which is a widely used model for sequence
data. The RNN backbone used by both our STL and MTL
models is illustrated in Figure 1a, which we denote by fy
with parameters 6. The backbone network begins with two
fully connected (FC) layers, followed by a gated recurrent
unit (GRU) layer (Cho et al. 2014), which is followed by
another FC layer.

Our STL model, shown in Figure 1b, simply feeds daily
weather data z; into the first FC layer as input and adds
an additional FC layer to produce the final LTE prediction
output. Intuitively, the GRU unit, through its recurrent con-
nection is able to build a latent-state representation of the
sequence data that has been processed so far. For our bud-
break problem, this representation should capture informa-
tion about the weather history which is useful for predicting
budbreak. In some sense, the latent state can be thought of
as implicitly approximating the internal state of the plant as
it evolves during the year. As described below, each STL
model M; is trained independently on its cultivar-specific
dataset D;.

Multi-Task Models

We consider two types of MTL models that directly extend
the RNN backbone of Figure 1a, the multi-head model and
the task-embedding model.

Multi-Head Model. The multi-head model is perhaps the
most straightforward approach to MTL and has been quite
successful in prior work when tasks are highly related (Caru-
ana 1997). As illustrated in Figure 1c, the multi-head model
is identical to the STL model, except, that it adds C' paral-
lel cultivar-specific fully-connected layers to the backbone
(i.e. prediction heads). Each prediction head is responsible
for producing the budbreak prediction for its designated cul-
tivar. This model allows the cultivars to share the features
produced by the RNN backbone, with each cultivar-specific
output simply being a linear combination of the shared fea-
tures. Intuitively, if there are common underlying features
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Figure 1: Network Architectures. FC denotes fully connected layers and GRU denotes Gated Recurrent Unit. a) The RNN
backbone processes data sequences (X;). b) The STL model with a single prediction layer. ¢) Multi-Head MTL variant which
has a prediction layer per cultivar. d) Task Embedding MTL variant, which considers the task at hand as an input

that are useful across cultivars, then this architecture allows
those to emerge based on the combined set of data. Thus,
cultivars with small amounts of data can leverage those use-
ful features and simply need to tune a set of linear weights
based on the available data. We abbreviate this model as
MultiH in future sections.

Task-Embedding Models. Our task embedding model
for MTL is similar in spirit to prior work (Silver, Poirier, and
Currie 2008; Schreiber, Vogt, and Sick 2021; Schreiber and
Sick 2021) and motivated by the form of typical scientific
models. Scientists define the overall mechanisms and struc-
ture of those models along with a fixed set of model param-
eters that can be tuned for specific cultivars (e.g. chill accu-
mulation rate). Similarly, the task embedding model uses a
neural network to learn a general model that accepts cultivar-
specific parameters as well as learning the parameters for
each cultivar.

As illustrated in Figure 1d, the task embedding model first
maps a one-hot encoding of the cultivar in consideration to
an embedding vector (analogous to cultivar “parameters”),
which is combined with the weather data x; and then fed
to the GRU unit. This allows for predictions to be special-
ized for each cultivar. Intuitively cultivars with more similar
budbreak characteristics will have more similar embedding
vectors. We explore three variants of this architecture that
differ in how they combine the embedding with the weather
data: AddE simply adds the vectors together, ConcatE sim-
ply concatenates the vectors, and MultE does element-wise
multiplication of the vectors.

Model and Training Details

Our models use the following daily weather features that
capture: Temperature, Humidity, Dew Point, Precipitation,
and Wind Speed. We handle missing weather data via linear
interpolation.

We run three training trials for each of our models and re-
port averages across tries. Each trial selects 2 different sea-
sons to use as test data for reporting performance and uses
the remaining data for training. The models are trained to
minimize the binary cross entropy (BCE) loss between the
predicted budbreak probability at each step and the true bud-
break label. We use Adam (Kingma and Ba 2014) as the op-
timizer with a learning rate of 0.001 and a batch size of 12

seasons shuffled randomly. We train all our models for 400
epochs. The output dimensionality of the linear layers of the
RNN backbone are 1024, 2048, and 1024 respectively. The
GRU has a hidden state and internal memory of dimension-
ality 2048.

Experiments

Our experiments involve 18 cultivars with amounts of data
ranging from 4 to 23 years.

Cultivar MultE | ConcatE | AddE | MultiH
Barbera 1.69 1.91 1.85 1.91
Cabernet Sauvignon -0.05 -0.05 | -0.05 -0.07
Chardonnay -0.20 1.15 1.39 -0.15
Chenin Blanc 0.06 0.01 | -0.20 -0.11
Concord 0.06 0.02 | -0.01 0.02
Grenache 1.23 1.20 1.19 1.20
Malbec 3.85 3.92 3.86 3.87
Merlot -0.96 0.29 | -0.01 -0.17
Mourvedre 9.56 10.04 | 10.03 10.09
Nebbiolo 0.82 0.93 0.90 0.86
Pinot Gris -0.24 -0.02 | -0.03 -0.04
Riesling 0.03 0.02 | -0.07 -0.02
Sangiovese 18.38 18.55 | 18.61 18.57
Sauvignon Blanc -0.02 0.17 0.14 0.16
Semillon 0.13 0.14 0.07 0.13
Syrah 3.69 3.88 3.79 3.86
Viognier -0.17 0.38 0.43 0.39
Zinfandel -0.15 0.11 0.11 0.15

Table 2: Difference in BCE between MTL models and the
basline STL model for each cultivar. Positive values indi-
cates MTL improves over STL.

Single-Task Learning vs Multi-Task Learning.

Table 2 shows the difference in BCE between our MTL
models and the baseline STL model for each of the culti-
vars. A positive value indicates that the MTL model im-
proved over the STL model in terms of BCE. We observe
that for most cultivars all of the MTL variants improve over
STL. For some cultivars, there are very large improvements,
e.g Sangiovese and Syrah. The different MTL variants typi-
cally perform similarly. However, we see that if we consider
the number of cultivars where MTL slightly underperforms



STL, ConcatE appears to have a slight advantage as it only
underperforms on two cultivars.
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Figure 2: Comparison of Histograms (STL on the left and
MultiHead MTL on the right) of the difference in days met-
ric. Observe that the STL histogram has more outliers than
the MultiHead histogram. The x-axis denotes the difference
in day metric and the y-axis denotes the frequency of occur-
rence of that metric.

Model Median | >3days | >1week | >2weeks | >1month
Single 7 32 19 13 25

AddE 3 29 21 5 6

MultE 5 38 25 10 8
ConcatE 3.5 34 24 1 1

MultiH 3 28 30 1 1

Table 3: Looking at the difference of days metric for differ-
ent model variants. We see that all the multi-task learning
variants improve over STL.

Difference in days metric. To get a better understanding
of the practical differences between MTL and STL we now
consider using the models to predict the day of budbreak.
In particular, we use a simple approach of predicting bud-
break starting on the first day when the predicted probability
is more than 0.5. Figure 2 shows two histograms of the dif-
ferences between the predicted budbreak day and the ground
truth day over all seasons and cultivars. The first histogram
is for the MTL MultiH model and the second is for STL. Re-
sults are similar for other MTL models. We see that there are
many more outliers predictions with large errors for the STL
model compared to the MTL model. Table 3 breaks down
these results further and shows the median absolute error
in day prediction along with the number of predictions that
fall beyond selected error thresholds. We see that the medi-
ans for MTL models are significantly better than for STL.
Further, the MTL ConcatE and MultiH models produce the
fewest larger errors of two weeks or more.

To get insight into the nature of the large errors in STL
compared to MTL, Figure 3 shows the predicted probabili-
ties for the STL and MultiH model for a particular cultivar
and season where a large STL error occurred. We see that the
STL model produced a very early jump in probability, pos-
sibly resulting from an unusually warm time period. Rather,
the MTL model avoids the early jump in probability, which
is likely due to learning a better general model of budbreak

[ 50 160 130 200 250 360 350

(a) STL CE Loss 0.766 difference in days -201

(b) MTL CE Loss 0.039 difference in days 4

Figure 3: Comparing Budbreak prediction for the STL and
MTL (MultiHead) models for the Syrah cultivar. Note that
the STL model is unable to predict the correct shape of the
function (step function). The x-axis denotes the day of the
year and the y-axis indicates the probability of budbreak.

characteristics based on the larger amount of data available
from other cultivars.

Conclusion

This study showed the effectiveness of multi-task learning
for budbreak prediction. However, the high cost of pheno-
logical data collection leads to relatively smaller datasets
which can potentially impact the model performance even
after incorporating all the cultivars. Furthermore, to predict
budbreak beyond the latest day with available weather data,
our model would have to rely on weather forecasts which
may or may not be accurate. In the immediate future, we will
incorporate more phenological stages in our budbreak pre-
diction model and focus on investigating the utility of MTL
for other agriculture-related problems with limited data.
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