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ABSTRACT

Large Language Models (LLMs) have made significant strides in natural language
processing, and a precise understanding of the internal mechanisms driving their
success is essential. In this work, we trace the trajectories of individual tokens as
they pass through transformer blocks, and linearize the system along these trajec-
tories through their Jacobian matrices. By examining the relationships between
these Jacobians, we uncover the transformer block coupling phenomenon in a
multitude of LLMs, characterized by the coupling of their top singular vectors
across tokens and depth. Our findings reveal that coupling positively correlates
with model performance, and that this relationship is stronger than with other hy-
perparameters, namely parameter budget, model depth, and embedding dimen-
sion. We further investigate the emergence of these properties through train-
ing, noting the development of coupling, as well as an increase in linearity and
layer-wise exponential growth in the token trajectories. These collective insights
provide a novel perspective on the interactions between token embeddings, and
prompt further approaches to study training and generalization in LLMs.

1 INTRODUCTION

In recent years, many openly available Large Language Models (LLMs) have been released, achiev-
ing state-of-the-art results on task-specific benchmarks. The abundance of models, each with dif-
fering architecture and training methodology, motivates comparing the underlying mechanisms that
drive generalization.

Transformers (Vaswani et al., 2017) can be represented as discrete, nonlinear, coupled dynamical
systems, operating in high dimensions (Greff et al., 2016; Papyan et al., 2017; Haber & Ruthotto,
2017; Ee, 2017; Ebski et al., 2018; Chen et al., 2018; Bai et al., 2019; Rothauge et al., 2019; Gai &
Zhang, 2021; Li & Papyan, 2023). Viewing the skip connections as enabling a discrete time step, we
represent the hidden representations as dynamically evolving through the layers of the network. The
term nonlinear refers to the nonlinear transformations introduced by activation functions, and cou-
pled refers to the interdependent token trajectories that interact through the MLP and self-attention
blocks.

In our work, we investigate whether there are identifiable structural characteristics across 38+ pre-
trained LLMs, measure their emergence with training, and analyze their relationship with general-
ization performance. During inference, as token embeddings pass through the network, we linearize
the effect of transformer blocks on the token embeddings throughout the depth of the LLM. To this
end, we compute the Jacobians of distinct connections between layers or tokens, derive their singular
value decompositions (SVDs), and compare the resulting singular vectors. This approach measures
the degree of coupling between singular vectors to capture the operational similarity of blocks as
they act on tokens. This perspective raises several questions:

Q1. What regularity properties do these trajectories exhibit, and what are their relations with
one another? More concretely, what is the relation between the Jacobians across different
tokens and transformer layers?

Q2. How do the properties of hidden representations and their relations emerge with training?
Q3. Are any of these properties related to the generalization capabilities of LLMs?

1
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(c) Pythia 12B Checkpoint 1 (d) Pythia 12B Checkpoint 4000 (e) Pythia 12B Checkpoint 143000

(a) Correlation with generalization (b) Emergence with training

Figure 1: Transformer Coupling Measurements. (a) The plot illustrates the correlation between
average coupling (negative mis-coupling) and benchmark scores across base LLMs (not fine-tuned),
showing that higher alignment corresponds to improved performance, with a regression fit yielding
an R2 value of 0.75 with a significant p-value of 1.56 × 10−6. (b) The mean normalized coupling
(Section 3.1) is plotted as a function of training checkpoints for Pythia 12B and 6.9B (Biderman
et al., 2023), measured at steps 128, 256, 512, 1k, 2k, . . . , 128k, 143k. (c-e) Adjacency plots illus-
trate the mean coupling scores between pairs of layers. Each node represents a layer, and edge
weight and opacity indicate the strength of depth-wise normalized coupling. Visualizations are pro-
vided for checkpoints 1, 4k, and 143k of Pythia 12B.

1.1 CONTRIBUTIONS

We investigate the motivating questions across several openly-available LLMs, most having over 1B
parameters, trained by 6 independent organizations, with varying training methods and data (Ap-
pendix A.1). Through our experiments, we identify consistent patterns that define the transformer
block coupling phenomenon.

1. Coupling. The singular vectors of the Jacobians of transformer blocks couple across depth
(Figures 3, 20) and tokens (Figures 4, 18, 19, 21, 22, 23) in several open source LLMs
(Table (1)). Further, coupling across Jacobians emerges with training (Figures 1b, 3, 4,
18, 19), and the coupling strength becomes more pronounced between adjacent layers with
training, indicating a layer-wise locality in the interactions (Figures 1(c-e)).

2. Generalization. The strength of coupling is correlated with benchmark performance on the
HuggingFace Open LLM Leaderboard (Beeching et al., 2023) (Figures 1a, 36). Addition-
ally, coupling is more strongly correlated with generalization than parameter budget, model
depth, and token embedding dimension (Figure 35).

3. Regularity. Linearity in hidden trajectories emerges with training (Figures 28, 12, 5(a), 14, 26,
27), aligning with behaviour previously observed in ResNets Li & Papyan (2023). Expo-
nential growth occurs in contiguous token representations as a function of depth (Figures
5(b), 25, 26, 29), starkly contrasting linear growth previously observed.

2
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We provide a new perspective on token embedding interactions within LLMs by examining lay-
ers of a transformer through their Jacobian matrices. Our results display the effect of training on
transformer blocks, and suggest potential approaches for promoting generalization in LLMs.

2 BACKGROUND ON LARGE LANGUAGE MODELS

We describe LLMs as a deep composition of functions that iteratively transform token embeddings.
In the input layer, l = 0, textual prompts undergo tokenization and are combined with the positional
encodings to create an initial high-dimensional embedding, denoted by x0

i ∈ Rdmodel for the ith token.
When these embeddings are stacked, they form a matrix:

X0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Rn×dmodel . (1)

The embeddings then pass through L transformer blocks:

X0 F 1
block−−−→ X1 F 2

block−−−→ · · ·XL−1 FL
block−−−→ XL. (2)

X l = F l
block(X

l−1) denotes the embeddings after the lth block, consisting of causal multi-headed
attention (MHA), a feed-forward network (FFN), and normalization layers (LN) with residual con-
nections:

hl+1(X l) = MHA(LN(X l)) (3)

gl+1(X l) = LN(X l + hl+1(X l)) (4)

f l+1(X l) = hl+1(X l) + FFN(gl+1(X l)) (5)

F l+1
block(X

l) = X l + f l+1(X l), (6)

where the MHA, LN, FFN are implicitly indexed by layer. Among many models (Appendix 1), an
additional rotary positional embedding (RoPE, Su et al. (2023)) is applied in the MHA layer. In the
final representation, typically an additional layer normalization is applied:

FL
block(X

L−1) = LN(XL−1 + hL(XL−1) + FFN(gL(XL−1))). (7)

The output XL from the final block FL is passed into a bias-free linear layer M ∈ Rdvocab×dmodel , with
dvocab denoting the size of the token vocabulary and dmodel is the dimension of the token embeddings.
This layer M computes final-layer logits for each token embedding, ℓi = MxL

i . The prediction for
the next token is then determined by selecting the maximal logit value: argmaxv∈tokens ℓv,n.

3 METHODS

3.1 COUPLING OF SINGULAR VECTORS OF JACOBIANS

Jacobians. Coupling is investigated through analyzing the linearizations of transformer blocks
which is given by their Jacobian matrices

J l
t1t2 =

∂

∂xl−1
t1

(
f l(X l−1)

)
t2
, (8)

defined for each layer l ∈ {1, . . . , L}, and pair of tokens t1, t2 ∈ {1, . . . , n}. Note that this is
the Jacobian matrix for each transformer block without the contribution from the skip connection
from the input of the block, similar to the quantity measured by Li & Papyan (2023) which strictly
analyzes the case where t1 = t2.

Due to the causal structure of the representations, J l
t1t2 = 0 whenever t1 > t2. Hence, we restrict

our attention to the case where t1 ≤ t2.

Singular value decomposition (SVD). We compute the SVD of the Jacobians:

J l
t1t2 = UlSlV

⊤
l

3
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Jl11 = ∂
∂xl−11

(f l(X l−1))1

J l+1
11 = ∂

∂xl1
(f l+1(Xl))1

Depth-wise Coupling

Al,l+1
1}Constructing  A

J = USVT J̃ = ŨS̃ṼT

A = ŨTJṼ

Constructing  J

J(X) = ∂f
∂X

(X)

Xl Xl+1Xl−1
1
2
3

Id + f l

Depth

To
ke

ns

Id + f l+1

4

Token-wise Coupling

Jl11 = ∂
∂xl−11

(f l(Xl−1))1

Jl+1
22 = ∂

∂xl2
(f l+1(Xl))2

Al,l+1
12}Self Coupling

Jl12 = ∂
∂xl−11

(f l(Xl−1))2

Jl+1
34 = ∂

∂xl3
(f l+1(Xl))4

Al,l+1
1234}Context Coupling

Figure 2: Transformer Block Coupling. A visualization of the various types of transformer block
coupling with brief instructions on computing both the Jacobians J and coupling matrices A (Section
3.1). The coupling measurement quantifies the alignment and agreement between the interactions
of embeddings connections within the network. The colored subscripts in the sample matrices A
indicate the specific connections being compared.

where Ul, Vl ∈ Rdmodel×dmodel are the matrices of left and right singular vectors respectively, and
Sl ∈ Rdmodel×dmodel contains the singular values.1

Coupling Measurement. To measure coupling between two Jacobians

J l
t1t2 = UlSlV

⊤
l and J l′

t′1t
′
2
= Ul′Sl′V

⊤
l′ , (9)

we define the coupling matrix

All′

t1t2t′1t
′
2
:= U⊤

l′ J
l
t1t2Vl′ (10)

= U⊤
l′ UlSlV

⊤
l Vl′ (11)

for l, l′ ∈ {1, . . . , L} and t1, t2, t
′
1, t

′
2 ∈ {1, . . . , n}. If the singular vectors of distinct Jacobians are

strongly aligned, then
U⊤
l′ Ul ≈ I ≈ V ⊤

l Vl′ , (12)

implying that the coupling matrix A should be strongly diagonal. Explicitly, we quantify the mis-
coupling of A using

m(A) = ∥A− Diag(A)∥F , (13)

where Diag(A) is the matrix A with all non-diagonal entries replaced by zero and ∥·∥F denotes the
Frobenius norm. For normalized comparison between models, we normalize by A;

m̃(A) =
∥A− Diag(A)∥F

∥A∥F
. (14)

Depth-wise Coupling. To analyze coupling across transformer blocks, we fix t, and measure align-
ment between J l

tt and J l′

tt through the matrix All′

t across layers l, l′ ∈ {1, . . . , L} 2

Token-wise Coupling We also quantify the coupling across tokens in several ways:

1Note that the superscripts t1, t2, indicating the tokens, are omitted for clarity in the expression for the SVD.
2In the matrix A, we write the single subscript t for clarity.
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• Self-coupling. By fixing two layers l, l′ ∈ {1, . . . , L}, we analyze the case where the
input and output tokens are the same. Explicity, we compare J l

tt and J l′

t′t′ across t, t′ ∈
{1, . . . , n}, which represents the coupling across tokens for a token’s effect on its own
trajectory.

• Context Coupling. We consider the context tokens’ impact on a trajectory by measuring
coupling between J l

t1t2 and J l′

t1t′2
across t2, t′2 ≥ t1 (fixing the input token to be the same)

and also between J l
t1t2 and J l′

t′1t2
across t1, t′1 ≤ t2 (fixing the output token to be the same).

3.2 LINEARITY OF TRAJECTORIES

Linearity in intermediate embeddings is quantified with the line-shape score (LSS), defined by Gai
& Zhang (2021) as

LSS0,...,L
i =

L∣∣∣∣x̃L
i − x̃0

i

∣∣∣∣
2

, (15)

where x̃0
i = x0

i , i.e., the input embeddings passed to the LLM, and x̃l
i is defined recursively as

x̃l
i = x̃l−1

i +
xl
i − xl−1

i∣∣∣∣xl
i − xl−1

i

∣∣∣∣
2

for l = 1, . . . , L. (16)

Note that LSS ≥ 1, with LSS = 1 if and only if the intermediate representations x0
i , . . . , x

L
i form a

co-linear trajectory.

3.3 LAYER-WISE EXPONENTIAL GROWTH

We measure the presence of exponential spacing (expodistance) of the hidden trajectories. Assuming
exponential growth of the embedding norms as they flow through the hidden layers, we estimate
∥xl

i∥ ≈ eαl∥x0
i ∥ = eα∥xl−1

i ∥ for some fixed α ∈ R over all layers l = 1, . . . L. We quantify the
validity of this representation by measuring the coefficient of variation of αl

i, given by

αl
i ≈ ln

(
∥xl

i∥
∥xl−1

i ∥

)
, (17)

for each layer l and token i. Under exponential growth, it is expected that αl
i is independent of depth.

We therefore denote the expodistance (ED) of the trajectory of the ith token of a given sequence by

EDi =
Varlαl

i

(Avglα
l
i)

2
. (18)

This measurement is motivated by the discussion in Section 6.1 the parametrization discussed in
Appendix A.5, as well as empirical evidence in Figure 30a, and serves as a method to test the
validity of the linearization presented in Equation 19.

3.4 VISION TRANSFORMER TRAINING

For further investigation of coupling in transformers, we train a series of Vision Transformers (ViTs)
following DEiT training (Touvron et al., 2021). We train 64 ViTs on CIFAR10 (Krizhevsky, 2009)
with varied weight decay and stochastic depth rate for a fixed architecture of embedding size 192,
depth 12, and 3 attention heads. Please see Appendix A.7 for further details.

4 EVALUATION

4.1 SUITE OF LARGE LANGUAGE MODELS

Our study evaluates a total of 38 LLMs (24 base LLMs and 14 fine-tuned, see Appendix A.1)
that were independently trained by various individuals and organizations. These models, provided

5
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Figure 3: Transformer Block Coupling across Depth. The figure shows Jacobian coupling across
transformer blocks 9 to 16, using the prompt ”What is the capital of France? The capital is” to trace
the final token’s trajectory. In trained models (bottom row), the diagonal pattern with minimal off-
diagonal values indicates alignment of Jacobians, where top singular vectors of J l′ diagonalize J l.
Untrained models (top row) lack this alignment. Further details are in the Appendix. A.8 (Figure
20). Best viewed in color.

through HuggingFace (Wolf et al., 2020), vary in terms of parameter budgets, number of layers,
hidden dimensions, and training tokens. Moreover, we analyze the dynamics of each measurement
throughout training by deploying the Pythia Scaling Suite (Biderman et al., 2023). A summary of the
models under consideration is presented in Table 1 of Appendix A.1 and further details in Appendix
A.6.

4.2 PROMPT DATA

We evaluate these LLMs using prompts of varying length, ambiguity, and context, sourced from the
test set of ARC (Clark et al., 2018), GSM8K (Cobbe et al., 2021), HellaSwag (Zellers et al., 2019),
MMLU (Hendrycks et al., 2021), Truthful QA (Lin et al., 2022), and Winogrande (Sakaguchi et al.,
2019). This data sets the performance benchmarks on the HuggingFace Open LLM Leaderboard
(Beeching et al., 2023) and provide a representative evaluation of performance on many language
tasks.

5 RESULTS

5.1 COUPLING OF JACOBIANS ACROSS DEPTH

In trained LLMs, we observe coupling of the top singular vectors of the Jacobians across depth
(Figure 3 bottom row), evident in the low non-diagonal values with a visible diagonal present in the
matrix subplots. This is consistently observed across various LLMs considered. On the other hand,
in untrained models (Figure 3 top row), there is no coupling of Jacobians across different depths.
There is coupling along the diagonal, however, because each Jacobian is trivially diagonalized by
its own singular vectors. This, in addition to Figure 1, suggests that coupling across depth emerges
through training.

5.2 COUPLING OF JACOBIANS ACROSS TOKENS

We analyze the coupling of singular vectors of Jacobians across tokens. For input and output tokens
that are the same (J tt

l and J t′t′

l′ , Figure 4), we observe strong coupling, indicating that a token’s

6
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interactions along its trajectory are coupled with others. For context tokens, coupling is examined
by fixing the input token (J t1t2

l and J
t1t

′
2

l′ , Figure 18) or the output token (J t1t2
l and J

t′1t2
l′ , Figure

19). While coupling exists, it is less consistent across pairs. Untrained models (Figure 4 top row)
show no such coupling.

Figure 4: Transformer Block Coupling across Tokens (Same input and output tokens). The
figure shows Jacobian coupling for the same input and output token across tokens, visualized using
the absolute values of Attt′t′

ll′ (with fixed layers l, l′). In trained models (bottom row), the strong
diagonal and small off-diagonal values indicate coupling, while no such coupling is present at ini-
tialization (top row). Additional details are in Appendix A.8 (Figure 21).

5.3 EMERGENCE OF COUPLING WITH TRAINING

Coupling emerges through training for the evaluated LLMs, including coupling across depth (Figure
3 ) and across tokens (Figures 4, 18, 19). Further, we evaluate layer-wise coupling at intermediate
training checkpoints of Pythia 6.9B and 12B (Biderman et al., 2023) (Figure 1b), and observe that
coupling is generally low at initialization and increases persistently throughout training. Moreover,
there is a clear sense of locality in the strength of coupling which is visually displayed in Figure
(1c-e)

The gradual growth of coupling observed in Figure (1b) parallels the logarithmic increase in accu-
racy during training for Pythia 12B and Pythia 6.9B (Biderman et al., 2023). This highlights the
relationship between coupling and performance, since both properties emerge at similar training
iterations and rates.

5.4 CORRELATION WITH GENERALIZATION

For each LLM, we measure the average coupling across depth(which we define to be negative
mis-coupling) across prompts in the 6 evaluation datasets (Section 4.2), where for each prompt,
m(An

ll′,K) is averaged over layers l, l′ ∈ {1, . . . , L}. We plot the coupling values against the bench-
mark scores across several LLMs (Figure 1). Our results reveal a positive correlation between cou-
pling and performance benchmark scores, and is more significant than the relationship between other
significant model hyperparameters (Figure 35). This observation suggests a compelling relationship
between stronger coupling of singular vectors of Jacobians J t1t2

l and improved generalization.

The results for ViTs demonstrate that stochastic depth encourages coupling during training (Figure
6b) and that coupling correlates with accuracy when fixing SD rate (Figure 6a). This finding sug-
gests that coupling may provide new insight into stochastic depth’s underlying mechanism, and that
developing training methods to amplify coupling across transformer blocks could provide additional
regularization and improve performance.

7
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We hypothesize that simple trajectories may lead to better generalization. This agrees with many
generalization bounds in machine learning (Arora et al., 2018), which suggest that models with
lower complexity tend towards better generalization. Additionally, prior works (Novak et al., 2018)
demonstrate that the Frobenius norm of input-output Jacobians is related to generalization, providing
evidence that coupling — a structural property derived from Jacobians — may also correlate with
generalization.

(a) Linearity (b) Expodistance

Figure 5: Regularity of Trajectories. The figure depicts the line-shape score (LSS) of embedding
trajectories, as discussed in Section 5.5, computed on 1,200 prompts of the HuggingFace Open
LLM Leaderboard (Section 4.2) for a variety of trained (black) and randomly initialized (blue)
LLMs (Appendix A.1). Plotted are the median values over all prompts, and are accompanied with
uncertainty intervals depicting the inter-quartile range of the results for each model. Models are
sorted by number of parameters.

5.5 REGULARITY IN HIDDEN TRAJECTORIES

We identify a considerable degree of linearity in the hidden trajectories of all featured LLMs. The
LSS of the trajectories has an average value 4.25 in trained models, while taking average values of
6.54 at initialization, and is supported by the low variation across benchmark prompts (Figure 5).
Linearity increases with training at varying depths of Pythia 12B (Figure 28). Linear and expansive
behavior of the representations is demonstrated in Llama-3 70B, MPT 30B, and NeoX 20B through
low dimensional projections of embedding trajectories (Figure 12).

Among the LLMs considered, the vast majority of hidden trajectories exhibit exponential growth
that emerges with training (Figure 5(b) b). Many models exhibit a low coefficient of variation across
prompts, showing the robustness of this property across a variety of tasks. In contrast, measurements
at initialization show equally (rather than exponentially) distanced trajectories, as reflected by the
low coefficients of variation in the norms of their layer-wise differences (Figure 25). Under certain
assumptions, exponential spacing is motivated in Section 6.1.

6 DISCUSSION

6.1 EMERGENCE OF REGULARITY WITH COUPLING

Under certain assumptions, the emergence of increased linearity and exponential spacing in many
LLMs can be analyzed as a result of coupling. Considering input embeddings x0

1, . . . , x
0
n and the

linearization of the last token embedding xl
n given by J l

n,n(x
0
1, . . . , x

0
n):

xl
n = (I + J l

n,n(x
0
1, . . . , x

0
n))x

l−1
n

8
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We simplify notation and write xl
n = xl, J l

n,n(x
0
1, . . . , x

0
n) = J l. The representations follow the

linearized equation:
xl+1 = xl + Jlx

l = (I + Jl)x
l.

Expanding across layers, the entire system can be approximated by the product

xL = (I + JL)(I + JL−1) · · · (I + J1)x
0.

Assuming that Jl ≈ USUT , this equation predicts that the norm of xl would exhibit exponential
growth layer by layer. Expanding U and S,

xl =

dmodel∑
j=1

uj(1 + sj)
lu⊤

j x
0.

where uj and sj represent the eigenvectors and eigenvalues of the Jacobian, respectively. In gen-
eral, trajectories are not expected to be perfectly linear unless x0 aligns with an eigenvector of J .
However, in our experiments, we observe a notable tendency towards linearity, suggesting that the
representations align progressively during training with the eigenvectors of the coupled Jacobians.

6.2 SIGNIFICANCE OF COUPLING

The coupling phenomenon provides insight into the internal operations of transformer. We hy-
pothesize that during training, the LLM learns to represent embeddings in specific low-dimensional
subspaces (Eldar & Mishali, 2009). Given an input, the first layer converts the input into embed-
dings within one of these learned subspaces. Each subsequent transformer layer modifies these
embeddings, potentially moving them to different subspaces. Strong coupling between consecutive
layers suggests that the LLM tends towards representations in the same or similar subspaces across
many layers. Weak coupling suggests that the subspaces may change between layers, though usu-
ally gradually, and that adjacent layers still operate in relatively similar subspaces. Previous works
have shown (Lad et al., 2024; Gromov et al., 2024) that the early and late layers of language models
behave differently, which may be understood through coupling; tokens remain in similar spans, then
transition to a different subspace, continuing within a new span that is consistent in the remainder
of the transformer.

The emergence of coupling with training steps (Figure 1) may provide insight into the dynamics.
Under full coupling and a difference equation approximation, the representations evolve as

xl =

dmodel∑
j=1

uj(1 + sj)
lu⊤

j x
0

where ui and λi denote the eigenvectors and eigenvalues of the Jacobian, respectively. In this case,
the gradients of the loss L with respect to prediction y, xL are represented by

∂L
∂x0

(xL, y) ≈
dmodel∑
j=1

uj(1 + sj)
Lu⊤

j (y − xL),

Due to the coupling, the dynamics exhibit either exponential growth or decay in different subspaces,
depending on the sign of sj , which is known to cause challenges for optimization as in past works
on dynamical isometry (Pennington et al., 2017). We infer that increasing coupling during training
makes optimization progressively more difficult. Conversely, as training progresses, it becomes
harder to achieve stronger coupling, and is consistent with the logarithmic trend in Figure 1.

7 RELATED WORK

Residual Networks. ResNets (He et al., 2016) have been viewed as an ensemble of shallow net-
works (Veit et al., 2016), with studies delving into the scaling behaviour of their trained weights
(Cohen et al., 2021). The linearization of residual blocks by their Residual Jacobians was first ex-
plored by Rothauge et al. (2019), who examined Residual Jacobians and their spectra in the context
of stability analysis, and later by Li & Papyan (2023) who discovered Residual Alignment. Coupling

9
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of Jacobian singular vectors in LLM transformers extends previous results for classifier Resnets (Li
& Papyan, 2023). We show coupling in J t1t2

l across various tokens, which is specific to tokenization
in transformers, in addition to demonstrating coupling of J t1t2

l across l, which was also identified
analogously in ResNets (Li & Papyan, 2023). Further comparison is included in Appendix A.3.

Neural Ordinary Differential Equations. Neural ODEs (Chen et al., 2018) view ResNets as a
discretized dynamical process, with past work (Sander et al., 2022) showing the convergence of
Residual Networks to a system of linear ODE, with some extensions to transformers (Zhong et al.,
2022; Li et al., 2021) The emergence of coupling in transformers suggests that a discretization of a
simple itertaive process emerges in LLMs.

In-context learning. LLMs can perform tasks through examples provided in a single prompt,
demonstrating in-context learning (von Oswald et al., 2023; Bai et al., 2024; Ahn et al., 2023;
Akyürek et al., 2023; Xie et al., 2021; Hahn & Goyal, 2023; Xing et al., 2024). Studies suggest
trained self-attention layers implement gradient-descent-like updates across depth to minimize the
MSE of a linear model:

xfinal = min
x

||Ax− b||2.
These updates take the form:

xt+1 = (I + ϵATA)xt − ϵAT b.

Coupling across depth suggests similarity in the matrices I + ϵATA.

Hidden Representation Dynamics. Prior research interprets deep neural networks through dynam-
ical systems, revealing that training trajectories align with geodesic curves (Gai & Zhang, 2021) and
partition activation space into basins of attraction (Nam et al., 2023). For further related works, see
(Geshkovski et al., 2023b;a; Tarzanagh et al., 2023; Valeriani et al., 2023).

Structure in Hidden Representations. Neural Collapse (Papyan et al., 2020) highlights emergent
regularity in last-layer representations, with subsequent studies exploring hidden-layer structures
and their theoretical underpinnings (Wang et al., 2024a; Parker et al., 2023; Zangrando et al., 2024;
Garrod & Keating, 2024; Wang et al., 2024b; Hoyt & Owen, 2021; Arous et al., 2023; Zarka et al.,
2021; Ben-Shaul & Dekel, 2022; Papyan, 2020; Súkenı́k et al., 2023). In LLMs, recent works
identify uniform token structures (Wu & Papyan, 2024) and low-dimensional hidden trajectories
(Sarfati et al., 2024). Our work examines local token interactions through Jacobian dynamics across
all LLM layers.

8 LIMITATIONS

Our analysis is limited to pretrained LLMs and their fine-tuned variants due to the high computa-
tional cost of training large models. Variations in experimental setups across independently trained
models hinder direct comparisons, making it challenging to pinpoint causes of differing regularity.
However, the consistent emergence of these properties warrants further study.

9 CONCLUSION

Our primary goal was to contribute to the understanding of the mechanics underlying transformer
architectures through an analysis of the trajectories of token embeddings and their interactions.
Our research builds on the understanding of transformer architectures by revealing the coupling,
across depth and token, of singular vectors in the Jacobians of transformer blocks for multiple LLMs
trained by various organizations. We establish a correlation between the strength of this coupling and
benchmark performance on the HuggingFace Open LLM Leaderboard, highlighting the significance
of transformer block coupling for generalization. These findings open avenues for future research,
encouraging deeper exploration into the connections between regularity of hidden representations,
model specifications, and generalization.

10 REPRODUCIBILITY STATEMENT

Source code for reproducing measurements detailed in Section 3 is included as supplementary ma-
terial. Additional implementation details for evaluation are included in Appendix A.6.
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timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
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Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
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A APPENDIX AND SUPPLEMENTARY MATERIAL

A.1 SUITE OF LARGE LANGUAGE MODELS AND PROMPT DATA

We evaluate 38 total LLMs (24 base LLMs and 14 fine-tuned) on 6 datasets from the HuggingFace
Open LLM leaderboard (Beeching et al., 2023).

Base models. Falcon (40B, 7B) (Almazrouei et al., 2023), Llama-3 (70B, 8B) (AI@Meta, 2024),
Llama-2 (70B, 13B, 7B) (Touvron et al., 2023), MPT (30B, 7B) (Team, 2023a;b), Mistral
v0.1 (Jiang et al., 2023), Gemma (7B, 2B) (Team et al., 2024), Gemma 1.1 (7B, 2B),
NeoX (20B) (Black et al., 2022), Neo (2.7B) (Black et al., 2021; Gao et al., 2020), Pythia
(6.9B).(Biderman et al., 2023), and GPT-2 (1.5B, 774M, 355M, 117M) (Radford et al.,
2019).

Fine-tuned models. CodeLlama (34B, 13B, 7B) (Rozière et al., 2024), CodeLlama Instruct (34B,
13B, 7B) (Rozière et al., 2024), Mistral-v0.1 Instruct (7.3B) (Jiang et al., 2023), Mistral-
v0.2 Instruct (Jiang et al., 2023), CodeGemma (Team et al., 2024).

Datasets. ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2021), Truthful QA (Lin et al., 2022), WinoGrande (Sakaguchi et al., 2019).
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Table 1: LLMs featured in the experiments throughout paper. Included in the table is the param-
eter budget of each model, the embedding dimension, the number of training tokens, and the Open
LLM leaderboard (Beeching et al., 2023) benchmark score.

MODEL PARAM. LAYERS (L) DIM. (dMODEL ) TOKENS SCORE POS.ENCODING

LLAMA-3 70 B 80 8192 15 T ROPE
8 B 32 4096 15 T 62.35 ROPE

LLAMA-2 70 B 80 8192 2 T 66.05 ROPE
13 B 40 5120 2 T 55.69 ROPE

7 B 32 4096 2 T 50.97 ROPE
CODELLAMA 34 B 48 8192 2 T 55.33 ROPE

13 B 40 5120 2 T 45.82 ROPE
7 B 32 4096 2 T 39.81 ROPE

CODELLAMA (IT) 34 B 48 8192 2 T 43.0 ROPE
13 B 40 5120 2 T 37.52 ROPE

7 B 32 4096 2 T 40.05 ROPE
ORCA 13 B 40 5120 2 T 58.64 ROPE

7 B 32 4096 2 T 54.55 ROPE
FALCON 40 B 60 8192 1 T 58.07 ROPE

7 B 32 4544 1.5 T 44.17 ROPE
FALCON (IT) 40 B 60 8192 1 T 43.26 ROPE

7 B 32 4544 1.5 T ROPE
MPT 30 B 48 7168 1 T 66.98 ALIBI

7 B 32 4096 1 T 56.83 ALIBI

PHI 2 B 32 2560 1.4 T 61.33 ROPE
1.5 B 24 2048 150 B 47.69 ROPE

1 B 24 2048 54 B ROPE
MISTRAL-V0.1 7.3 B 32 4096 60.97 ALIBI

MISTRAL-V0.1 (IT) 7.3 B 32 4096 54.96 ALIBI

MISTRAL-V0.2 (IT) 7.3 B 32 4096 65.71 ALIBI

GEMMA 7 B 28 3072 6 T 64.29 ROPE
2 B 18 2048 6 T 42.75 ROPE

GEMMA-1.1 7 B 28 3072 6 T 30.0 ROPE
2 B 18 2048 6 T 60.09 ROPE

CODEGEMMA 7 B 28 3072 6 T 56.73 ROPE
2 B 18 2048 6 T 32.19 ROPE

NEO 20 B 44 6144 41.69 ROPE
2.7 B 32 2560 0.42 36.20 SINE

PYTHIA 12 B 36 5120 0.3 T 58.9 ROPE
6.9 B 32 4096 0.3 T 39.30 ROPE
2.8 B 32 2560 0.3 T ROPE
1.4 B 24 2048 0.3 T ROPE

1 B 16 2048 0.3 T ROPE
GPT-2 1.5 B 48 1600 34.12 SINE

774 M 36 1280 32.07 SINE

355 M 24 1024 29.87 SINE

117 M 12 768 28.53 SINE

A.2 ADDITIONAL METRICS

A.2.1 VISUALIZATION OF TRAJECTORIES WITH PCA

Each token, with initial embedding x0
i , forms a trajectory x0

i , x
1
i , . . . , x

L
i as it passes through

the L transformer blocks. The dynamics in high-dimensional space are visualized through a 2-
dimensional principal component (PC) projection, PCL, fitted to the last layer embeddings XL =
(xL

1 , x
L
2 , . . . x

L
n). The projected embeddings, PCL(x

0
i ), PCL(x

1
i ), . . . , PCL(x

L
i ), are plotted for

each of the i = 1, . . . , n trajectories.

A.3 COMPARISON TO RESNETS

Coupling. Our results complement and build upon those of (Li & Papyan, 2023), who have ob-
served the coupling of singular vectors of Residual Jacobians in classification ResNets. We
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observe coupling across depth in a wide range of LLMs, where Jacobians are evaluated at
the sequence of embeddings, with respect to the current token, whereas in RA Jacobians are
evaluated at a single representation. Additionally, with transformers we may analyze cou-
pling not only across depth but also across tokens. We observe coupling in LLMs across
tokens in a variety of ways. Further, we consider and analyze the relationship between
coupling and generalization.

Linearity and Equidistance. Linearity in hidden trajectories, as observed in ResNets Li & Pa-
pyan (2023); Gai & Zhang (2021), also emerges with training in LLMs. The mean LSS
value among the evaluated LLMs is 4.24 (Figure 5(a)), greater than LSS measurements
observed for ResNets (Gai & Zhang (2021), page 18) which range between 2.0-3.0 (due
to varying trajectory length and hidden dimension). In both architectures, training induces
improved linearity and regularity (Figure 12) in trajectories. In contrast to ResNets, trajec-
tories are not equidistant, instead showing exponential growth between layers (Figure 5(b)).
We quantify this spacing through a low coefficient of variation, displaying the presence of
exponential growth in token trajectories. In both classifier ResNets and LLM transformers,
there is an evident level of regularity in hidden representations (Figure 12).

Rank of Jacobians. Li & Papyan (2023) show that residual Jacobians have rank at most C, the
number of classes. This analogous result automatically holds for LLMs since the vocabu-
lary size is significantly greater than the embedding dimension of the transformer blocks.

Singular Value Scaling. Li & Papyan (2023) observe that top singular values of residual Jacobians
scale inversely with depth. In trained LLMs, however, top singular values do not show a
consistent depth scaling across models (Figure 34), notably differing from classification
ResNets. In addition, the distribution of singular values at each layer varies significantly
between models. Singular value scaling is more present in untrained transformers (Fig-
ure33), likely caused by additional layer normalizations in residual blocks (Section 4.1).

A.4 SIGNIFICANCE OF COUPLING

The transformer block coupling phenomenon offers insight into several prominent practices in LLM
research, as summarized in Table 2.

A.5 DYNAMICAL MOTIVATION

The equality of top left and right singular vectors suggests that the linearizations form a simple
linearized system that acts on representations. Consider a difference equation

xl+1 − xl = Al x
l (19)

Its solution at the final L is given by

xL =

L∏
l=1

(I +Al)x
0 (20)

Expanding the brackets shows that xl can be thought of as a collection of many paths of various
lengths, due to the binomial identity. This agrees with Veit et al. (2016) which views ResNets as

xl = (I +Al−1) (I +Al−2) . . . (I +A1)x
0 (21)

However, Veit et al. (2016) do not make any assumptions about the alignment of the various Al

matrices. The coupling phenomenon suggests the model as implementing the simpler system

xl = (I +A)
l
x0 (22)

where all the A matrices are aligned. One benefit of this interpretation is that, we can write xl in
a simple closed form, as above. We quantify the similarity of hidden trajectories to the evolution
of the above difference equation, in order to detect the emergence of a simple linearization to rep-
resentations. The emergence of increased linearity and exponential spacing in many LLMs can be
analyzed as a result of coupling under some conditions on the spectral decomposition of the Jaco-
bians. Considering input embeddings x0

1, . . . , x
0
n and the linearization of the last token embedding

xl
n given by J l

n,n(x
0
1, . . . , x

0
n):

xl
n = (I + J l

n,n(x
0
1, . . . , x

0
n))x

l−1
n (23)
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Table 2: Significance of the Coupling Phenomenon. A table which highlights the implications of
transformer block coupling to a variety of effors in machine learning research.

Current Research Practice Key Idea Our Contribution

Compressing models by
merging blocks (Fu et al.,
2022; Kim et al., 2024)

Combine adjacent trans-
former blocks to reduce
model size without signifi-
cant performance loss.

Demonstrates that merging is
effective because blocks be-
come strongly coupled during
training.

Compressing models by prun-
ing blocks (Elkerdawy et al.,
2020; Kim et al., 2024; Dror
et al., 2021; Fang et al., 2023)

Remove certain transformer
blocks while preserving func-
tionality.

Explains that pruning works
because the coupling ensures
redundancy across blocks.

Compressing models by
projecting weight matrices
(Ashkboos et al., 2024)

Reduce dimensionality by
projecting weights into
smaller subspaces.

Shows that coupling induces
a low-dimensional subspace
in which blocks’ weights are
aligned.

Studying the effect of trans-
former block permutations
(Hu et al., 2021; Mahabadi
et al., 2021; van der Ouderaa
et al., 2024; Li et al., 2016)

Investigate whether permut-
ing the order of blocks affects
model performance.

Explains why permutations
have minimal impact: strong
coupling creates structural ro-
bustness.

Early exiting in LLMs (Scar-
dapane et al., 2020; Jazbec
et al., 2024)

Allow models to exit compu-
tation early based on task con-
fidence.

Reveals that early exiting
works because representa-
tions progress linearly along
a shared trajectory due to
coupling.

We simplify notation and write xl
n = xl, J l

n,n(x
0
1, . . . , x

0
n) = J l. Under the assumption of spectral

coupling, J l = UlSlV
T
l ≈ USlU

T , and the linearized effect of the last token is

xL =

L∏
l=1

(I + UlSlV
T
l )x0 ≈ U

(
L∏

l=1

(I + Sl)

)
UTx0 (24)

Suppose that x0 = uk is the k-th left singular vector of J l. It follows that xL =
∏L

l=1(1 +
slk)x

0, where slk denotes the k-th singular value at layer l. The exponential spacing measurement is
motivated by the consistent choice sk = s1k = s2k = · · · = sLk . Explicitly, xL = (1 + sk)

Lx0, and
by Equation 17, for each l

αl
k = ln

(
(1 + sk)

l||u0||
(1 + sk)l−1||u0||

)
= ln(1 + sk) =⇒ ED = 0

that is, the coefficient of variation 0 across l. In addition, if xl = (1 + sk)x
l−1, it is clear that the

trajectory would form a perfect line, yielding LSS = 1 by the discussion in Section 3.2. In general,
trajectories are not expected to be perfectly linear unless x0 aligns with an eigenvector of J l.

A.6 LLM EVALUATION AND IMPLEMENTATION DETAILS

The source code used to produce the results reported in this experiment has been included as supple-
mental material. Models with varying parameter sizes are loaded on GPUs with appropriate memory
requirements: NVIDIA A40 (nparam ≥ 40B), NVIDIA Quadro RTX 6000 for Gemma variants and
when (40B > nparam > 13B), and NVIDIA Tesla T4 when (13B ≥ nparam) except Gemma variants.
1,200 prompts from the OpenLLM leaderboard were evaluated in variable batch sizes were queued
on a SLURM cluster, with appropriate adjustments depending on the memory required to load the
LLM.
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• 13B ≥ nparam: 100 prompts per batch, except Gemma variants, which used 25 prompts per
batch. The larger memory requirement for Gemma variants is likely due to the much larger
vocabulary size in the model.

• 40B > nparam > 13B: 10 prompts per batch, except NeoX 20B which used 100 prompts
per batch.

• nparam ≥ 40B: 50 prompts per batch.

Due to the high memory requirement for computing Jacobians, for experiments involving the Jaco-
bians, NVIDIA Quadro RTX 6000 was used additionally for 13B > nparam ≥ 7B and corresponding
models were quantized. Additionally, due to compute restrictions, alignment of singular vectors of
Jacobians was computed on a smaller subset of the 1,200 prompts.

The computational complexity for the metrics utilized in this paper are as follows:

Coupling. Coupling requires computing the Jacobians for each transformer block, and so a for-
ward pass and backward pass required (note that we compute the Jacobians on a block
level). Once the Jacobians are obtained, it requires computing a truncated singular value
decomposition of each Jacobian. The time complexity of computing the truncated SVD of
rank k for a d × d matrix is O(d2k), where k << d. Computing A from the SVDs then
has time complexity O(k3), so the asymptotic time complexity of computing the coupling
score between two connections is O(d2k).

LSS. For each trajectory, the time complexity of computing the LSS is O(Ld) where L is the num-
ber of layers and d is the hidden dimension. Therefore, for a prompt containing T tokens,
the total time complexity for each prompt is O(TLd) (in addition to a single forward pass
of the model).

Expodistance. Similarly, computing the expodistance of a single trajectory has time complexity
O(Ld). Therefore, for a prompt containing T tokens, the total time complexity for each
prompt is O(TLd) (in addition to a single forward pass of the model).

A.7 VIT TRAINING DETAILS

For further investigation of coupling in transformers, we train 64 Vision Transformers (ViTs) fol-
lowing the default configurations of DEiT training (Touvron et al., 2021) on CIFAR10 (Krizhevsky,
2009). For a fixed ViT architecture with embedding dimension 192, depth of 12 layers, and 3 at-
tention heads, we vary the weight decay {0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2} and stochas-
tic depth rate {0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3}. Optimization uses ADAM optimizer with
5e− 4 learning rate and cosine scheduler for 500 epochs with 30 epochs of linear warmup. Training
proceeds with data mixup using α = 0.8 Optimization proceeds on 4 NVIDIA Tesla T4 GPUs with
128 batch size and data parallelization, with total training time being approximately 2 hours.

A.8 ADDITIONAL EXPERIMENTAL RESULTS

Table 3: R2 for Various Models

Model R2

Llama2-7B 0.5484

MPT-30B 0.9629

Gemma-7B 0.7832

Mistral-v0.1 7B 0.5876
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(a) (b)

Figure 6: Transformer Block Coupling in ViTs. (a) CIFAR10 test accuracy against normalized
coupling for stochastic depths (0.0, 0.05, 0.1, 0.3) trained with varying weight decay values (Sec-
tion 3.4). Coupling and accuracy have correlation R2 = (0.35, 0.48, 0.74, 0.83) that respectively
increase with the SD rate. (b) Coupling against stochastic depth rate among ViTs trained with weight
decay 0.04, and shows an increase with stochastic depth. Please see Figures 10, 11 for further de-
tails.

Figure 7: Exponential fit between coupling and performance.

Subset R2 p-value

All models 0.75 1.56× 10−6

7B models only 0.55 0.023

Score > 45 0.39 0.023

Table 4: Summary of R2 and p-values for different subsets of models for the correlation between
coupling and performance.
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Figure 8: Plotting (1) the number of tokens used to train each model against its mean depth-wise
coupling score against and (2) the number of training tokens against its LLM Huggingface Bench-
mark score.

Figure 9: Utilizing the Easy2Hard Benchmark dataset Ding et al. (2024), the difficulty score of
a prompt is plotted against the mean depth-wise coupling over that prompt. Additionally, plotted
on the right is the prompt length (in tokens) plotted against the mean depth-wise coupling on that
prompt.

Figure 10: Coupling against Stochastic Depth Rate. Plots are generated for each weight decay in
{0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2}.
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Figure 11: Transformer Block Coupling for Fixed Weight Decay. Coupling plotted against accu-
racy for 64 ViTs with stochastic depths {0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3}.

(a) Llama-3 70B (b) MPT 30B (c) NeoX 20B

Figure 12: Trajectories of Hidden Representations. Visualization of the layer-wise trajectories
of hidden representations in Llama 3 70B, MPT 30B, and NeoX 20B in the prompt: What is
the capital of France? The capital is. Trajectories of tokens are plotted in latent
space, visualized with a 2-dimension principal component projection. A clear directed and outward
growth is visible in each token trajectory.

Figure 13: Evolution of Hidden Trajectories Throughout Training. Principle component visual-
izations of the hidden trajectories in Pythia 12B at training checkpoints 1, 4000 and 143000 on the
prompt: What is the capital of France? The capital is.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 14: Hidden Trajectories in LLMs. Principal components of the trajectories of the hid-
den representations through various LLMs (columns, decreasing in model size, see Table 1) in the
prompt: What is the capital of France? The capital is. Top row: all layers.
Middle Row: layers in shallower transformer blocks (layers specified above plot). Bottom Row:
layers in deeper transformer blocks (layers specified above plot). Trajectories of each input token
(last token ‘is’ is plotted in black) are plotted in latent space, visualized with a 2-dimension principal
component projection. Representations proceed in distinct outward directions, especially in the sec-
ond half of transformer blocks (lower row) during which the norm of representations increases, with
possible abrupt change in the last layer (outer points in upper row). A clear direction of movement
is visible in each token trajectory.
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(a) Llama-3 8B (b) Gemma 7B (c) Phi-2

(d) Llama-2 7B (e) Gemma 2B (f) Phi-1.5

Figure 15: Zero-shot Chain of Thought on Depth-wise Coupling across Layers. We compare the
normalized coupling on prompts from GSM8k with that of the same prompts appended with ”Let’s
think step by step.”, which we refer to as the Zero-Shot CoT (Kojima et al., 2023) prompts. For a
more thorough analysis, we measure how much each layer is coupled with all other layers, as shown
in the figures above. Firstly, the coupling across layers exhibits distinct behaviors across different
models, but with noticeable similarities within the same model families In the LLaMA models,
coupling starts off lower, increases in the middle layers, then decreases before showing a slight
increase again at the final layers. In the Gemma models, coupling begins relatively high and steadily
decreases toward the end of the network. In contrast, the Phi models exhibit significantly lower
coupling in the first layer, followed by an immediate increase, and then a slight decrease in coupling
toward the final layers. The CoT prompt produces similar coupling patterns to the standard prompt,
with slight variations in coupling strength. Specifically, in the LLaMA models, the CoT prompt
consistently results in higher coupling across layers. For the Gemma models, the CoT prompt leads
to similar overall coupling levels, though some layers exhibit slightly lower coupling and others
slightly higher. On the other hand, Phi-2 shows consistently lower coupling with the CoT prompt,
while Phi-1.5 is marginally higher. This variability in behavior, along with the similarities within
model families, is likely due to differences in training methods and data across organizations, while
models within the same family are trained with potentially similar methodologies.
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(a) Gemma 7B Untrained (b) Phi-2 Untrained

(c) Gemma 7B Trained (d) Phi-2 Trained

Figure 16: Transformer Block Coupling across Depth.

(a) Gemma 7B Untrained (b) Phi-2 Untrained

(c) Gemma 7B Trained (d) Phi-2 Trained

Figure 17: Transformer Block Coupling across Tokens (Same input and output tokens).
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(a) Llama-3 8B Untrained (b) Gemma 7B Untrained (c) Phi-2 Untrained

(d) Llama-3 8B Trained (e) Gemma 7B Trained (f) Phi-2 Trained

Figure 18: Transformer Block Coupling across Token (Fixed input). The figure illustrates cou-
pling of Jacobians, with fixed input token, across tokens. More specifically, in the matrix plot
located at entry (t2, t′2), the absolute values of the entries of matrices At1t2t1t

′
2

ll′ are visualized (with
randomly fixed layers l, l′). In the trained plots (bottom row), the off-diagonal entries being close to
0 with visible diagonal indicates coupling of these Jacobians. This coupling, however, seems to be
more evident for certain token pairs and less for others. At initialization (top row), there is no such
coupling across tokens. Additional visualizations are included in Appendix A.8 (Figure 22)
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(a) Llama-3 8B Untrained (b) Gemma 7B Untrained (c) Phi-2 Untrained

(d) Llama-3 8B Trained (e) Gemma 7B Trained (f) Phi-2 Trained

Figure 19: Transformer Block Coupling across Token (Fixed output). The figure illustrates
coupling of Jacobians, with fixed output token, across tokens. More specifically, in the matrix plot
located at entry (t1, t′1), the absolute values of the entries of matrices At1t2t

′
1t2

ll′ are visualized (with
randomly fixed layers l, l′). In the trained plots (bottom row), the off-diagonal entries being close to
0 with visible diagonal indicates coupling of these Jacobians. This coupling again seems to be more
evident only for certain token pairs. At initialization (top row), there is no such coupling across
tokens. Additional visualizations are included in Appendix A.8 (Figure 23)
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(a) Llama-2 13B (b) Llama-2 7B (c) Orca-2 7B (d) Vicuna 7B

(e) Falcon 7B (f) Mistral 7B (g) Gemma 7B (h) Gemma 2B

Figure 20: Additional plots of Coupling across depth. The figure illustrates the alignment of
Residual Jacobians across transformer blocks 9 to 16.

(a) Llama-2 13B (b) Orca-2 13B (c) Llama-2 7B

(d) Orca-2 7B (e) Vicuna 7B (f) Falcon 7B

Figure 21: Additional plots of Coupling across Tokens (same input and output tokens).
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(a) Llama-2 13B (b) Orca-2 13B (c) Llama-2 7B

(d) Orca-2 7B (e) Vicuna 7B (f) Falcon 7B

Figure 22: Additional plots of Coupling across Tokens (fixed input).

(a) Llama-2 13B (b) Orca-2 13B (c) Llama-2 7B

(d) Orca-2 7B (e) Vicuna 7B (f) Falcon 7B

Figure 23: Additional plots of Coupling across Tokens (fixed output).
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Figure 24: Coefficient of variation of layer-wise equidistance. Variation of layer-wise equidis-
tance (Section 3.3) computed over 1,200 prompts from the HuggingFace Open LLM Leaderboard
datasets (Section 4.2) on a suite of untrained LLMs (Appendix A.1). Plotted are the median values
over all prompts, and are accompanied with uncertainty intervals depicting the inter-quartile range
of the results for each model. The models are sorted by increasing benchmark performance.

Figure 25: Coefficient of variation of layer-wise expodistance. Variation of layer-wise expodis-
tance (Section 3.3) computed over 1,200 prompts from the HuggingFace Open LLM Leaderboard
datasets (Section 4.2) on a suite of untrained LLMs (Appendix A.1).
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Figure 26: Various Measurements of Representations. All measurements were made on 100
prompts taken from the WikiText 2 datsets. (Row 1) Norm of hidden representations as a function
of layer depth. (Row 2) Line Shape Score (LSS) of the hidden trajectories as a function of layer
depth. (Row 3) Mean equidistance of contiguous hidden trajectories as a function of depth. (Row
4) Entropy of logit vectors as a function of depth. Noted in most plots is a line where the behaviour
of the measurement drastically changes.

Figure 27: Linearity Emerges with Training. Two plots displaying the evolution of the linearity
of the token trajectories through training. (Left) The LSS as a function of training checkpoint for
the variants of the Pythia Scaling Suite Biderman et al. (2023). Here, the LSS is measured over each
entire prompt. (Right) The mean LSS as a function of layer depth measured at various checkpoints
throughout the Pythia 12B model. Here, the LSS is computed on a window of layers of width 11,
centred at the value given by the x-axis.

(a) Layer l = 5 (b) Layer l = 15 (c) Layer l = 30

Figure 28: Emergence of Linearity with Training. Average linearity of a trajectory at
block depths l ∈ {5, 15, 30} evaluated for Pythia 12B (Biderman et al., 2023) checkpoints
{1, 2, 4, . . . , 256, 512, 1k, 2k, 4k, . . . , 128k, 143k} . The linearity is given by the negative LSS, and
is computed on a window of 11 layers centered at each depth l.
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(a) Layer 5 (b) Layer 15 (c) Layer 25

Figure 29: Expodistance at Fixed Layers. Plotted are mean expodistances as a function of training
checkpoint at various depths of the network. The values at a given depth are the mean expodistance
over a layer window of width 11 centred at said depth 100 MMLU prompts are plotted at each layer.

Figure 30: Norm and Expodistance During Training. (Left) Plotted is the norm of the repre-
sentations as a function of depth at various training checkpoints. Observed is the transition form
log-like growth in early stages to exponential-like growth, particularly through layers 5 through 20,
as training evolves. (Right) Plotted is the expodistance over a layer window of width 11 centred at
the give depth, each computed at a variety of training checkpoints.

Figure 31: The score on GMS8K Cobbe et al. (2021) against the cumulative Huggingface LLM
Benchmark score.
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Figure 32: Perturbation Experiments with Llama-3 8B. The last token embedding is perturbed
with various noise levels, and compared with the true embedding at the first and last layers. The
trend shows that at small noise levels, cosine similarity with the true embedding remains somewhat
high, and is significantly lower at the first layer.
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(a) Llama-3 8B

(b) Gemma 7B

(c) GPT-2 XL

Figure 33: Scaling of Singular Values of Residual Jacobians (Untrained).
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(a) Llama-3 8B

(b) Gemma 7B

(c) GPT-2 XL

Figure 34: Scaling of Singular Values of Residual Jacobians (Trained).
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(a) Score vs. hyperparameters

(b) Hyperparameters vs. Alignment

Figure 35: LLM number of layers, embedding dimension, and number of parameters, against
score and Residual Jacobian Alignment.

(a) K = 25 (b) K = 50 (c) K = 75

Figure 36: Coupling plotted against benchmark score for varying number of singular vectors.

Figure 37: LSS sorted by LLM parameters.
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(a) Positional encoding and Alignment (b) Prompt lengths

Figure 38: Other plots.

(a) (b)

Figure 39: Restricted variants of Figure 1 a.
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