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Abstract

Math world problems correction(MWPC) is001
a novel task dedicated to rectifying reasoning002
errors in the process of solving mathematical003
problems. In this paper, leveraging the advance-004
ments in large language models (LLMs), we005
address two key objectives:(1) Distinguishing006
between mathematical reasoning and error007
correction; (2) Exploring strategies to enhance008
the error correction capabilities of LLMs in009
mathematics to solve MWPC task. We noticed010
that, in real-time education,assisting students in011
recognizing their mistakes is more crucial than012
simply providing correct answers. However,013
current research tends to prioritize obtaining014
accurate solutions to math problems rather015
than correcting potentially incorrect ones.016
Therefore, we modify the research paradigm,017
demonstrating that improving mathematical018
reasoning abilities does not equate to mastery019
in error correction. Meanwhile, we propose020
a novel method called diagnostic-oriented021
promping(DOP) aimed at facilitating LLMs to022
excel in error correction. In experiments, DOP023
has shown outstanding performance, highlight-024
ing its significant impact. We argue that in025
mathematical education, the demand for out-026
standing correctors surpasses that for proficient027
reasoners. Codes and data are available on028
https://github.com/ChenhaoEcnuCS/Reason-029
Correct.030

1 Introduction031

“Give a man a fish and you feed him032

for a day; Teach a man to fish and you033

feed him for a lifetime.”034

—-Huainanzi035

In recent years, the rapid advancement of large036

language models(LLMs)(Zhao et al., 2023) has037

profoundly reshaped the landscape of artificial in-038

telligence research. The remarkable capabilities039

exhibited by prominent models like GPT-4 (Ope-040

nAI, 2023), LLama2 (Touvron et al., 2023), among041

others, have sparked innovative approaches across 042

diverse domains of study. 043

In mathematics domain, numerous studies(Wei 044

et al., 2022; Kojima et al., 2022; Wang et al., 045

2023a,c; Zhang et al., 2023; An et al., 2023; Liu 046

et al., 2023b; Liu and Low, 2023; Yu et al., 2023; 047

Luo et al., 2023) have focused on the task of solv- 048

ing math world problems(MWPs). Some have em- 049

ployed diverse prompting strategies (Wei et al., 050

2022; Kojima et al., 2022; Wang et al., 2023a,c; 051

Zhang et al., 2023) to enhance the reasoning ca- 052

pabilities of LLMs, while others (An et al., 2023; 053

Liu et al., 2023b; Liu and Low, 2023; Yu et al., 054

2023; Luo et al., 2023) have fine-tuned models for 055

mathematical tasks using domain-specific corpora. 056

However, we observe that most of these ap- 057

proaches primarily focus on achieving accuracy 058

in solving MWPs. We often overlook the key point: 059

merely enhancing the ability of a large language 060

model to solve MWPs correctly falls short in math- 061

ematics pedagogy scenarios. 062

In real life, good students may be good at solv- 063

ing MWPs, but struggle to mentor their peers. Con- 064

versely, parents who may encounter difficulties in 065

solving MWPs themselves can effectively coach 066

their children using educational resources. This 067

observation underscores the importance of focus- 068

ing not just on a model’s ability to solve prob- 069

lems, but also on its capacity to correct errors 070

and provide guidance. With LLMs, an significant 071

objective is instructing them to assist students in 072

identifying and correcting their mistakes. 073

We first distinguish the concept of reasoning and 074

correcting. As shown in Figure 1, in educational 075

scenarios, the capacity for reasoning aids students 076

in providing correct answers, whereas error correc- 077

tion empowers teachers to guide students through 078

the process of identifying and rectifying mistakes 079

in their responses. Our research mainly discussed 080

those abilities in mathematics domain. 081

Therefore, we begin with a research question: is 082
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Reasoning

A train is 200 metres long and travelling at 
60 metres per second, How long did it 
take it to cross a 220 metre long bridge?

Question The time: 200/60= 3 seconds.

I think the time that the train take 
was:220/60= 4 seconds.

Total length: 200+220 = 420 metres.
So the time: 420/60= 7 seconds.

Correcting
A train is 200 metres long and travelling at 
60 metres per second, How long did it 
take it to cross a 220 metre long bridge?

The time: 200/60= 3 seconds.

In your solution, the equation 200/60 = 3 is wrong. You 
may have some misunderstanding about the total length of 
the train travelled in this question. In this question, the total 
length travelled by the train should be the length of the 
train plus the length of the bridge, not just the length of 
the bridge. 

Answer Set

Correction

Figure 1: Examples of reasoning and correcting.

the ability of a language model to reason and to083

correct errors equivalent?084

In some cases, an LLM may correctly solve a085

mathematical problem but fail to address errors086

in the solution. Conversely, it may inaccurately087

answer a math question but successfully rectify088

solution errors based on adequate contextual cues.089

Based on the observation, we hypothesise that090

the reasoning and correcting capabilities are not091

fully equivalent. To demonstrate this, we intro-092

duce math world problems correction(MWPC),093

a novel task focusing on the correction abilities of094

LLMs. We also conduct a series of experiments on095

MWPC task to prove our hypothesis, which will be096

described in Section 3.097

Then, we further raise a question: How can we098

enhance the correcting abilities of LLMs?099

In modern teaching materials, both concise and100

detailed answers are commonly provided alongside101

the questions. Since we have demonstrated that the102

reasoning and correcting abilities were not fully103

equivalent, we proposed a novel method, called104

Diagnostic-Oriented Prompting(DOP), leverag-105

ing available resources to enhance LLMs’ profi-106

ciency as correctors in mathematical education.107

Generally speaking, our contributions can be108

concluded as follows.109

• We modify the research paradigm, showing110

that in most LLMs, the abilities to reason and111

correct in MWPs are not fully equivalent, em-112

phasizing that merely enhancing reasoning is113

insufficient.114

• To the best of our knowledge, we are the first115

to propose MWPC task, which is more rele-116

vant and beneficial in mathematical education117

settings.118

• We propose Diagnostic-Oriented Prompt- 119

ing(DOP), a novel and effective method to 120

enhance LLMs’ correcting abilities based on 121

modern teaching resources. 122

2 Background and Related Work 123

2.1 Mathematical Reasoning Through LLMs 124

There are many ways to improve the performance 125

of LLMs on mathematical reasoning tasks by 126

prompting them. 127

The method of chain-of-thought(COT) prompt- 128

ing (Wei et al., 2022; Kojima et al., 2022) can be 129

used in mathematical domain and improves the ac- 130

curacy. (Wang et al., 2023c) notices that a complex 131

reasoning problem is usually thought of in a num- 132

ber of different ways and used majority voting to 133

improve the process of COT. (Zhou et al., 2023; 134

Wang et al., 2023a) endeavour to decompose com- 135

plex problems into multiple simple steps, guiding 136

the large language model to solve mathematical 137

problems step by step. (Liu et al., 2023a; Imani 138

et al., 2023; Gou et al., 2023) mainly focus on using 139

external tools like Python executor, mathematical 140

calculator, and so on, to reduce the probability of 141

error in LLMs and improve the reliability of LLMs 142

in mathematical reasoning tasks. 143

In order to specifically enhance and utilise the 144

mathematical reasoning ability of the model, some 145

researchers use fine-tuning or instruction-tuning 146

methods. (Ho et al., 2023) proposed fine-tuned 147

COT, which generates reasoning samples from 148

large teacher model to fine-tune smaller model. 149

(An et al., 2023) utilised a corpus of mathematical 150

reasoning containing error samples and the error 151

correction process to fine-tune small models like 152

LLama-2(Touvron et al., 2023) and MetaMath(Yu 153

et al., 2023). (Liu and Low, 2023) introduced Goat, 154
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Figure 2: The overall framework of our research. In the first stage, we conduct both MWPS and MWPC tasks on
our candidate models and prove that mathematical reasoning and correcting capabilities are not fully equivalent.
Then, in the second stage, we conduct our strategy called Diagnostic-Oriented Prompting(DOP), enabling our
candidate models to enhance their correcting abilities in mathematical domain.

which is a fine-tuned LLama model and can signif-155

icantly outperforms GPT-4 (OpenAI, 2023) on a156

wide range of arithmetic tasks.157

2.2 Corrrection Throught LLMs158

Meanwhile, some research spotlights the correction159

capabilities of LLMs.160

(Madaan et al., 2023) proposed self-refine,161

which is a novel approach that allows LLMs to162

iteratively provide feedback and refine their own163

outputs. (Pan et al., 2023) summarised a series of164

methods using feedback either produced by LLMs165

themselves or some external systems, to rectify166

those flaws. Self-correction effectively mitigates167

hallucination (Ji et al., 2023) in LLMs. However,168

(Huang et al., 2023) pointed out that without exter-169

nal feedback, LLMs still connot self-correct their170

own reasoning process, including mathematical rea-171

soning process. According to (Stechly et al., 2023;172

Valmeekam et al., 2023a,b; Huang et al., 2023),173

when correcting something wrong, especially those174

errors produced by LLMs themselves, external in-175

formation is indispensable.176

There are also some studies centering on error177

correction task. (Wang et al., 2023b) used LLMs178

to remediate students’ mathematical mistakes step179

by step. (Tang et al., 2023; Song et al., 2023; Du180

et al., 2023; Kwon et al., 2023) focused on gram-181

matical error correction(GEC) task, utilising LLMs182

to solve GEC problems in monolingual and multi-183

lingual scenarios. (MacNeil et al., 2023; Leinonen 184

et al., 2023) researched the abilities of LLMs to 185

correct errors in code, which is beneficial to com- 186

puter science(CS) education. Unfortunately, there 187

is still very little research on error correction to the 188

mathematical reasoning process. 189

2.3 AI For Mathematical Education 190

Artificial Intelligence(AI) strongly promotes the 191

development of mathematical education. 192

Since LLMs were put into use, (Wang et al., 193

2023b) simulated the process of human tutor, de- 194

termining different strategy to address students’ 195

reasoning mistakes in mathematics. (Wu et al., 196

2023) studied mathematical education on conic 197

sections in Chinese senior high school education 198

using LLMs like GPT-4(OpenAI, 2023) and Chat- 199

GLM(Du et al., 2022). (Long et al., 2023) evalu- 200

ated ChatGPT on generating pre-university math 201

questions, providing insights for teachers and re- 202

searchers in utilizing LLMs in mathematical ed- 203

ucation. The research above reveals that making 204

LLMs to be good teachers is a following trend for 205

AI in mathematical education. 206

3 Methodology 207

In this section, we will address the focus and de- 208

scribe the research methodology we used in this 209

study. 210

Firstly, we conducted experiments to validate 211
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differences between reasoning and correcting212

in mathematics domain. Continue with the pro-213

cess, we proposed Diagnostic-Oriented Prompt-214

ing(DOP) for correction capabilities. Figure 2215

shows the overall framework.216

3.1 Validating Differences between Reasoning217

and Correcting218

Initially, we conducted comparative experiments219

to validate the observation that the reasoning and220

error correction abilities of LLMs are not fully cor-221

related.222

We established several pivotal elements within223

this scenario. Firstly, our candidate models are224

represented as an expression f(·), with the output225

sequence denoted as y. In mathematical reasoning226

task, the input is a math question, denoted as Q.227

We provided the model with a prompt containing228

the question, denoted as Pr(Q), and obtained an229

output yr, which means that:230

yr = f(Pr(Q)) (1)231

Similarly, in the MWPC task, the input consists232

of a math question Q and its corresponding incor-233

rect solution W . We provided the model with234

a prompt containing both elements, denoted as235

Pc(Q,W ), and obtained an output yc, indicating236

that:237

yc = f(Pc(Q,W )) (2)238

In the next step, considering the question Q, we239

examine standard answer, represented as A. To240

ascertain the model’s ability to solve the question,241

we employ an extraction function, denoted as Nr242

in the reasoning task and Nc in the correction task,243

to extract the final numeric answer from the natural244

language. Ultimately, we defined two states, Sr245

and Sc, to indicate whether the model had success-246

fully solved the task, which means that:247

Sr =

{
1, if Nr(yr) = Nr(A),

0, otherwise.
(3)248

Sc =

{
1, if Nc(yc) = Nc(A),

0, otherwise.
(4)249

As mentioned above, it is necessary to collect250

a wide range of {Q,A,W} triplet. They are all251

represented as natural language.We chose several252

LLMs as our candidate models to perform both 253

reasoning and correction tasks. Details about these 254

selected models will be provided in Section 4. 255

3.2 Diagnostic-Oriented Prompting(DOP) 256

In our previous experiments, we observed that 257

while LLMs may not entirely solve problems, they 258

can generate correction processes. This parallels 259

real-time education scenarios where teachers or par- 260

ents, though unable to solve problems themselves, 261

can guide children based on relevant information. 262

Motivated by this, we propose a strategy named 263

Diagnostic-Oriented Prompting (DOP) to lever- 264

age abundant resources and enhance the mathemat- 265

ical correction abilities of LLMs. 266

In modern educational materials, questions often 267

come paired with answers, ranging from concise 268

to detailed responses. Depending on the available 269

resources, we can employ varying levels of DOP 270

to enhance the correction abilities of LLMs. 271

Furthermore, we conducted experiments involv- 272

ing 3 levels of DOP, affirming the effectiveness of 273

the DOP approach. 274

The DOP framework comprises three levels, 275

each with distinct input configurations. In the first 276

level, the model’s input consists of the mathemati- 277

cal problem, the erroneous solution and the correct 278

numeric answer(NA) of the problem. In the second 279

level, the model’s input consists of the problem, the 280

erroneous solution and the brief explanation(BE) 281

of the problem. And finally, in the third level, the 282

model’s input consists of the problem, the erro- 283

neous solution and the standard answer(SA) of the 284

problem. The prompt method that does not pro- 285

vide any additional supplementary information is 286

labeled as standard prompting(SP). 287

The goal of DOP is to correct erroneous so- 288

lution processes and arrive at the correct answer. 289

The 3 levels of DOP progressively deepen and are 290

denoted DOP+NA, DOP+BE and DOP+SA. The 291

complete SP and DOP process is illustrated in Fig- 292

ure 3. 293

4 Expriments and Analysis 294

4.1 Experiment Setup 295

We utilized some LLMs as candidate models, and 296

collected multiple {Q,A,W} triplets from sev- 297

eral mathematical datasets. 298

Candidate models. We selected the following 299

LLMs as out candidates, which contains some no- 300
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MWP:

Numeric Answer (NA):

Brief Explanation(BE):

Standard Answer(SA):

Wrong Answer(WA)

MWP WA

NA. BE. SA.

Method SP DOP+NA DOP+BE DOP+SA

Figure 3: An example of different levels of DOP.

table general models, some specialized mathemat-301

ics models, and some educational-purpose models.302

• GPT-4-0613(OpenAI, 2023). GPT-4 is one303

of the most widely known LLMs, developed304

by openai. We selected the latest version.305

• GPT-3.5-turbo(OpenAI, 2023). A strong306

and remarkable model. It is also known as307

ChatGPT, developed by openai.308

• LLama-2-Chat(Touvron et al., 2023).309

LLama-2 is a collection of LLMs devloped310

by Meta and LLama-2-Chat is the fine-tuned311

model for dialogue use. We selected 3312

parameter size: 7B, 13B and 70B.313

• MetaMath(Yu et al., 2023). MetaMath is314

a fine-tuned model that specializes in mathe-315

matical reasoning. Researchers used a rewrite316

strategy to bootstrap math questions and then317

fine tune the model. We selected 2 parameter318

size: 7B, 13B, pretrained from LLama2, and319

a 7B version pretrained on Mistral(Jiang et al.,320

2023).321

• WizardMath(Luo et al., 2023). WizardMath322

is a fine-tuned model using reinforcement323

learning from evol-instruct feedback for math- 324

ematical reasoning. We selected 2 parameter 325

size: 7B, 13B. 326

• Baichuan2(Yang et al., 2023). Baichuan2 is 327

a series of multilingual LLMs trained from 328

scratch and perform well on some vertical 329

domains including education. We selected 2 330

parameter size:7B, 13B. 331

Data Construction. In our experiments, we 332

collected sets of Q,A,W triplets, focusing on ap- 333

plication problems in primary school mathematics 334

described in natural language. The datasets we 335

primarily referred to are as follows: 336

• GSM8k(Cobbe et al., 2021). GSM8k is a 337

dataset of 8.5K high quality diverse grade 338

school math word problems containing nat- 339

ural language solutions. 340

• MathDial(Macina et al., 2023). MathDial is 341

a dataset of one-to-one teacher-student tutor- 342

ing dialogues grounded in multi-step mathe- 343

matical reasoning problems. Most of the math 344

problems are from GSM8k. 345

As MathDial provides problem statements, cor- 346

rect answers, and student confusion, we leveraged 347
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Model R-rate C-rate sR+sC sR+uC uR+sC uR+uC
GPT-4-0613 0.859 0.811 2152 306 165 238

GPT-3.5-turbo 0.556 0.344 659 932 325 945
LLama-2-chat-7b 0.108 0.089 45 264 211 234
LLama-2-chat-13b 0.200 0.153 148 424 290 1999
LLama-2-chat-70b 0.318 0.224 282 629 358 1592

MetaMath-7b 0.764 0.180 455 1732 61 613
MetaMath-13b 0.772 0.238 606 1602 76 577

MetaMath-Mistral-7b 0.733 0.254 637 1459 91 674
WizardMath-7b 0.708 0.391 890 1138 229 604
WizardMath-13b 0.486 0.165 294 1096 177 1294
Baichuan-2-7b 0.079 0.059 29 196 139 2497
Baichuan-2-13b 0.281 0.105 133 690 186 1872

Table 1: The performance of candidate models in comparative experiments. The maximum value in each column is
highlighted in bold.

GPT-4 GPT-3.5 L-7b L-13b L-70b M-7b M-13b M-M-7b W-7b W-13b B-7b B-13b
Candidate Models
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0.44

0.21

0.13
0.16

Er and Ec in Different Models
Er
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Figure 4: Results of Er and Ec. We represents the
candidate models using the first letters. For example,

’M-M-7b’ means MetaMath-Mistral-7b.

this data to construct a dataset comprising 2,861348

sets of {Q,A,W} triplets.349

4.2 Results and Analysis350

4.2.1 Comparative Experiments for351

Validation.352

For each candidate model in the comparative ex-353

periments, we recorded the following information:354

• R-rate. The rate of {Q,A,W} triplets355

which were reasoned successfully.356

• C-rate. The rate of {Q,A,W} triplets357

which were corrected successfully.358

• sR+sC. The number of {Q,A,W} triplets359

which were reasoned and corrected success-360

fully.361

• sR+uC. The number of {Q,A,W} triplets362

which were reasoned successfully but cor-363

rected unsuccessfully.364

• uR+sC. The number of {Q,A,W} triplets 365

which were corrected successfully but rea- 366

soned unsuccessfully. 367

• uR+uC. The number of {Q,A,W} triplets 368

which were reasoned and corrected unsuccess- 369

fully. 370

Table 1 shows the performance of candidate 371

models in comparative experiments. Let’s start by 372

analyzing the R-rate and C-rate. We can observe 373

that GPT-4 achieves the highest performance both 374

on MWPS and MWPC tasks. This indicates that 375

as the most advanced general-purpose language 376

model currently available, GPT-4’s mathematical 377

capabilities are clearly evident. Meanwhile, the 378

specialized mathematics models like MetaMath 379

show strong capabilities in mathematical reason- 380

ing, while their error correction abilities still have 381

considerable room for improvement. 382

Next, we will analyze the performance of the 383

models on the following four metrics: sR+sC, 384

sR+uC, uR+sC and uR+uC. In Table 1, we can 385

observe that, even in GPT-4, successfully solving 386

a mathematical problem does not guarantee the 387

ability to accurately correct an incorrect solution. 388

Conversely, the model may not always provide an 389

accurate solution, yet it can generate a proper cor- 390

rection process for an incorrect solution. 391

We further provides 2 definitions as follows. 392

Er =
|sR + sC|

|(sR + sC) ∪ (uR + sC)| (5) 393

Ec =
|sR + sC|

|(sR + sC) ∪ (sR + uC)| (6) 394
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Question Francine drives 140km to work each day. If she does not go to work 3 days
every week, find the total distance she drives to work for 4 weeks in
kilometers.

Ground-truth There are 7 days in a week, so if he doesn’t go to work for 3 days, he goes
7-3 = 4 days every week. He travels 140km each day for a weekly total of
140*4 = 560km. In 4 weeks he will travel a total of 560 * 4 = 2240km.

Answer from GPT-4 Francine goes to work 7 - 3 = 4 days a week. This means that she drives
a total of 140 * 4 =560km every week. Therefore in 4 weeks, she drives a
total of 560 * 4 = 2240km.

Student’s solution In a week, Francine drives 140km x 5 = 700km to work. In 4 weeks, she
drives 700km x 4 = 2800km to work. But she does not go to work for 3
days every week, so in 4 weeks, she does not go to work for 3 x 4 = 12 days.
Therefore, the total distance she drives to work in 4 weeks is (700km x 4) -
(140km x 12) = 2800km - 1680km = 1120km.

Correction From GPT-4 The student’s mistake lies in the fact that they incorrectly subtracted the
days she does not work from the total distance she drives to work. In reality,
the days Francine does not work have already been accounted for when
calculating the weekly distance. Here is the correct solution: In a week
Francine drives 140km x 5 days = 700km to work. In 4 weeks, she drives
700km x 4 = 2800km to work. There is no need to subtract the days she
does not work because they have already been accounted for in the initial
weekly calculation. Answer: 2800km.

Table 2: A case study of GPT-4. The error of this students lies in that he or she thinks there are five days in a week.
GPT-4 effectively solved this problem. However, GPT-4 didn’t capture the student’s error.

As we mentioned above, Er represents the ratio395

of the corrected numbers to the total reasoned num-396

bers, while Ec represents the ratio of the reasoned397

numbers to the total corrected numbers. We dis-398

plays the value of Er and Ec in our experiments399

in Figure 4.400

In Figure 4, we can observe that all our candidate401

models achieve higher Er than Ec. This suggests402

that if a model can successfully correct an error, it403

is more likely to solve the problem simultaneously.404

However, when the model is capable of solving405

a problem, the probability of correcting a related406

incorrect solution is much lower.407

We also provide a case study in our experiment,408

as shown in Table 2. The mathematical problem409

requires finding the distance Francine has traveled410

during her 4-week work. GPT-4 effectively solved411

this problem. However, when faced with a stu-412

dent who miscalculated the number of working413

days, GPT-4 did not successfully correct its mis-414

take. This indicates that for LLMs, successfully415

solving a mathematical problem does not necessar-416

ily mean they can successfully correct any errors417

that may arise within it. Similarly, successfully418

correcting an error within a mathematical problem419

does not imply that they can also successfully solve 420

the problem. 421

To conclude, combining the result from Figure 4 422

and Table 2, we successfully demonstrate through 423

comparative experiments that the ability of LLMs 424

in mathematical reasoning is not entirely equiva- 425

lent to their ability in mathematical error correc- 426

tion. Therefore, solely enhancing a model’s math- 427

ematical problem-solving ability does not guaran- 428

tee its proficiency as an error corrector. Further 429

research is needed to thoroughly investigate the 430

model’s error correction capabilities in mathemat- 431

ics. 432

4.2.2 Diagnostic-Oriented Prompting(DOP) 433

For the DOP framework mentioned in Figure 2 and 434

Figure 3, we conducted experiments involving 3 435

levels of DOP with several candidate models. 436

We studied DOP in 8 candidate models, com- 437

paring the correction passing rate between SP and 438

DOP. We record the experimental results in Figure 439

5. 440

We found that when employing DOP, all candi- 441

date models achieved higher pass rates compared 442

to using SP alone during the MPWC task. This sug- 443

gests that the DOP method significantly enhances 444
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Figure 5: Experiment results of DOP. We recorded the success rates of error correction under different scenarios
and visualized them as bar charts.

the mathematical error-correction capabilities of445

LLMs.446

5 Conclusions447

In this paper, we have come to the following con-448

clusions.449

1.LLMs’ reasoning and correcting abilities450

are not fully equivalent. In our comparative ex-451

periment, LLMs may solve a problem but fail to452

correct a wrong solution of this problem. Also,453

they may not solve a problem properly, but can454

find reasoning errors and correct them in a wrong455

solution.456

2.Mainstream LLMs’ have stronger reason-457

ing abilities than correcting abilities. In our ex-458

periments, our candidate models perform better in459

reasoning task than correcting tasks. This suggests460

that while LLMs excel as reasoners, their ability to461

correct errors is limited. Therefore, further research462

into their correction abilities is necessary.463

3.Improving LLMs’ correcting abilities is vi-464

tal and essential. In mathematical education sce-465

narios, it is more vital to correct the error from the466

students, rather than merely providing solutions.467

Since we have demonstrated that reasoning and468

correcting abilities are not the same thins, and rea-469

soning abilities are much better, improving LLMs’470

correcting abilities bocomes vital and important.471

4.Diagnostic-Oriented Prompting(DOP) is an472

effective method to enhance the correcting abili-473

ties of LLMs. We modify the research paradigm474

of the mainstream research and proposes MWPC475

task. With the aid of educational resources and476

DOP, LLMs can be an excellent corrector, which is477

useful to help students dealing with understanding478

math world problems. 479

6 Limitations and Future Work 480

We have several limitations in this work.Firstly, 481

there are still lack of high-quality mathematical 482

correction datasets to study the relative abilities of 483

LLMs. Meanwhile, we study correction mainly 484

based on all kinds of language models. In fact, 485

the behaviour of LLMs and human teachers and 486

students differs a lot. We still need deeper research 487

in the field. To study this issue well, our future 488

work is as follows: 489

• Collect high-quality MWPs and corre- 490

sponding mistakes. High-quality data is vital 491

for us to enhance the performance of LLMs. 492

Most mainstream datasets in mathematical do- 493

main are lack of some relevant solutions with 494

errors, which is not helpful to study the cor- 495

recting abilities of LLMs. As a result, we are 496

committed to construct a high-quality dataset 497

containg MWPs and corresponding mistakes. 498

• We need a deeper view of real-time mathe- 499

matical education scenarios. The behaviours 500

between human and language models differs a 501

lot. We also need some data from the real life, 502

not just merely from the language models. In 503

the future, it is necessary for us to go deeper 504

to the real-time education scenarios. 505

• Develop more level of DOP. We have broken 506

the mold and proven the effectiveness of DOP. 507

It is still necessary to develop a higher level 508

of DOP method. 509
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