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1. Introduction  

The image value ( )= , ,
T

R G BI I II  depends on the camera 

sensor function ( ) ( ) ( ) ( )( ), ,
T

R G BF F F   =F , the illuminant 

( )L   and the surface reflectance ( ), ,S x y   at pixel location 

( ),x y [1]. 

 ( ) ( ) ( ) ( ), , ,c cI x y F L S x y d


   =   (1) 

where  , ,c R G B= ,  is the visible spectrum. Assuming a 

unique illuminant in the scene, the observed illuminant E  

depends on the illuminant ( )L  as well as the camera sensor 

function ( )F . 

 ( ) ( )= L d


  E F   (2) 

Given the image values of I , color constancy is targeted for 

estimating the color of the illuminant ( )= , ,
T

R G BE E EE , 

followed by a transformation of the color-biased image using this 

illuminant estimate. According to whether a training process is 

necessary,  the most existing color constancy method can be 

roughly classified as learning-free methods and learning-based 

methods [2]. The learning-based methods [3-6], including deep 

neural networks (DNN) [7, 8], have exhibited significant 

outperformance on specific datasets. However, their training 

phase is clearly relied on the camera-specific illuminant (see Eq. 

2) supplied by the dataset. Fig. 1 (a) visualizes the illuminant 

distributions from two datasets captured by different cameras. It 

is clear that these illuminant distributions change significantly  

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) Under a neutral illuminant, the rg-chromaticities visualization 

distributions of the scene statistic related to the gray world assumption in 
images taken by different cameras. (b) The rg-chromaticities visualization 

distribution of illuminant in the same images. 
across the two cameras because of their different spectral 

sensitivities. As a consequence, once these learning-based 

methods are well trained on a dataset taken by specific camera, 

they are hardly generalized to another dataset captured by 

different cameras. On the other hand, Learning-free methods, 

such as gray-based methods [9-12], generate fixed assumptions 

related to scene statistics for all images and performed illuminant 

estimation. Although these assumptions are less accurate [13, 14], 

they are generally invariant to much of the spectral sensitivity 

differences among camera sensors [2, 13]. As shown in Fig. 1 (b), 

under a neutral illuminant, the scene statistic distributions related 

to the gray world assumption are similar in images taken by 

different cameras. Due to this property, gray-based methods have 

the natural advantage of being camera-independent and, therefore, 

very well-suited to the multi-cameras task. 

ABST RACT  

Current learning-based color constancy methods are typically employed to find camera-specific illuminant mappings.  

Consequently, these methods exhibit poor generalization to images captured by varying cameras. In this paper, we present a 

Camera-Independent learning method based on Scene Semantics, and we call it CISS. Inspired by the camera-independent 

property of gray-based methods, CISS does not directly estimate camera-specific illuminant by training model as most learning 

methods do. Instead, the model's output is transformed into camera-independent scene statistics related to gray-based 

assumptions to avoid being affected by camera variations. Based on these estimated scene statistics, illuminant can be calculated 

indirectly. To estimate scene statistics accurately, CISS designs illuminant-invariance scene semantics features as input to the 

model. Then, the model estimates scene statistics for each input image in terms of scene semantics with exemplar-based 

learning. Experiments show that, on several public datasets, CISS is able to outperform present methods for multi-cameras color 

constancy, and is flexible enough to be well generalized to the unseen camera without fine-tuning by additional images. 

Keywords: Color constancy,  Illuminant estimation,  Scene semantics,  Gray-based assumptions 
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In this paper, we present CISS, a camera-independent learning 

method based on scene semantics. Different from most learning-

based methods that directly estimate the illuminant, we perform 

indirect illuminant estimation by calculating the scene statistics 

for each image under a neutral illuminant as new labels. Given 

that these scene statistics are camera-independent (see Fig. 1 (b)), 

the model will be less affected by camera changes during both 

the training and testing phases. Once the trained model gives the 

scene statistics of the input image, the illuminant of the input 

image can be calculated indirectly in a similar way to gray-based 

methods. In more detail, for accurately estimating the scene 

statistics of the color-biased input image when it is under a 

neutral illuminant, CISS designs illuminant-invariance cross-

moments to extract robust local color features. Next, these local 

color features are used to further extract the scene semantics with 

spatial pyramid structure based on PLSA as well as spatial 

pyramid blocks. Subsequently, by means of exemplar-based 

learning, CISS selects nearest neighbor images with high scene 

semantics similarity for each input image, and calculates the 

scene statistics of these selected images when they are under a 

neutral illuminant. Finally, the median of these scene statistics is 

used as the scene statistic for the input image under neutral 

illuminant. Four contributions in this paper can be summarized as 

the following. 

⚫ We propose a camera-independent learning color constancy 

method based on scene semantics (CISS). Compared with 

most learning-based and quasi-camera-independent 

methods, CISS generalizes well to unseen camera sensors 

without fine-tuning or re-training with additional images. 

⚫ We prove that the scene statistics related to gray-based 

assumptions are independent of the camera sensor. In 

addition, we also observed the correlation between these 

scene statistics and scenes. 

⚫ We provide an effective way to extract robust scene 

semantics without errors brought by camera-specific 

illuminant through the designed illuminant-invariance 

cross-moments. 

⚫ We evaluate CISS on the NUS and the INTEL-TAU 

datasets. On both datasets, CISS achieves superior 

performances compared to previous camera-independent 

methods for multi-cameras color constancy. In addition, 

CISS also outperforms existing color constancy methods 

based on image content understanding in the Shi-Gehler 

dataset. 

2. Related Work 

In this section, we first briefly discuss two color constancy 

works related to CISS: the camera-independent learning-based 

methods and image content understanding based methods. Then, 

we also introduce the gray-based assumptions used in CISS and 

show the flaws of these assumptions. Meanwhile, we account for 

the camera-independent property of the scene statistics related to 

gray-based assumptions. 

2.1. Camera-independent learning-based methods 

Recently, some camera-independent learning-based methods 

have been proposed to improve the generalization of models on 

datasets captured by different cameras. Hernandez et al. [15] 

propose to learn the likelihood of properly white-balanced 

images according to Bayesian formulation. Despite promising 

results, their methods require camera-specific candidate 

illuminants. Other strategies have formulated the multi-cameras 

color constancy as a few-shot learning [16] or multi-domain 

learning problem [17]. Both of them attempt to enable learning-

based models to cope with differences between images taken by 

various cameras. Although the above methods effectively reduce 

the effort of re-training models, they still require fine-tuning on a 

set of test camera-specific additional images. The recently 

proposed C5 [13] reduces the constraint for these additional 

images, for example, these images can be unlabeled and not 

white balanced. However, selected additional images still require 

to be taken by the test camera. We argue that the need for 

additional camera-specific images weakens the generalizability 

of the trained model. Without these additional images, the above 

methods remain camera-specific. Therefore, we refer to them as 

quasi-camera-independent methods. Another class of work seeks 

to learn camera-independent color constancy models, 

circumventing the need to fine-tune the model according to 

additional images. A recent method [18] finds achromatic pixels 

with a CNN to predict the illuminant. Since in most camera 

sensors, achromatic pixels are rendered gray in the linear-RGB 

image under a neutral illuminant [2]. Another strategy [19] 

proposes to learn a camera-independent working space that can 

normalize the RGB values of any camera. The proposed model 

allows images captured from different cameras and therefore 

obtains competitive results in the multi-cameras task. 

2.2. Image content understanding for color constancy 

Another work related to CISS aims to solve color constancy 

problems through image content understanding. We name these 

methods as “Content Driven Methods” (CD). Early CD methods 

[14] aim to improve illuminant estimation accuracy by selecting 

or combining existing color constancy methods through image 

content understanding. More recently, some CD methods have 

started to obtain illuminant estimation cues from high-level 

visual information directly [20]. In addition, Bianco et al. [21] 

pre-trained the CNN with an image classification task. Then 

features extracted by the pre-trained CNN were used as input to 

linear support vector regression to estimate illuminant colors. 

Similar to the recent CD method, CISS also utilizes high-level 

visual information of the image (scene semantics) to address the 

color constancy problem. The difference, however, is that CISS 

also overcomes the problem of poor model generalization when 

facing camera variations. Therefore, CISS performs well in 

multi-cameras color constancy tasks as well. 

2.3. Gray-based assumptions  

In color constancy, a type of well-established assumption is 

gray-based assumption: the scene statistics *
cM  in varying scenes 

under a neutral illuminant are achromatic [14] 

 

( )
1

* *
, ,

p
p

n
c cM I x y dxdy k

 
=  = 
 
  (3) 

where  , ,c R G B= , n is the order of the derivative, k is a 

constant and p is the Minkowski-norm. ( )*
, ,cI x y  is the 

convolution of the image under a neutral illuminant with a 

Gaussian filter G  with scale parameter  . A wide variety of 

gray-based methods can be generated using Eq. 3. Based on the 

gray-based assumptions, any deviation from achromaticity in the 

scene statistics is caused by the effects of the illuminant. This 

implies that the illuminant cE  can be indirectly estimated by 

calculating the scene statistics of the image. 

 *
c c cE M M=  (4) 

where cM  represents the scene statistics calculated from the 

color-biased image. 

Gray-based methods are lightweight and comprehensible, and 

most of all, the assumptions of these methods are camera-
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independent. Suppose that ( )aK I  and ( )bK I  represent the 

scene statistics of two white-balanced images captured by 

different cameras in the same scene under a neutral illuminant, 

respectively. The transforming from ( )aK I  to ( )bK I  can be 

formulated as [22]. 

 ( ) ( )s a bK K=T I I
 
 (5) 

where sT  is a 3 3  matrix that performs the transformation of 

color space between two different cameras. Since color 

differences caused by camera variations have been removed from 

the gray pixel in white-balanced images, the gray pixel is not 

disturbed by sT . Fortunately, based on gray-based assumptions, 

( )aK I  and ( )bK I are not supposed to deviate significantly 

from gray. As a result, matrix sT  ought not have a high impact 

on ( )aK I  and ( )bK I . This explains why the scene statistics 

distributions of images from different cameras are so consistent 

in Fig. 1 (b). Whereas, to a certain degree, even though gray-

based assumptions are not disturbed by camera changes, these 

assumptions still cannot be universal in all images because of 

their fixed nature. Considering that the performance of gray-

based methods has been proven to be affected by scene semantics 

[14], we selected four sets of scenes from [23] to analyze further 

the correlation between scene semantics and gray-based 

assumptions.  

Fig. 2 shows the rg-chromaticities distributions of scene 

statistics related to the gray world assumption in four scenes. It 

can be seen that images with the same scene have similar rg-

chromaticities distributions of the scene statistics. However, there 

are significant differences in the rg-chromaticities distributions 

for the scene statistics of images with different scenes. This 

shows the correlation between the scene semantics and the scene 

statistics related to gray-based assumptions, as well as intuitively 

explains why these fixed gray-based assumptions cannot be 

universal. 

3. Method 

Motivated by the correlation between scene semantics and the 

scene statistics related to gray-based assumptions, CISS estimates 

the scene statistic of each input image under a neutral illuminant 

based on scene semantics. The estimated scene statistic is further 

applied to the calculation of illuminant. Fig. 3 shows the 

flowchart of CISS. 

3.1. Scene Semantic Calculation 

3.1.1. Illuminant-Invariance Local Color Descriptors based on 

Cross-Moment 

Feature extraction is a fundamental part of scene 

understanding. In this paper, we considered local color features 

since they are usually simple, fast, and rotationally invariant. 

Concretely, we extract local color features by calculating cross-

moments from densely sampled image patches. These calculated 

cross-moments will later be utilized to form the image 

representation related to scene semantics. Unfortunately, in 

multi-cameras color constancy tasks, the illuminant of images 

taken by various cameras often differ significantly (see Fig. 1 (a)), 

which leads to instability of color features and reduces the 

accuracy of the formed image representation. To solve the above 

problem, we further improve cross-moment based on the 

Lambertian diffuse reflection model to enhance its robustness 

against illuminant variation. Based on the von Kries coefficient 

law, Eq. 1 can be given by the simplified diagonal model.  

 ( ) ( ), ,c c cI x y E S x y=  (6) 

where cE  represents the c-channel value of the illuminant E  

which is camera-specific, ( ),cS x y represents the c-channel value 

of the image under a neutral illuminant [1]. Following [24], we 

define the generalized moment abd
rqPM  by 

( ) ( ) ( ), , ,
a b dabd r q

rq R G BPM x y I x y I x y I x y dxdy=             
(7) 

where 
abd
rqPM  is the generalized moment of order  and degree 

a b d+ + . We only take into account the 00
abdPM  in this paper 

because they are proven to be rotationally invariant. Then, we 

combine Eq. 6 and Eq. 7.  

( ) ( ) ( )

( ) ( ) ( )

00 , , ,

, , ,

a b dabd
R G B

a b d

R R G G G G

PM I x y I x y I x y dxdy

E S x y E S x y E S x y dxdy

=           

=           




 (8) 

Fig. 2. Under a neutral illuminant, the scatter plots of rg-chromaticities 

distributions of the scene statistics related to gray world assumption in 

several scenes, overlayed on the rg-chromaticities distributions of the scene 

statistics from all scenes in the real-world set [23]. 

Fig. 3. The flowchart of CISS. For each input image, we extract the scene semantics with spatial pyramid structure using illuminant-invariance cross-moments 

as well as the combination of PLSA and spatial pyramid blocks. Then, we calculate the scene semantics similarity between the test image and each training 

image based on the pyramid match kernel, and select a set of color-corrected training images with higher similarity. These selected images will be further sifted 

for higher similarity through an automatic similarity threshold determined by the OTSU method. The remained images are used to estimate the scene statistic of 

the test image under a neutral illuminant. Finally, the estimated scene statistic is used to calculate the illuminant cE   for the test image. 
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Eq. 8 is the zero-order moment based on the image pixel 

values. We use the first-order derivative operator ( ) ( )f  =   x  

to extend Eq. 8 to edge moment further. For simplicity, we 

denote ( )( ),cf I x y  as ( ),f
cI x y  and ( )( ),cf S x y  as ( ),f

cS x y . 

( ) ( ) ( )

( ) ( ) ( )

00 , , ,

, , ,

a b d
f f fabd

R BG

a b d
f f f

R G GR BG

EM I x y I x y I x y dxdy

E S x y E S x y E S x y dxdy

     =
     

     =
     





 (9) 

Under the assumption that a single light source illuminates the 

scene, the illuminant cE  in Eq. 8 and Eq. 9 can be considered a 

constant and, therefore, able to be moved outside the integral. 

Based on this property, we can construct the following 

illuminant-invariance moment 00
abdIM . 

 
00 00 00
abd abd abdIM PM EM=  (10)  

In Eq. 10, The channel scaling of the camera-specific 

illuminant cE  has been removed, so that 00
abdIM  is illuminant-

invariance. Similar to [3], it is believed that cross-channel and 

higher degree provide useful color information. Therefore, the 

cross-moments up to the second degree with zero-order are 

considered in our work. The combination of these cross moments 

is denoted as ( 100
00IM , 010

00IM , 001
00IM , 200

00IM , 020
00IM , 002

00IM , 
110
00IM , 101

00IM , 011
00IM )T. The combination of the above cross-

moments will be regarded as local color features IM  of the 

image patch and used in the subsequent scene semantics 

extraction. 

3.1.2. Extracting Scene Semantics with Spatial Pyramid Structure 

Inspired by the success of the bag-of-words with spatial 

pyramid structure in scene semantic recognition, we perform the 

K-means method for all calculated local color features IM  to 

form M visual words. Subsequently, these visual words are 

divided into different areas based on spatial pyramid blocks. 

Further, in order to obtain a more compact, discriminate 

representation, we treat all visual words in the same area as an 

independent document and further extract the probability 

distribution of topics in the document by PLSA. 

Given a set of training documents  1 2, , ND d d d=  with 

visual words from the visual word book  1 2, , VW w w w= , 

where N and V denote the number of training documents and 

visual words. Furthermore, PLSA defines a set of latent variables 

(usually called ‘topics’) as  1 2, , RZ z z z= , where R is the 

number of topics and is a hyperparameter. Assume that the visual 

word w  is independent of the document d it belongs to, the joint 

probability over visual word and document ( ),P w d  can be 

calculated as 

 ( ) ( ) ( ) ( ), | |
z Z

P w d P d P w z P z d


=   
(11) 

where ( )P d  denotes the probability of observing d, ( )|P w z  

denotes the probability of observing w in topic-specific and 

( )|P z d  denotes the probability of observing z in document-

specific. An efficient way to estimate the hidden variables in Eq. 

11 is the Expectation-Maximization (EM) method, which 

alternates an expectation step for calculating posterior 

probabilities of latent variables z based on current estimates and a 

maximization step for updating parameters based on posterior 

probabilities until convergence. Once ( )|P z d  is estimated, we 

treat ( )|P z d  as a topic probability histogram ( )H i  from a 

specific document, where  and i account for the index of level 

and area in the spatial pyramid structure. Finally, we concatenate 

( )H i  from different levels and areas as the scene semantics of 

the whole image. An overview of the above procedure can be 

seen in Fig. 4. 

3.2. Scene Semantic Similarity Calculation 

As a measure for comparing the similarity of two histograms, 

the histogram intersection kernel (HIK) typically better 

performances than other commonly used measures, e.g., RBF 

kernel or 2l  distance [25]. Define XH  and YH  as histograms 

from images X and Y under level , the similarity ( ),X YI H H  

between XH  and YH  based on HIK will be 

 

( ) ( ) ( )( )
1

, min ,
D

X Y X Y

i

I H H H i H i
=

=  (12) 

where 2D =  and D  is the total number of areas under level . 

( ),X YI H H  is abbreviated as I  below. Further, the pyramid 

match kernel is used to combine the I  from different levels so 

as to calculate the scene semantic similarity between images X 

and Y. 

 
( ) 0

1
1

1 1
,

2 2

L
L

L L
X Y I I

− +
=

= +  (13) 

3.3. Selecting Semantically Similar Images with OTSU 

Based on the observation of Fig. 2, we contend that images 

sharing similar scene semantics tend to have similar scene 

statistics when they are under a neutral illuminant. With this 

assumption, we select similar training images for the test image 

by calculating the semantic similarity between the test image and 

each training image. The selected training images are then used 

to estimate the scene statistics of the test image. Specifically, We 

first fixedly select the top q similar images for each test image, 

which ensures that we can find a sufficient number of images in 

the training dataset for the test image. However, fixing the 

number of images to be selected is not a suitable strategy. This is 

because the number of similar images in the training set it is not 

fixed for different test images. Therefore, fixing the number of 

selected images in the training set will potentially introduce 

"noisy images" that are not similar to the test image. Therefore, 

we use OTSU to adaptively compute similarity thresholds for top 

q images selected in step one. Only images with a similarity 

score above the threshold are employed in the estimation of the 

scene statistics for the test image.  

3.4. Illuminant Estimation 

Once accurately selected images that are semantically similar 

to the test image, we estimate the approximate scene statistic 
*
cM  of the test image under a neutral illuminant by finding the 

median of the scene statistics from all selected images. Finally, 

the illuminant of the test image can be easily calculated by Eq. 4. 

Fig. 4. The flowchart of extracting scene semantics with spatial pyramid 

structure 
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4. Evaluation 

4.1. Datasets 

We evaluate CISS using two multi-cameras color constancy 

datasets: the NUS 8-camera dataset [26] and the INTEL-TAU 

dataset [27]. The NUS dataset consists of 9 sub-datasets captured 

from different cameras, each containing approximately 210 

images. To highlight the impact of the camera sensor, all sub-

datasets comprise images representing the same scene with slight 

misalignments. Therefore, the NUS dataset is well suited for 

testing the impact of camera sensor on the color constancy 

method. Besides, the INTEL-TAU dataset contains a total of 

7022 images from three sub-datasets captured by different 

cameras. Compared to the NUS dataset, the three sub-datasets of 

INTEL-TAU come from different scenes across 17 countries. 
Finally, we also compared the performance of CISS with the 

existing CD methods in Shi-Gehler dataset [28]. 

4.2. Implementing Details 

4.2.1. Parameters Setting 

In our experiment, we down-sample all images to 1080p. 

Subsequently, these images are uniformly split into 20 20  pixel 

size patches and used to calculate local color features. Then, we 

use 2000 visual words, 100 topics to extract scene semantics. We 

fixed the above parameters in our experiment since we found that 

these parameters slightly affected our experiment result. In 

particular, some optional parameters that are the level of the 

spatial pyramid L, the selected images' number q, and the 

parameters related to the gray-based methods (the gray-edge 

order n, the Minkowski-norm p, and the standard deviation   of 

Gaussian filter  G ) need to be set in advance. These parameters 

are selected out form  1,2,3L ,  10,20, ,100q ,  1,2n  

and  , 1,3,6p    through 3-fold cross-validation on the training 

dataset in each experiment.  

4.2.2. Performance Metric 

We choose the angular error (AE), which is widely used in the 

evaluation of color constancy methods, as the error metric.  

 
arccos e t

angle
e t


 

=    

E E

E E
 (14) 

where e tE E  is the dot product of the estimated illuminant eE  

and the ground truth tE . To summarize the performance of each 

method across all images, we provide five statistical metrics, 

including the mean, median and trimean of the AEs, the mean of 

the best 25% and the worst 25% AEs, as done in [1]. 

4.3. Experiment results  

We evaluate the proposed CISS in both single-camera and 

multi-cameras scenarios using the NUS and INTEL-TAU 

datasets. In the single-camera setting, we follow most of the work 

performing 3-fold cross-validation on the dataset captured by the 

same camera, ensuring no camera sensor differences between the 

training and test images. Specifically, these images taken from 

the same camera are divided equally into three groups according 

to image number, and each time two sets are used for training 

while the remaining image set is used for testing. We also 

perform multi-cameras evaluation utilizing sub-datasets from the 

NUS or INTEL-TAU dataset, as both datasets contain sub-

datasets captured by different cameras. Similar to N-fold cross-

validation,  one sub-datasets are used for testing each time while 

the remaining image set is used for training. 

The comparison color constancy methods in our experiment 

are classified into two types, the learning-free methods and 

learning-based methods. All learning-free methods are camera-

independent [2], and only a few learning-based methods share 

this property. It should be noted that our experimental results 

without quasi-camera-independent methods like [13, 15-17], 

which require additional specific-camera images or illuminants to 

fine-tune the model. It would lead to an unfair comparison for all 

learning class methods since all input images should be camera 

agnostic in the test phase. Instead, we provide two recent camera-

independent methods, Quasi-Unsupervised [18] and SIIE [19]. 

Similar to CISS in this paper, neither requires any camera-

specific additional information to adapt to the new camera.  

4.3.1. NUS Dataset 

Table 1 presents the accuracy of different methods on the 

NUS dataset in terms of several AEs statistical metrics. The 

performance of learning-free methods demonstrated only on the 

side of multi-cameras color constancy, since different cross-

validation strategies make no difference to the performance of 

these methods. The best and second AEs statistical metrics is 

shown in red and blue, respectively. 

Table 1.  Quantitative evaluation of color constancy methods on the NUS dataset. All values correspond to AEs statistical metrics in degrees.  

 Methods 
Multi-Cameras Color Constancy Single-Camera Color Constancy 

Mean Median Trimean Best 25% Worst 25% Mean Median Trimean Best 25% Worst 25% 

Learning 

-free 

Gray-world [9] 4.22 3.21 3.46 0.92 9.27 - - - - - 

White-Patch [10] 12.26 14.53 13.02 1.88 21.59 - - - - - 

Shades-of-Gray [11] 4.22 3.21 3.46 0.92 9.27 - - - - - 

1st-order Gray-Edge [12] 3.71 2.81 3.06 0.85 7.95 - - - - - 

Cheng et al. 2014 [26] 4.30 2.95 3.31 0.79 10.04 - - - - - 

Gray Index [2] 3.18 2.22 2.42 0.61 7.44 - - - - - 

Learning 

-based 

CM (Pixel) [3] 2.80 2.35 2.46 0.87 5.52 2.73 1.89 2.06 0.60 6.33 

SIRMF (Pixel) [29] 2.63 2.10 2.23 0.77 5.34 2.49 1.84 1.97 0.57 5.55 

Cheng et al. 2015 [5] 2.59 1.99 2.12 0.63 5.61 2.42 1.61 1.78 0.50 5.76 

LCC [4] 2.67 1.91 2.11 0.74 5.81 2.47 1.53 1.76 0.50 5.99 

FFCC [6] 2.44 1.85 1.98 0.61 5.26 2.66 1.59 1.79 0.50 6.70 

SIIE [19] 2.05 1.50 - 0.52 4.48 - - - - - 

Quasi-Unsupervised [18] 1.97 1.41 - - - 4.00 2.86 3.17 0.86 8.95 

CISS (Proposed)  1.20 0.82 0.89 0.29 2.80 3.10 2.41 2.54 0.84 6.54 

According to Table 1, LCC achieves the best overall 

performance in the single-camera setting. In fact, owing to 

inferring the valid information in prior training images, nearly all 

learning-based methods outperform learning-free methods in the 

single-camera setting. However, from Table 1, we also observed 

the vast majority of learning-based methods perform worse in the 

multi-cameras setting. For example, the average AE of 

regression-based methods (e.g., CM and SIRMF) increased by 

24% and 14%, respectively, in the multi-camera setting 

compared to that in the single-camera setting. Since these 

methods typically precisely learn the mapping from image 

features to camera-specific illuminants, it is not surprising that 
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performance degrades in the camera agnostic scenario. It is worth 

mentioning that both SIRMF and CISS perform illuminant 

estimation by selecting suitable images. However, our method 

(CISS) differs from SIRMF in two points. First, SIRMF selects 

images with similar illuminants, while our method selects images 

with similar scenes. Second, SIRMF estimates camera-specific 

illuminant directly by a correction matrix, and therefore SIRMF 

is still affected by camera variations. In contrast, CISS is camera-

independent. Interestingly, we found learning-free methods 

generally outperform learning-based methods in the multi-

cameras setting. The reason being that learning-free methods 

estimate illuminant independently on a per-image basis, thus not 

significantly affected by camera variations [2]. Nevertheless, 

consider that the information from training images is not 

available. These methods depend on fixed assumptions usually, 

thus their performance is limited. In contrast, the camera-

independent learning-based methods enable efficiently leverage 

prior information from training images without disturbing camera 

variations. As shown in Table 1, the Quasi-Unsupervised, SIIE, 

and CISS (the proposed) show excellent performance in the 

multi-cameras setting. Particularly, CISS achieves the best 

performance among all compared methods, and the AEs 

statistical metrics in the multi-cameras setting are noticeably 

reduced compared within the single-camera setting. This result 

proves that CISS can benefit from more training images without 

taking into account the possible differences of cameras when 

these images are captured. 

4.3.2 INTEL-TAU Dataset 

Table 2 lists the AEs statistical metrics of various color 

constancy methods on INTEL-TAU dataset. 

Table 2.  Quantitative evaluation of color constancy methods on the INTEL-TAU dataset.  

 Methods 
Multi-Cameras Color Constancy Single-Camera Color Constancy 

Mean Median Trimean Best 25% Worst 25% Mean Median Trimean Best 25% Worst 25% 

Learning 

-free 

Gray-world [9] 4.93 3.87 4.14 0.96 12.70 - - - - - 

White-Patch [10] 7.0 5.4 6.2 1.1 14.6 - - - - - 

Shades-of-Gray [11] 4.0 2.9 3.2 0.7 9.0 - - - - - 

1st-order Gray-Edge [12] 5.3 4.1 4.5 1.0 11.7 - - - - - 

Cheng et al. 2014 [26] 4.43 3.03 3.40 0.71 10.46 - - - - - 

Gray Index [2] 3.86 2.32 2.75 0.51 9.74 - - - - - 

Learning 

-based 

CM (Pixel) [3] 4.17 3.68 3.76 1.52 7.68 3.10 2.26 2.46 0.64 7.01 

SIRMF (Pixel) [29] 3.27 2.45 2.66 0.78 7.14 3.02 2.15 2.35 0.58 6.95 

Cheng et al. 2015 [5] 5.21 4.68 4.73 1.83 9.58 3.26 2.01 2.34 0.51 8.11 

LCC [4] 3.76 3.05 3.20 0.86 7.92 2.69 1.63 1.84 0.42 6.79 

FFCC [6] 3.21 2.43 2.55 0.67 7.18 2.59 1.57 1.77 0.41 6.55 

SIIE [19] 3.42 2.42 2.64 0.73 7.80 - - - - - 

Quasi-Unsupervised [18] 3.25 2.15 2.43 0.60 7.74 3.55 2.42 2.70 0.65 8.34 

CISS (Proposed)  2.74 1.95 2.12 0.54 6.32 2.97 2.19 2.36 0.66 6.63 

Similar to Table 1, we can observe in Table 2 that mostly 

learning-based methods with excellent performance in the single-

camera setting still have a notable degradation in the multi-

cameras setting. Besides, CISS has once again achieved optimal 

performance in terms of various AEs statistical metrics in the 

multi-cameras setting. It is worth noting that the performance 

improvement of CISS on the INTEL-TAU dataset with multiple 

camera settings is not significant compared to the NUS dataset. 

We argue that it could be caused by the low correlation of scenes 

in different sub-datasets, as the scenes in each sub-dataset of the 

INTEL-TAU dataset come from different countries worldwide. 

Nonetheless, CISS still obtains a slight performance gain in the 

multi-cameras setting without a significant performance drop like 

most learning class methods.  

4.3.3. Ablation Study and Analysis 

In the following ablation study, we further investigate the 

contribution of each component of CISS. We establish the 

following four baseline methods. Table 3 shows the results of 

CISS and these baseline methods in the ablation study. 

1) CISS (PM) and CISS (EM): the illuminant-invariance 

property of the local color descriptor is removed and instead, 

we use 00

abdPM  and 00

abdEM
 
(see Eq. 8 and Eq. 9) to extract 

local color features. 

2) CISS (w/o SP): the spatial pyramid structure is removed 

from scene semantics. 

3) CISS (w/o OTSU): estimating the scene statistics of the test 

image only using the top q similar images fixedly. 

As shown in Table 3, the CISS performance drops 

dramatically in both datasets when the cross-moments 00
abdPM  

and 00
abdEM  are used. We argue that the possible reason for the 

above problem is that the robustness of the scene semantics is 

Table 3.  Results of ablation studies on the NUS and INTEL-TAU 

datasets.  

Methods 
NUS INTEL-TAU 

Mean Median Trimean Mean Median Trimean 

CISS (PM) 1.48 0.95 1.06 3.61 2.94 3.07 

CISS (EM) 1.39 0.92 1.03 3.75 3.17 3.28 

CISS (w/o SP) 1.36 0.88 0.96 2.91 2.20 2.37 

CISS (w/o OTSU) 1.32 0.85 0.94 2.97 2.22 2.39 

CISS 1.20 0.82 0.89 2.74 1.95 2.12 

degraded due the 00
abdPM and 00

abdEM  are unable to remove 

camera-specific illuminant, which affects the accuracy of inferred 

gray-based assumptions and eventually leads to CISS 

performance degradation. In addition, it is clear that removing 

the spatial pyramid structure in scene semantics also drops the 

CISS performance, which means the spatial pyramid structure 

contributes to the accurate extraction of scene semantics and 

further helps CISS reach a better performance. In summary, the 

CISS of combining all components is always superior to other 

baseline methods under most AEs statistical metrics. These 

results validates the effectiveness of the proposed components. 

4.4. Analysis of Image Selection Quantity and Illumination 

Estimation Error 

Based on the image selection strategy described in Section 3.3, 

CISS estimates the scene statistics of the test image by selecting 

a set of similar images and indirectly computes the illumination 

of the test image. To show the robustness of CISS in estimating 

the illumination under different numbers of selected images, we 

first divided the test images based on the number of training 

images selected when estimating the scene statistics. In each 

subfigure of Fig. 5, the X-axis represents the number of training 

images selected for the test image, while the bar chart and the left 

Y-axis represent the total number of test images selected with the 
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current number of training images. We also plotted a line graph 

on the left Y-axis to show the average angular error of illuminant 

estimation for test images when using the number of training 

images displayed on the X-axis. The dashed line chart above 

represents the angular error when no image selection is 

performed, i.e., using all training images to estimate scene 

statistics and compute illumination, which represents the 

traditional gray-based method. 

(a) INTEL-TAU                                            (b) NUS 

Fig. 5. Relationship between image selection number and illumination 

estimation error on two datasets 

It should be noted that only a few test images select a large 

number of images, so the mean of the angular error calculated 

based on these test images is not stable. Therefore, we 

recommend ignoring the sharp fluctuations at the end of the line. 

Observing Figure 5, it can be seen that CISS achieves stable and 

superior performance in light source estimation compared to the 

traditional gray-based method, even when selecting a small 

number of training images. This indicates that CISS is robust to 

the number of selected training images. 

4.4. Visualization error analysis 

In this section, we visualize the illuminant estimation error of  

CISS with two other camera-independent methods SIIE with 

Quasi-Unsupervised using Angle-Retaining Chromaticity 

diagram [30].  

(a)                                                      (b) 

Fig. 6. Error distributions for CISS, SIIE and Quasi-Unsupervised on (a) the 

INTEL-TAU dataset and (b) the NUS dataset. aX and aY correspond to the 

distance in the ARC Cartesian coordinate between the perfect white surface 

with the reproduction of a white surface (corresponding to the ground truth 

illuminant) corrected using the estimated illuminant. P(aX) and P(aY) 

represent the probability distributions of aX or aY on the corresponding axes. 

In Fig. 6, The closer Xa  and Ya  are to 0 (the diagram center), 

the better illuminant estimation performance. It can be seen that 

in the INTEL-TAU dataset, CISS closer to the diagram center. In 

addition, the other methods display a different hue-specific bias, 

with Quasi-Unsupervised being more spread toward the magenta 

region of the diagram, and SIIE toward the opposite end. In 

addition, CISS exhibits a more isotropic distribution in the NUS 

dataset, compared to the skewed results of SIIE and Quasi-

Unsupervised. 

4.5. Compared to CD methods 

In spite of our method's focus on the problem of poor model 

generalization when facing camera variations. However, CISS 

also belongs to CD methods because of the use of scene semantic. 

We compare the illuminant estimation performance of CISS with 

existing CD methods using the Shi-Gehler dataset in Table 4. 

Table 4. Quantitative evaluation of CD methods on the Shi-Gehler 

dataset. 

Methods Mean Median Trimean 

Natural Image Statistics [14] 4.40 3.18 3.49 

Multi-cue-based methods [20] 3.25 2.20 2.55 

Exemplar-Based [31] 4.40 3.30 - 

AlexNet+SVR [21] 4.74 3.09 - 

Buzzelli et al. 2018 [32] 4.84 4.12 - 

CISS (Proposed) 2.69 1.95 2.10 

As shown in Table 4, CISS outperforms existing CD methods 

in all illuminant estimation performance metrics. Thus, besides 

proposing a camera-independent learning-based method, another 

contribution of our paper is to reveal further the potential of 

image content understanding in illuminant estimation. 

4.6. Visual Comparison 

 Fig. 7 shows a visual comparison of the results of the 

proposed CISS with other methods. Observing the selected 

images of CISS in the fifth column of Fig. 6, we can see that 

CISS always returns similar images for most of the input image. 

Most importantly, the performance of CISS will not be degraded 

by different camera models of these images, and this camera-

independent property is typically not shared by most learning-

based methods. Besides, it is interesting to note that CISS 

provides more acceptable results than gray-based methods in 

most images (e.g., the image in lines 2, 3 and 4). It is due to the 

gray-based assumptions considering the scene statistics as a 

constant value. In contrast, CISS is able to estimate the scene 

statistics of the test image accurately by scene semantics and then 

calculate the illuminant using the estimated scene statistics. In 

addition, it can be observed the Quasi-Unsupervised method 

seems to have a poor performance in certain scenes (e.g., the 

image in line 3), which could be caused by the absence of 

recognizable gray pixels in these scenes. Finally, it is noteworthy 

that the CISS exhibits poor performance in line 4 image. This 

reason is mainly attributed to the fact that the scene semantics of 

the test image is scarce, making it difficult for CISS to accurately 

estimate the scene statistics of the test image. Therefore, our 

future work will focus on semantic data augmentation to improve 

the performance of color constancy methods. 

5. Conclusion and Discussion 

We have presented CISS, a camera-independent learning method 

based on scene semantics. Inspired by the camera-independent 

property of the gray-based methods. CISS estimates camera-

independent scene statistics related to gray-based assumptions by 

scene semantics and performs illuminant estimation, thus 

avoiding the impact of camera variations on the model. 

Experiments indicate that CISS outperforms all gray-based 

methods and existing camera-independent methods for multi-

cameras color constancy on several datasets, while being capable 

of applying to camera-agnostic images without fine-tuning with 

additional images.  
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Fig. 7. Corrected images from three methods including proposed CISS. The AE is marked at the lower-right corner of the corrected image. The global 

illuminant for image correction is given on the right side of the images. In addition, the fifth column shows a part of images selected by CISS that have 
similar scenes with the input image. The camera model of these selected images is given at the lower-left corner of the image. 
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