
Published as a conference paper at ICLR 2024

SUCCESSOR HEADS: RECURRING, INTERPRETABLE
ATTENTION HEADS IN THE WILD

Rhys Gould1, Euan Ong1, George Ogden1, Arthur Conmy 2

1 University of Cambridge 2 Independent
Correspondence to rg664@cam.ac.uk

ABSTRACT

In this work we describe successor heads: attention heads that increment tokens
with a natural ordering, such as numbers, months, and days. For example, succes-
sor heads increment ‘Monday’ into ‘Tuesday’. We explain the successor head be-
havior with an approach rooted in mechanistic interpretability, the field that aims
to explain how models complete tasks in human-understandable terms. Existing
research in this area has struggled to find recurring, mechanistically interpretable
large language model (LLM) components beyond small toy models. Further, ex-
isting results have led to very little insight to explain the internals of the larger
models that are used in practice. In this paper, we analyze the behavior of succes-
sor heads in LLMs and find that they implement abstract representations that are
common to different architectures. Successor heads form in LLMs with as few
as 31 million parameters, and at least as many as 12 billion parameters, such as
GPT-2, Pythia, and Llama-2. We find a set of ‘mod 10’ features1 that underlie how
successor heads increment in LLMs across different architectures and sizes. We
perform vector arithmetic with these features to edit head behavior and provide
insights into numeric representations within LLMs. Additionally, we study the
behavior of successor heads on natural language data, where we find that succes-
sor heads are important for achieving a low loss on examples involving succession,
and also identify interpretable polysemanticity in a Pythia successor head.

1 INTRODUCTION

Figure 1: A successor head with OV matrix WOV takes a numbered token such as ‘Monday’ in
embedding space and maps it to its successor value in unembedding space, e.g. ‘Tuesday’. The
circuit is the simple composition of the embedding matrix, the first MLP block, a single attention
head, and the unembedding matrix.

Mechanistic interpretability (Olah, 2022) is the process of reverse-engineering the algorithms that
trained neural networks have learned. Recently, much attention has been paid to interpreting
transformer-based large language models (LLMs), as these models have demonstrated impressive
capabilities (OpenAI, 2023) but there is little understanding of how these models produce their out-
puts. Existing interpretability research includes comprehensive reverse-engineering efforts into toy
models (Nanda et al., 2023) and small language models (Olsson et al., 2022; Wang et al., 2023),
though few insights have been gained about how frontier LLMs function.

1In this work, we use ‘feature’ to mean an interpretable (linear) direction in activation space, inspired by
the second ‘potential working definition’ from Elhage et al. (2022).

1

Published as a conference paper at ICLR 2024

In mechanistic interpretability, universality (Olah et al., 2020; Li et al., 2016) is a hypothesis that
there are common representations in neural networks. The universality hypothesis asserts that neu-
ral networks with different architectures and scales form common internal representations. Strong
evidence for (or against) the universality hypothesis could significantly affect research priorities in
interpretability. If common representations form across different language models and tasks, then
research on small or toy language models (Elhage et al., 2022; 2021) and narrow tasks (Wang et al.,
2023; Heimersheim & Janiak, 2023; Hanna et al., 2023) may be the best way to gain insights into
LLM capabilities. Conversely, if the representations used by language models do not generalize to
different model scales and/or tasks, then developing methods that can be applied to larger language
models and don’t rely on lessons from small models generalizing (such as Wu et al. (2023), Bills
et al. (2023), Conmy et al. (2023)) may be the most fruitful direction for interpretability.

In this work, we find an interpretable set of attention heads we call successor heads in models of
many different scales and architectures. Successor heads are attention heads that perform incremen-
tation in language models. The input to a successor head is the representation of a token in an ordinal
sequence such as ‘Monday’, ‘first’, ‘January’, or ‘one’. The output of a successor head assigns a
higher likelihood to the incremented token, such as ‘Tuesday’, ‘second, ‘February’, or ‘two’. In our
work, we find evidence for a weak form of universality (Chughtai et al. (2023); points 1. and 2.) in
finding Successor Heads across different models, as well as finding that numeric representations in
language models are compositional (point 3.), as

1. Successor heads form across language models from the scale of 31 million parameters and
to at least as many as 12 billion parameters.

2. Successor heads form across models with different architectures, including Pythia, GPT-2
and Llama-2 (Touvron et al., 2023).

3. Language models use compositional numeric representations to encode the index of these
tokens within their ordinal sequence; these representations exhibit abstract structure, such
as mod-10 features.

Our contributions can be summarised as follows:

1. Introducing and interpreting successor heads (Section 2-3)

(a) We introduce and explain successor heads, and show that they occur in language models across
almost three orders of magnitude of model parameter count.

2. Finding abstract numeric representations in language models (Section 3)

(b) We isolate a common numeric subspace within embedding space, that for any given token
(e.g. ‘February’) encodes the index of that token within its ordinal sequence (e.g. months).

(c) We find evidence for interpretable, abstract features within successor heads’ numeric inputs: an
unsupervised decomposition of token representations yields a crucial set of features we call the
mod-10 features {f0, ..., f9}. fn is present in all tokens whose numerical index ≡ n (mod 10),
e.g. f2 is present in the model’s representations of ‘2’, ‘32’, ‘172’, ‘February’, ‘second’ and
‘twelve’.

(d) We steer the semantics of successor heads’ numeric inputs with vector arithmetic.

3. Showing that the succession mechanism is important in the wild (Section 4)

(d) Finally, we show that successor heads play an important role in incrementation-based tasks in
natural language datasets – for instance, predicting the next number in a numbered list of items.

2 SUCCESSOR HEADS

LLMs are able to increment elements in an ordinal sequence. For instance, Pythia-1.4B will com-
plete the prompt “If this is 1, the next is” with “ 2”, and the prompt “If this is January, the next is”
with “ February”. Given this observation, we find evidence for attention heads within LLMs (which
we refer to as successor heads) responsible for performing this type of incrementation. To get evi-
dence for successor heads we require three definitions: i) the succession dataset of tasks involving
abstract numeric representations, ii) an effective OV circuit to measure how attention heads affect
model outputs, and finally iii) successor score.

2

Published as a conference paper at ICLR 2024

The succession dataset is the set of tokens across eight different tasks that can be incremented:2

Task Tokens
Numbers ‘1’, ‘2’, ..., ‘199’, ‘200’
Number words ‘one’, ‘two’, ..., ‘nineteen’, ‘twenty’
Cardinal words ‘first’, ‘second’, ..., ‘tenth’
Days ‘Monday’, ‘Tuesday’, ..., ‘Sunday’
Day prefixes ‘Mon’, ‘Tue’, ..., ‘Sun’
Months ‘January’, ‘February’, ..., ‘December’
Month prefixes ‘Jan’, ‘Feb’, ..., ‘Dec’
Letters ‘A’, ‘B’, ..., ‘Z’

Table 1: Tokens in the succession dataset

We also include different forms of these tokens, as language model tokenizers often have several
tokens corresponding to the same word (e.g. words with/without a space at the start being different
tokens). Full details of our dataset can be found in our open-sourced experiments.3

Notation. For consistency with prior work we follow all Elhage et al. (2021)’s notation choices,
though the following definitions are sufficient and self-contained for this work regardless. Trans-
former language models use an embedding matrix WE ∈ Rdmodel×nvocab to map tokens to vectors
in the residual stream (the cumulative sum of embeddings, attention heads and MLPs). After
additive application of attention and MLP layers, the unembedding matrix WU ∈ Rnvocab×dmodel

maps the final state of the residual stream to logits for all next token predictions. An OV matrix
WOV ∈ Rdmodel×dmodel maps the residual stream to the output of an attention head, assuming the at-
tention head solely attended to that residual stream. Altogether, our diagram in Figure 1 shows one
shallow path through a transformer model.

Effective OV Circuit. We determine whether attention heads perform succession by studying their
effective OV circuit, which measures the direct effect of input tokens when multiplied by an OV
matrix WOV , as in concurrent work (McDougall et al., 2023) which surveys the importance of
MLP0. The (non-effective) OV circuit WUWOV WE (1) from Elhage et al. (2021) is the inspiration
for our effective OV circuit WUWOV MLP0(WE) (2). Intuitively, (2)’s columns represent input
tokens to the head and the rows represent the logits on each possible output token.

Successor Heads are then operationalized by considering an input token t from our succession
dataset (e.g. t =‘Monday’). If the effective OV circuit column for input t has a larger output on the
successor to t (‘Tuesday’) than on any other of the tokens in that task (‘Monday’ or ‘Wednesday’ or
‘Thursday’ or ...) then we consider the head to have performed succession in this case. Successor
Heads are then defined as the attention heads that pass this test for more than half of the tokens in
the succession dataset. We call the proportion of succession dataset tokens on which an attention
head performs succession the succession score. The succession scores across a range of models are
displayed in Figure 2.

3 DECOMPOSING NUMERIC REPRESENTATIONS

Having found behavioral evidence that successor heads exist across a range of models, we now
perform a case study on the attention head (L12H0) with the maximal successor score in Pythia-
1.4B. Indeed, not only do we find that the representations on which the successor head acts (i.e. the
outputs of the MLP0 layer) share a common numeric subspace (Section A), that for any given token
(e.g. ‘February’) encodes the index of that token within its ordinal sequence (e.g. months), but we
also find mechanistic evidence for transferable arithmetic features within these representations.4

2The days and months tasks are special as the final tokens in these classes (‘Sunday’ and ‘December’) have
cyclical successors (‘Monday’ and ‘January’). We don’t consider the end tokens of the other tasks to have
cyclical successors.

3Available soon at https://github.com/euanong/numeric-representations/blob/
main/exp_numeric_representations/model.py#L19

4Note that we also observe similar abstract numeric representations across other models too – see Ap-
pendix B.3.

3

https://github.com/euanong/numeric-representations/blob/main/exp_numeric_representations/model.py#L19
https://github.com/euanong/numeric-representations/blob/main/exp_numeric_representations/model.py#L19

Published as a conference paper at ICLR 2024

1M 10M 100M 1B 10B
0

0.2

0.4

0.6

0.8

1
Model family:

pythia
gpt2
llama

Successor Heads in Language Models

Number of model parameters

Pr
op

or
tio

n
of

 to
ke

ns
 in

cr
em

en
te

d

Successor
Head Cutoff

1. Numbers

2. Number words

3. Cardinal words

4. Days

5. Day prefixes

6. Months

7. Month prefixes

8. Letters

0

0.2

0.4

0.6

0.8

1 Model family:
Pythia
GPT-2
Llama-2

Task performance of best Successor Heads

Task

Sc
or

e

Figure 2: Plots of successor scores (proportion of tokens where succession occurs) for each model
tested. A plot of the highest successor score observed across all attention heads for each model
tested (left) and successor scores of the best successor heads in models (Pythia-1.4B, GPT-2 XL,
Llama-2 7B) across different tasks (right).

Specifically, we use sparse autoencoders to isolate abstract ‘mod-10’ features within the outputs of
the MLP0 layer (Section 3.1), provide further evidence for these features through linear probing
and ablative experiments on individual neurons (Section 3.2), and use these features to steer model
behavior across different successor tasks (Section 3.3).

3.1 FINDING MOD-10 FEATURES

To uncover more structure within these MLP0-representations, we train a sparse autoencoder (SAE)
(Ng (2011); Cunningham et al. (2023); Bricken et al. (2023), see Appendix B) on tokens t from a
range of ordinal sequences. In short, SAEs find a sparse set of linear features that can reconstruct
activations in neural networks. We apply SAEs to the MLP0-representations of all tokens t and call
this their SAE-decomposition. The ith SAE feature has activation (on input token t) αi(t) ≥ 0.

Given an ordinal sequence token t and a trained SAE, we define t’s most important feature t⋆ as
the SAE feature that, when ablated from the reconstruction of t’s MLP0-representation, causes the
biggest decrease in the probability of the successor of t (by calculating probabilities from the logits
obtained by multiplying by WUWOV).

For numeric tokens tn (e.g. t13 = ‘13’), we find that their most important feature is usually shared
by other numeric tokens tm for which m ≡ n mod 10 (e.g. t3, t23, ..., t93). Indeed, for each of
the ‘mod-10 classes’ {t0, ..., t90}, {t1, ..., t91}, ..., {t9, ..., t99}, the modal most important feature for
tokens in that class is shared on average by 58.5% of tokens in that class. Moreover, we find that the
most important feature of ti typically only has a high activation αi(tj) in the SAE-decomposition
of tj if i ≡ j mod 10, which we visualise as ‘mod-10 bands’ in Figure 3.

We also observe that these features are causally important for the successor head to perform incre-
mentation: if we apply the successor head to the most important features t⋆i of tokens ti (i.e. com-
pute logits as WUWOV t

⋆
i), the resulting distribution places high weight on tokens tj for j ≡ i + 1

mod 10, which we visualise as ‘mod-10 bands’ in Figure 5. Furthermore, the weight placed on
tokens tj when ti is a single-digit number is much larger than that when ti is a double-digit number.

Given these observations, we hypothesise that the most important features of numeric tokens ti
might in some way encode the value of imod 10. As such, we define the mod-10 features f0, ..., f9
as the modal most important features from mod-10 classes {t0, ..., t90}, {t1, ..., t91}, ..., {t9, ..., t99},
averaged over 100 SAE training runs. We verify that these mod-10 features are causally important
for incrementation, by observing that the logit distribution obtained by applying the successor head
to features fi (i.e. WUWOV fi) places high weight on tokens tj for j ≡ i + 1 mod 10 (which we
visualise as ‘mod-10 bands’ in Figure 4).

4

Published as a conference paper at ICLR 2024

3.2 TRANSFERABILITY OF MOD-10 FEATURES

Are the mod-10 features we found in Section 3.1 simply an artifact of the SAE technique? We pro-
vide evidence that these are natural, causally important features by using two independent methods
to recover them: (1) linear probing, and (2) identifying MLP0 neurons. We also demonstrate that
these features transfer to other tasks in the succession dataset (Section 2).

(1) Linear probing. We train a linear probe P : R10×dmodel to predict the value of i mod 10 from
the MLP0-representations of numeric tokens ti. We find that Pi, the ith row of our linear probe,
has a high cosine similarity (on average 0.70764) to the corresponding mod-10 feature fi obtained
from the SAE. Surprisingly, the probe even generalizes to non-numeric tokens, correctly predicting
the index value mod 10 for 94/102 examples from succession dataset tasks 2-8 (Section 2). Our
full experimental setup is described in Appendix C.1. Additionally, we provide an analysis of linear
probes for moduli other than 10 in Appendix R.

(2) MLP0 neurons. We perform ablative experiments on individual MLP0 neurons (activations im-
mediately after the final ReLU/GELU) to find the most important neurons for incrementing numeric
tokens ti (measured by decrease in probability of the successor token ti+1, as per the definition of
most important feature). Observing the behavior of these neurons on tokens ti reveals periodic spik-
ing patterns in firing intensity (the neuron’s activation value), with the most common period across
the top 16 most important neurons being 10. Figure 22 presents the firing patterns of some of these
neurons. Indeed, we also find that the neurons increase probability on successor tokens by multi-
plying the neuron’s corresponding direction with WUWOV in the same figures. Further technical
details can be found in Appendix D. Our results on the interpretability of individual neurons may
seem surprising in light of recent work suggesting that the individual neurons of language models
may be inappropriate as the units of understanding (Elhage et al., 2022). However, our results do
not contradict previous findings that understanding MLPs requires understanding distributed behav-
iors, since, for example, feature f6 appears to be in superposition across at least two neurons (see
Figure 22).

3.3 VECTOR ARITHMETIC WITH MOD-10 FEATURES

The generalization of our mod-10 linear probe to unseen numeric tasks suggests that token repre-
sentations across different tasks might be compositional and share some common mod-10 struc-
ture. In this section, we test our understanding of this structure by performing vector arithmetic
with our mod-10 features to manipulate the index of ordinal sequence tokens. For instance, just as
Mikolov et al. (2013) found that work vectors satisfied vec(‘King’)−vec(‘Man’)+vec(‘Woman’) =
vec(‘Queen’), we expect MLP0(WE(‘fifth’))− kf5 + kf7 (3) to be causally used by the model in a
similar way to MLP0(WE(‘seventh’)), where k is a scaling factor (Appendix E).

We use our successor head to test this hypothesis. Observe that, if (3) behaves like
MLP0(WE(‘seventh’)), applying the successor head to (3) (i.e. multiplying by WUWOV) should
yield a distribution with more weight on ‘eighth’ than on any other token from the cardinal-word
task in the succession dataset (Section 2). Indeed, this is correct as indicated by the circled check-
mark ✓ in Figure 6. We can perform a similar experiment with all tokens in the succession dataset
and with features other than f7 added. The cases where the max logits are on the successor token
are check-marked in Figure 6. We describe the experiment in more detail in Appendix E and we
also display how logits are distributed across tokens for individual cells in Appendix Q. We find
that when the mod 10 addition feature is larger than the source value (modulo 10), vector arithmetic
works on 53% (for months) and 89% (for digits 20-29) of cases.

Greater-than bias. The vector arithmetic experiments (Figure 6) work much worse when the mod-
10 addition is smaller than the source tokens’s ordinal sequence position mod 10 (e.g. experiments
involving ‘March’ and adding f1 or f2 do not go well). This is because Successor Heads are bi-
ased towards values greater than the successor, compared to values less than the successor. This
effect can be seen in Figure 7a on the tokens ‘first’, ‘second’, ..., ‘tenth’. However, our mod-10
features do not exhibit a greater-than bias, as seen in Figure 7b. We survey these effects across
all tasks in Appendix I. As a result, using the mod-10 features to shift logits towards tokens of a
lower order than the input token fails, as the changes in logits are not significant compared to the
large logits on higher-order tokens. In the case of numbers, this leads to the effect that, for exam-

5

Published as a conference paper at ICLR 2024

ple, WUWOV (MLP0(WE(‘35’))− kf5 + kf3) has high logits on ‘43’, rather than ‘33’ (this ‘+10’
effect occurs for 2/3 of entries below the diagonal in the 20-29 numbers table of Figure 6).

0 20 40 60 80
0

20

40

60

80

0

2

4

6

8

10

Output number

F
ea

tu
re

 s
ou

rc
e

Feature activations for the most
important SAE features across numbers

Figure 3: The activations of ti’s most important
feature (y-axis) in the SAE-decomposition of tj
(x-axis), for ti, tj numeric tokens. Values aver-
aged over 100 SAE training runs.

0 20 40 60 80
0

20

40

60

80

−10

−5

0

5

10

15

20

Output number

F
ea

tu
re

 s
ou

rc
e

Logit distributions for the most
important SAE features across numbers

Figure 4: The logit value for tj (x-axis) when
unembedding the most important feature of ti
(y-axis), for ti, tj numeric tokens. Values aver-
aged over 100 SAE training runs.

0 20 40 60 80
0

5

−10
0
10
20

Output number

m
od

-1
0

fe
at

ur
e Logit distribution of each mod-10 feature across numbers

Figure 5: Logit distribution WUWOV fi for each mod-10 feature fi.

Limitations: The absence of a strong greater-than bias in our mod 10 features suggests this feature-
level description is missing some details – specifically, that successor heads must use other numeric
information to produce the greater-than bias we observe. Additionally, while we see a good gener-
alization of the mod 10 features across various tasks in the table in Figure 6, the mod 10 features are
not able to steer the Days and Letters tasks from Section 2. We describe this in Appendix F.

4 SUCCESSOR HEADS IN THE WILD

In this section, we analyze the behaviour of successor heads within natural-language datasets, and
observe that they aren’t simply responsible for incrementation: indeed, we identify four distinct,
interpretable categories of successor head behavior, highlighting successor heads as an example of
an interpretably polysemantic attention head ‘in the wild’.

In order to characterize the behavior of Pythia-1.4B’s successor head on natural-language data, we
randomly sample 128 length-512 contexts from The Pile, and for each prefix of each context, we
assess whether the successor head is important for the model’s ability to predict the correct next
token. To measure importance, we use direct effect mean ablation, which involves patching the
output of a head with its mean output over a chosen distribution (in this case, the same batch), and,
at the very end of the model, subtracting this mean output and adding the original head output to
the residual stream (other effects and ablation methods are explored in Appendix M). We evaluate
prefixes using two different metrics for per-prompt successor head importance:

Winning cases. We identify prefixes where the head that most decreases the logit for the correct
next token under direct effect mean ablation is the successor head, denoting them as winning cases.

6

Published as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9
20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

21 ✓ ✓ ✓ ✓ ✓ ✓ ✓

22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

23 ✓ ✓ ✓ ✓ ✓ ✓

24 ✓ ✓ ✓ ✓ ✓ ✓

25 ✓ ✓ ✓ ✓ ✓

26 ✓ ✓ ✓

27 ✓

28 ✓ ✓

29 ✓

ten ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

eleven ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

twelve ✓ ✓ ✓ ✓ ✓ ✓

thirteen ✓ ✓ ✓ ✓ ✓ ✓ ✓

fourteen ✓ ✓ ✓ ✓ ✓

fifteen ✓ ✓ ✓ ✓ ✓

sixteen ✓ ✓ ✓ ✓ ✓

seventeen ✓ ✓ ✓ ✓

eighteen ✓ ✓ ✓

nineteen ✓ ✓ ✓

twenty ✓ ✓

1 2 3 4 5 6 7 8 9 0
January ✓ ✓ ✓

February ✓ ✓ ✓

March ✓ ✓ ✓

April ✓ ✓ ✓

May ✓ ✓ ✓

June ✓ ✓ ✓ ✓ ✓ ✓

July ✓ ✓ ✓

August ✓ ✓

September ✓ ✓ ✓

first ✓ ✓ ✓ ✓

second ✓ ✓ ✓ ✓

third ✓ ✓ ✓ ✓ ✓

fourth ✓ ✓ ✓ ✓

fifth ✓ ✓ ✓ ✓

sixth ✓ ✓ ✓ ✓

seventh ✓ ✓ ✓

eighth ✓ ✓ ✓

ninth ✓

Example: The circled case (3) has a source token of
‘fifth’ and a target residue of 7, and it is ticked because
vector arithmetic leads to this token being successfully
treated like ‘seventh’)

Figure 6: Table displaying cases in which vector arithmetic such as (3) is successful for various
ranges of tokens. Other ranges of tokens give similar results, as displayed in Appendix P. Rows:
source tokens. Columns: target residues modulo 10.

 first

 second

 third

 fourth

 fifth

 sixth

 seventh

 eighth

 ninth

 tenth

 first

 second

 third

 fourth

 fifth

 sixth

 seventh

 eighth

 ninth

 tenth

0

10

20

30

40

50

Output token

S
ou

rc
e

to
ke

n

Logits

(a) Evaluating the effective OV circuit on the input and
output tokens ‘first’, ‘second’, ..., ‘tenth’.

 first

 second

 third

 fourth

 fifth

 sixth

 seventh

 eighth

 ninth

 tenth

0

2

4

6

8

−10

−5

0

5

10

15

20

Output token

m
od

 1
0

fe
at

ur
e

Logits

(b) Multiplying all mod 10 features fi by WUWOV .

Figure 7: The Successor Head OV circuit displays a clear bias against decrementation (Figure 7a),
i.e. the logits on or above the main diagonal are less than the logits below the main diagonal. This
bias isn’t captured in the mod 10 feature (Figure 7b).

Loss-reducing cases. We identify prefixes p where direct effect mean ablation of the successor
head increases next-token prediction loss (by ∆L(p)), denoting them as loss-reducing cases.

4.1 INTERPRETABLE POLYSEMANTICITY IN SUCCESSOR HEADS

On analyzing prefixes where the successor head is particularly important for next-token prediction
– i.e. loss-reducing and winning cases – we observe four main categories of behavior, which we
operationalize as follows (denoting a top-n-attended token as a token at one of the top n positions
to which the successor head attends most strongly):

7

eqn:fifth_seventh

Published as a conference paper at ICLR 2024

Successorship behavior: the successor head pushes for the successor of a token in the context. We
say this behavior occurs when one of the top-5-attended tokens is in the successorship dataset, and
the correct next token is the successor of t.

Acronym behavior: the successor head pushes for an acronym of words in the context. We say this
behavior occurs when the correct next token is an acronym whose last letter corresponds to the first
letter of the top-1-attended token. (For example, if the successor head attends most strongly to the
token ‘Defense’, and the correct next token is ‘OSD’.)

Copying behavior: the successor head pushes for a previous token in the context. We say this
behavior occurs when the correct next token t has already occurred in the prompt, and token t is one
of the top-5-attended tokens.

Greater-than behavior: the successor head pushes for a token greater than a previous token in the
context. We say this behavior occurs when we do not observe successorship behavior, but when the
correct next token is still part of an ordinal sequence and has greater order than some top-5-attended
token (e.g. if the successor head attends to the token ‘first’ and the model predicts the token ‘third’).

Successorship
43.4%

Acronym
23.8%

G
reater-than

18.9%

Other
14%

Proportions of behaviours in winning cases

Figure 8: Proportions of three dominant
behaviors across winning cases.

Prompt Completion
(...) [@B2] Hence, bonding to ceramic
requires strict attention to detail for op-
timal clinical outcomes.[@B

3

(...) designated as boxazomycin A and B
(...) called Generalized Single Step
Single Solve (

GS

(...) More than two- thirds
(...) where one or more access points (AP

Figure 9: Random sample of 5 winning cases. Negli-
gibly many winning cases were copying.

Successorship
38.2%

Other
28.7%

Co
pyi
ng

11.7%

A
cr
on
ym

10
.8

%

G
reater-than

10.5%
Proportions of behaviours in most loss reducing cases

Figure 10: Proportions of reduced loss
(∆L) attributable to prompts of each be-
haviour.

Prompt Completion
(...) low-dose administration of 14- and 15
(...) in the second round, let’s get it to
the

third

(...) for 1) investigators to ask the mis-
sionaries,

2

(...) You are using Microsoft Test Man-
ager (

MT

(...) known as the Medical Research
Council Technology (

MR

Figure 11: The top 5 most loss reducing examples.

We plot the proportions of each behavior observed across winning cases in Figure 8, and the fraction
of total reduced loss over all contexts (∆L) attributable to contexts of each behavior in Figure 10.
We also illustrate a random sample of 5 winning cases in Figure 9, and of 5 loss-reducing cases in
Figure 11. We observe that, while successorship is the predominant behavior across both winning
and loss-reducing cases, acronym and greater-than behaviors also form a non-negligible fraction of
successor head behavior. In other words, the successor head is an example of an attention head with
interpretable polysemanticity5. While polysemanticity has been observed in both vision models
(Olah et al., 2020) and toy models trained to perform simple tasks (Elhage et al., 2022), to the best
of our knowledge the presence of both successorship and acronym behavior in head L12H0 is the
cleanest example of polysemantic behavior identified so far in an LLM, where we show two clear
distinct behaviors one model component has. Finally, this finding is surprising given research into
polysemanticity and superposition (Elhage et al., 2022; Bricken et al., 2023). The succession and
acronym behaviors are different tasks that L12H0 completes, yet they are not independent tasks

5A component of a network is said to be interpretably polysemantic if it performs multiple distinct, inter-
pretable functions.

8

Published as a conference paper at ICLR 2024

occur in completely different contexts (this is because a token completion could involve both suc-
cession and an acronym, e.g ‘the First Limited Corporation, ’ could be completed with ‘ Second’ or
‘ FLC’).

Note that in this section, while we identified that successor heads are often used in tasks involving
incrementation, we did not explicitly demonstrate that successor heads are necessary for incremen-
tation. In Appendix K we describe an experiment that reveals that successor heads are necessary for
a specific incrementation task (numbered listing).

5 RELATED WORK

Mechanistic Interpretability research aims to reverse engineer trained neural networks analo-
gously to how software binaries can be reverse-engineered (Olah, 2022). This research was largely
developed in vision models (Bau et al., 2017; Olah et al., 2017) though most recent research has
studied language models (Elhage et al., 2021; Olsson et al., 2022; Gurnee et al., 2023) and trans-
formers (Nanda et al., 2023). Olah et al. (2020) introduces the universality hypothesis and we use
Chughtai et al. (2023)’s ‘weak universality’ notion in this work (Section 1).

Transformer circuits. More specifically, our work builds from the insights of Elhage et al. (2021)’s
framework for understanding circuits in transformers, including how autoregressive transformers
have a residual stream. Due to the residual stream, different paths from input to output can bypass
as many attention heads and MLPs as necessary. This has further been explored in specific case
studies (Wang et al., 2023; Goldowsky-Dill et al., 2023) and generalizes to backwards passes (Du
et al., 2023). One related case study to our work is Hanna et al. (2023) which studies a Greater-Than
circuit in GPT-2 Small, similar to how we indirectly found the Greater-Than operation in Section 3.
Hanna et al. (2023) focus mainly on numbers, not other tasks. Our work is inspired by Olsson
et al. (2022) who study induction heads and find that heads with similar attention patterns exist in
larger models. In our work we provide an end-to-end explanation of generalizing language model
components (Figure 1), though induction heads are related to in-context learning and a consistent
phase change in training, which we didn’t observe for successor heads (Appendix H).

LLMs and vector arithmetic. Mikolov et al. (2013)’s seminal work on word embedding arith-
metic showed that latent language model representations had compositionality, e.g. vec(‘King’) −
vec(‘Man’) + vec(‘Woman’) ≈ vec(‘Queen’). Recently Merullo et al. (2023) showed some exten-
sion of these arithmetic results to LLMs. L (2023) found that ‘one is 1’ and that similar heads in
GPT-2 Small boost successors numbers, months and days, which we generalize to more architec-
tures and to an end-to-end circuit (Figure 1). Lan & Barez (2023) also use an automated approach
to study the overlap of these tasks. Finally, Subramani et al. (2022); Li et al. (2023) and Turner et al.
(2023) use residual stream additions to steer models. Our work differs in that it considers shallow
targeted paths through networks, rather than deep hidden states in networks.

6 CONCLUSION

In this work, we discovered and interpreted a class of attention heads we call successor heads. We
showed that these heads increment tokens in ordinal sequences like numbers, months, and days, and
that the representations of the tokens are compositional and contain interpretable, abstract ‘mod-10’
features. We provided evidence that successor heads exhibit a weak form of universality, arising in
models across different architectures and scales (from 31M to 12B parameters), and using similar
underlying mod-10 features in all cases. Finally, we validated our understanding by demonstrating
that a successor head reduced the loss on training data by predicting successor tokens.

Additional numeric representation findings relevant to future work include:

1. Finding a ‘greater-than bias’, where a language model was much more likely to predict
numeric answers larger than the values in the prompt, compared to smaller values than
tokens present in the prompt, that was observable by a weights-level analysis.

2. Surprisingly interpretable individual MLP0 neurons on this narrow task.
3. A novel example of attention head polysemanticity (successor heads predicting acronyms).

9

Published as a conference paper at ICLR 2024

7 ACKNOWLEDGEMENTS

We would like to thank Bilal Chughtai, Théo Wang and reviewers for comments on a draft of this
work and Neel Nanda for a helpful discussion, as well as Lawrence Chan and Sebastian Farquhar
for pieces of advice. Elizabeth Ho, Will Harpur-Davies and Andy Zhou worked on an early version
of this work in GPT-2 Small with help from Théo Wang.

Contributions from each author: Rhys Gould first found successor heads in GPT-2 Small and Pythia-
1.4B, and identified the mechanism from Figure 1 as well as the mod-10 features. Euan Ong de-
veloped Appendix A, improved our understanding, and worked on writing across the paper. George
Ogden found successor heads in larger models (e.g Figure 2). Arthur Conmy led the project, framed
the paper’s contributions and suggested and implemented several experiments throughout the work.

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations, 2017. 9

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens, 2023. 18

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. 18

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
neurons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html, 2023. 2

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html. 4, 8

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineer-
ing how networks learn group operations, 2023. URL https://arxiv.org/abs/2302.
03025. 2, 9

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability, 2023. 2

Stanford CRFM. Mistral: A framework for transparent and accessible large-scale language model
training. https://github.com/stanford-crfm/mistral, 2021. 18

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023. 4, 13, 14

Kevin Du, Lucas Torroba Hennigen, Niklas Stoehr, Alexander Warstadt, and Ryan Cotterell. Gen-
eralizing backpropagation for gradient-based interpretability, 2023. 9

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Gan-
guli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
URL https://transformer-circuits.pub/2021/framework/index.html. 2,
3, 9

10

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2302.03025
https://arxiv.org/abs/2302.03025
https://github.com/stanford-crfm/mistral
https://transformer-circuits.pub/2021/framework/index.html

Published as a conference paper at ICLR 2024

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022. 1, 2, 5, 8

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023. 9

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsi-
mas. Finding neurons in a haystack: Case studies with sparse probing, 2023. 9

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained language model, 2023. 2, 9

Stefan Heimersheim and Jett Janiak. A circuit for Python doc-
strings in a 4-layer attention-only transformer, 2023. URL https:
//www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
a-circuit-for-python-docstrings-in-a-4-layer-attention-only.
2

Mikhail L. One is 1: Analyzing activations of numerical words vs digits 1, Jul 2023. 9

Michael Lan and Fazl Barez. Locating cross-task sequence continuation circuits in transformers,
2023. 9

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model, 2023. 9

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do
different neural networks learn the same representations?, 2016. 2

Callum McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda. Copy sup-
pression: Comprehensively understanding an attention head. arXiv preprint, 2023. 3

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations, 2023. 21

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
style vector arithmetic, 2023. 9

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositionality, 2013. 5, 9

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.
1, 9

Andrew Ng. Sparse autoencoder. Online Course Notes, Stanford University, 2011. URL https:
//web.stanford.edu/class/cs294a/sparseAutoencoder.pdf. 4

Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable bases.
https://www.transformer-circuits.pub/2022/mech-interp-essay, 2022.
1, 9

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Featture visualization. Distill, 2017.
doi: 10.23915/distill.00007. https://distill.pub/2017/feature-visualization. 9

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. 2, 8, 9

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learn-
ing and induction heads, 2022. URL https://transformer-circuits.pub/2022/
in-context-learning-and-induction-heads/index.html. 1, 9

11

https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://openreview.net/forum?id=9XFSbDPmdW
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

Published as a conference paper at ICLR 2024

OpenAI. Gpt-4 technical report, 2023. 1

Judea Pearl. Causality. Cambridge University Press, 2 edition, 2009. ISBN 978-0-521-89560-6.
doi: 10.1017/CBO9780511803161. 21

Lee Sharkey, Dan Braun, and Beren Millidge. [interim research re-
port] taking features out of superposition with sparse autoencoders, 2022.
URL https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/
interim-research-report-taking-features-out-of-superposition.
13, 14

Nishant Subramani, Nivedita Suresh, and Matthew E. Peters. Extracting latent steering vectors from
pretrained language models, 2022. 9

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. 2

Alexander Matt Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDi-
armid. Activation addition: Steering language models without optimization, 2023. 9

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul. 1, 2, 9

Zhengxuan Wu, Atticus Geiger, Christopher Potts, and Noah D. Goodman. Interpretability at scale:
Identifying causal mechanisms in alpaca, 2023. 2

A ORDINAL SEQUENCES ARE REPRESENTED COMPOSITIONALLY

Let is denote the ith token in ordinal sequence s (such that e.g. 2Month corresponds to the token
‘February’), and let JisK = MLP0(WE(is)) denote the model’s internal MLP0-representation of
token is (the output of MLP0 in Figure 1).

Given successor heads S = WOV can increment tokens si from a range of ordinal sequences s (e.g.
numbers, months, days of the week), one might hypothesise that the MLP0-representations of such
tokens have compositional structure – i.e. that information about a token’s position i in its ordinal
sequence is encoded independently from information about which ordinal sequence s it comes from.
More precisely, we claim that we can decompose representations JisK into features vi living in some
‘index space’ and vs living in some ‘domain space’, such that JisK = vi + vs.

Method. To test this compositionality hypothesis, we wish to learn two linear maps – an index-space
projection πN : Rdmodel → Rdmodel and a domain-space projection πD : Rdmodel → Rdmodel – such that,
for all pairs of tokens is and jt (with it a valid token), ˆJitK := πN(JisK) + πD(JjtK) ≈ JitK. To do
so, we enforce that πN + πD = I , and ensure predicted representations ˆJitK ‘behave like’ ground
truth representations JitK for randomly sampled pairs of tokens is and jt – in other words, that there
is low L2-distance between ˆJitK and JitK, that ˆJitK decodes to it (output-space decoding), and that
S(JitK) decodes to (i+ 1)t (successor decoding). For full experimental details see Appendix N.

12

https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul

Published as a conference paper at ICLR 2024

Source index token ()
 I II III IV V VI VII VIII IX X XI XII

1
 one
 first
 Monday
 Mon
 January
 Jan
 ASe

qu
en

ce
 to

ke
n

(
)

iRom

1s
9 2 3 4 22 6 7 8 9 24 11 12
 nine two three four twenty six seven eight nine twenty eleven twelve
 ninth second third fourth second sixth seventh eighth ninth fourth - -
 Sunday Tuesday Wedne... Thursday Tuesday Saturday Sunday - - - - -
 Sep Tue Wed Thu Tue Sat Sun - - - - -

 February March April February June July August Decem... Novem... Decem...
 Sep Feb Mar Apr Feb Jun Jul Aug Sep Dec Nov Dec
 I B C D V F G H I X W L

 Septem... Septem...

Table 2: A table presenting top-1 predicted tokens under output-space decoding from πD(1s) +
πN(iRom). Green cells denote predictions which match their target exactly; red cells denote incorrect
predictions. Dashed cells denote pairs of 1s and iRom for which is is not a valid (single) token.

Results. On our held-out dataset of token pairs, we obtained a top-1 output-space decoding accuracy
of 1.00. To explore out-of-distribution performance, we also test whether πN can project out the
numeric component of Roman numerals (which weren’t in the successor dataset), by taking Roman
numerals iRom ∈ {‘I’, ..., ‘XII’} and tokens 1s from sequences s in the successor dataset, and testing
whether πD(1s) + πN(iRom) decodes to is. We present the top-1 predicted tokens under output-
space decoding in Table 2: observe that we obtain perfect top-1 accuracy (apart from i ∈ {1, 5, 10},
which we can attribute to the Roman numerals I, V and X being single-letter and impossible to
disambiguate from 9Letter, 22Letter and 24Letter).

These results – in particular, our ability to project the numeric component out of tokens from unseen
sequences and transfer indices across domains – suggest that there is a shared numeric subspace
storing the index of a token within its ordinal sequence. Indeed, informal testing suggests that this
numeric subspace may be interpretable even for tokens not part of an ordinal sequence: for instance,
d(πN(J‘ triangle’K) + πD(1Num)) yields 3Num, and d(πN(J‘ week’K) + πD(1Num)) yields 7Num.

We note in Appendix O, however, that applying the successor head to these learned representations
did not always preserve performance (i.e. for a constructed representation ˆJitK, S(ˆJitK) did not
always decode to (i + 1)t). This suggests our numeric projection πN might be capturing slightly
more than just the numeric subspace: specifically, there may be some components of domain-space
which are ignored by output-space decoding, but which our successor head lifts into output-space.

B SPARSE AUTO-ENCODERS

B.1 DEFINITION

We refer to a single-layer autoencoder with a sparsity regularization term in its loss as a sparse
auto-encoder.

For a dataset generated from a set of underlying vectors (each dataset example is a sparse linear
combination of such vectors), it has been empirically observed (Sharkey et al., 2022; Cunningham
et al., 2023) that sparse auto-encoders are capable of retrieving the underlying set of vectors. We
hope to obtain a set of sparse, interpretable features from the SAEs that decompose some of the
structure of MLP0 space that we can use to analyze the way numeric operations are performed.

B.2 TRAINING PROCESS FOR MOD 10 FEATURES

Training a sparse auto-encoder with D features and regularization coefficient λ on a dataset of tokens
in MLP0 space results in a map F : Tokens → (Rd×R+)

D, with F (x) = {(v1, a1), . . . , (vD, aD)},
mapping a token to a set of feature and feature-activation pairs, with reconstruction R(x) =∑D

i=1 aivi. Each vi the ReLU of a linear transformation with the input to the SAE, represented
by We in Figure 12. Note that we use SAEs in MLP0 space, i.e. the reconstruction loss is at the
middle stage of Figure 1 which we have illustrated in Figure 12.

We train the SAE using number tokens from 0 to 500, both with and without a space (‘123’ and
‘ 123’), alongside other tasks, such as number words, cardinal words, days, months, etc. 90% of

13

Published as a conference paper at ICLR 2024

Figure 12: SAEs are trained on the activation after MLP0 and before WOV .

these tokens go into the train set, and the remaining 10% to the validation set. Even with the other
tasks, the dataset is dominated by numbers, but creating a more balanced dataset would give us less
data to work with, and without enough data, the SAE fails to generalize to the validation set. Hence,
we only concern ourselves with the features that the SAE learns for number tokens, and we then
separately check whether these features generalize to the other tasks on the basis of logits, rather
than SAE activations.

We used the hyperparameters D = 512 and λ = 0.3, with a batch size of 64, and trained for 100
epochs. To find these hyperparameters, we used the metric of mean max cosine similarity between
two trained SAEs, as described in Sharkey et al. (2022) and Cunningham et al. (2023).

B.3 UNIVERSALITY OF MOD-10 RESULTS

We also observe the mod 10 structure via SAEs across models other than Pythia-1.4B, without any
finetuning of SAE parameters to these models. We reproduce the SAE figures seen in Section 3.1 for
other models, with Appendix B.3 for Pythia-2.8B, and Appendix B.3 for celebrimbor-gpt2-medium-
x81.

C TEST SET EVALUATION

C.1 LINEAR PROBING

We train a linear probe to predict the mod 10 value of tokens. Specifically, we train on number
tokens from ‘0’ to ‘500’, both with and without a space, assigning 90% of tokens to a train set, and
the remaining 10% to a validation set. We use a learning rate of 0.001, and a batch size of 32, for
100 epochs.

We then evaluate on a dataset of unseen tasks, including number words (from ’one’ to ’nineteen’),
placements, Roman numerals, months, days, and any valid spaced and capitalized variants. Out
of the total 102 such examples, 94/102 are correct, and the 8 failures are: [‘January’, ‘December’,
‘Friday’, ‘Saturday’, ‘Sunday’, ‘ V’, ‘ X’, ‘ XV’].

The failures of 3 out of 7 days are consistent with our inability to interpret the day task well with
our mod 10 features. Additionally, we see ‘January’ and ‘December’ as failure cases, which is also
consistent with our finding that there does not seem to be a mod 10 feature that corresponds to any
of them: f1 behaves as ‘November’ rather than ‘January’, and f2 as ‘February’.

14

Published as a conference paper at ICLR 2024

0 20 40 60 80
0

20

40

60

80

0

2

4

6

8

10

12

Input number

F
ea

tu
re

 s
ou

rc
e

Feature activations for the most
important SAE features across numbers

(EleutherAI/pythia-2.8b)

(a) SAE feature activations

0 20 40 60 80
0

20

40

60

80

−10

−5

0

5

10

15

20

Input number

F
ea

tu
re

 s
ou

rc
e

Logit distributions for the most
important SAE features across numbers

(EleutherAI/pythia-2.8b)

(b) Feature logit distribution

0 20 40 60 80
0

5

−10
0
10
20

Input number

m
od

-1
0

fe
at

ur
e

Logit distribution of each mod-10 feature across numbers
(EleutherAI/pythia-2.8b)

(c) Logit distribution for each mod-10 feature

Figure 13: SAE plots for Pythia-2.8B analogous to Figure 3, Figure 4, and Figure 5.

15

Published as a conference paper at ICLR 2024

0 20 40 60 80
0

20

40

60

80

0

0.5

1

1.5

2

Input number

F
ea

tu
re

 s
ou

rc
e

Feature activations for the most
important SAE features across numbers

(celebrimbor-gpt2-medium-x81)

(a) SAE feature activations

0 20 40 60 80
0

20

40

60

80

−4

−2

0

2

4

6

8

10

12

Input number

F
ea

tu
re

 s
ou

rc
e

Logit distributions for the most
important SAE features across numbers

(celebrimbor-gpt2-medium-x81)

(b) Feature logit distribution

0 20 40 60 80
0

5

−5
0
5
10

Input number

m
od

-1
0

fe
at

ur
e

Logit distribution of each mod-10 feature across numbers
(celebrimbor-gpt2-medium-x81)

(c) Logit distribution for each mod-10 feature

Figure 14: SAE plots for celebrimbor-gpt2-medium-x81 analogous to Figure 3, Figure 4, and Fig-
ure 5

16

Published as a conference paper at ICLR 2024

1M 10M 100M 1B 10B

0

0.2

0.4

0.6

0.8

1

Model family:

gpt2

EleutherAI/pythia

llama

Roman Numeral Successor Score

Number of model parameters

P
r
o
p
o
r
t
io

n
 o

f
t
o
k
e
n
s
 i
n
c
r
e
m

e
n
t
e
d In this work, we used all

tokens in numeric sequences
in the models’ vocabularies,
except Roman numerals, so
can use these as a test set,
as in Appendix C.1 and Ap-
pendix N. We tested all the
OpenAI GPT-2 models as
well as the Pythia models
with at least 1B parameters.
We find that Successor Heads
have variable performance on
this held out task, with many
(including all Pythia models)
achieving a high succession
score. However, the original
Llama-7B does not generalize
well to this task.

Figure 15: (Left) Succession
scores for the Roman numer-
als task only.

C.2 HELD-OUT TASK

D MLP0 NEURONS

In our MLP0 neuron experiments, we do the following: for each T ∈ {‘0’, ‘1’, . . . , ‘99’}, we ablate
each neuron from the final activation in MLP0 (the final activation is just before the final linear layer
of MLP0), and store the probability attributed to the successor of T after passing the modified (due
to ablation) MLP0 output through the successor.

Averaging the correct probabilities across all 100 prompts then gives an averaged correct probabil-
ity for each neuron after ablation. We then look at the intensities (neuron activation values) and
logits across inputs of number tokens for neurons with the lowest correct probability after ablation,
meaning they have the most impact on successorship when ablated. This gives us the plots seen in
Figure 22.

E ARITHMETIC EXPERIMENTS

For a token t (row of arithmetic table) with order n := ord(t), and mod-10 feature fi (column of
arithmetic table), we consider how x := MLP0(WE(t)) + k(−fn + fi) attributes logits to tokens
within the same task as t, with k ∈ R+ a scaling. We denote whether x correctly attributes maximal
logits to the successor token t+ of t (defined by the property that ord(t+) = n+1) by a checkmark,
as seen in Figure 6. Since the mod-10 features {fi}i obtained from the SAE are normalized to unit
norm, the scaling k is necessary in order to modify the order of a numeric token. For example,
though f1 may be present in the MLP0 embedding of ’ eleven’, we do not know the intensity of
the feature (analogous to SAE feature strengths {αi(t)}i) in the embedding. We use the heuristic
of a scaling k := λ(MLP0(WE(t)) · fn ∈ R for some λ ∈ R+. The appropriate λ should be
such that performing the arithmetic described by x has an effect on the embedding’s numeric order
(i.e. λ large enough) while not corrupting the task identity of the original embedding (i.e. λ not
too large), which is checked by multiplying x by WUWOV and observing whether the top token
has these two properties (that is, whether the numeric order of the token has been altered while
maintaining the same task identity of, say, a month). By checking this criterion for a range λ ∈

17

Published as a conference paper at ICLR 2024

Monday

Tuesday

Wednesday

Thursday

Friday
Saturday

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

−5

0

5

10

15

20

Prompts

S
ou

rc
e

pr
om

pt

Logits

(a) Output logits for suc-
cessor heads on day tokens
(cf. Fig. 7a)

Monday

Tuesday

Wednesday

Thursday

Friday
Saturday

Sunday

0

2

4

6

8

−10

−5

0

5

10

Prompts

m
od

 1
0

fe
at

ur
e

Logits

(b) Presence of mod-10
Features on Day Token
Predictions (cf. Fig. 7b)

a c e g i k m o q s u w y
a

c

e

g

i

k

m

o

q

s

u

w

y

−15

−10

−5

0

5

10

15

20

25

Prompts

S
ou

rc
e

pr
om

pt

Logits

(c) Output logits for suc-
cessor heads on letter to-
kens (cf. Fig. 7a)

a c e g i k m o q s u w y

0

2

4

6

8

−5

0

5

10

Prompts

m
od

 1
0

fe
at

ur
e

Logits

(d) Presence of mod-10
features on letter tokens
(cf. Fig. 7b)

Figure 16: Comparative analysis of output logits for day and letter tasks and presence of mod-10
features. This complements the main text analysis in Figures 7a and 7b, limitations of mod-10
features across certain tasks successor heads perform.

{0.0, ..., 0.75, 1.0, 1.25, ..., 3.0}, we find that λ = 1 achieves this criterion for all tasks other than
months, where months instead have λ = 2.

F FAILURE CASES OF MOD 10 FEATURES

For the day and alphabet task, analogously to Figure 7, we look at the logits across the task and the
mod 10 features. These are displayed in Figure 16, and demonstrate that our mod 10 features are not
very interpretable in the context of days and the alphabet in terms of logits, with no clear diagonal
of high logits.

G RESIDUAL CONNECTIONS ARE NOT IMPORTANT FOR SUCCESSION

To show that there is no relevant information in the residual stream, i.e. the path WUMLP0(WE) is
not sufficient to predict successors, we perform an experiment using the Tuned Lens (Belrose et al.,
2023), which approximates the optimal predictions after a given layer inside a transformer.

For all tasks in the succession dataset (Section 2), we used prompt formats (where | denotes a gap
between tokens)

1. |Here| is| a| list|:| alpha| beta| gamma| and| here| is|
another|:|<token1>|

2. |The|Monday|Tuesday|Wednesday| and| The|<token1>|

in order to measure how well models were able to predict the successor <token2> (e.g ‘February’)
given the final token of the prompt was <token1> (e.g ‘January’), as LLMs, predict successors
given these prompts.

We then took GPT-2 Small and Pythia-1.4B’s output after MLP0 and used the Tuned Lens to get
logits on output tokens.6 The resulting successor score was <1% and commonly predicted bigrams,
such as <token1>=“ first” giving “ time” as a completion and <token1>=‘ Sunday’ giving ‘
morning’ as a prediction. This suggests that MLP0 information is insufficient for incrementation
and the successor head is critical for succession.

H TESTING SUCCESSOR SCORE OVER TRAINING STEPS

Another line of evidence that Successor Heads are an important model component for low training
loss can be found by studying successor scores across training points. We study a Pythia model (Bi-
derman et al., 2023) as well as a Stanford GPT model (CRFM, 2021), as these models have training
checkpoints. The emergence of Successor Heads throughout training is displayed in Figure 17.

6Note we did run with GPT-2 Small’s attention layer 0 to maximise the model’s chances are being able to
perform succession. Pythia-1.4B has parallel attention so we just take the MLP0 output in this case.

18

Published as a conference paper at ICLR 2024

0 20k 40k 60k 80k 100k 120k 140k
0

0.2

0.4

0.6

0.8

pythia-70m
pythia-1.4b
pythia-2.8b

Successor scores across checkpoints in Pythia models

Checkpoints

B
es

t s
uc

ce
ss

or
 s

co
re

(a) Pythia models (b) Stanford GPT-2 Medium-C

Figure 17: Best successor scores across successor heads throughout training checkpoints for Pythia
and stanford-gpt2 models.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

−5

0

5

10

15

20

25

30

35

Prompts

S
ou

rc
e

pr
om

pt

Logits

(a) Numbers
 one

 three

 five

 seven

 nine

 eleven

 thirteen

 fifteen

 seventeen

 nineteen

 one

 three

 five

 seven

 nine

 eleven

 thirteen

 fifteen

 seventeen

 nineteen

−5

0

5

10

15

20

25

30

Prompts

S
ou

rc
e

pr
om

pt

Logits

(b) Number words

 first

 second

 third

 fourth

 fifth

 sixth

 seventh

 eighth

 ninth

 tenth

 first

 second

 third

 fourth

 fifth

 sixth

 seventh

 eighth

 ninth

 tenth

0

10

20

30

40

50

Output token

S
ou

rc
e

to
ke

n

Logits

(c) Placements

January

F
ebruary

M
arch

A
pril

M
ay

June

July

A
ugust

S
eptem

ber

O
ctober

N
ovem

ber

D
ecem

ber

January

February

March

April

May

June

July

August

September

October

November

December

−10

−5

0

5

10

15

20

Prompts

S
ou

rc
e

pr
om

pt

Logits

(d) Months

Figure 18: Plots of logits across various numeric classes, analogous to Figure 7a. Source tokens are
on the y-axis and output tokens are on the x-axis.

I DECREMENTATION BIAS ACROSS DIFFERENT TASKS

We show the strength of the decrementation bias in figures Figure 18 and 19.

J ALL SUCCESSOR SCORES IN A MODEL

In Appendix J we find that for both Pythia-1.4B (the mainline model in the paper) and GPT-2 Large
(a randomly selected model without a successor head from (Figure 2, left)), the heads with highest
successor score are sparse: in Pythia-1.4B L12H0 has eight times as great a successor score to the
next higher successor score.

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

−10

−5

0

5

10

15

20

Prompts

m
od

 1
0

fe
at

ur
e

Logits

(a) Numbers

 one

 three

 five

 seven

 nine

 eleven

 thirteen

 fifteen

 seventeen

 nineteen

0

2

4

6

8

−5

0

5

10

15

Prompts

m
od

 1
0

fe
at

ur
e

Logits

(b) Number words

 first

 second

 third

 fourth

 fifth

 sixth

 seventh

 eighth

 ninth

 tenth

0

2

4

6

8

−10

−5

0

5

10

15

20

Output token

m
od

 1
0

fe
at

ur
e

Logits

(c) Placements

January

F
ebruary

M
arch

A
pril

M
ay

June

July

A
ugust

S
eptem

ber

O
ctober

N
ovem

ber

D
ecem

ber

0

2

4

6

8

−4

−2

0

2

4

6

8

Prompts

m
od

 1
0

fe
at

ur
e

Logits

(d) Months

Figure 19: Plots of mod 10 feature logits across various numeric classes, analogous to Figure 7b

19

Published as a conference paper at ICLR 2024

0 2 4 6 8 10 12 14

22

20

18

16

14

12

10

8

6

4

2

0

−0.5

0

0.5

Fraction of tokens which are weakly successed

Head

L
a
y
e
r

(a) Pythia-1.4B

0 2 4 6 8 10 12 14 16 18

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

−0.2

−0.1

0

0.1

0.2

Fraction of tokens which are weakly successed

Head

L
a
y
e
r

(b) GPT-2 Large

Figure 20: Successor scores for Pythia-1.4B and GPT-2 Large.

Prompt Answer
(...) (A) Colony formation and (< B
(...) (i) f∗

g (y) equals the factual density f(y) for all g ∈ G; (ii
(...) [ˆ2]: Conceived and designed the experiments (...) [ˆ 3
(...) 6. Kirovsky Zavod Station – St. Petersburg, Russia (...) you can see a
statue of Lenin here.

7

(...) [9] Minutes, Criminal Law Revision Commission, January 28, 1972,
16.[

10

Figure 21: Some examples of numbered listing prompts from the Pile dataset.

K CASE STUDY: NUMBERED LISTING

In Section 4 we demonstrate that when the successor head is contributing usefully, the prompts often
required some kind of incrementation. However, we want to investigate whether the converse holds:
are prompts requiring incrementation mostly solved by successor heads?

Numbered listing is widespread across real datasets and requires incrementation. Additionally, blog
post discussion7 suggests that even small LLMs are capable of this task in the case of incrementing
citations. Examples of prompts involving numbered listing can be seen in Figure 21.

We collect 64 such prompts and check for whether the successor head in Pythia-1.4B is a winning
case (as in Section 4), and find that the successor head is indeed the winning head across all 64
prompts. Hence this provides some evidence prompts requiring incrementation in real datasets are
indeed mostly solved by successor heads.

L FIRING PATTERNS OF MLP0 NEURONS

Moved to appendix based on suggestions to emphasise technical background more in the main text.

Firing and logit patterns for the top 16 most important MLP0 neurons are displayed in Figure 22.
We see a superposition effect, with Figure 22c and Figure 22f both representing 6 mod 10.

7https://www.lesswrong.com/posts/LkBmAGJgZX2tbwGKg/
help-out-redwood-research-s-interpretability-team-by-finding

20

https://www.lesswrong.com/posts/LkBmAGJgZX2tbwGKg/help-out-redwood-research-s-interpretability-team-by-finding
https://www.lesswrong.com/posts/LkBmAGJgZX2tbwGKg/help-out-redwood-research-s-interpretability-team-by-finding

Published as a conference paper at ICLR 2024

0 5 10 15 20

0

1

2

0 5 10 15 20

−5

0

5

10

15

Across prompts Across prompts

F
iri

ng
 in

te
ns

ity

Lo
gi

ts

1st most important neuron

(a) 1st place neuron, firing for odd numbers, and
slightly more for 1 mod 10

0 20 40 60 80

0

0.5

1

1.5

2

0 20 40 60 80

−5

0

5

10

15

Across prompts Across prompts

F
iri

ng
 in

te
ns

ity

Lo
gi

ts

7th most important neuron

(b) 7th place neuron, 0 mod 10 neuron

0 20 40 60 80

0

0.5

1

1.5

0 20 40 60 80

0

10

20

Across prompts Across prompts

F
iri

ng
 in

te
ns

ity

Lo
gi

ts

8th most important neuron

(c) 8th place neuron, 6 mod 10 neuron

0 20 40 60 80

0

0.5

1

0 20 40 60 80

−10

0

10

20

Across prompts Across prompts

F
iri

ng
 in

te
ns

ity

Lo
gi

ts

10th most important neuron

(d) 10th place neuron, 4 mod 10 neuron

0 20 40 60 80

0

0.5

1

0 20 40 60 80

0

10

20

Across prompts Across prompts

F
iri

ng
 in

te
ns

ity

Lo
gi

ts

15th most important neuron

(e) 15th place neuron, 5 mod 10 neuron

0 20 40 60 80

0

0.5

1

0 20 40 60 80

−5

0

5

10

Across prompts Across prompts

F
iri

ng
 in

te
ns

ity

Lo
gi

ts

16th most important neuron

(f) 16th place neuron, another 6 mod 10 neuron

Figure 22: Some examples of neurons firing strongly in modulo 10 patterns out of the top 16 most
important MLP0 neurons for successorship.

M DIFFERENT ABLATION METHODS

To analyze the effect of language model components when running ablation experiments it is im-
portant to distinguish the direct, indirect and total effect of language model components (McGrath
et al., 2023; Pearl, 2009) on model outputs, which are illustrated in Figure 23. To measure the di-
rect effect of a component (for a given ablation method) the direct effect involves, at the end of
the model, subtracting the head’s output and adding the ablated output of the head to the residual
stream. In Section 4, we analyzed direct effect under the ablation method of mean ablation. This
appendix argues that our the direct effect is the largest effect and our results hold under different
ablation methods.

A

D

O

Basic Graph

A

D

O

Direct Effect

A

D

O

Indirect Effect

A

D

O

Total Effect

Figure 23: The types of effect an Attention Head (A) could have on model output (O), possibly
through mediating downstream model components (D).

The indirect effect instead involves replacing a head’s output with an ablated output and, at the
very end of the model, subtracting this ablated output and adding the head’s original output. This
effectively ablates the downstream effects of a head.

21

Published as a conference paper at ICLR 2024

The total effect replaces the head’s output with an ablated output, which effectively ablates both the
direct and indirect effect of the head.

We ablate head outputs using one of the two techniques:

1. Mean ablation: replacing the output of a head with the average head output over a chosen
distribution. We choose this distribution to be the current batch we are using.

2. Resampling ablation: replacing the output of a head with the head’s activation on a ran-
domly sampled example from a dataset (e.g. the Pile). When using this method, we repeat
this process a number of times and average the results.

Rerunning the loss reducing experiments described in Section 4.1 for these different methods gives:

1. Direct effect resampling ablation: 33% for successorship, 11% for acronym, 10% for
greater-than, and 11% for copying behaviour.

2. Indirect effect mean ablation: 6.5% for successorship, 2.8% for acronym, 12% for greater-
than, and 9.0% for copying behaviour.

3. Indirect effect resampling ablation: 5.8% for successorship, 2.7% for acronym, 11% for
greater-than, and 8% for copying behaviour.

4. Total effect mean ablation: 27% for successorship, 8.2% for acronym, 10% for greater-
than, and 8.4% for copying behaviour.

5. Total effect resampling ablation: 30% for successorship, 6.5% for acronym, 11% for
greater-than, and 6.2% for copying behaviour.

Result 1 demonstrates that using resampling ablation instead of mean ablation for analyzing the
loss reducing effect has little effect on the results in Figure 10. Additionally, the indirect effect
results (2 and 3) provide some evidence that downstream effects of the successor head are not highly
significant to successorship.

N TRAINING DETAILS FOR COMPOSITIONALITY EXPERIMENTS

Remark: obtaining a decoding function. Recall that we wish to learn two linear maps – an index-
space projection πN : Rdmodel → Rdmodel and a domain-space projection πD : Rdmodel → Rdmodel – such
that, for all pairs of tokens is and jt (with it a valid token), ˆJitK := πN(JisK) + πD(JjtK) ≈ JitK.
To evaluate the above identity, we must first learn a decoding function d : Rdmodel → Rdvocab , such
that argmaxt d(JisK)t = is. Given the informal observation that directly unembedding JisK yields
next-token predictions for is whereas unembedding S(is) yields (i + 1)s (see Appendix G), we
hypothesise that the unembedding matrix WU reads from some ‘output space’ O and the embedding
transform J·K writes to some ‘input space’ I – and that the successor head reads from I and writes to
O. Indeed, when training an output-space projection πO : I → O over tokens in the vocabulary such
that WU (πO(JisK)) = is, we obtain 97.4% top-1 accuracy on a set of 1000 held-out tokens – which
both confirms the output-space hypothesis, and gives us a decoding function d(x) = WU (πO(x)).

Method. With our decoding function in hand, we can train πN and πD to satisfy our identity.
Specifically, we define πN and πD to be matrices such that πN + πD = I . For valid token pairs is
and jt, we obtain predicted representations ˆJitK = πN(JisK)+πD(JjtK), and minimise a combination
of ‘closeness metrics’:

|| ˆJitK − JitK||2 + L(WU (πO(ˆJitK)), it) + L(WU (S(ˆJitK)),WU (S(JitK)))

for L the cross-entropy loss. Specifically, we ensure that predicted and ground truth representations
‘behave in the same way’ – in other words, that they are close together, that predicted representations
ˆJitK decode to tokens it (output-space decoding), and that the logit distribution when decoding in-

cremented predicted representations S(JitK) matches that when decoding incremented ground truth
representations S(JitK) (successor decoding).

More succinctly, we can frame the training procedure as learning πN, πD such that the following
diagram commutes:

22

Published as a conference paper at ICLR 2024

RN ×RD I

I × I Logits[N×D] N×D I

(N×D)× (N×D) N×D
π1×π2

J·K×J·K

πN×πD

(+)

WU◦S◦J·K

idIWU◦S

J·K

WU◦πO

idN×D

We trained for 10 epochs over valid token pairs sampled from the succession dataset, and evaluated
on a held-out dataset of 500 randomly-sampled token pairs.

O EFFECTS OF APPLYING THE SUCCESSOR HEAD TO COMPOSITIONAL
REPRESENTATIONS

In Section A, we assessed the performance of our factoring mechanism through output-space de-
coding (i.e. evaluating a representation ˆJitK by testing whether ˆJitK decodes to it). Below, we also
present results for successor-space decoding (i.e. evaluating a representation ˆJitK by testing whether
S(ˆJitK) decodes to (i+ 1)t).

In contrast to the high performance of output-space decoding, we found successor-space decoding
yielded a top-1 accuracy of 0.90 on the held-out dataset of token pairs, and a top-1 accuracy of 0.125
on the out-of-distribution Roman numeral dataset (see Table 3).8

Source index token ()
 I II III IV V VI VII VIII IX X XI XII

1
 one
 first
 Monday
 Mon
 January
 Jan
 ASe

qu
en

ce
 to

ke
n

(
)

iRom

1s

10 Third Fourth 5 23 VII 8 9 10 25 12 13
10 Third fourth fifth 23 seventh eighth ninth 10 25 12 13
 tenth Third fourth fifth VI seventh ninth ninth tenth - - -
RS Third MC Friday MV VII - - - - - -
RS HM HM HM MV MTP - - - - - -
 RS cs cs May 23 cs cs October 25 cs
CS cs cs May 23 cs cs Sept rs 35 cs
III III MC Fifth WV VII VIII 9 cx Y XII iii

Septembe

Table 3: A table presenting top-1 predicted tokens under successor decoding from πD(1s) +
πN(iRom). Green cells denote predictions which match their target ((i + 1)s) exactly; yellow cells
denote predictions which match the target index but not the target domain; red cells denote incorrect
predictions. Dashed cells denote pairs of 1s and iRom for which is is not a valid (single) token.

This drop in performance when switching from output-space to successor decoding (and in partic-
ular, the leakage of Roman-numeral information into πD(1s) + πN(iRom) – notice the VII and VIII
in Table 3) suggests our numeric projection πN might be capturing slightly more than just the nu-
meric subspace. Specifically, there may be some components of domain-space which are ignored
by output-space decoding, but which our successor head lifts into output-space.

P ADDITIONAL ARITHMETIC TABLES

We display additional arithmetic tables analogously to those in Figure 6, with 3 number tables
(randomly sampled ranges) in Figure 24 and a number word table in Figure 25. We see that the
results are similar to those in Figure 6.

8Note, though, that, as our successor dataset contains 1041 tokens, a random classifier (even when restricted
to tokens in the successor dataset) would achieve an accuracy of 0.001.

23

Published as a conference paper at ICLR 2024

(a) Arithmetic table for range 50 to 59

(b) Arithmetic table for range 30 to 39

(c) Arithmetic table for range 120 to 129

Figure 24: Additional randomly selected number arithmetic tables, analogous to those in Figure 6

24

Published as a conference paper at ICLR 2024

(a) Arithmetic table for range zero to nine.

Figure 25: An additional arithmetic table for number words, analogous to those in Figure 6

Q LOGIT DISTRIBUTION FOR CELLS IN THE ARITHMETIC TABLE

The logit distributions across tokens for randomly sampled correct arithmetic examples are displayed
in Figure 26.

(a) Source token ’83’, target residue of 7 modulo
10.

(b) Source token ’50’, target residue of 6 modulo
10.

(c) Source token ’ eleven’, target residue of 5
modulo 10.

(d) Source token ’September’, target residue of 0
modulo 10.

Figure 26: Logit distributions for randomly sampled checkmarked cells, sampling two cells for
numbers, one cell for number words, and one cell for months.

25

Published as a conference paper at ICLR 2024

R LINEAR PROBES FOR MODULI OTHER THAN 10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Modulus

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Validation set
Test set

Figure 27: Validation (in-distribution task) and test (out-of-distribution task) performance for linear
probes P (m). The vertical purple lines denote moduli divisible by 5.

While our experiments in Section 3 focus on the study of mod-10 features, one might hypothesise
that there exist similar natural mod-k features for other k. To explore this hypothesis, we repeat the
linear probing experiment detailed in Section 3.2 for a range of moduli m ∈ {2, ..., 25}. Specifically,
we test whether we can learn linear probes P (m) : Rm×dmodel to predict the value of i mod m from
the MLP-representations of numeric tokens ti, and whether these probes generalise to non-numeric
tokens. As per Appendix C.1, we train our probes on numeric tokens from ‘0’ to ‘500’ (both with
and without a leading space), holding out 10% of these tokens as a validation set, and we test our
probes on a dataset of unseen tasks including cardinal numbers, Roman numerals, months and days.

We present the results of these experiments in Figure 27. Observe that, while for almost all moduli,
validation and test performance are above random chance, we cannot easily extract ‘mod-m data’
from token representations for all m. Indeed, the only probes with out-of-distribution performance
above 0.5 are those for moduli 2-5, 6, 10, 12, 15 and 20 (and the six probes with the lowest validation
performance are those corresponding to the six primes between 5 and 25).

We see some evidence, however, that 10 is a particularly significant modulus for token MLP0-
representations: indeed, P (10) has both the joint highest validation performance (together with
P (2), P (4), P (5) and P (20), and the highest out-of-distribution performance. Moreover, of all the
probes whose validation accuracy is above 0.5, P (10) has the smallest drop in performance from
in-distribution to out-of-distribution tasks.

In particular, for weeks (which we might expect to have ‘mod-7 features’) and months (which we
might expect to have ‘mod-12 features’), not only are the performances of P (7) and P (12) substan-
tially lower than that of P (10), but P (7) fails to correctly identify the index mod 7 of any day of the
week, while P (12) only correctly identifies the index mod 12 of 8/12 months (failing on February,
May, July and August). By contrast, P (10) correctly identifies the index mod 10 of 4/7 days of the
week, and 10/12 months.

26

	Introduction
	Successor Heads
	Decomposing Numeric Representations
	Finding mod-10 features
	Transferability of mod-10 features
	Vector arithmetic with mod-10 features

	Successor Heads in the Wild
	Interpretable Polysemanticity in Successor Heads

	Related Work
	Conclusion
	Acknowledgements
	Ordinal sequences are represented compositionally
	Sparse auto-encoders
	Definition
	Training process for mod 10 features
	Universality of mod-10 results

	Test set evaluation
	Linear Probing
	Held-Out Task

	MLP0 neurons
	Arithmetic experiments
	Failure cases of mod 10 features
	Residual Connections Are Not Important For Succession
	Testing successor score over training steps
	Decrementation bias across different tasks
	All successor scores in a model
	Case study: numbered listing
	Firing patterns of MLP0 neurons
	Different ablation methods
	Training details for compositionality experiments
	Effects of applying the successor head to compositional representations
	Additional arithmetic tables
	Logit distribution for cells in the arithmetic table
	Linear probes for moduli other than 10

