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Abstract

Deep Learning methods over the past years provided high-performance solutions for medical
applications. Yet, robustness and quality control are still required for clinical applicability.
In this work, the uncertainty of proximal femur fracture classification was modeled. We
introduce a reliability measure to our predictive model using the Monte Carlo Dropout
approach. We performed an extensive quantitative and qualitative analysis to validate the
results. We further exposed the results to expert physicians in order to get feedback on
the model’s performance and uncertainty measures. Results demonstrate a positive corre-
lation between the misclassification of the model’s prediction and high uncertainty scores.
Additionally, the uncertainty measures are mimicking the actual radiologist’s uncertainty
for challenging examples reflected on intra- and inter- experts variability.

Keywords: Deep Learning, Uncertainty, Quality Control, Radiology, Proximal femur frac-
tures.

1. Introduction

In the realm of medical diagnosis, Deep Learning has emerged as a powerful tool for pattern
recognition, showcasing remarkable advancements in recent years. Studies have shown that
integrating automated AI models with emergency medicine clinicians significantly enhances
their ability to accurately detect fractures, ultimately improving patient outcomes (Lind-
sey et al., 2018). Among the most prevalent fractures globally are proximal femur frac-
tures, where prompt diagnosis and treatment are crucial for patient well-being and even
survival (Schroeder et al., 2022). However, accurate diagnosis heavily relies on the experi-
ence of medical professionals (Plant et al., 2015). To further enhance diagnostic accuracy,
computer-aided diagnosis (CAD) systems hold immense potential in reducing errors, op-
timizing treatment costs, and saving time in future medical practices (Gale et al., 2017).
Nevertheless, to ensure the successful integration of such systems into clinical routines,
evaluating not only the overall performance but also the reliability of individual diagnoses
is essential. This study aims to address this need by introducing Monte Carlo dropout
(MCDO) layers (Kendall and Gal, 2017), a state-of-the-art approximation of Bayesian Neu-
ral Networks, as a quality control measure. The incorporation of these layers provides a
reliable uncertainty score for automated proximal femur fracture classification, following
the AO-fracture classification system.
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2. Methodology

Having a dataset consisting of 1347 X-ray images and their corresponding labels y ∈ C,
where C represents one of three subsets in different classification scenarios, namely C ∈
{C1, C2, C3}; C1 ⊂ {Fracture,Normal} for fracture detection, C2 ⊂ {A,B,Normal} for
the three-class scenario, and C3 ⊂ {A1, A2, A3, B1, B2, B3} for the six-class scenario, our
objective is to develop a model for femur fracture classification that assigns each image a
class label along with uncertainty scores. The database used in this study was collected from
672 patients by the trauma surgery department of Klinikum Rechts der Isar. The ground
truth labels were collected by three different experts, and all images were verified by a senior
radiologist. Additional annotations were obtained from three independent experts for the
testing set, with each expert providing two independent readings conducted at different
times, considering variations in shifts and lighting conditions. To assess the uncertainty
scores qualitatively, an independent radiologist re-evaluated 30% of the test set.

3. Experiments and Results

The focus of our work is not to outperform the SOTA, but rather to capture the uncer-
tainty while achieving comparable performance. The experiments were designed in a way
to analyze the performance of MCDO under 1) Stochastic (with MCDO) vs. Deterministic
networks, and 2) different loss functions; namely Cross Entropy (CE), Weighted Cross En-
tropy (WCE), and Focal Loss (FL) (Lin et al., 2017), and 3) different network architectures.

Implementation. ResNet model was adopted from (Jiménez-Sánchez et al., 2018), where
the MCDO was introduced only at the last dense layer, treating the rest as a deterministic
network. As for the stochastic DenseNet model, the dropout layers were introduced at each
convolutional layer and in the transition blocks, where the same hyper-parameters were
adopted from (Huang et al., 2017). Besides, 5-fold cross-validation was conducted for the
DenseNet models. To evaluate the performance of our model, we compute the confusion
matrix, F1 -score and the macro average F1 -score for each classification scenario to account
for class imbalance.

Results. In general, models introduced with MCDO layers achieved comparable F1-score
performance to their own baseline models. In an attempt to analyze and compare the per-
formance of MCDO with different settings, namely, deterministic (ResNet) and Stochastic
(DenseNet) models against the individual readings of the three experts and the majority
consensus, we visualize the Receiver operating characteristic (ROC) curves in Fig.2. Over-
all, the performance of our stochastic DenseNet models performed similarly compared to
the expert’s readings. Further, the coherence between the uncertainty scores and misclas-
sification was qualitatively measured. Results demonstrated that the misclassified images
mostly occur in the highly uncertain region. This is most apparent in cases of fracture
detection and 3 classes of classification. As for 6 classes classification, it shows a Gaussian
distribution for the uncertainty scores with almost no coherence with misclassification. This
scenario in particular is the most challenging out of the previous cases and is aligned with
the F1-score reported. This confirms two key outcomes; First, the uncertainty score is a
reliable measure for detecting mistakes in the model performance and a valid robustness
quality control. Second, the model’s performance is reflected by how well and coherent the
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Image is clear

App. No Frac. No

Exp.1 Exp.2 Exp.3

Read1 B B B

Read2 B B B

GT. A Pred. B

Overlapping soft tissue
artefacts as disturbing factor

App. Yes Frac. Yes

Exp.1 Exp.2 Exp.3

Read1 N B N

Read2 N N N

GT. B Pred. B

Image is taken after operation
Healed fracture with sclerotic

transformations after screws removal

App. Yes Frac. No

Exp.1 Exp.2 Exp.3

Read1 B N B

Read2 N B B

GT. N Pred. B

Figure 1: Qualitative Assessment: In the 3-class scenario, the assessment reveals the
following (from left to right): Low Uncertainty Misclassified, High Uncertainty
Correctly Classified, and High Uncertainty Misclassified cases.

modeling of uncertainty, i.e. ResNet+ vs. DesneNet+ (cf. Fig.1). Lastly, the coherence
between the calculated uncertainty scores of the test images and the uncertainty of radi-
ologists’ annotation was validated. In a like manner, the aforementioned scores with the
inter- and intra-observer variability of the three independent experts who participated in
providing two distinctive reads each were compared. The radiologist was asked to provide
comments on the image and the fracture specifying if the classification is an easy or chal-
lenging task, along with stating if the difficulty comes from the fracture complexity (i.e.
cognitive) or from the appearance (i.e. perceptual). To this end, we expect a reflection of
the high uncertainty on the appearance and the fracture difficulty, also a reflection on the
disagreement and the inter-/intra- variability among the three experts.

Conclusion

This paper aimed to compare the performance of various networks in classifying proximal
femur fractures while incorporating an uncertainty score for quality control. The results
demonstrated a strong correlation between misclassification and uncertainty scores, with
the DenseNet stochastic implementation exhibiting the highest alignment with misclassi-

Figure 2: Clinical experts vs. Our model. Comparison of different architecture models
and the clinical experts for the 2, 3 and 6 classes respectively from left to right.
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fied cases. This implies that a high uncertainty score indicates a higher risk of prediction
errors. Moreover, through qualitative analysis, it was observed that the uncertainty mea-
sures closely mirrored the actual uncertainty experienced by radiologists when dealing with
challenging and complex cases, as evident from intra- and inter-expert variability. These
findings have important implications both in scientific research and clinical applications. In
research, they can be utilized to enhance the training of computer-aided diagnosis (CAD)
systems by identifying errors and addressing difficulties, particularly in complex classifica-
tions. Additionally, they can serve as a crucial element in facilitating the clinical imple-
mentation of deep learning models by providing clinicians with a quantitative measure of
quality for CAD predictions. Future work should focus on enhancing the robustness of the
models and expanding the analysis to different datasets, including other anatomical regions
of the human body.
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Amelia Jiménez-Sánchez, Anees Kazi, Shadi Albarqouni, Sonja Kirchhoff, Alexandra
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