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Abstract

Many real-world prediction problems involve modelling the dependencies between multiple
different outputs across the input space. Multi-output Gaussian Processes (MOGP) are a
particularly important approach to such problems. In this paper, we build on the Gaussian
Process Autoregressive Regression (GPAR) model which is one of the best performing
MOGP models, but which fails when observation noise is large, when there are missing
data, and when non-Gaussian observation models are required. We extend the original
GPAR model to handle these settings and provide a variational inference procedure similar
to that used in deep Gaussian Processes which replaces the ad hoc denoising approximation
used in the original work. We show that the new approach naturally handles noisy outputs,
missing data and that it also enables the model to handle heterogeneous non-Gaussian
observation models.

1. Introduction

With the growing prevalence of complex decision making systems, there is increasing need
for learning systems that predict multiple outputs simultaneously. Multi-output problems
appear in many different forms: they can differ in data types of the outputs or in the ways
outputs depend on one another. Examples that involve mixed output data types include
real-valued multi-target regression (Borchani et al., 2015), multi-label classification (Zhang
and Zhou, 2013), and the heterogeneous case where a mix of continuous, categorical, or dis-
crete variables are of interest (Moreno-Muñoz et al., 2018). Complex dependencies between
outputs also appear in various ways: one output might depend quite simply on inputs but
can depend on certain other outputs in a complex way. The sophisticated dependencies
between these outputs require structured modelling. Multi-output GPs (MOGPs) are a
powerful and popular approach to multi-output modelling. In this paper, we focus on one
of the MOGPs that explicitly treats outputs as inputs, called the Gaussian Process Autore-
gressive Regression (GPAR), studied by Requeima et al. (2018). We generalise GPAR to
deal with noisy or missing values in the outputs in a principled way and enable it to model
non-Gaussian likelihoods and even heterogeneous data. We connect the proposed model to
Deep Gaussian Process (DGPs) and leverage the approximate inference methods developed
for DGPs (Salimbeni and Deisenroth, 2017).

Main Contribution. First, we present the Gaussian Process Latent Autoregressive model
(GPLAR), combining ideas from DGPs and MOGPs. Hidden variables are introduced corre-
sponding to noiseless, unobserved but true latent function evaluations that require Bayesian
inference. Second, we find that GPLAR can still perform poorly when there are missing val-
ues in the first few outputs. We propose a new version of GPLAR inspired by bi-directional
Recurrent Neural Networks to address this limitation.

© R. Xia, W. Bruinsma, W. Tebbutt & R.E. Turner.



2. Gaussian Process Latent Autoregressive Model

2.1. The GPAR Model

In the multi-output scenario, assume x and y = {yl}Ll=1 are the training inputs and asso-
ciated observations for L outputs. We assume all L outputs share the same input space.
We utilize the product rule to decompose the joint distribution over all outputs into a
set of univariate conditional distributions. In particular, GPAR factorizes the distribu-
tion of L outputs y1:L(x) = (y1(x), . . . , yL(x)) as p(y1:L(x)) = p(y1(x))p(y2(x)|y1(x)) . . .
p(yL(x)|y1:L−1(x)), so yl(x) is generated from y1:l−1(x) according to some latent function
fm. GPAR models these latent functions f1:L with GPs, where their kernels k1:L can be
linear, nonlinear, or composite. GPAR is a state-of-the-art MOGP model on small multi-
output regression problems.

Deficiencies of GPAR. There are limitations in the above formulation of GPAR. A
graphical model of three outputs is shown in Fig. 1(a), where observation y1 is directly
used as inputs to the functions f2 and f3. Noisy outputs from an earlier stage result in
noisy inputs to a subsequent level. The original paper solved this by employing a denois-
ing transformation: the posterior predictive mean of preceding outputs are used as inputs
instead of observed values. Furthermore, the inference and learning procedures provided
in the original paper are only valid for closed-downwards observations, i.e., for every ob-
servation yln = yl(xn), there are also observations y(1:l−1)n. For observations that are not
closed downwards, the authors propose to impute the necessary observations with posterior
predictive means. We will show in the experiments section that this imputation method and
GPAR’s layer-by-layer fitting procedure performs poorly on closed-upwards observations.
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Figure 1: Graphical models of (a) GPAR, (b) GPLAR, and (c) Bi-GPLAR. Observed
variables y1:3 are shaded. f1:3 denote latent function mappings.

2.2. The GPLAR Model

A more principled approach is to perform Bayesian inference. Instead of directly working
on observations, we introduce latent variables h1:3 for each output, graphically shown in
Fig. 1(b). Unfortunately, approximate inference is now required to deal with these variables,
which we develop next. The same approximate inference procedure will also enable non-
Gaussian likelihoods, such as for classification or non-negative data. We call this model the
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Gaussian Process Latent Autoregressive (GPLAR) model. We describe the probabilistic
model for a GPLAR model with L outputs. The main difference with DGPs is that all
previous hidden variables are propagated to the next layer. Like GPAR, the latent functions
in GPLAR are modelled with GPs: p(fl|θl) = GP(fl;ml,Kl), for l = 1, . . . , L. These
functions are then connected in the following way:

p(hl|fl,X,h1:l−1, σ
2) = N (hl; fl(X,h1:l−1), σ

2
l In), p(yl|hl) = N (yl;hl, σ

2
yl
In).

Approximate Inference for GPLAR. The posterior distributions over the latent func-
tion mappings, f1:L, as well as over the intermediate hidden variables h1:L−1 are of interest.
Existing work by Salimbeni and Deisenroth (2017); Bui et al. (2016) for approximating these
distributions considers variational approximations (Titsias, 2009) over the latent functions
but retains the prior conditionals p(hln|fl, h(l−1)n). Using the same idea, we introduce induc-
ing points to every layer (w.r.t. output dimensions) of GPLAR. The approximate posterior
and joint distribution (written in terms of the function values at inducing points u) of a
three output GPLAR are as follows:

q(f1, f2, f3,h1,h2,h3) = p(f16=u1 |u1)p(f26=u2 |u2)p(f36=u3 |u3)q(u1)q(u2)q(u3)×∏
n

[
p(h1n|f1,xn)p(h2n|f2, h1n,xn)p(h3n|f3, h2n, h1n,xn)

]
, (1)

p(y, f1, f2, f3,h1,h2,h3) = p(f16=u1 |u1)p(f26=u2 |u2)p(f36=u3 |u3)p(u1)p(u2)p(u3)×∏
n

[
p(h1n|f1,xn)p(h2n|f2, h1n,xn)p(h3n|f3, h2n, h1n,xn)×

p(y1n|h1n)p(y2n|h2n)p(y3n|h3n)

]
. (2)

Evidence Lower Bound. By applying the Jensen’s inequality, we get a lower bound for
the log-marginal likelihood (ELBO):

LELBO = Eq

[
log

p(y, f1:3,h1:3)

q(f1:3,h1:3)

]
= −

3∑
l=1

KL [q(ul)‖p(ul)] +
∑
l,n

Eq [log p(yln|hln)] . (3)

The difference between the exact log-marginal likelihood and the ELBO is equal to the KL
divergence between the approximate posterior (Eq. 1) and the true one (Eq. 2). Maximizing
the ELBO w.r.t. the variational parameters and the hyperparameters, we simultaneously
obtain approximations to the log-marginal likelihood and the posterior. The second term
in Eq. 3 decomposes over across the training instances and output dimensions l. This term
can be rewritten as

∑
l,nEq [log p(yln|hln)] =

∑
l,n

∫
q(hln) log p(yln|hln)dhln, where q(hln) =∫

q(hln|h(1:l−1)n,xn) . . . q(h1n|xn)dh1n . . . dh(l−1)n. Positing a Gaussian form for each varia-
tional distribution, q(ul) = N (ul;ml,Sl), we notice that the latent function, fl, can be ana-
lytically marginalized out at each layer: q(hln|h(1:l−1)n,xn) = N (µhl|h1:l−1

(x̂ln), σ2hl|h1:l−1
(x̂ln))

where,

µhl|h1:l−1
(x̂ln) = kl(x̂ln,Zl)K

−1
ulul

ml,

σ2hl|h1:l−1
(x̂ln) = kl(x̂ln, x̂ln)− kl(x̂ln,Zl)K

−1
ulul

(Kulul
− Sl)K

−1
ulul

kl(Zl, x̂ln) + σ2l
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with x̂ln = (xn, h(1:l−1)n) is concatenation of the input and previous hidden variables and
Zl is the location of inducing points at each layer. Notice that for q(h1n|xn), the distri-
bution does not marginalise out previous hidden layers, and is therefore simply a Gaus-
sian predictive distribution. However, for q(h2n|xn) =

∫
h1n

q(h2n|h1n,xn)q(h1n|xn), the
resulting q(h2n) is a complicated infinite mixture of Gaussian densities (Bui, 2018), which
can be multi-modal or heavy-tailed. To sample from this, we use a nested simple Monte
Carlo method (Salimbeni and Deisenroth, 2017). When further propagating h2n and h1n
to the posterior of h3n in GLPAR, samples are drawn from a uniformly weighted mix-
ture of Gaussian: q(h3n|xn) ≈ 1

R

∑
r q(h3n|h2nr, h1nr,xn), where h1nr ∼ q(h1n|xn), h2nr ∼

q(h2n|h1nr,xn). To obtain low variance gradients, we apply the reparametrisation trick
(Kingma and Welling, 2013) to recursively draw samples hlnr ∼ q(hln|h(1:l−1)n,xn) as
hlnr = µhl|h1:l−1

(x̂ln) + εlnr · σ2hl|h1:l−1
(x̂ln), εlnr ∼ N (0, 1). When using a non-Gaussian

likelihood, log p(yln|hln), additional approximations such as another step of simple Monte
Carlo sampling are required.

Treatment of Inducing Inputs. Treatment of the inducing inputs for the first layer
is standard. However, for higher layers, choosing the locations for inducing points is less
straightforward. These locations also require values for the corresponding previous function
values, which should be consistent with the inducing points at those previous layers. Con-
sequently, free optimization of inducing inputs at each layer is no longer appropriate. To
remedy this, we take the mean of q(ul) as inducing inputs for the next layer l+ 1. The re-
sulting locations for the inducing inputs at each layer l are then

[
Z m1 . . . ml−1

]
, where

ml denotes the mean of each variational distribution. In this setup, the inducing inputs are
“automatically” optimized since they are variational parameters themselves. Please refer
to supplementary material (Xia et al.) for more details.

Bi-directional GPLAR. In its current form, GPLAR has difficulty dealing with many
outputs. Although the end-to-end training of all layers fits all layers simultaneously, unlike
GPAR, which fits the layers in a greedy fashion, when the outputs dimension becomes large,
back-propagation through the autoregressive structure becomes difficult. Moreover for real-
world data, dependencies between two outputs is often asymmetric. Hence, an incorrect
ordering of the outputs in GPLAR would model dependencies in the wrong directions.
To alleviate this, we take inspiration from the bi-directional RNN model. The basic idea
is to split each hidden state into two in order to model the forward and the backward
direction separately, both of which are connected to the same output. Inspired by this
idea, we run another GPLAR model in reverse; the graphical model is shown in Fig. 1(c).
The hidden variables from both directions at each layer are aggregated and in the case
of a regression problem, supplemented with noise to produce the observations. We will
demonstrate that this structure can produce a better predictive mean and better calibrated
uncertainty estimates.

3. Experiments

Synthetic Data Experiments. We first compare the ability of GPAR and GPLAR
to model synthetic data generated from a multi-output GP where dependencies between
outputs are nonlinear (see supplementary for full details). We calculate the held-out log-
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(a) HLL vs noise (b) Heterogenous

Figure 2: (a) One trial for GPLAR is denoted by solid line. GPAR is unstable and 95%
CI over HLL is indicated by the shaded area and the median is depicted by dashed lines.
(b) GPLAR and IGPs predictions on the second labeling task. Black dots are observations.
Synthetic GP kernels between outputs are (Up:) Linear, (Down:) Nonlinear.

likelihood (HLL) for a range of values for the variance of noise. It is observed from Fig. 2(a)
that the higher outputs of GPAR are unstable, suggesting that noisy outputs from previous
layers harms predictions for the next output. In contrast, GPLAR’s HLL is observed to
always overlap or locate higher than the 95% confidence upper bounds of GPAR. In the
third output of GPAR, the HLL is extremely negative when the noise variance is close
to zero. It turns out that, in this case, the predictive variances for the third output are
all near zero. In comparison, the predictive variances of GPLAR are at an appropriate
level. These results indicate that GPLAR can better handle noisy observations, and is
more robust to under-fitting and over-fitting. Next, we extend GPLAR to non-Gaussian
likelihoods and heterogeneous outputs. Data are drawn from 4 synthetic GPs. The last
two outputs are converted to binary outputs using the sigmoid function; labels are then
generated by drawing from the corresponding Bernoulli distributions. It is observed from
Fig. 2(b) that information learned from previous tasks helps GPLAR predict the second
labeling task. The predictive mean nearly recovers the true underlying process, and the
uncertainty is greatly reduced. As expected, independent GPs (IGPs) fail to capture the
dependencies and revert to the prior distribution in areas without observations.

Real-World Data Experiments. In this section, we evaluate GPLAR and bi-GPLAR
and compare to other models on two standard datasets where GPAR has been shown to
be the state-of-the-art. One is the electroencephalogram (EEG) dataset1, consisting of one
second of measurements from 7 electrodes mounted on a patient’s scalp. The second dataset
is the exchange rates dataset2, consisting of one year of exchange rates w.r.t. USD of ten
international currencies and three metals in one year. The task is to predict missing values in
some of the outputs given all other observations. The results are presented in Table. 3(a),
and refer to supplementary materials for corresponding figures. For EEG, it is observed
that predictions of GPAR over F1 are over-confident which leads to large HLL, while the
uncertainty over F1 from GPLAR is well-calibrated. As for the exchange rates, although
only the SMSE of GPLAR over “USD/AUD” is significantly lower than that of GPAR,

1. The EEG datset is available at https://archive.ics.uci.edu/ml/datasets/eeg+database.
2. The exchange rates dataset is available at http://fx.sauder.ubc.ca.
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observe from figures that GPLAR gives predictions with reasonable uncertainty even outside
the missing area, while GPAR produces overconfident predictions with a lot more wigglings.
We further compare the performance of bi-GPLAR to the that of IGPs, GPAR in single
direction, and DGPs on the EEG/exchange-rate dataset averaged over 5 patients/years
respectively. The results are shown in Fig. 3(b). Since the EEG datasets contains almost
noiseless measurements, GPAR in the forward direction performs better than GPLAR for
closed-downwards observations. However, GPAR performs significantly worse on closed-
upwards observations. Bi-directional GPLAR gives a performance between GPARs in the
two directions but GPAR does take more time. Hence, in situations when noise is not
dominant, one should use GPLAR with a natural ordering of outputs. For the exchange
rate, the observations are much noisier and sometimes contain severe outliers. Bi-GPLAR
gives the best results for all four outputs except for “USD/MXN”, when correlations are hard
to find for all models. Bi-GPLAR also gives the best average performance over all datasets
with closed-upwards or closed-downwards observations, and generally performs better than
DGPs and IGPs. Although DGPs model correlation between outputs, the experiments
show that DGPs struggle to leverage knowledge of observed outputs for predicting missing
outputs. GPLAR can also be applied to non-time-series data. We refer the reader to
supplementary materials for experiments on more real-world data including radar image
features and latitude-longitude spatial points as input.

Output SMSE HLL

EEG GPAR GPLAR GPAR GPLAR

FZ 0.1340 0.1273 -135.7 -141.3
F1 0.3285 0.3130 -663.1 -183.1
F2 0.1536 0.1317 -132.4 -136.6

ER GPAR GPLAR GPAR GPLAR

USD/CAD 0.0215 0.0439 148.60 153.95
USD/JPY 0.0170 0.0234 843.18 860.95
USD/AUD 0.2089 0.0685 523.97 464.58

(a) EEG & Exchange Rates (b) Overall

Figure 3: (a) GPAR vs GPLAR for the EEG and exchange datasets (b) SMSE over missing
values of IGPs, GPAR in forward/backward direction, DGPs, GPLAR, and bi-GPLAR.
“FZ,F1,F2” and “MXN,NZD” are closedupwards, “F5,F6” and “JPY, AUD” are closed-
downwards, “F3,F4” are neither. The “total” column denotes average performance.

4. Conclusion

We have introduced GPLAR, an extension of GPAR that deals with noisy outputs using
a fully Bayesian approach, enabling the resulting model to work with non-Gaussian or
even heterogeneous likelihoods. We further extended the GPLAR model to a bi-directional
version.
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