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Abstract

Evaluating the relative difficulty of widely-used benchmark datasets across time and
across data modalities is important for accurately measuring progress in machine
learning. To help tackle this problem, we propose DIME, an information-theoretic
DIfficulty MEasure for datasets, based on Fano’s inequality and a neural network
estimation of the conditional entropy of the sample-label distribution. DIME can be
decomposed into components attributable to the data distribution and the number
of samples. DIME can also compute per-class difficulty scores. Through extensive
experiments on both vision and language datasets, we show that DIME is well-
aligned with empirically observed performance of state-of-the-art machine learning
models. We hope that DIME can aid future dataset design and model-training
strategies.

1 Introduction

Empirical machine learning research relies heavily on comparing performance of algorithms on a
few standard benchmark datasets. Moreover, researchers frequently introduce new datasets that they
believe to be more challenging than existing benchmarks. However, we lack objective measures
of dataset difficulty that are independent of the choices made about algorithm- and model-design.
Moreover, it is also hard to compare algorithmic progress across data modalities, such as language
and vision. So, for instance, it is difficult to compare the relative progress made on a sentiment
analysis benchmark such as the Stanford Sentiment Treebank (SST) (Socher et al., 2013) and an
image classification benchmark, like CIFAR-10 (Krizhevsky, 2009). With these challenges in mind,
we propose a model-agnostic and modality-agnostic measure for comparing how difficult it is to
perform supervised learning on a given dataset.

For i.i.d. dataset examples, we argue that the difficulty of a dataset can be decoupled into two
relatively independent sources:(a) approximation complexity, the number of samples required to
approximate the true distribution up to certain accuracy, and (b) distributional complexity, the intrinsic
difficulty involved in modeling the statistical relationship between the labels and features.

We focus our analysis on the second source of the intrinsic difficulty in supervised learning, and
consider the most common setting where features X are continuous and the labels Y are discrete. To
provide a model-agnostic measure, we turn to the information-theoretic approach. Indeed, Fano’s
inequality suggests the lowest possible probability of the 0-1 error Pe is lower bounded by terms
∗Work partially done while the author was a research intern at Salesforce Research.
†Equal Contribution.
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Figure 1: We propose DIME, a model- and modality-agnostic difficulty metric for datasets

related to the conditional entropy H(Y |X). Naturally we consider designing an estimator for this
lower bound of Pe as a difficulty measure for learning Y given X . To estimate H(Y |X), notice
that H(Y |X) = H(Y ) − I(X,Y ), where I(X,Y ) is the mutual information. Direct estimation of
I(X,Y ) is hard for the hybrid case where X is continuous and Y is discrete. Our key observation
is that we can express I(X,Y ) as a weighted average of the KL divergence between X|Y = y and
X for each label y (see equation (4)). Then we may use neural networks to approximate the KL
divergence based on Donsker-Varadhan representation.

Related Work: Although conditional entropy and mutual information estimation have been exten-
sively studied, research has focused on purely discrete or continuous data. Nair et al. (2006) were
among the first to study the theoretical properties for the case of mixture of discrete and continuous
variables. Ross (2014), Gao et al. (2017) and Beknazaryan et al. (2019) proposed approaches for
estimating mutual information for the mixture case based on density ratio estimation (e.g.,binning,
kNN or kernel methods), which is unsatisfactory for high dimensional data such as image and text.
We use neural network estimation, inspired by Belghazi et al. (2018), to avoid these issues. However,
we emphasize that the technique for estimating the mutual information in Belghazi et al. (2018)
cannot be applied directly to the hybrid case, as argued before. More importantly, we are the first to
connect the hybrid conditional entropy with the difficulty measure for datasets.

2 Designing a Dataset Difficulty Measure

2.1 Main Idea

For the continuous feature and discrete label setting, we use (X,Y ) to represent feature-label pairs
and assume X ∈ X ⊂ Rdx , and Y ∈ Y ⊂ Z+. We denote the joint distribution of (X,Y ) as PXY
and the marginal distributions as PX and PY respectively. Throughout this paper, we always assume
that the feature-label pairs in the datasets, both training and testing, are sampled i.i.d. from a static
distribution PXY . As Y is discrete, a natural measure that characterizes the difficulty of the data
distribution is the best probability of the 0-1 error that can be achieved by any estimator.
Definition 1. Model-Agnostic Error

Pe = inf
f
PX,Y∼PXY [f(X) 6= Y ] . (1)

While the computation of general Pe is almost impossible, Fano’s inequality establishes a lower
bound of Pe by terms related to the conditional entropy.
Definition 2. Hybrid conditional entropy

H(Y |X) := EX
[
−
|Y|∑
y=1

P(Y = y|X) logP(Y = y|X)
]
, (2)

where P(Y = y|X) := E[1(Y = y)|X].
Theorem 1. Fano’s inequality for continuous feature-discrete label case: Let Pe be the minimum
error probability as defined in (1). Then we have

H(Pe) + Pe log(|Y| − 1) ≥ H(Y |X), (3)
where H(Pe) := −Pe logPe − (1− Pe) log(1− Pe).
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A detailed proof is given in Appendix C. Our proof is based on the proof of Lemma 2.10, Tsybakov
(2004). Note that most of the proofs of Fano’s inequality are designed for discrete random variables
(e.g. Cover & Thomas (2012)).

2.2 Estimating the Lower Bound of Pe

Motivated by Fano’s inequality, we just need to estimate H(Y |X). We rewrite it as (see Appendix B
for a proof)

H(Y |X) = H(Y )−I(X,Y ), with

H(Y ) = −
|Y|∑
y=1

P(Y = y) logP(Y = y), I(X,Y ) =

|Y|∑
y=1

P (Y = y)KL(X|Y = y||X).
(4)

Remark 1. In some benchmark datasets with balanced classes (e.g., CIFAR-10 and MNIST),
H(Y |X) = log |Y| − 1

|Y|
∑|Y|
y=1 KL(X|Y = y||X). This indicates that if a dataset has more

classes and the distributions of the features for different classes are closer to each other on average,
then H(Y |X) would be larger and thus pushes Pe larger, implying that the classification task on it
would be harder due to the intrinsic distributional complexity.

We now discuss the practical design of an estimator for KL(X|Y = y||X). (Notice that both of the
random varibles are continuous.) Many non-parametric KL divergence estimators such as kNN based
techniques (Noshad et al., 2017; Perez-Cruz, 2008; Wang et al., 2009) are not satisfying as they often
rely on some knowledge of the internal dimension of the data manifold. As an alternative, we design
a neural network-based estimator for KL divergence estimation, inspired by Belghazi et al. (2018).
The estimator is based on the Donsker-Varadhan representation:

KL(P||Q) = sup
T :X→R

EP [T ]− logEQ[eT ], (5)

for two probability measures P,Q. If we parameterize the function T using a neural network Tθ,
we can obtain an estimator of K̂L(X|y||X) for each y ∈ Y . Then by equation (4), we get Ĥ(Y |X),
which further leads to P̂e by (1), an estimator of the lower bound of Pe. We report P̂e as our datatset
difficulty measure DIME.

In our empirical evaluation, we optimize the empirical average instead of the expectation. However
this may cause issues such as overfitting. To mitigate this issue, we split the data into separate training
and validation sets. The neural network models are trained on the training set and the estimation is
made using the validation set. See Algorithm 1 in Appendix A.1 for details.
Remark 2. Given that we are using a neural network model to estimate the KL divergence between
P(X|y) and P(X), according to Equation (5), K̂L(X|y||X) ≤ KL(X|y||X). As a consequence,
the estimated mutual information Î(X;Y ) ≤ I(X;Y ), which leads to a larger Ĥ(Y |X). In the end,
DIME could be larger as compared to true lower bound on Pe.The hope is, if the function class of the
neural network is large enough, the gap between K̂L(X|y||X) and KL(X|y||X) is small enough so
that DIME won’t deviate too much from the true lower bound of Pe.

3 Experiments and Results

3.1 Sanity-check Experiments

Experiments with toy datasets: We generate three toy datasets and report their DIME socres, as
shown in Figure 1. The details are given in Appendix A.2, which contains a label corruption test as
well.

3.2 Evaluating benchmark datasets in vision and language

We evaluate DIME using popular image and language domain datasets for various classification tasks.
We use a simple multi-layer perceptron (MLP) with residual layers with ReLU activation functions,
containing three hidden layers of 4096 neurons. (The details about the datasets and neural network we
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Corpus #classes Ĥ(Y ) Î(X,Y ) Ĥ(Y |X) DIME SOTA Error
Image Classification
EMNIST (digits) 10 2.303 2.255 0.048 0.006 0.002
MNIST 10 2.301 2.192 0.109 0.015 0.002
EMNIST (letters) 26 3.258 2.872 0.386 0.054 0.056
EMNIST (bymerge) 47 3.554 3.098 0.456 0.060 0.190
Fashion-MNIST 10 2.303 1.912 0.391 0.066 0.033
EMNIST (byclass) 62 3.679 3.126 0.553 0.072 0.240
EMNIST (balanced) 47 3.850 3.212 0.638 0.089 0.095
SVHN 10 2.223 1.436 0.786 0.159 0.010
CIFAR-10 10 2.303 0.915 1.388 0.340 0.010
CIFAR-100-Subclass 10 2.303 0.503 1.800 0.504 N/A
CIFAR-100 100 4.605 1.239 3.366 0.585 0.087
Tiny ImageNet 200 5.298 0.692 4.606 0.768 0.268
FakeData 10 2.303 -0.003 2.306 0.900 0.900
Sentiment Analysis
IMDb 2 0.693 0.224 0.469 0.178 0.038
SST-2 2 0.693 0.224 0.469 0.179 0.032
SST-5 5 1.573 0.230 1.342 0.470 0.356
Text Classification
DBPedia 14 2.639 2.387 0.252 0.037 0.013
TREC 6 1.638 1.185 0.453 0.092 0.019
YelpReview (Polarity) 2 0.693 0.371 0.322 0.098 0.044
AG News 4 1.386 0.808 0.579 0.147 0.076
Language Modeling
Penn Treebank 42 2.966 1.876 1.090 0.165 1.083 (ppl)

Table 1: We evaluate DIME on vision and language datasets and rank them by relative difficulty.
Comparisons with prediction performance of state-of-the-art neural network models shows that
DIME is roughly aligned with empirically observed performance. (ppl: perplexity) The Pearson
and Kendall’s Tau correlation coefficient between DIME and SOTA error are 0.7437 and 0.3470,
respectively.

choose are given in Appendix A.3.) In addition to dataset statistics, we report the estimated entropy
Ĥ(Y ), Î(X,Y ), Ĥ(Y |X), and DIME. We also report the state-of-the-art error on the dataset from
recent literature (Wan et al., 2013; Huang et al., 2018; Cubuk et al., 2019; Yang et al., 2019; Patro
et al., 2018; Cer et al., 2018; Melis et al., 2019). From the results summarized in Table 1, we make
the following empirical observations:

First, DIME aligns well with the state-of-the-art results on the benchmark datasets, indicating that the
relative difficulty of datasets is reflected in the performance of latest machine learning algorithms.
However, notably, DIME is lower than the reported state-of-the-art error for all the variants of
EMNIST. This could indicate that since EMNIST is a relatively new, less-investigated dataset, we
might see model performance improving over time.

Second, a larger number of classes lead to a higher value of DIME in general, which is expected
given its dependence on Ĥ(Y ). But Ĥ(Y ) does not always dominate the value of the measure. For
example, MNIST has 10 classes, but its DIME is much smaller compared to IMDb which has only
two classes. This relative difference in difficulty of MNIST and IMDb is also reflected in their SOTA
errors, validating our measure.

Finally, for datasets such as MNIST, Fashion MNIST, EMNIST, FakeData, and DBPedia, DIME
provides a tight error bound. But for certain datasets such as CIFAR-10, CIFAR-100, and Tiny
ImageNet, DIME seem slightly pessimistic. As we discussed in Remark 2, DIME could be larger
than the true lower bound of Pe since we constrain the function space to be a neural network model.
While the relative order of difficulty suggested by DIME is reasonable, its large value also suggests
that an MLP may not have enough capacity for accurate Pe estimation. While it is an open question
how to choose a model that is large enough to approximate Pe yet easy to optimize, Equation (5)
suggests that as the model size grows, the gap between DIME and true lower bound of Pe becomes
smaller. We verify this by calculating DIME with increasing number of neurons for a three-layer
MLP. See Figure 4 in Appendix A.5 for details.
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As we mentioned in the abstract, we can also use DIME to compute per-class difficulty score and
reflect the effect of number of samples on data distribution, etc. See Appendix A.4 for the additional
use cases for DIME.

4 Discussion

We would like to use this section to discuss some common questions proposed by the reviewers and
readers.

1. Why don’t we use a cross entropy estimation to approximate the conditional entropy
H(Y |X) (which is also an upper bound of H(Y |X))?

We want to emphasize that our motivation here is to design a metric for datasets
to capture the intrinsic complexity of the sample-label distribution in supervised learning.
Our intuition is that if a dataset has a large number of classes and the distributions of the
features for each class are close to each other, then it would be difficult to accurately predict
the labels given the features. Therefore, Our starting point is to define a metric of the
following form:

f(|Y|)− 1

|Y|

|Y|∑
y=1

D(X|Y = y||X) (6)

for some increasing function f and some distance function D over distributions. We find a
good choice of (f,D) is (log,KL) and this exactly leads to the definition of H(Y |X). Then
we start to consider how to estimate the KL divergence for some high-dimensional data.
Therefore, even if we can use a neural network via a cross entropy approach to approximate
H(Y |X)—-and we expect the approximation would be more accurate than our approach
as the distribution of X|Y is generally much more complicated than that of Y |X—-we
still avoid this approach since it is just meaningless here, given that the spirit of this paper
is to show that the distance over the distributions of features for each class is an essential
indicator of the complexity of the label-feature distributions. Since our focus and interest
are the distributions X|Y = y, an approach to approximate Y |X is just another trial to do
the prediction and thus, is not appropriate here to provide a model-free measure.
On the other hand, we have to point out that one main limitation of our approach is that it
is pretty challenging to approximate the distribution of X|Y (i.e. achieving the supremum
in (5)). A simple MLP neural network, as we used here, seems far from satisfying given
that the fact that DIME is almost always larger than the SOTA error in Table 1. Therefore,
it seems worthwhile to try some neural networks with more capacity or more complicated
architectures like convnets, LSTMs, transformers, etc. (Of course, then it would be more
controversial to claim our metric "model-free".)

2. Why do you use MINE (Belghazi et al. (2018)) to estimate the mutual information (which
itself is not a valid lower bound, as shown by Poole et al. (2019))?

We actually use a MINE style estimator to estimate the KL divergence instead of
the mutual information. So some other methods to estimate the mutual information (see e.g.
Alemi et al. (2016) for an upper bound; Oord et al. (2018) for a lower bound) are not exactly
relevant here. That being said, it is definitely worthwhile to try these methods to directly
estimate the mutual information (epsecially those for upper bounds such that we end up
with a valid lower bound of H(Y |X)) and compare the results with the current ones. We
leave this for future explorations.
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A Supplementary Results for Experiments

A.1 Algorithm for DIME

Algorithm 1 DIME

Initialize |Y| neural networks: Tθ1 , Tθ2 , . . . , Tθ|Y| , one per class.
Initialize class counters k1 = 0, . . . , k|Y| = 0, one per class. Initialize the sample counter k = 0.
for t in 0, . . . , T do

Draw a batch of b training examples {(xi, yi)}, and b evaluation examples {(xei , yei )}.
for each class c ∈ {1, . . . , |Y|} do

Find samples of the c-th class: Sc = {i|yi = c}, Sec = {i|yei = c}
Train θc = arg maxθc

1
|Sc|

∑
Sc
Tθc(xi)− log[ 1

b

∑
j expTθc(xj)]

Evaluate K̂Lθc = 1
|Se

c |
∑
Se
c
Tθc(xei )− log[ 1

b

∑
j expTθc(xej)]

If K̂Lθc stops increasing, pause the training for Tθc .
Update counters: kc+ = |Sec |.

end for
Update the sample counter: k+ = b
If all neural networks stop updating, break.

end for
Estimate the class probability p̂c = kc

k , c = {1, . . . , |Y|}.
Calculate Ĥ(Y |X) using (4), p̂c, and K̂Lθc , c = {1, . . . , |Y|}.
Solve (3) and output the solution.

A.2 Supplement Results for Section 3.1

Experiments with toy datasets: We generate three two-dimensional 2-class toy datasets with
20,000 samples each with increasing level of difficulty (Figure 1). Samples in Toy Data 1 and Toy
Data 2 are generated using random Gaussian variables by scaling differently in different dimensions
and then by rotating, while the two classes in Toy Data 3 are simply uniform and Gaussian random
variables. Toy Data 1, which is relatively easy to be separated, gets a DIME of 0.001. Toy Data 2,
which is a bit harder due to a small overlapping region around the axis origin, gets a DIME of 0.013.
And Toy Data 3, which is the hardest due to overlapping supports of the two class, gets a DIME of
0.263. In sum, DIME accurately reflects the relative difficulty of the toy examples.

Label corruption test: Next, we estimate DIME for the case of label corruption. If we assign
random labels to a fraction of the training samples, intuitively the dataset should become more
difficult. We experiment with five datasets with ten classes each—MNIST, Fashion MNIST, CIFAR-
10, EMNIST (digits), and SVHN—and perform label corruption on their training sets in steps of
0.1 from 0 to 1. We observe a consistent increase in DIME across all the datasets with increasing
label corruption (Figure 2-(left)). For some datasets such as MNIST, DIME is almost tight given the
fraction of randomly corrupted labels.
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Figure 2: DIME increases with increase in the amount of label corruption (left). DIME becomes
reasonably stable as the fraction of samples from the dataset used for estimation increase (right).

A.3 Supplement Results for Section 3.2

A.3.1 Choice of Benchmark Datasets
We evaluate the following image classification datasets: MNIST (LeCun et al., 1998), Extended
MNIST (EMNIST) (Cohen et al., 2017), Fashion MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky,
2009), CIFAR-100 (Krizhevsky, 2009), Tiny ImageNet3, and SVHN (Netzer et al., 2011). The
EMNIST dataset has several different splits, which include splits by digits, letters, merge, class,
and balanced. For a controlled evaluation study, we also add the PyTorch Fakedata dataset4 which
contains 10-classes of randomly-generated 32× 32 grayscale images.

Among natural language processing datasets, we investigate three supervised scenarios: sentiment
analysis, text classification, and language modeling. For sentiment analysis, we analyze IMDb (Maas
et al., 2011), and Stanford Sentiment Treebank (SST) (Socher et al., 2013). In the case of SST, we
utilize both fine-grained labels (SST-5) and binary labels (SST-2). For the text classification task, we
use the TREC dataset (Li & Roth, 2002), AG News, DBPedia, as well as Yelp Review dataset (Zhang
et al., 2015). For language modeling task, we analyze the character level modeling for Penn Tree
Bank (Marcus et al., 1994).

For DIME estimation, we do not perform any preprocessing on the data except for simple rescaling.
For image data we rescale all the pixel values to floats in [0, 1]. By data processing inequality (Cover
& Thomas, 2012), the rescaling will not cause any change on H(Y |X) and Pe since the rescaling
function is invertible.

A.3.2 Choice of Neural Network Estimator
To estimate DIME for image datasets, we use a simple multi-layer perceptron (MLP) with residual
layers with Rectified Linear Unit (ReLU) activation functions. The network has three hidden layers
of 4096 neurons. For language datasets, we use an embedding layer of dimension 1500, followed by
three layers of 256 hidden neurons with residual connections and ReLU activations. We found that a
higher dimension of the embedding helps achieve a tighter bound. The embedding layer is initialized
with a concatenation of five pretrained embedding vectors: GloVe-840B-300d, GloVe-42B-300d,
GloVe-twitter-27B-200d, GloVe-6B-300d, FastText-en-300d, and CharNGram-100d. The input
sequences are truncated or padded to the length of 128. The MLP is operating on the token dimension
instead of the embedding dimension to take the order of the sequence into consideration. For example,
the first layer of MLP is 128-by-256 instead of 1500-by-256. The last fully-connected layer flattens
everything into a vector and projects it to a scalar. For optimizing the MLP, we use SGD with initial
learning rate of 0.1 and anneal it to 0.01 and 0.001 if the objective stops updating. We use the test set
as evaluation set, as described in Algorithm 1.

3https://tiny-imagenet.herokuapp.com/
4https://github.com/pytorch/vision/blob/master/torchvision/datasets/fakedata.py
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Figure 3: DIME can rank classes within datasets for difficulty. A lower height of the bar indicates
higher relative difficulty.

A.4 Additional Use Cases for DIME
Dataset difficulty per class: Algorithm 1 can also estimate the relative difficulty of classes within
a dataset. For this purpose, we simply rank the classes by their K̂L(X|y||X). A smaller value of
K̂L(X|y||X) indicates the class is harder to classify. As examples in Figure 3 show, ‘cat’ and ‘bird’
are the most difficult classes in CIFAR-10, while ‘automobile’ and ‘ship’ are the easiest. In addition,
‘shirt’ and ‘pullover’ are the most difficult classes in Fashion MNIST, while ‘sandal’ and ‘trouser’ are
the easiest.

Controlled Study with CIFAR Subsets: We obtain a 10-class subset from CIFAR-100 by choos-
ing subclasses from the ‘large carnivores’ and ‘large omnivores and herbivores’ superclasses. These
classes—bear, leopard, lion, tiger, wolf, camel, cattle, chimpanzee, elephant, and kangaroo—should
be intuitively harder to classify as compared to CIFAR-10, which includes disparate classes such
as bird, truck, and ship. Note that the image data for both of these datasets comes from the same,
larger ‘80 million tiny images’ dataset (Torralba et al., 2008). We find that the DIME for this 10-class
CIFAR-100 subset is 0.504, significantly larger than a DIME of 0.340 for CIFAR-10.

Effect of number of samples: With increasing number of samples, the empirical distribution of
both training and testing tend towards the population distribution, making the distance between them
smaller. It should also make the dataset easier, which is indeed reflected in a decreasing value of
DIME with increasing number of samples (Figure 2-(right)). But we also observe that our measure
becomes stable with increasing number of samples. This suggests that our method can be used to
estimate the relative difficulty of new datasets in domains where data is hard to collect (e.g., medical
datasets, fine-grained image classification) and make determinations if additional data collection is
required to make the problem easier to solve.

A.5 Model Complexity Experiment

Equation (5) suggests when the model class is larger the gap between DIME and the true lower bound
on Pe becomes smaller. This is verified in our experiment shown in the middle of Figure 4, where
we use neural networks with three hidden layers of varying number of neurons to calculate DIME.
In the experiment we try 32, 64, 128, 256, 512, 1024, and 2048 neurons for each hidden layer. As
the number of hidden neurons grows, DIME roughly decreases as expected. Still on CIFAR-10 the
decrease is pretty monotonic. For simple datasets such as MNIST, Fashion MNIST and EMNIST
(byletters) the numbers got stabilized pretty quickly.

B Hybrid conditional entropy

Consider the usual classification setting, X , representing the feature, is a random vector in Rp; Y ,
representing the label, is a random variable(or vector) in {1, . . . , |Y|}. Assume X is a continuous
variable with density pX(x) for x in some compact domain Ω ⊂ X ⊂ Rp. Can we define a hybrid
conditional entropy H(Y |X) while X is continuous and Y is discrete? We give a formal definition
for this mixed-pair case and demonstrate that H(Y |X) defined in our way can be a good indicator for
the hardness of classification on the data (X,Y ), which is consistent with the classical definition in
the sense that both of them give the intuition that how much information or uncertainty is left for Y
given X .

Our definition is

H(Y |X) := EX

− |Y|∑
y=1

P(Y = y|X) logP(Y = y|X)

 , (7)

10



(a) DIME decreases on CIFAR-10 as the model size grows.

(b) DIME decreases on SVHN as the model size grows.

(c) DIME decreases on MNIST, Fashion MNIST, and EMNIST(byletters) as the model
size grows.

Figure 4: DIME as the model size increases.
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where P(Y = y|X) := E[1(Y = y)|X]. By the definition of conditional expectation (or probability),
it is easy to check that

E[1(Y = y)|X] =
P (Y = y)p(X|Y = y)

pX(X)
, (8)

where p(x|Y = y), x ∈ Rp is the conditional density function of X given Y = y. Denote
py := P (Y = y), we have

H(Y |X) =

∫
Ω

−
|Y|∑
y=1

pyp(x|Y = y) log
pyp(x|Y = y)

pX(x)
dx

= −
|Y|∑
y=1

py log py −
|Y|∑
y=1

py

∫
Ω

p(x|Y = y) log
p(x|Y = y)

pX(x)
dx

= H(Y )−
|Y|∑
y=1

pyKL(X|Y = y||X). (9)

This proves (4).

We summerize some basic properties of H(Y |X) under our definition (7):
Lemma 1. (i) 0 ≤ H(Y |X) ≤ H(Y ) ≤ log |Y|.

(ii) H(Y |X) = H(Y ) if and only if X and Y are independent.

(iii) H(Y |X) = 0 if and only if Y is a function of X . That is, there exist |Y| subsets of
Ω: Ω1, . . . ,Ω|Y| such that P (X ∈ Ωy ∩ Ωy′) = 0 for any y 6= y′ ∈ {1, . . . , |Y|},
P (X ∈ ∪|Y|y=1Ωy) = 1 and P (Y = y|X ∈ Ωy) = 1 for any y ∈ {1, . . . , |Y|}.

Proof. (i) This is trivial by (7), (9) and the fact that KL divergence is always nonnegative.

(ii) By (9), it is easy to get

H(Y |X) = H(Y ) ⇐⇒ X|Y = y
d

== X, ∀y ∈ {1, . . . , |Y|}.
⇐⇒ P (X ∈ A, Y = y) = P (X ∈ A)P (Y = y), for any

measurable set A in X , any y ∈ {1, . . . , |Y|}.
⇐⇒ X ,Y are independent.

(iii) Sufficiency: If Y is a function of X , then by assumptions, for any y1 6= y2, we have

P (X ∈ Ωy1 , Y = y2) ≤ P (X ∈ Ωy1)− P (X ∈ Ωy1 , Y = y1) = 0.

Therefore, p(x|Y = y2) = 0 for x ∈ Ωy1 (a.e.). Then for any y ∈ {1, . . . , |Y|}, we have

KL(X|Y = y) =

∫
Ωy

p(x|Y = y) log
p(x|Y = y)

pX(x)
dx (10)

Notice that for x ∈ Ωy(a.e.), pX(x) =
∑|Y|
y′=1 py′p(x|Y = y′) = pyp(x|Y = y), and thus

KL(X|Y = y) = − log py. (11)

Then by (9), H(Y |X) = 0.

Necessity: Assume H(Y |X) = 0. Notice that pX(x) =
∑|Y|
y=1 pyp(x|Y = y),∀x ∈ Ω.

Therefore, for any y ∈ {1, . . . , |Y|},

KL(X|Y = y||X) =

∫
Ω

p(x|Y = y) log
p(x|Y = y)

pX(x)
dx

≤
∫

Ω

p(x|Y = y) log
p(x|Y = y)

pyp(x|Y = y)
dx

= − log py.

(12)
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Combing (9) and (12), we know if H(Y |X) = 0, then

pX(x) = pyp(x|Y = y),∀x ∈ {x ∈ Ω : p(x|Y = y) > 0}(a.e.),∀1 ≤ y ≤ |Y|. (13)

Define Ωy := {x ∈ Ω : p(x|Y = y) > 0}, for every y ∈ {1, . . . , |Y|}. Without loss
of generality, we assume pX(x) > 0 for every x ∈ Ω. (Otherwise, we can replace Ω by
Ω ∩ {pX(x) > 0} and the following argument is still true.) Then we have

P (X ∈ ∪|Y|y=1Ωy) = P (X ∈ Ω) = 1.

By (13), we have

P (X ∈ Ωy) =

∫
Ωy

pX(x)dx =

∫
Ωy

pyp(x|Y = y)dx

= pyP (X ∈ Ωy|Y = y) = P (X ∈ Ωy, Y = y).

(14)

Therefore, P (Y = y|X ∈ Ωy) = 1. Lastly, we show P (X ∈ Ωy ∩Ωy′) = 0 for any y 6= y′.
This is immediate if we notice that by replacing Ωy in (14) with Ωy ∩ Ωy′ , we can have

P (X ∈ Ωy ∩ Ωy′) = P (X ∈ Ωy ∩ Ωy′ , Y = y).

Changing the postion of y and y′, we have

P (X ∈ Ωy ∩ Ωy′) = P (X ∈ Ωy ∩ Ωy′ , Y = y′).

Thus, P (X ∈ Ωy ∩ Ωy′) = 0.
Before the end of the proof, we want to add a remark that the condition P (X ∈ Ωy∩Ωy′) =
0 is actually just a consequence of P (Y = y|X ∈ Ωy) = 1,∀y. We add it explicitly in the
conditions to make it clear that Ω1, . . . ,Ω|Y| is a partition of Ω according to the value of Y .

C Proof of Fano’s Inequality for Continuous Features

We see the above essential properties for H(Y |X) have been preserved for the mixture case. Fur-
thermore, we show Fano’s inequality still holds for our case. Our proof here is based on the proof of
Lemma 2.10, Tsybakov (2004).

Proof. (Proof of Theorem 1)

Assume Pe(f) := P (f(X 6= Y )). Then

Pe(f) =

|Y|∑
y=1

P (Y = y)P (f(X) 6= y|Y = y)

=

|Y|∑
y=1

P (Y = y)

∫
I(f(x) 6= y)p(x|Y = y)dx

=

∫  |Y|∑
y=1

P (Y = y)I(f(x) 6= y)
p(x|Y = y)

p(x)

 p(x)dx,

where p(x|Y = y) is the density function of X|Y = y and p(x) is the density of X . Denote

p(y|x) :=
P (Y = y)p(x|Y = y)

p(x)
,

we have

Pe(f) =

∫ ( ∑
y 6=f(x)

p(y|x)

)
p(x)dx (15)
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Define g(x) := H(x) + x log(|Y| − 1), for x ∈ [0, 1]. Here, H(x) = −x log x− (1− x) log(1− x).
As g is a concave function, by Jensen’s Inequality, we have

g(Pe(f)) ≥
∫
g

( ∑
y 6=f(x)

p(y|x)

)
p(x)dx (16)

We claim:

g

( ∑
y 6=f(x)

p(y|x)

)
≥ −

|Y|∑
y=1

p(y|x) log p(y|x), ∀x. (17)

If the claim (17) is true, then

g(Pe(f)) ≥
∫
−
|Y|∑
y=1

p(y|x) log p(y|x)p(x)dx = H(Y |X). (18)

By the definition of Pe, there exists a sequence {fk}∞k=1 such that Pe(fk)→ Pe. Therefore,

g(Pe) = lim
k→∞

g(Pe(fk)) ≥ H(Y |X). (19)

This is exactly (3). So it suffices to show the claim (17) is true. We may assume that∑
y 6=f(x) p(y|x) 6= 0 (otherwise, it is trivial). Let y0 = f(x), then

|Y|∑
y=1

p(y|x) log p(y|x) =p(y0|x) log p(y0|x) +
( ∑
y 6=y0

p(y|x)
)

log
( ∑
y 6=y0

p(y|x)
)

+
∑
y 6=y0

p(y|x) log
p(y|x)∑

y′ 6=y0 p(y
′|x)

=−H
( ∑
y 6=y0

p(y|x)
)

+
( ∑
y 6=y0

p(y|x)
) ∑
y 6=y0

q(y|x) log q(y|x),

where

q(y|x) :=
p(y|x)∑

y′ 6=y0 p(y
′|x)

,
∑
y 6=y0

q(y|x) = 1, q(y|x) ≥ 0. (20)

Then by Jensen’s Inequality, we have∑
y 6=y0

q(y|x) log q(y|x) ≤ log(|Y| − 1). (21)

Therefore,

|Y|∑
y=1

p(y|x) log p(y|x) ≤ −H
( ∑
y 6=y0

p(y|x)
)

+
( ∑
y 6=y0

p(y|x)
)

log(|Y| − 1) (22)

= −g
( ∑
y 6=y0

p(y|x)
)
. (23)
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