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Abstract

O1/R1-style large reasoning models (LRMs) demonstrate strong performance
across a wide range of complex reasoning tasks, particularly by leveraging test-time
scaling to generate extended reasoning paths. However, these models often suffer
from overthinking. To address this issue, we conduct a systematic investigation
into the reasoning efficiency of a broad set of LRMs and reveal a common dilemma.
Motivated by the key findings, we propose a purely test-time computation method,
EDIT(Efficient Dynamic Inference Trimming), that guides LRMs to identify the
shortest correct reasoning paths at test time. EDIT employs constraint-guided
generation while jointly tracking length and answer distributions under varying
constraints, allowing it to select responses that strike an optimal balance between
conciseness and correctness. Extensive experiments across diverse models and
datasets show that EDIT substantially enhances reasoning efficiency, producing
compact yet informative outputs that improve readability and user experience.

1 Introduction

The rapid emergence of large language models (LLMs) has revolutionized the development of artificial
intelligence [39]. Recently, researchers have begun to push beyond traditional instruction-following
and few-shot chain-of-thought. They explore more sophisticated application scenarios where LLMs
must trigger deliberate thinking and reasoning to produce the correct answer [7, 35, 43].

However, the enhanced reasoning abilities of LRMs always come at the cost of increased output
redundancy [3], leading to substantial computational overhead that grows quadratically with the output
length. To alleviate this issue, we propose a test-time scaling method—EDIT (Efficient Dynamic
Inference Trimming), which leverages the variation trends of solution lengths and answer confidence
under parametric constraints. Building on this statistical discovery, we design a search algorithm
that automatically identifies the critical point at which LRMs achieve Pareto optimality between
reasoning cost and accuracy.

2 Related Work

Large Reasoning Models The first trial to elicit LLM’s reasoning ability was on mathematical
problems [14], where outcome- or process-based verifiers are trained to supervise LLM learning [20].
More recently, researchers believe that LLMs can simulate human’s System 1 (fast, instinct) and
System 2 (slow, delibrate) [41] to efficiently handle logical tasks. Reward-guided decoding [16,
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19, 38] and Monte Carlo tree search (MCTS) [12, 45] improve these base methods by introducing
external or future feedback. CoT [36] and several subsequent enhancement work [32, 40, 2] managed
to elicit the reasoning paths directed to the correct answer. The release of OpenAI-o1 [15] heightened
the engagement from the research community in test-time scaling. DeepSeek-R1 [10] demonstrates
the great role of reinforcement learning in LLM’s grasping of reasoning capabilities [21], and there
are a line of follow-up works to develop skilled reasoning models [27, 22]. Regards foundation LRM
training, most efforts are put at the RL algorithm [42] and self-evolving pipelines [44, 26].

Underthinking and Overthinking Issue in LRMs. While O1/R1-like LRMs exhibit stunning
capabilities in solving complex problems, they expose undesired weakness termed overthinking when
encountering simple questions like “what is the result of 2+3?” [3, 29, 4]. Meanwhile, although LRMs
are encouraged to generate complete reasoning paths based on the SFT versions, underthinking [34] is
ubiquitous among LRMs, which could stagnate at shallow thinking. To alleviate this issue, the model
should learn to avoid both underthinking and overthinking. Many solutions were proposed: direct
tuning on pruned generation [37, 11, 23], latent-space reasoning [8, 13] and input-aware test-time
searching [6, 33].

3 Methods

3.1 Statistical Findings from Constrained Reasoning

Since on a generic application scenario with deep thinking enabled, no explicit limitations on
generation lengths are applied—LRMs are granted the full freedom to extend their reasoning chains.
To dive deeper, we curate a simple parameterized prompt template as illustrated in Section A.2. We
benchmark the responses by sampling multiple responses per question on the MATH500 dataset.
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(a) Length distribution under three con-
straints parameterized by the maximum
steps that can be taken to solve each
problem.
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(b) Length distributions of “most confident and correct” and “most
confident and wrong” answers under two constraints. The distribu-
tion is separable when constraint is loose (left). Serious distribution
overlap exhibits when applying stronger constraint.

Figure 1: Histogram of length distributions on MATH500 dataset with LLaMA-3.1-8B: the generation
length distributions for (a) all generated solutions, 16 samples per question (b) most confident answers,
with binary justifications as correct/wrong.

The length distribution of outputs using this template in MATH500 test set and LLaMA-3.1-8B
model is shown in Figure 1a. We also highlight the the most confident answer for each problem as
well as the corresponding correctness in Figure 1b. Generally, the length distribution is long-tailed,
especially when the constraint is stringent. Besides, there are two observations from the plots:

• In Figure 1a, LLM is sensitive to the imposed constraints and can adapt its output distribution
accordingly—the overall length distribution shifts right (i.e., longer) as the constraint loosens
(i.e., more steps allowed).

• In Figure 1b, as the constraint becomes more straingent (right to left), incorrect answers
(orange bars) is prone to dominate the shorter part of answers, i.e. the model tends to
prioritize the length and ignores correctness.
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3.2 Dual Goal Search

Overview In EDIT, beyond the ultimate goal of solving the given problem, an additional length
constraint is appended to the prompt templates. Take Figure 2a as an example. When the constraint is
loose, LRMs work normally and enhance their reasoning ability by creating a long reasoning path. As
we strengthen the constraint for length, LRMs successfully follow our guidance to shorten their output
length while keeping the final answer correct (step 1 to step 2). However, when we further enforce
constraints for shorter outputs, the LRMs cannot simultaneously satisfy both objectives forever. They
tend to prioritize the goal it deems more important—typically the length during generation, and
output the wrong answer (from step 2 to step 3). To address this, EDIT monitors the dynamics of
two key statistics—answer confidence and length distribution—and adjusts the constraint strength
accordingly, either relaxing or tightening it as needed.

[Question]: There is a positive real number 𝑥 not 
equal to either Τ1 20 or Τ1 2 such that 
log20𝑥 22𝑥 = log2𝑥 202𝑥. The value log20𝑥 22𝑥 can 
be written as log10 Τ𝑚 𝑛, where 𝑚 and 𝑛 are relatively 
prime positive integers. Find 𝑚 + 𝑛.

[Response]: We are 
given the equation 
$\log_{20x} {22x}=…

ans: 112   ✓
min len: 1228

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1

[Response]: The 
problem is asking for 
a positive real number 
$ x $ not equal to …

ans: 112   ✓
min len: 448

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 2

[Response]: So I need 
to solve this 
logarithmic equation: 
log base (20x) of …

ans: 21   ✗
min len: 365

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 3

Return 112 
(length=448)

ans: 112   ✓
min len: 821

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 4

[Response]: We are 
given the equation 
$\log_{20x} {22x}=…

(a) Cross-constraint checking fails (β0 = 0).

[Question]: There is a positive real number 𝑥 not 
equal to either Τ1 20 or Τ1 2 such that 
log20𝑥 22𝑥 = log2𝑥 202𝑥. The value log20𝑥 22𝑥 can 
be written as log10 Τ𝑚 𝑛, where 𝑚 and 𝑛 are relatively 
prime positive integers. Find 𝑚 + 𝑛.

[Response]: We are 
given the equation 
$\log_{20x} {22x}=…

ans: 112   ✓
min len: 1228

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1

[Response]: The 
problem is asking for 
a positive real number 
$ x $ not equal to …

ans: 112   ✓
min len: 448

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 2

[Response]: So I need 
to solve this 
logarithmic equation: 
log base (20x) of …

ans: 21   ✗
min len: 365

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 3

Return 112
(length=287)

ans: 112   ✓
min len: 287

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 4

[Response]: We are 
given the equation 
$\log_{20x} {22x}=…

(b) Cross-constraint checking succeeds (β0 = 1).

Figure 2: Two running examples of the EDIT framework, with and without patience respectively.
Dark red and green arrows between search steps represent the constraint is tighter or relaxed. In
figure (a), the consistency checking fails due to running-out of patience. The next step continues with
a looser constraint and a sub-optimal response is returned. A higher value of initial patience in figure
(b) and a better response is returned.

Algorithm The core algorithm in EDIT, Dual-Goal Search is described in Algorithm 1 in the
appendix. The search process begins with the loosest constraint and full patience. At the start
of every subsequent iteration, the algorithm checks the consistency of the predicted answers and
length distributions by comparing the answer and length metrics. If the consistency checking passes,
the algorithm proceeds with a stronger constraint. Otherwise, if the patience does not run out, the
algorithm continues this procedure with a tighter constraint and reduced patience. If patience is
exhausted, the algorithm compares the current answer with the most confident answer recorded in
previous iterations from H .

The hyperparameter patience is introduced to prevent the misdirection of search and the return of
suboptimal solutions. The indicator for length distribution is selected as follows:

lstat = Ans_Stat(C, â) = min(L) +Q1(L) + median(L)
3

(1)

where L denotes the length of the collection of responses whose predicted answers equal the most
confident answer â.

4 Experiments

4.1 Inference Setup

Datasets We focus on mathematical reasoning tasks. Three publicly available datasets are evaluated
in this stage: GSM8K [5], MATH500 [20] and AIMO [25], the super collection of AIME 2022-2024.
Specifications of these datasets can be found in Section A.1.

Models We assess EDIT on seven LLMs, covering various parameter sizes and training patterns.
The targeted models include: non-reasoning instruction-following models (LLaMA-3.1-8B [9]),
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reinforcement learning enhanced reasoning models (QwQ-32B [31], Qwen3-8B/32B [30] and Phi-4-
Reasoning [1]), LRM-distilled models [10] (R1-distilled-Qwen1.5B, R1-distilled LLaMA3-8B and
Phi-4-reasoning-14B [1]). More specifications about targeted models can be found in Section A.5.

Generation Configuration We keep the same set of sampling parameters, such as temperatures
and top_p values, across all baselines and our implementations to ensure a fair comparison. To ensure
a fair comparison, the number of samples N is kept the same in all experiments. As a result, for
methods using iterative algorithms, the number of samples per iteration is upper bounded.

For details of baselines and metrics, please refer to Section A.4.

Table 1: Result on three math problem datasets. The best accuracy among all baseline methods
are underlined. Accuracy and relative length variation with the best baselines are highlighted in the
brackets.

Dataset Model DP BoN ST EDIT
Acc↑ Length↓ Acc↑ Length↓ Acc↑ Length↓ Acc↑ Length↓

GSM8K

Qwen3-32B 88.2 725 94.2 181 94.0 195 94.4 (↑ 0.2) 83 (↓54.1%)
Llama-3.1-8B 67.2 302 72.3 120 68.4 84 71.4 (↓0.9) 87 (↓27.5%)
Qwen3-8B 88.2 380 93.4 202 93.3 163 93.4 103 (↓36.8%)
QwQ-32B 88.0 706 93.0 378 92.6 765 93.3 (↑ 0.3) 223 (↓41.0%)
Phi-4-Reasoning 82.6 524 91.1 419 91.5 370 91.8 (↑ 0.3) 286 (↓22.7%)
RD-Qwen-1.5B 74.1 476 86.4 290 85.9 236 85.7 (↓0.7) 154 (↓46.9%)
RD-Llama-3.1-8B 65.2 420 89.1 330 88.2 295 88.7 (↓0.4) 262 (↓20.6%)

MATH

Qwen3-32B 52.0 480 71.6 328 68.8 368 70.8 (↓0.8) 297 (↓9.4%)
Llama-3.1-8B 30.2 110 52.6 131 51.0 98 52.4 (↓0.2) 108 (↓17.6%)
Qwen3-8B 59.8 480 73.4 353 74.2 291 73.2 (↓1.0) 207 (↓28.9%)
QwQ-32B 43.8 612 64.4 394 61.0 327 64.8 (↑ 0.4) 298 (↓24.4%)
Phi-4-Reasoning 73.5 1033 81.2 796 78.6 535 80.2 (↓1.0) 335 (↓57.9%)
RD-Qwen-1.5B 48.4 520 60.4 396 62.6 284 62.4 (↓0.2) 249 (↓12.3%)
RD-Llama-3.1-8B 51.4 406 62.4 411 63.0 374 65.0 (↑ 2.0) 337 (↓9.9%)

AIMO

QwQ-32B 72.2 7352 84.4 5480 86.7 4980 86.7 3791 (↓30.8%)
Llama-3.1-8B 5.6 13 7.8 47 7.8 32 11.1 (↑ 3.3) 40 (↑25.0%)
Qwen3-8B 58.9 3335 76.7 3187 75.6 3045 74.4 (↓2.3) 2284 (↓28.3%)
Qwen3-32B 77.8 6189 82.2 5533 83.3 4980 83.3 4140 (↓16.9%)
Phi-4-reasoning 68.9 3565 82.2 3870 77.8 2921 83.3 (↑ 1.1) 2533 (↓34.5%)
RD-Qwen-1.5B 22.9 2843 42.2 1728 36.7 1155 41.1 (↓1.1) 1376 (↓20.4%)
RD-Llama-3.1-8B 51.1 2578 60.0 2348 60.0 2149 60.0 1770 (↓17.6%)

4.2 Main Results

The results averaged over five runs are shown in Table 1. The key findings from these results are as
follows:

• RL-enhanced models (e.g., the Qwen-3 8B/32B, QwQ-32B and Phi-4-Reasoning) consis-
tently show better capabilities than models in other categories. Models trained with reasoning
data distillation (e.g., R1-Distill-Llama-3.1-8B and R1-Distill-Qwen1.5B) perform worse
than RL-enhanced models but still outperform the SFT-only baseline (Llama-3.1-8B).

• While showing the highest accuracy in every test case, EDIT shows superior reasoning
efficiency—it manages to preserve accuracy to the maximum extent and cut off the reasoning
path. In most cases, EDIT nearly achieves or surpasses the best baseline with a concise
reasoning process. Specifically, the largest performance gap is below relatively 2% with
20% fewer tokens produced in the reasoning paths.

• EDIT struggles to make decisions on non-reasoning models. The only outlier in length is on
AIMO using Llama-3.1-8B, where EDIT generates 25% more tokens to pursue a significant
accuracy boost. In contrast, on MATH and GSM8K, it works similarly to other models that
strive to reach Pareto optimality.

5 Conclusion

In this paper, we propose EDIT (Efficient Dynamic Inference Trimming), a test-time scaling method
aimed at generating concise and correct reasoning paths. Triggered by the phenomenon distributional
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shifts discovered in our preliminary experiments, EDIT designs a dual-goal search algorithm to
achieve an optimal tradeoff between simplicity and correctness. Experimental results across a broad
range of models and datasets demonstrate the advantage and robustness compared to other strong
baselines.
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A Experiment Details

A.1 Dataset Statistics

We use three datasets for evaluation, all of which are in the mathematical domain:

• GSM8K [5]: The Grade School Math dataset contains 8.5K high-quality, linguistically
diverse grade school math word problems, which are divided into the training set of 7,500
samples and the test set of 1,000 samples. Problems in GSM8K can be solved from 2 to 8
steps, and all solutions primarily require performing a sequence of elementary calculations
using basic arithmetic operations to reach the final answer. We use the test set for evaluation,
which has 1,319 examples in total.

• MATH500 [20]: This dataset was released by OpenAI and is commonly used for verifier-
based training. We use a subset of the whole original dataset for evaluation, which comprises
500 examples.

• AIMO [24]: The AIMO (American Invitational Mathematics Olympics) dataset consists
of 90 problems from AIME 2022-2024 competitions. This is the most challenging dataset
among all the datasets.

A.2 Prompt Template

The prompt template for constrained generation is below.

Table 2: The prompt template to apply constraints and elicit principle-guided responses. Variables
with curly braces surrounded are placeholders to be filled. “num_step" is the upper limit of reasoning
steps we assign to LRMs.

[System] <The system prompt is omitted>.

[User] Solve the given math problem step by step. You must output the final answer in a
box "\\{{final_answer}}". You are limited to at most {num_step} reasoning steps. Stop
generating immediately and output the answer if you reach the maximum {num_step} steps
or obtained the final answer early.

Question: {question}

Solution:

A.3 Search Algorithm

A.4 Baselines and Metrics

Baselines We compare our methods with a series of advanced baselines: Direct CoT Prompting
(DP) [17] forces the model to generate a step-wise thinking path. For Best-of-N (BoN) [28], we gather
a collection of solutions that obtain the most common answer according to the voting mechanism
as in self-consistency [32]. We then select the shortest solution from that collection as the final
generation result. In Self-Truncation (ST), similar to the implementation in [37], we first prompt
LRMs to generate reasoning chains and select the chains that produce the most common answers.
Then we continue to prompt LRMs to prune these solution paths. All baselines are running under a
fixed budget of N = 64 samples (except for direct prompting, where LRM generates solutions using
greedy decoding), regardless of how many iterations each method has gone through.

Metrics The basic metrics are accuracy and average length, both of which are averaged over the
entire datasets. However, for the length comparison, we find that treating correct and incorrect
responses equally causes inconsistency in the intuitive expression of the models’ overall performance.
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Algorithm 1 Dual-Goal Search
1: Input: Model Mθ , Question q, Maximum Number of Iterations T , Total Sampling Budget N , Constraint

Template Ψ with Parameter τ = τmax (smaller τ means tighter constraint), patience β = β0.
2: Output: Final Answer â
3: Initialize Number of Samples in each iteration n = N

T
, History Record Memory H

4: for t = 1 to T do
5: Sample candidates with parameterized constraints Ct = {ct,1, . . . , ct,n} ∼ Mθ(q,Ψ(τt))
6: answer_conf = Cal_Confidence(Ct)
7: ât = argmax(answer_conf)
8: lstatt = Ans_Stat(Ct, ât) ▷ obtain the statistics of length distribution
9: if Check_Consistency(H, ât, lstatt) then

10: τmax = τt, τt = (τmax + τmin)/2
11: else if β == 0 then ▷ checking consistency failed, patience spent up
12: if âi == most_confident(H) then
13: τmax = τt
14: else
15: τmin = τt
16: continue
17: end if
18: β = β0

19: else ▷ patience does not run out, continue to searching in shorter generations.
20: τt = (τt−1 + τmin)/2, β = β − 1
21: end if
22: H = H ∪ {(âi, lstati)}
23: end for
24: â = most_confident(H)
25: return â

Take Llama-3.1-8B on the MATH500 test set as an example, the DP has an average response length
of 110 tokens, while EDIT spends more tokens (121) and achieves twice the accuracy (61.7% v.s.
30.2%). The measurement of length becomes meaningless at this time. Hence, a calibration approach
is required—one that considers both accuracy and the costs associated with incorrect predictions.

A.5 Model Specifications

There are seven targeted models being tested. All targeted models can be divided into three categories:

• Instruction tuned model (Llama series): This category presents the most typical instruction-
following models. They only experience the pretraining and supervised fine-tuning stages.
Additional red-teaming and human-preference alignment may be further applied to make its
output fulfill the HHH (Helpful, Honest, and Harmless) principle. Although demonstrating
the powerful general task solving capability, they show poor performance when encountering
complex reasoning problems.

• Reinforcement Learning (RL) enhanced reasoning model (QwQ-32B, Qwen3 series): These
models are endowed with the better reasoning capabilities through an additional RL stage
on large-scale reasoning data before traditional SFT and RL-based value-alignment stages.

• Distilled model (R1-distill-llama3-8B, R1-distill-Qwen-1.5B, Phi-4-reasoning-14B): These
models are released along with DeepSeek-R1 [10], which are fine-tuned on the automatically
generated prompt-response pairs as illustrated in their papers.

A.6 Evaluation Configurations

We present all pivotal inference hyper-parameters in Table 3. The inference scripts are implemented
using the vLLM [18] library on four NVIDIA A100 80G GPUs with tensor-level parallelism. We
keep the same set of configurations for all tested models on the same dataset.

We put the core code at https://anonymous.4open.science/r/EDIT-F90B.
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Dataset GSM8K MATH AIMO

temperature 0.7
top_p 0.9

num samples 64

max token 2048 2048 16384
Table 3: Inference settings across three datasets.

B More Statistical Results

B.1 Distribution of Length on Correct and Incorrect Answers

We further plot the length distribution of correct/incorrect answers on GSM8K test set in Fig-
ure 3 and Figure 4. It can be found that for all models, compared to other two baselines, the
distribution of EDIT shifts to the left—indicating there the huge reduction in lengths. Besides, the
area ratio between the blue and orange bars also increases sharply, which means EDIT gets more
correct answers.

B.2 Generation Examples

We show some typical examples of responses from these three methods, as shown in Tables 4 and 5.
In the simple GSM8K example, EDIT reaches the correct answer using much less tokens than the
other methods. In the hard MATH500 example, where the model has to understand the code in the
question, BoN fails to obtain the correct answer due to insufficient uncertainty regarding the correct
answer. In contrast, EDIT successfully yields the correct answer.

Table 4: An GSM8K problem solved by EDIT and several baselines and R1-Distill-Qwen1.5B.
Green titled boxes represent that the solution is both correct and the shortest. We remove some special
tokens for better readability. Blue titled boxes mean that only answer is correct. Red titled boxes fail
to produce the correct answer.

GSM8K Question

There are some oranges in a basket. Ana spends 3 minutes peeling an orange and Jane spends
4 minutes doing the same. If Ana and Jane start picking oranges from this basket to peel at
the same time, how many more oranges will Ana have peeled than Jane after an hour?
Answer: 5

EDIT (142 Tokens)

Step 1: Determine the peeling rates of Ana and Jane.
- Ana peels 1 orange per 3 minutes.
- Jane peels 1 orange per 4 minutes.

Step 2: Calculate the number of oranges each can peel in an hour (60 minutes).
- Ana: 60

3 = 20 oranges.
- Jane: 60

4 = 15 oranges.
Step 3: Find the difference in oranges peeled.
- Ana peels 20− 15 = 5 more oranges than Jane.

Answer: 5
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BoN (226 Tokens)

First, Let’s define, Ana’s rate = 1 orange per 3 minutes, Jane’s rate = 1 orange per 4 minutes.
In 1 hour (60 minutes), Ana peels 60 ÷ 3 = 20 oranges. Jane peels 60 ÷ 4 = 15 oranges.
Therefore, Ana peeled 5 more oranges than Jane.

Step-by-Step Explanation:

1. **Determine Individual Rates:**
- Ana peels 1 orange in 3 minutes.
- Jane peels 1 orange in 4 minutes.

2. **Calculate Oranges Plucked in an Hour:**
- One hour = 60 minutes.
- **Ana:** 60÷ 3 = 20 oranges.
- **Jane:** 60÷ 4 = 15 oranges.

3. **Find the Difference:** - 20− 15 = 5 oranges.
Final Answer: 5

ST (278 Tokens)

First, Let’s define, Ana’s rate = 1 orange per 3 minutes, Jane’s rate = 1 orange per 4 minutes.
In 1 hour (60 minutes), Ana peels 60 ÷ 3 = 20 oranges. Jane peels 60 ÷ 4 = 15 oranges.
Therefore, Ana peeled 5 more oranges than Jane.

Step-by-Step Explanation:

1. **Determine Individual Rates:**
- Ana peels 1 orange in 3 minutes.
- Jane peels 1 orange in 4 minutes.

2. **Calculate Oranges Plucked in an Hour:**
- One hour = 60 minutes.
- **Ana:** 60÷ 3 = 20 oranges.
- **Jane:** 60÷ 4 = 15 oranges.

3. **Find the Difference:**
- 20− 15 = 5 oranges.

**Final Answer:** 5
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Figure 3: Length distribution for correct and incorrect responses from three methods on GSM8K.
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Figure 4: Length distribution for correct and incorrect responses from three methods on MATH.
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Table 5: A MATH500 problem solved by EDIT and several baselines and R1-distill-Qwen-1.5B.

MATH500 Question

Let z = 2 +
√
2 − (3 + 3

√
2)i, and let c = 2 − 3i. Let w be the result when z is rotated

around c by π
4 counter-clockwise.

[asy]
unitsize(0.6 cm);
pair C, W, Z;

Z = (2 +
√
(2),−3− 3 ∗

√
(2)); C = (2,−3); W = rotate(45, C) ∗ (Z);

draw(Z–C–W);
dot("c", C, N);
dot("w", W, SE);
dot("z", Z, S);
label("π

4 ", C + (0.6,-1));
[/asy]
Find w.
Answer: 6− 5i

EDIT (667 Tokens)

Step 1: Identify the given points and transformations.
We are given: - z = 2 +

√
2− (3 + 3

√
2)i - c = 2− 3i - w is the result of rotating z around

c by π
4 counter-clockwise.

Step 2: Translate the complex number z so that c is at the origin.
Translation is done by subtracting c from z:

z′ = z − c = (2 +
√
2− (3 + 3

√
2)i)− (2− 3i) = (

√
2)− (3

√
2)i

Step 3: Rotate the translated complex number z′ by π
4 .

The rotation formula is:

w′ = z′ ·
(
cos
(π
4

)
+ i sin

(π
4

))
= z′ ·

(√
2

2
+ i

√
2

2

)
Multiply z′ by this rotation factor:

w′ = (
√
2− 3

√
2i) ·

(√
2

2
+ i

√
2

2

)
Step 4: Perform the multiplication.
Multiply the terms:

w′ =
√
2 ·

√
2

2
+

√
2 · i

√
2

2
− 3

√
2i ·

√
2

2
− 3

√
2i · i

√
2

2

Simplify each term: -
√
2 ·

√
2
2 = 1 -

√
2 · i

√
2
2 = i1 - −3

√
2i ·

√
2
2 = −3i1 - −3

√
2i · i

√
2
2 = 3

(since i2 = −1)
w′ = 1 + i− 3i+ 3 = 4− 2i

Step 5: Translate back by adding c.
Add c to w′:

w = w′ + c = (4− 2i) + (2− 3i) = 6− 5i

Answer: 6− 5i
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BoN (610 Tokens but wrong answer)

Let’s find the value of w after rotating z around c by π
4 counter-clockwise.

**Step 1: Identify the given points and complex numbers**
- z = 2 +

√
2− (3 + 3

√
2)i - c = 2− 3i

**Step 2: Translate z so that the center c becomes the origin**
To rotate around c, we translate z by subtracting c:

z′ = z − c = (2 +
√
2− 2) + (−3− 3

√
2− (−3))i =

√
2− 3

√
2i

**Step 3: Apply the rotation by π
4 **

The rotation formula for a complex number z′ by θ radians is:

w = z′ · eiθ = z′ · (cos θ + i sin θ)

For θ = π
4 :

ei
π
4 = cos

π

4
+ i sin

π

4
=

√
2

2
+ i

√
2

2

Multiply z′ by this:

w = (
√
2− 3

√
2i)

(√
2

2
+ i

√
2

2

)
**Step 4: Perform the multiplication**
Multiply each term:

w =
√
2 ·

√
2

2
+
√
2 · i

√
2

2
− 3

√
2i ·

√
2

2
− 3

√
2i · i

√
2

2
Simplify each term:

w =
2

2
+ i

2

2
− i

6

2
− i2

6

2

w = 1 + i− 3i− (−1) · 3

w = 1− 2i+ 3 = 4− 2i

Final Answer: 4− 2i
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ST (705 Tokens)

Step 1: Identify the given points and transformations.
We are given: - z = 2 +

√
2− (3 + 3

√
2)i - c = 2− 3i - w is the result of rotating z around

c by π
4 counter-clockwise.

Step 2: Translate the complex number z so that c is at the origin.
Translation is done by subtracting c from z:

z′ = z − c = (2 +
√
2− (3 + 3

√
2)i)− (2− 3i) = (

√
2)− (3

√
2)i

Step 3: Rotate the translated complex number z′ by π
4 .

The rotation formula is:

w′ = z′ ·
(
cos
(π
4

)
+ i sin

(π
4

))
= z′ ·

(√
2

2
+ i

√
2

2

)
Multiply z′ by this rotation factor:

w′ = (
√
2− 3

√
2i) ·

(√
2

2
+ i

√
2

2

)
Step 4: Perform the multiplication.
Multiply the terms:

w′ =
√
2 ·

√
2

2
+

√
2 · i

√
2

2
− 3

√
2i ·

√
2

2
− 3

√
2i · i

√
2

2

Simplify each term: -
√
2 ·

√
2
2 = 1 -

√
2 · i

√
2
2 = i1 - −3

√
2i ·

√
2
2 = −3i1 - −3

√
2i · i

√
2
2 = 3

(since i2 = −1)
w′ = 1 + i− 3i+ 3 = 4− 2i

Step 5: Translate back by adding c.
Add c to w′:

w = w′ + c = (4− 2i) + (2− 3i) = 6− 5i

Final Answer: 6− 5i
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