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Abstract
We consider a supervised learning setup in which
the goal is to predicts an outcome from a sample
of irregularly sampled time series using Neural
Controlled Differential Equations (Kidger et al.,
2020). In our framework, the time series is a dis-
cretization of an unobserved continuous path, and
the outcome depends on this path through a con-
trolled differential equation with unknown vector
field. Learning with discrete data thus induces
a discretization bias, which we precisely quan-
tify. Using theoretical results on the continuity
of the flow of controlled differential equations,
we show that the approximation bias is directly
related to the approximation error of a Lipschitz
function defining the generative model by a shal-
low neural network. By combining these result
with recent work linking the Lipschitz constant of
neural networks to their generalization capacities,
we upper bound the generalization gap between
the expected loss attained by the empirical risk
minimizer and the expected loss of the true pre-
dictor.

1. Introduction
Time series are ubiquitous in many domains such as finance,
agriculture, economics and healthcare. A common set of
tasks consists in predicting an outcome y ∈ Y , such as a
scalar or a label, from a time-evolving set of features. This
problem has been addressed with a great variety of methods,
ranging from auto-regressive models, such as VAR, to deep
learning models, such as Recurrent Neural Networks (RNN),
Long-Short-Term-Memory Networks (LSTM) and many
others. It has also been thoroughly studied through the
lenses of stochastic processes, Gaussian processes and many
more.
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Both in practice and theory, most methods and theoretical
setups often only tackle the case of regularly sampled time
series. In this setup, a time series is seen as a collection x =
(xt0 , . . . , xtK ) of K + 1 datapoints in Rd for which ∆t :=
tj − tj−1 is constant. In real-world scenarios, however,
time series are often irregularly sampled. This is often the
case when data collection is difficult or expensive. From
a modelling perspective, it is natural to consider that the
time series x is a degraded version - through subsampling
or missing values - of an unobserved underlying path x =
(xt)t∈[0,1] which, in turn, determines the outcome y ∈ Y ⊂
R. Informally, we have that y = F (x) + ε, where F is
an operator that maps the space of paths {x : [0, 1] →
Rd} to Y , and ε is a bounded noise term. For instance, in
healthcare, the value of a biomarker of interest of a patient
is determined by the continuous and unobserved trajectory
of her vitals, rather than by the discrete measurements made
by a physician. Similarly, in agriculture, crop growth and
yield is not determined by the punctual measurements of
soil fertility, but by its continuous value through time.

As a consequence, learning from the discrete time series
x rather than from x introduces a discretization bias. It
is of great importance to better understand how this bias
degrades the performance of learning algorithms. We tackle
this question by studying how irregular sampling affects the
generalization capacities of Neural Controlled Differential
Equations (NCDE), a popular and state-of-the-art method
for learning from irregular time dependant data introduced
in the seminal work of Kidger et al. (2020).

Out setup. We restrict our attention to a supervised learn-
ing setup in which sampling times are irregularly spaced.
Consider a sample {(yi,xD,i)}, where yi is the label of data
discretized on D = {t0, . . . , tK}. We will always require
that this sampling grid is constant across individuals, and
assume that t0 = 0 and tK = 1. Consider a predictor f̂D

obtained by empirical risk minimization on this sample such
that

f̂D(xD) ≈ y.

Our goal is to upper bound the generalization gap

RD
(
f̂D
)
−R

(
f⋆
)

where RD(f̂D
)

refers to the generalization error of the
learn predictor on discretized data, and R(f⋆

)
is the gener-
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alization error of the true predictor defining our generative
model on continuous data (our framework is introduced in
greater detail later on). Upper bounding this quantity cru-
cially allows to quantify how sampling affects prediction
performance. This is a central question both from a theo-
retical perspective and for practitioners, since it could, for
instance, justify increasing sampling frequencies of ICU
patients (Johnson et al., 2020) or intensifying monitoring
of people suffering from sickle-cell anaemia (Bussy et al.,
2019).

Contribution. Our contribution is threefold. First, build-
ing on a generative model proposed by Bleistein et al.
(2023), we obtain an upper bound of the generalization
gap which decomposes into two worst-case bounds, an ap-
proximation bias and a discretization bias. In a second time,
we leverage the continuity of the flow of a CDE and approxi-
mation theorems for shallow neural networks to bound both
the approximation and the discretization bias. Finally, by
using the Lipschitz continuity of NCDE, we obtain an upper
bound on the covering number of continuous and discretized
NCDE, which explicitly depends on the discretization for
the second class. This allows us to control both worst-case
bounds and yields an upper bound on the generalization gap.
As a byproduct, we also obtain a generalization bound for
NCDEs.

Overview. Section 2 covers related works. Section 3 de-
tails our setup and assumptions. In Section 4, we state our
main result, namely a generalization bound for NCDE and
an upper bound on the generalization gap for a very general
class of losses. Sections 5 and 6 give the two building blocks
of this proof, namely upper bounds on the discretization and
approximation biases, and upper bounds on the Rademacher
complexity of our model.

2. Related works
Hybridization of deep learning and differential equa-
tions. The idea of combining differential systems and deep
learning algorithms has been around for many years (Rico-
Martinez et al., 1992; 1994). The recent work of Chen et al.
(2018) has revived this idea by proposing a model which
learns a representation of x ∈ Rd by using it to set the initial
condition z0 = φξ(x) of the ODE

dzt = Gψ(zt)dt

or equivalently in integral form

zt = φξ(x) +

∫ t

0

Gψ(zs)ds

where Gψ and φξ are neural networks. The terminal value
z1 of this ODE is then used as input of any classical machine

learning algorithm. Numeral contributions have build upon
this idea and studied the connection between deep learning
and differential equations in the recent years (Dupont et al.,
2019; Chen et al., 2019b; 2020; Finlay et al., 2020). Mas-
saroli et al. (2020) and Kidger (2022) offer comprehensive
introductions to this topic. Links between deep learning
and stochastic differential equations (SDE) have also been
recently studied (Cohen et al., 2021; Marion et al., 2022;
Hayou, 2022).

Learning with irregular time series. In the recent years,
numerous competitive models have been proposed to handle
time-dependant irregular data. Che et al. (2018) introduce a
modified GRU with learn exponential decay of the hidden
state between sampling times. Other models hybridizing
classical deep learning architectures and ODE include GRU-
ODE (De Brouwer et al., 2019) and RNN-ODE (Rubanova
et al., 2019). Controlled Differential Equations have been in-
troduced through two distinct frameworks, namely through
Neural Rough Differential Equations (Morrill et al., 2021)
and NCDEs (Kidger et al., 2020) . The latter extends neural
ODEs to sequential data by first interpolating a time series
xD with cubic splines. The first value of the time series and
the interpolated path x̃ are then used as initial condition and
driving signal of the CDE

dzt = Gψ(zt)dx̃t

or equivalently

zt = φξ(xt0) +

∫
Gψ(zs)dx̃s,

where the integral is to be understood as the Riemann-
Stieltjes integral. As for neural ODEs, the terminal value
of this NCDE is then used for classification or regression.
Other methods for learning from irregular time series in-
clude Gaussian Processes (Li & Marlin, 2016) and the sig-
nature transform (Chevyrev & Kormilitzin, 2016; Kidger
et al., 2019; Fermanian, 2021; Bleistein et al., 2023).

Generalization bounds. The generalization capacities of
recurrent models have been studied since the end of the
1990s, mainly through their VC dimension (Dasgupta &
Sontag, 1995; Koiran & Sontag, 1998). Bartlett et al. (2017)
sparked a line of research connecting the Lipschitz constant
of feedforward neural networks to their generalization capac-
ities. Our central reference is the work of Che et al. (2018),
which leverage the Lipschitz continuity of RNN, LSTM
and GRU to derive generalization bounds of these models.
This work assumes that the time series xD is bounded and
regularly sampled, which are unecessary assumptions in our
work. Fermanian et al. (2021) also obtain generalization
bounds for RNN and a particular class of NCDE. However,
they crucially impose restrictive regularity conditions which
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then allow for linearization of the NCDE in the signature
space. Generalization bounds are then derived using ker-
nel learning theory. Hanson & Raginsky (2022) considers
an encoder-decoder setup involving excess risk bounds on
neural ODEs. Closest to our work is the recent work by
Marion (2023), which leverages similar tools to study the
generalization capacities of a particular class of neural ODE
and deep ResNets. However, our work considers NCDE,
which learn with time dependant data, and focuses on the
effects of data irregularity on the generalization gap.

3. Setup
We first detail our generative model, before introducting
NCDE and our learning problem.

3.1. A CDE-based generative model

In order to fully track the approximation bias, we introduce
a model that links the underlying path x to the outcome y.
Assumption 3.1. There exists a vector field G∗ : Rp →
Rp×d, a function φ : Rd → Rp and a vector α⋆ ∈ Rp that
governs a latent state (z⋆t )t∈[0,1] through the CDE

dz⋆t = G⋆(z⋆t )dxt (1)

with initial value z⋆0 = φ(x0) such that the outcome y is
given by

y = α⊤
⋆ z

⋆
1 + ε,

where ε is a noise term bounded by Mε > 0.

Put otherwise, the outcome y associated to a path x is the
value of a linear transformation applied to the final value of
a CDE with unknown vector field G⋆. This is a very general
model, which encompasses ODE-based models used for
instance in biology or physics. Indeed, by setting xt = t for
all t, one recovers a generic ODE.

We call the map f⋆ : x 7→ α⊤
⋆ z

⋆
1 the true predictor. Unique-

ness and existence to the CDE (1) is given by the Picard-
Lindelöf theorem given in Appendix A.2. In line with this
theorem, we make the following assumptions on the genera-
tive model and on the path (xt)t∈[0,1].
Assumption 3.2. The parameters of the generative model
satisfy ∥α⋆∥ ≤ Bα, φ ∈ C(Rd,Rp) and G⋆ ∈
Lip(Rp,Rp×d) with Lipschitz constant LG⋆ .
Assumption 3.3. The path (xt)t∈[0,1] is Lx-Lipschitz con-
tinuous, that is ∥xt − xs∥ ≤ Lx|t− s| for all t, s ∈ [0, 1].

Assumption 3.3 crucially implies that for all t ∈ [0, 1],

∥x∥1-var,[0,t] := sup
D

∑∥∥xti+1 − xti
∥∥ ≤ Lxt ≤ Lx,

where the supremum is taken on all finite discretizations
D = {0 = t0 < t1 < · · · < tN = 1} of [0, t], for N ∈ N∗.

We make a last assumption on the starting point of the
considered time series, which we will always assume to be
true when speaking of paths in the following.
Assumption 3.4. There exists a constant Bx > 0 such that
∥x0∥ ≤ Bx.

3.2. Neural Controlled Differential Equations

Neural Controlled Differential Equations, introduced by
Kidger et al. (2020), are a particular form of CDE in which
the vector field is chosen as a neural network. They can
be seen as a natural extension of neural ODEs (Chen et al.,
2018) to sequential data. Informally, NCDEs learn represen-
tations of time series by using them as drivers of controlled
differential equations, in combination with a neural vector
field. This vector field is optimized with respect to the con-
sidered learning task as in Neural ODEs. They bear close
resemblance with ResNets and Recurrent Neural Networks
(Fermanian et al., 2021).

In our setup, the outcome y is determined by the endpoint of
an unknown CDE. Our goal is to approximate the dynamics
of this CDE using a NCDE, such that the endpoint of this
neural model matches the outcome.
Definition 3.5. Let (xt)t∈[0,1] be a continuous path of
bounded variation and let Gψ : Rp → Rp×d be a neu-
ral vector field parametrized by ψ. Consider the solution
z := (zt)t∈[0,1] of the controlled differential equation

dzt = Gψ(zt)dxt,

with initial condition z0 = φξ(x0), where φξ : Rd → Rd
is a neural network parametrized by ξ. We call z the latent
space trajectory and

Φ⊤z1 =: fθ(x)

the prediction of the NCDE with parameters θ = (Φ, ψ, ξ).

The vector field Gψ can be any common neural network,
since these architectures are Lipschitz continuous (Virmaux
& Scaman, 2018). This assures that the solution of the
NCDE is well defined. We restrict our attention to neural
vector fields of the form

Gψ(z) = σ(Az + b), (2)

with Lσ-Lipschitz activation function σ : R → R that
verifies σ(0) = 0. A : Rp → Rp×d is a linear operator and
b ∈ Rp×d a matrix. The activation function is evaluated
entry-wise. We also restrict ourselves to initializations of
the form

z0 = φξ(x0) = σ(Ux0 + v), (3)

where U ∈ Rp×d and v ∈ Rp. We use the notation

NNU,v : u 7→ σ
(
Uu+ v

)
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to refer to this initialization network. The activation is
assumed to be identical for the initialization layer and
the neural vector field, but such an assumption can be
relaxed. The learnable parameters of the model thus are
θ =

(
Φ,A,b,U, v

)
.

The restriction on the depth of the neural vector field is
mainly made for the sake of simplicity. Indeed, our proof
only relies on the Lipschitz constant of Gψ . Such a constant
can be upper bounded for deeper neural vector fields at the
price of heavier notations. We refer to Bartlett et al. (2017)
and Virmaux & Scaman (2018) for an in-depth discussion
of the Lipschitz continuity of deeper neural networks. Also
note that in practice, the vector fields used in real-world
applications of NCDE have typically only a few hidden
layers (Kidger et al., 2020).

Learning with time series. If one has access to the con-
tinuous path x the time series xD is sampled from, one can
directly use this path as an input of a NCDE. However, to
apply NCDEs to time series xD, one needs to embed xD

into the space of paths of bounded variation. This can be
done through any reasonable embedding mapping

ρ : xD ∈
(
Rd
)K+1 7→ (x̃t)t∈[0,1]

such as splines, polynomials or linear interpolation.

In this work, we focus on the fill-forward embedding, which
simply defines the value of x̃ between two consecutive
points of D as the last observed value of xD.

Definition 3.6. The fill-forward embedding of a time series
xD = (xt0 , . . . , xtK ) sampled on D = {0 = t0 < · · · <
tK = 1} is the piecewise constant path (x̃t)t∈[0,1] defined
for every t ∈ [tk, tk+1[ as x̃t = xDtk for k ∈ {0, . . . ,K−1},
and x̃1 = xtK = x1.

Using this embedding in a NCDE with parameters θ =
(Φ,A,b,U, v) recovers a piecewise constant latent space
trajectory zD := (zDt )t∈[0,1] recursively defined for every
t ∈ [tk, tk+1[ by

zDt = zDtk−1
+ σ(Aztk−1

+ b)(xtk − xtk−1
) (4)

for k = 1, . . . ,K − 1 and initialized as zD0 := σ(Ux0 + v).
The terminal value is equal to

z1 = ztK = ztK−1
+ σ(AztK−1

+ b)(xtK − xtK−1
).

Formally, the prediction Φ⊤zD1 is equal to

Φ⊤zD1 = fθ ◦ ρ FF
(
xD
)
,

where ρ FF is the fill-forward operator. To lighten notations,
we simply write Φ⊤zD1 = fθ(x

D).

We highlight that the latent state z is more informative about
the outcome y than zD. Indeed, it embeds the full trajectory

of x, which determines y through the CDE (1), while zD

embeds a version of x degraded through sampling.

This recursive architecture has been studied with random
A,b by Cirone et al. (2023) under the name of homoge-
nous controlled ResNet because of its resemblance with the
popular ResNet (He et al., 2015).

Restrictions on the parameter space. In order to obtain
generalization bounds, we must furthermore restrict the size
of parameter space by requiring that the parameters θ lie in a
bounded set Θ. This means that there existBA, Bb, BU, Bv
such that

∥A∥ ≤ BA, ∥b∥ ≤ Bb, ∥U∥ ≤ BU, ∥v∥ ≤ Bv (5)

and

∥Φ∥ ≤ Bα (6)

for all NCDEs considered, where ∥W∥ is the Frobenius
norm. We recall that Bα is defined in Assumption 3.2. Such
an restriction is classical for deriving generalization bounds
(Bartlett et al., 2017; Bach, 2021; Fermanian et al., 2021).
We call

FΘ =
{
fθ : (xt)t∈[0,1] 7→ fθ(x) ∈ R s.t. θ ∈ Θ

}
this class of predictors.

We now state an important lemma. It is a direct consequence
of Gronwall’s Lemma, stated in Lemma A.4, and of our
generative model and the restrictions on the parameter space.
First define

∥G⋆(0)∥op := max
∥u∥=1

∥G⋆(0)u∥ ,

which is finite since G⋆ is continuous.

Lemma 3.7. Let y be generated from the CDE (1) from a
Lx-Lipschitz path x. One has

|y| ≤ Bα

(
Bφ + ∥G⋆(0)∥op Lx

)
exp

(
LG⋆Lx

)
+Mε,

whereBφ := max
∥u∥≤Bx

∥φ(u)∥. Also, both fθ(x) and fθ(xD)

are upper bounded by

MΘ := BαLσ exp(LALσLx)
(
BUBx +Bv +BbLx

)
for all fθ ∈ FΘ.

This lemma ensures that the predictions as well as the out-
come of our generative model remain bounded. This, in turn,
means that the loss function is bounded, which is crucial to
leverage results from Bartlett et al. (2017).
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3.3. The learning problem

We now detail our learning setup. We consider an i.i.d.
sample {(yi,xD,i)}ni=1 ∼ y, x with given discretization D.

For a given predictor fθ ∈ FΘ, define

RD
n (fθ) =

1

n

n∑
i=1

ℓ(yi, fθ(x
D,i))

and
RD(fθ) = Ex,y

[
ℓ(y, fθ(x

D))
]

as the empirical risk and the expected risk on the discretized
data. Similarly, define

Rn(fθ) =
1

n

n∑
i=1

ℓ(yi, fθ(x
i))

and
R(fθ) = Ex,y

[
ℓ(y, fθ(x))

]
the empirical risk and expected risk on the continuous data.
We stress that Rn(fθ) cannot be optimized, since we do not
have access to the continuous data. Let

f̂D ∈ argmin
θ∈Θ

RD
n (fθ)

be an optimal predictor obtained by empirical risk minimiza-
tion on the discretized data. In order to obtain generalization
bounds, the following technical assumption on the loss are
necessary (Mohri et al., 2018).

Assumption 3.8. The loss ℓ : R × R → R+ is Lipschitz
with respect to its second variable, that is there exists Lℓ
such that for all u, u′ ∈ Y and y ∈ Y ,

|ℓ(y, u)− ℓ(y, u′)| ≤ Lℓ|u− u′|.

This hypothesis is satisfied for most classical losses, such
as the the mean squared error, as long as the outcome and
the predictions are bounded. This is the case in our setup,
as stated in Lemma 3.7.

4. A bound on the generalization gap
We first decompose the difference between the expected risk
of the learnt predictor f̂D learn from the sample S and the
expected risk of the true predictor f∗.

Lemma 4.1. For all fθ ∈ Fθ, the generalization gap

RD(f̂D)−R(f∗)

is almost surely bounded from above by

sup
g∈FΘ

[
RD(g)−RD

n (g)
]
+ sup
g∈FΘ

[
R(g)−Rn(g)

]
+RD

n (fθ)−Rn(fθ) +R(fθ)−R(f∗).

We briefly comment on this inequality. The two first
suprema are common worst-case type bounds and can be
controlled using the Rademacher complexity of the class
FΘ. The third term RD

n (fθ) − Rn(fθ) corresponds to a
discretization bias, which arises because one can only mini-
mize the empirical risk on the discretized data, and not on
the continuous data. It will be bounded using the continuity
of the flow of a CDE with respect to its driving signal. The
last term is an approximation bias.

We let Mℓ be a bound on the loss function, which is finite
since the loss is continuous and the values of y and fθ(x)
are bounded as stated in Lemma 3.7. We also let

|D| := max
j=1,...,K−1

|tj+1 − tj |

be the greatest gap between two sampling times. The fol-
lowing theorems are our central results.

Theorem 4.2. One has, with probability at least 1− δ, that

RD(f̂D) ≤ Rn(f̂
D) +

24MΘLℓ√
n

√
2pU1 + dp(p+ 2)U2

+Mℓ

√
log 1/δ

2n

with U1 := log 20
√
npK1 and U2 := log 20

√
ndpK2 and

K1,K2 two constants depending on Θ, Lx, Bx and Lσ .

Turning to the generalization gap, we get the following
result.

Theorem 4.3. The generalization gap

RD(f̂D)−R(f∗)

is bounded from above for any fθ ∈ FΘ with parameters
θ = (Φ, ψ,U, v) such that Φ = α by

16

n
+

96MΘLℓ√
n

√
2pU1 + dp(p+ 2)U2

+ LℓC2

(
Θ, Lx, Lσ

)
|D|

+ LℓBα exp(LG⋆Lx)
[
Lx ∥Gψ −G⋆∥∞,Ω(Θ,Lx,Bx)

+ ∥φ− NNU,v∥∞,Bx

]
.

The constant MΘ is given in Lemma 3.7. The constant
C2

(
Θ, Lx, Lσ

)
is given in Proposition 5.1. The quantity

∥Gψ −G⋆∥∞,Ω(Θ,Lx,Bx)
is defined as

max
u∈Ω(Θ,Lx,Bx)

∥Gψ(u)−G⋆(u)∥ ,

and

∥φ− NNU,v∥∞,Bx
:= max

∥u∥≤Bx
∥φ(u)− NNU,v(u)∥ .
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The diameter of Ω(Θ, Lx, Bx) is upper bounded in Proposi-
tion 5.2.

Not assuming that Φ = α introduces a supplemen-
tary source of bias directly proportional to the difference
∥Φ− α∥. However, since we assume that α and Φ lie in a
common ball of radius Bα, we make this assumption which
simplifies the presentation of our results.

Let us comment the three terms of the bound of Theorem
4.3.

1. The first term is a common worst case bound when
deriving generalization bounds. It depends on the
Rademacher complexity of FΘ, and not on the dis-
cretization. We show in our proofs that an identical
upper bounds hold for discrete and continuous input.

2. The second term corresponds to the discretization bias,
and is directly proportional to |D|. It therefor vanishes
at the same speed than |D|. For instance, if we consider
the sequenceDK of equidistant discretizations of [0, 1]
with K points, the discretization bias vanishes at linear
speed.

3. Finally, observe that the approximation bias writes as
the sum of approximation errors on the vector fields
and the initial condition, rather than an general approx-
imation error on the true predictor f⋆.

Outline of the proof. The proof schematically works in
two times. We first bound the two sources of bias by leverag-
ing the continuity of the flow of a CDE. Informally, this the-
orem states that the difference ∆(terminal value) between
the terminal value of two CDEs decomposes as

∆(vector fields)+∆(initial conditions)+∆(driving paths).

This neat decomposition allows us to bound the discretiza-
tion bias since it depends on the terminal value of two CDEs
whose driving paths differ. This is done in Proposition 5.1.
It also allows to control the approximation bias, which de-
pends on the terminal value of two CDEs with identical
driving path but whose vector fields and initial conditions
differ, which we do in Proposition 5.2. Continuity of the
flow is stated in full generality in Theorem A.7. This prop-
erty is illustrated in Figure 1.

In a second time, we proceed to show that NCDEs are
Lipschitz with respect to their parameters θ. Building on
Bartlett et al. (2017), we first control the covering number
of FΘ in Proposition 6.1. This gives us a bound on the
Rademacher complexity of class of predictiors, stated in 6.2.
Theorem 4.2 then follows using standard arguments from
Mohri et al. (2018). Combining these results with bounds
on both sources of bias gives Theorem 4.3.

5. Bounding the discretization and the
approximation bias

We bound the two sources of bias, namely the approximation
bias and the discretization bias.
Proposition 5.1. For any fθ ∈ FΘ, one has

RD
n (fθ)−Rn(fθ) ≤ LℓC2

(
Θ, Lx, Lσ

)
|D|,

where C2

(
Θ, Lx, Lσ

)
is equal to

Bα

[
LσBA

(
Lσ(BUBx +Bv) + LσBbLx

)
× exp(LσBALx) + LσBb

]
exp(LσBALx).

The proof is given in Appendix B.1. Turning to the approx-
imation bias, we get the following bound, using the same
technique as for bounding the discretization bias.
Proposition 5.2. For any fθ ∈ FΘ with parameters
θ = (Φ, ψ,U, v) such that Φ = α, the approximation bias
R(fθ)−R(f∗) is bounded from above by

LℓBα exp(LG⋆Lx)Lx ∥Gψ −G⋆∥∞,Ω(Θ,Lx,Bx)

+ LℓBα exp(LG⋆Lx) ∥φ− NNU,v∥∞,Bx
,

where

Ω(Θ, Lx, Bx) ⊂
{
u ∈ Rp | ∥u∥ ≤ (Lσ(BUBx +Bv)

+ LσBbLx) exp(LσLALx)
}
.

Notice that this bound has a double dependence on the un-
known vector field G⋆. The first one is through its Lipschitz
constant LG⋆ . The second one comes from the error made
when approximating G⋆ by Gψ and φ by the shallow initial-
ization neural network. Controlling this second term using
approximation results for neural networks is left for future
work.

6. Bouding the Rademacher complexity of
NCDE

We first upper bound the covering number of FΘ. This result
is obtained by showing that NCDE are Lipschitz with re-
spect to their parameters, such that covering each parameter
class yields a covering of the whole class of predictors.
Proposition 6.1. The covering number N

(
FΘ, β

)
of FΘ is

bounded from above by(
1 +

10
√
pK1

β

)2p(
1 +

10
√
dpK3

β

)dp(p+2)

where K1,K2 are two constants depending on Θ, Lx, Bx
and Lσ .
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Figure 1: On the left, we plot in bold the solutions of two NCDEs who only differ in their vector field A1 and A2. We
then plot the solutions of the NCDEs with interpolated vector field δA1 + (1− δ)A2 for δ ∈ [0, 1] in red-blue gradient. In
the middle, we consider a given NCDE and interpolate linearly between two initial conditions x10 and x20. On the right,
we consider a given NCDE and drive it with the linear interpolation of two paths (x1t )t and (x2t )t. In all three cases, the
solutions evolve continuously as we interpolate between the models.

In combination with arguments borrowed from Chen et al.
(2019a) and Bartlett et al. (2017), Proposition 6.1 allows to
upper bound the empirical Rademacher complexity, which
we denote by Rad(H) for a function class H.

Proposition 6.2. The empirical Rademacher complexity
Rad(FΘ) associated to an i.i.d. sample of size n is upper
bounded by

4

n
+

24MΘ√
n

√
2pU1 + dp(p+ 2)U2

where U1 := log 20
√
npK1 and U2 := log 20

√
ndpK2,

and K1,K2 are two constants depending on Θ, Lx, Bx and
Lσ . The constant MΘ is given in Lemma 3.7.

7. Experiments
Our bounds rely crucially on restrictions on our parameter
space: the vaster the parameter space we consider - i.e. the
bigger the norm of the model’s parameters, the looser our
bounds.

In a first experiment, we analyse how the norm of the
NCDE’s parameters evolve during training in a teacher-
student setup. Paths are not downsampled in this experiment
to neutralize the discretization bias. The target is generated
from a teacher NCDE: the approximation bias is thus null.
Figure 2 considers a single training run. First, despite only
seeing the endpoint of the true red trajectory, the trained
model achieves almost perfect interpolation of the whole tra-
jectory on the training set. Secondly, the model’s parameters
stay within close range of their initialized value. Since our
model is initialized with Pytorch’s standard scaled Gaussian
initialization, this means that the parameter’s norms remain
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Figure 2: On the left, we display the evolution of the latent
state trajectory (α⊤zt)t and the true latent state trajectory
(α⊤
⋆ z

⋆
t )t through training. On the right, we display the evo-

lution of the parameter’s norms normalized by their value at
initialization. Training is performed with Adam (Kingma
& Ba, 2014), standard α, β parameters and a learning rate
of 9 × 10−4 for 3000 iterations on a training set of size
n = 100.

well behaved during training and that our bounds do not
explode.

We then iterate this experiment and display the distribution
of the parameter’s norms - this time in absolute value - after
training in Figure 3. Since the norms of the parameters
scale with their dimensions, greater values are observed for
the parameters A and b who are of dimension dp2 and dp
respectively. The parameters norm remain relatively small
and do not disperse excessively over training runs.

Finally, we conduct a last experiment to analyse the in-
teraction between training error, generalization error and
discretization. We first fix a test and train dataset. For
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A b U v
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Figure 3: Absolute value of the parameters norm after train-
ing for 1000 iterations on a training set of size n = 100.
Training is performed with Adam (Kingma & Ba, 2014),
standard α, β parameters and a learning rate of 9 × 10−4.
Each dot corresponds to one random initialization and train-
ing run of an NCDE.
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Figure 4: Train and test error with paths downsampled to 5
points. Every point corresponds to a random downsampling
of the paths (xi), initialization and training of an NCDE
model. The colorbar indicates the coarsness of the sampling,
that is the biggest time between two sampling points. Train-
ing is performed with Adam (Kingma & Ba, 2014), standard
α, β parameters and a learning rate of 1 × 10−3 for 1200
iterations.

every random initialization and training of an NCDE, we
randomly downsample the paths (xi) on a 5 point grid. We
then compute the loss on the downsampled training and
the downsampled test dataset. The results are displayed in
Figure 4. The darker the points, the greater the sampling
gap |D|. First, one can see that the training error is posi-
tively correlated with the generalization error, as predicted
by Theorem 4.2. Interestingly, the sampling gap |D| is also
positively correlated with the training and generalization
error. Indeed, as more information is missed between sam-
pling times when |D| increases, the prediction of the label
becomes less precise.

8. Conclusion
Several perspectives are of high interest for extending our
work. First, a deeper empirical assessment of our claims is
needed. Concerning the approximation bias, we believe that
approximation theorems for deeper neural networks can be
used for quantifying its dependence in Θ and in the size of
the latent space p, leading to a trade-off between complexity
of the model and approximation capacities.
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The appendix is structured as follows. Appendix A gives preliminary results on CDEs and covering numbers. Appendix
B details the proof of the bounds of the approximation and discretization biases. Appendix C collects the proofs of the
generalization bound, and the bound on the generalization gap. Proofs of Appendix A are given in Appendix D for the sake
of clarity.

A. Mathematical background
A.1. Riemann-Stieltjes integral

Lemma A.1. Let f : [0, 1] → Rp×d be a continuous function, and g : [0, 1] → Rd be of finite total variation. Then
Riemann-Stieljes integral ∫ t

0

fsdgs ∈ Rp,

where the product is understood in the sens of matrix-vector multiplication, is well-defined and finite for every t ∈ [0, 1].

We refer to Friz & Victoir (2010) for a thorough introduction to the Riemann-Stieltjes integral.

A.2. Picard-Lindelöf Theorem

Theorem A.2. Let x be a continuous path of bounded variation, and assume that G : Rp → Rp×d is Lipschitz continuous.
Then the CDE

dyt = G(yt)dxt

with initial condition y0 = φ(x0) has a unique solution.

A full proof can be found in Fermanian et al. (2021). Remark that since in our setting, NCDE are Lipschitz since the neural
vector fields are Lipschitz (Virmaux & Scaman, 2018). This ensures that the solutions to NCDEs are well defined.

We also need the following variation, which ensures that the CDE driven by x̃ is well-defined.

Lemma A.3. Let x be a piecewise constant and right-continuous path taking finite values in Rd, with a finite number of
discontinuities at 0 < t1, . . . , tK = 1, i.e.

lim
t→t+i

xt = xti

and
xt = xti

for all t ∈ [ti, ti+1[, for all i = 1, . . . ,K − 1. Assume that G : Rp → Rp×d is Lipschitz continuous. Then the CDE

dyt = G(yt)dxt

with initial condition y0 = φ(x0) has a unique solution.

This result can be obtained by first remarking that since x is piecewise constant, the solution to this CDE will also be
piecewise constant, with discontinues at 0 < t1 < · · · < tK : indeed, the variations of x between two points of discontinuity
being null, the variations of the solution will also be null between these two points. The solution can then be recursively
obtained by seeing that for all t ∈ [ti, ti+1[

yt = yti = yti−1
+G(yti−1

)(xti − xti−1
)

with yt = φ(x0) for t ∈ [t0, t1[, where t0 = 0, and ytK = y1 = ytK−1
+G(ytK−1

)(xtK − xtK−1
).

A.3. Gronwall’s Lemmas

Lemma A.4 (Gronwall’s Lemma for CDEs). Let x : [0, 1] → Rd be a continuous path of bounded variations, and
ϕ : [0, 1] → Rd be a bounded measurable function. If

ϕ(t) ≤ Kt + Lx

∫ t

0

ϕ(s) ∥dxs∥
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for all t ∈ [0, 1], where Kt is a time dependant constant, then

ϕ(t) ≤ Kt exp
(
Lx ∥x∥1-var,[0,t]

)
for all t ≥ 0.

See Friz & Victoir (2010) for a proof. Remark that this Lemma does not require ϕ(·) to be continuous. We also state a
variant of the discrete Gronwall Lemma, which will allow us to obtain the bound for discrete inputs xD.

Lemma A.5 (Gronwall’s Lemma for sequences). Let (yk)k≥0, (bk)k≥0 and (fk)k≥0 be positive sequences of real numbers
such that

yn ≤ fn +

n−1∑
l=0

blyl

for all n ≥ 0. Then

yn ≤ fn +

n−1∑
l=0

flbl

n−1∏
j=l+1

(1 + bj)

for all n ≥ 0.

A proof can be found in Holte (2009) and Clark (1987).

A.4. An upper bound on the total variation of the solution of a CDE

We have the following bound on the total variation of the solution to a CDE.

Proposition A.6. Let F : Rp×d → Rd be a Lipschitz vector field with Lipschitz constant LF and (xt)t∈[0,1] be a continuous
path of total variation bounded by Lx. Let (zt)t∈[0,1] be the solution of the CDE

dzt = F(zt)dxt

with initial condition z0 ∈ Rp. Then for all t ∈ [0, 1], one has

∥z∥1-var,[0,t] ≤ C1(LF,F, Lx) ∥x∥1-var,[0,t]

with

C1(LF,F, Lx) :=

[
LF

(
∥z0∥+ ∥F(0)∥op Lx

)
exp(LFLx) + ∥F(0)∥op

]
exp(LFLx).

For f ∈ FΘ, let z be the trajectory of the latent state associated to an input x, and zD be the trajectory of the latent state
associated to an input xD. Both ∥z1∥1-var and

∥∥zD1 ∥∥1-var are upper bounded by

C1(LGψ
,Gψ, Lx)Lx

where C1(LGψ
,Gψ, Lx) is defined as[

LσBALσ
(
BUBx +Bv +BbLx

)
exp(LσBALx) + LσBb

]
exp(LσBALx).

The proof is given in Appendix D.2.

A.5. Continuity of the flow of a CDE

Theorem A.7. Let F,G : Rp → Rp×d be two Lipschitz vector fields with Lipschitz constants LF, LG. Let x, r be either
continuous or piecewise constant paths of total variation bounded by Lx and Lr. Consider the controlled differential
equations

dwt = F(wt)dxt and dvt = G(vt)drt
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with initial conditions w0 ∈ Rp and v0 ∈ Rp respectively.

One has that

∥wt − vt∥ ≤

(
∥w0 − v0∥+ ∥x0 − r0∥

+ ∥x− r∥∞,[0,t]

(
1 + LFLrC1(LF,F, Lx)

)
+ max
v∈Ω(G)

∥F(v)−G(v)∥op Lr

)
× exp(LFLx).

and symmetrically that

∥wt − vt∥ ≤

(
∥w0 − v0∥+ ∥x0 − r0∥

+ ∥x− r∥∞,[0,t]

(
1 + LGLxC1(LG,G, Lr)

)
+ max
v∈Ω(F)

∥F(v)−G(v)∥op Lx

)
× exp(LGLr),

where the constant C1(·, ·, ·) is given in Proposition A.6 and the sets Ω(G) and Ω(F) are defined as

Ω(G) =
{
u ∈ Rp | ∥u∥ ≤ (∥v0∥+ ∥G(0)∥Lr) exp(LGLr)

}
.

and

Ω(F) =
{
u ∈ Rp | ∥u∥ ≤ (∥w0∥+ ∥F(0)∥Lx) exp(LFLx)

}
.

The proof is given in Appendix D.3. We stress that any combination of continuous and piecewise constant paths can be used.

Using this result, we obtain the following theorem.

Theorem A.8. Let fθ1 , fθ2 ∈ FΘ two predictors with respective parameters θ1 = (A1,b1,U1, v1,Φ1) and θ2 =
(A2,b2,U2, v2,Φ2).

Both
|fθ1(x)− fθ2(x)|

and
|fθ1(xD)− fθ2(x

D)|

are upper bounded by

L1 ∥Φ1 − Φ2∥+ L2 ∥A1 −A2∥+ L3 ∥b1 − b2∥+ L4 ∥U1 −U2∥+ L5 ∥v1 − v2∥

where L1, L2, L3, L4, L5 are explicit Lipschitz constants.

The proof is in Appendix D.4.

A.6. Covering numbers

First, we recall the definition of the covering number of a class of functions.

Definition A.9. Let H = {h : U ⊂ Re → Rf} be a class of functions. The covering number N
(
H, β

)
of H is the minimal

cardinality of a subset C ⊂ H such that for all h ∈ H, there exists ĥ ∈ C such that

sup
x∈U

∥∥∥h(x)− ĥ(x)
∥∥∥ ≤ β.
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We state a Lemma from Chen et al. (2019a).

Lemma A.10. Let G = {A ∈ Rd1×d2 s.t. ∥A∥ ≤ λ} for a given λ > 0. The covering number N (G, β) is upper bounded
by (

1 +
2min(d

1
2
1 , d

1
2
2 )λ

ε

)d1d2
.
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We now proceed to prove the bounds on the approximation and discretization biases, and the generalization inequalities. Let
us precisely detail the different steps of our proofs.

1. The bound of the discretization bias, stated in Proposition 5.1), follows from the continuity of the flow given in Theorem
A.7. Indeed, the discretization error depends on the difference between z1 and zD1 , which are solutions to identical
CDE, but with different driving paths x and embedded path x̃.

2. The bound of the approximation bias is obtained in a similar fashion. Indeed, it directly depends on the difference
between z⋆1 and z1. However, this time, only the initial condition and the vector fields are different, while the driving
paths are identical.

3. Turning to the generalization inequalities, the first step consists in showing that NCDEs are Lipschitz with respect to
their parameters, which we do in Theorem A.8. This leverages once again the continuity of the flow, since we aim at
bounding the difference between two NCDEs with different parameters but identical driving paths.

4. We then use the central idea of Chen et al. (2019a) which consists in obtaining an upper bound on the covering number
of a parameterized class by covering each of its parameters in Proposition 6.1. While the authors of this article use
such a bound for RNN, the same technique applies for NCDE.

5. We then proceed to connect the covering number of FΘ to its Rademacher complexity building on arguments made by
Bartlett et al. (2017) in Proposition 6.2.

6. Once this last result is obtained, we can obtain the generalization bound by resorting to classical techniques (Mohri
et al., 2018).

7. The bound on the generalization gap is obtained by combining all the precedent elements and using a symmetrization
argument to upper bound the two worst case bounds.

B. Proof of bias bounds
B.1. Proof of Proposition 5.1

Take fθ ∈ FΘ. One has

RD
n (fθ)−Rn(fθ) =

1

n

n∑
i=1

[
ℓ(yi, fθ(x

D,i))− ℓ(yi, fθ(x
i))
]
. (7)

Considering a single individual i ∈ {1, . . . , n}, one has

ℓ(yi, fθ(x
D,i))− ℓ(yi, fθ(x

i)) ≤ Lℓ|fθ(xD,i)− fθ(x
i)| (8)

using the Lipschitz continuity of the loss function with respect to its second argument. From the Cauchy-Schwarz inequality,
it follows that

|fθ(xD,i)− fθ(x
i)| = |Φ⊤(zD1 − z1

)
| ≤ Bα

∥∥∥zD,i1 − zi1

∥∥∥ (9)

where zD,i and zi1 refer to the endpoint of the latent space trajectory of the NCDE, resp. with discrete and continuous input,
associated to the predictor fθ.

zD1 and z1 correspond to the endpoint of two CDEs with identical vector field and identical initial condition, but whose
driving path differ. Using the continuity of the flow stated in Theorem A.7, and using the fact that the total variation of the
piecewise constant path corresponding to the fill-forward embedding of the time series xD,i is bounded by Lx, one has the
inequality ∥∥zD1 − z1

∥∥ ≤
∥∥x− x̃i

∥∥
∞,[0,t]

(
1 + LσLALxC1(LGψ

,Gψ, Lx)
)
exp(LσBALx) (10)
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where x̃i is the piecewise constant path corresponding to the fill-forward embedding of the time series xD,i and we recall
that C1(LGψ

,Gψ, Lx) is equal to[
LσBALσ

(
BUBx +Bv +BbLx

)
exp(LσBALx) + LσBb

]
exp(LσBALx).

One also has that ∥∥xD,i − xi
∥∥
∞,[0,1]

= max
j=1,...,K

max
s∈[tj ,tj+1]

∥∥∥xitj − xis

∥∥∥ ≤ Lx|D| (11)

since the discretization is identical between individuals. Putting everything together, this yields for all i = 1, . . . , n that

|fθ(xD,i)− fθ(x
i)| ≤ Bα

(
1 + LσLALxC1(LGψ

,Gψ, Lx)
)
exp(LσBALx)Lx︸ ︷︷ ︸

C2

(
Θ,Lx,Lσ

) |D| (12)

and finally

RD
n (fθ)−Rn(fθ) ≤ LℓC2

(
Θ, Lx, Lσ

)
|D|. (13)

This concludes the proof.

B.2. Proof of Proposition 5.2

For any fθ ∈ FΘ with continuous input, the approximation bias writes

R(fθ)−R(f⋆) = E
[
ℓ(y, fθ(x))− ℓ(y, f⋆(x))

]
. (14)

Using the Lipschitz continuity of ℓ and the Cauchy-Schwarz inequality, one gets

ℓ(y, fθ(x))− ℓ(y, f⋆(x)) ≤ Lℓ ∥α⋆ − Φ∥ ∥z1∥+ LℓBα ∥z⋆1 − z1∥ . (15)

Since z⋆1 and z1 are the solution to two CDEs with different vector fields and different initial conditions, the continuity of
the flow stated in Theorem A.7 yields

∥z⋆1 − z1∥ ≤ exp(LG⋆Lx)
[
L max
u∈Ω(Gψ)

∥Gψ(u)−G⋆(u)∥+ max
∥u∥≤Bx

∥φ(u)− NNU,v(u)∥
]

(16)

where

Ω(Gψ) =
{
u ∈ Rp | ∥u∥ ≤ (∥z0∥+ LσBbLx) exp(LσLALx)

}
⊂
{
u ∈ Rp | ∥u∥ ≤ (Lσ(BUBx +Bv) + LσBbLx) exp(LσLALx)

}
.

This means that diam(Ω(Gψ)) is a function of Θ, Lx and Bx. To clarify this, we now write Ω(Θ, Lx, Bx).

Putting everything together and taking expectations yields

R(fθ)−R(f⋆) ≤ LℓBα exp(LG⋆Lx)

[
Lx max

u∈Ω(Θ,Lx,Bx)
∥Gψ(u)−G⋆(u)∥ (17)

+ max
∥u∥≤Bx

∥φ(u)− NNU,v(u)∥

]
(18)

+ Lℓ ∥α⋆ − Φ∥ ∥z1∥ . (19)
(20)

We now turn to a predictor for which one has Φ = α⋆. This yields

R(fθ)−R(f⋆) (21)

≤ LℓBα exp(LG⋆Lx)
[
Lx ∥Gψ −G⋆∥∞,Ω(Θ,Lx,Bx)

+ ∥φ− NNU,v∥∞,Bx

]
. (22)

This concludes the proof.
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C. Proof of generalization bound
C.1. Proof of Lemma 4.1

For all f ∈ FΘ, one has the decomposition

RD(f̂D)−R(f∗) = RD(f̂D)−RD
n (f̂

D) (23)

+RD
n (f̂

D)−RD
n (f) (24)

+RD
n (f)−Rn(f) (25)

+Rn(f)−R(f) (26)
+R(f)−R(f⋆). (27)

By optimality of f̂D, one has almost surely

RD
n (f̂

D)−RD
n (f) ≤ 0. (28)

One is then left with the inequality

RD(f̂D)−R(f∗) ≤ RD(f̂D)−RD
n (f̂

D) (29)

+RD
n (f)−Rn(f) (30)

+Rn(f)−R(f) (31)
+R(f)−R(f⋆). (32)

Taking the supremum on the two differences between the empirical and expected risk yields that

RD(f̂D)−R(f∗) ≤ sup
g∈FΘ

[
RD(g)−RD

n (g)
]
+ sup
g∈FΘ

[
R(g)−Rn(g)

]
(33)

+RD
n (f)−Rn(f) +R(f)−R(f⋆). (34)

This concludes the proof.

C.2. Proof of Proposition 6.1

We follow the proof strategy of Chen et al. (2019a). Starting from Theorem A.8, one can see that since

sup
x

∥fθ1(x)− fθ2(x)∥ ≤ L1 ∥Φ1 − Φ2∥+ L2 ∥A1 −A2∥+ L3 ∥b1 − b2∥ (35)

+ L4 ∥U1 −U2∥+ L5 ∥v1 − v2∥ , (36)

where the supremum is taken on all x such that ∥x∥1-var,[0,1] ≤ Lx and ∥x0∥ ≤ Bx, it is sufficient to have θ̂ = (Φ̂, Â, b̂, Û, v̂)
such that ∥∥∥Φ− Φ̂

∥∥∥ ≤ β

5L1
,
∥∥∥A− Â

∥∥∥ ≤ β

5L2
,
∥∥∥b− b̂

∥∥∥ ≤ β

5L3
,
∥∥∥U− Û

∥∥∥ ≤ β

5L4
(37)

and

∥v − v̂∥ ≤ β

5L5
(38)

to obtain an β covering of FΘ, since in this case we get that

sup
x

∥∥fθ1(x)− fθ̂(x)
∥∥ ≤ β. (39)
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Using Lemma A.10 and denoting by GΦ = {h : z 7→ Φ⊤z, ∥Φ∥ ≤ Bα}, and using the corresponding definitions for GA,
Gb, GU and Gv , we get that

N
(
GΦ,

β

5L1

)
≤

(
1 +

10
√
pBαL1

β

)p
, N
(
GA,

β

5L2

)
≤

(
1 +

10
√
dpBAL2

β

)dp2
(40)

N
(
Gb,

β

5L3

)
≤

(
1 +

10min{√p,
√
d}BbL3

β

)dp
, (41)

N
(
GU,

β

5L4

)
≤

(
1 +

10min{√p,
√
d}BUL4

β

)dp
(42)

and

N
(
Gv,

β

5L5

)
≤

(
1 +

10
√
pBvL5

β

)p
. (43)

The covering number of FΘ is obtained by multiplying the covering number of each functional class (Chen et al., 2019a).
Defining

K1 := max{BαL1, BvL5}, (44)
K2 := max{BbL3, BUL4}, (45)
K3 := max{BbL3, BUL4, BAL2} (46)

and using the fact that min{
√
d,
√
p} ≤

√
dp, we finally get that

N (FΘ, β) ≤

(
1 +

10
√
pK1

β

)2p(
1 +

10min{√p,
√
d}K2

β

)2dp(
1 +

10
√
dpBAL2

β

)dp2
(47)

≤

(
1 +

10
√
pK1

β

)2p(
1 +

10
√
dpK3

β

)dp(2+p)
. (48)

The proof is identical for inputs xD. This concludes the proof.

C.3. Proof of Proposition 6.2

We use the following Lemma from Bartlett et al. (2017).

Lemma C.1. Let H be a class of real-valued functions taking values in [−M,M ], for M > 0, and assume that 0 ∈ H.
Then the empirical Rademacher complexity associated to a sample of n datapoints verifies

Rad(H) ≤ inf
β>0

[
4β√
n
+

12

n

∫ 2M
√
n

β

√
logN (H, β)dβ

]
(49)

We apply this Lemma to the class FΘ. We trivially have that 0 ∈ F , since this function is recovered by taking θ = 0. By
Lemma 3.7, the value of fθ is bounded by

MΘ = BαLσ exp(LALσLx)
(
BUBx +Bv +BbLx

)
. (50)
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In our setup, we get, from Proposition 6.1, that∫ 2MΘ
√
n

β

√
logN (FΘ, β)dβ (51)

≤
∫ 2MΘ

√
n

β

√
2p log

(
1 +

10
√
pK1

β

)
+ dp(2 + p) log

(
1 +

10
√
dpK2

β

)
dβ (52)

≤ 2MΘ

√
n

√
2p log

(
1 +

10
√
pK1

β

)
+ dp(2 + p) log

(
1 +

10
√
dpK2

β

)
. (53)

Since for x > 1, log(1 + x) ≤ log(2x), we have, for β small enough to ensure that both

10
√
dpK2

β
≥

10
√
pK1

β
> 1

so that ∫ 2MΘ
√
n

β

√
logN (FΘ, β)dβ (54)

≤ 2MΘ

√
n

√√√√2p log

(
20

√
pK1

β

)
+ dp(p+ 2) log

(
20

√
dpK2

β

)
(55)

Taking β = 1√
n

, one gets

Rad(FΘ) ≤
4

n
+

24MΘ√
n

√
2p log 20

√
npK1 + dp(p+ 2) log 20

√
ndpK2. (56)

yielding the same upper bound on the complexity.

C.4. Proof of Theorems 4.2 and 4.3

The first part of the theorem is a straightforward application of Mohri et al. (2018), Theorem 11.3. Since our loss is
Lℓ-Lipschitz and bounded by Mℓ, this gets us immediately that with probability at least 1− δ, one has

RD(f̂D) ≤ Rn(f̂
D) +

24MΘLℓ√
n

√
2pU1 + dp(p+ 2)U2 +Mℓ

√
log 1/δ

2n
(57)

with U1 := log 20
√
npK1 and U2 := log 20

√
ndpK2.

Note that this also gets us

R(f̂) ≤ Rn(f̂) +
24MΘLℓ√

n

√
2pU1 + dp(p+ 2)U2 +Mℓ

√
log 1/δ

2n
, (58)

with
f̂ ∈ argmin

θ∈Θ
Rn(fθ)

We now turn to the generalization gap. Using the generalization gap decomposition given in Lemma 4.1, it is clear that for
any predictor fθ parametrized by θ = (Φ, ψ,U, v) such that Φ = α,
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RD(f̂D)−R(f∗) (59)

≤ sup
g∈FΘ

[
RD(g)−RD

n (g)
]
+ sup
g∈FΘ

[
R(g)−Rn(g)

]
(60)

+ LℓC2

(
Θ, Lx, Lσ

)
|D| (61)

+ LℓBα exp(LG⋆Lx)
[
Lx ∥Gψ −G⋆∥∞,Ω(Θ,Lx,Bx)

+ ∥φ− NNU,v∥∞,Bx

]
. (62)

Now, by a classical symmetrization argument - see for instance Bach (2021), Proposition 4.2 - the obtained bounds on the
Rademacher complexity imply that

sup
g∈FΘ

[
R(g)−Rn(g)

]
≤ 2Rad(FΘ) (63)

and

sup
g∈FΘ

[
RD(g)−RD

n (g)
]
≤ 2Rad(FΘ). (64)

Combining all these elements gets us the final result.
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D. Supplementary proofs
D.1. Proof of Lemma 3.7

We recall that ∥W∥op := max
∥x∥=1

∥Wx∥, and that ∥W∥op ≤ ∥W∥, which means that ∥Wx∥ ≤ ∥W∥ ∥x∥ for all x. We first

prove this result for a general CDE
dzt = F(zt)dxt

with initial condition z0 ∈ Rp, where the driving path x is supposed to be continuous of bounded variation (or piecewise
constant with a finite number of discontinuities.)

By definition,

zt = z0 +

∫ t

0

F(zt)dxt. (65)

Taking norms, this yields

∥zt∥ ≤ ∥z0∥+
∫ t

0

∥F(zt)∥op ∥dxt∥ . (66)

Notice that since we have assumed F to be Lipschitz, one has for all z ∈ Rp

∥F(z)∥op ≤ ∥F(z)− F(0)∥op + ∥F(0)∥op (67)

≤ ∥F(z)− F(0)∥+ ∥F(0)∥op (68)

≤ LF ∥z∥+ ∥F(0)∥op , (69)

where the last inequality follows from the fact that F is Lipschitz. It follows that

∥zt∥ ≤ ∥z0∥+
∫ t

0

(LF ∥zt∥+ ∥F(0)∥op) ∥dxt∥ . (70)

Using the fact that
∫ t
0
∥dxs∥ = ∥x∥1-var,[0,t], one gets

∥zt∥ ≤ ∥z0∥+ ∥F(0)∥op ∥x∥1-var,[0,t] + LF

∫ t

0

∥zs∥ ∥dxs∥ . (71)

Applying Gronwall’s Lemma for CDEs yields

∥zt∥ ≤
(
∥z0∥+ ∥F(0)∥op ∥x∥1-var,[0,t]

)
exp

(
LF ∥x∥1-var,[0,t]

)
. (72)

Now, turning to the generative CDE (1), we obtain as a consequence that

|y| ≤ Bα

(
Bφ + ∥G⋆(0)∥op Lx

)
exp

(
LG⋆Lx

)
+Mε, (73)

since y is the sum of a linear transformation of the endpoint of a CDE an a noise term ε bounded by Mε.

Turning now to fθ ∈ FΘ, one has that

|fθ(x)| = |Φ⊤z1| ≤ ∥Φ∥ ∥z1∥ ≤ Bα ∥z1∥ (74)

and since z1 is the solution of a NCDE, we can directly leverage the previous result to bound ∥z1∥. From the definition of
FΘ, it follows that

∥z0∥ ≤ LσBUBx + LσBv, ∥F(0)∥op ≤ LσBb and LF ≤ LσBA. (75)
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As a direct consequence, one has

|fθ(x)| ≤ BαLσ exp(LALσLx)
(
BUBx +Bv +BbLx

)
. (76)

We now turn to fθ(xD). Bounding the value of zD1 can be done by applying this lemma to the values of zD at points in D,
since it is constant between those points. The proof leverages the discrete version of Gronwall’s Lemma, stated in Lemma
A.5. One has

∥ztk∥ ≤ ∥z0∥+
k−1∑
l=0

∥∥σ(Aztl + b
)
∆xtl+1

∥∥ ≤
k−1∑
l=0

∥∥σ(Aztl + b
)∥∥ ∥∥∆xtl+1

∥∥ , (77)

for all k = 1, . . . ,K. Now, since ∥∥σ(Aztl + b
)∥∥ ≤ LσBA ∥zl∥+ LσBb (78)

one has

∥ztk∥ ≤ ∥z0∥+ LσBb

k−1∑
l=0

∥∥∆xtl+1

∥∥+ LσBA

k−1∑
l=0

∥zl∥ ∥∆xl+1∥ (79)

≤ ∥z0∥+ LσBbLx + LσBA

k−1∑
l=0

∥zl∥ ∥∆xl+1∥ (80)

and one gets by the discrete Gronwall Lemma that

∥ztk∥ ≤
(
∥z0∥+ LσBbLx

) k−1∏
l=0

(
1 + LσBA

∥∥∆xtl+1

∥∥) (81)

≤
(
∥z0∥+ LσBbLx

)
exp(LσBA ∥x∥1-var,[0,1]) (82)

≤ Lσ exp(LALσLx)
(
BUBx +Bv +BbLx

)
. (83)

From this we get that

|fθ(xD)| ≤ BαLσ exp(LALσLx)
(
BUBx +Bv +BbLx

)
(84)

This concludes the proof.

D.2. Proof of Proposition A.6

We first consider a general CDE

dzt = F(zt)dxt (85)

with initial condition z0 ∈ Rp. Take s, r ∈ [0, t]. By definition,

∥zr − zs∥ =

∥∥∥∥∫ r

s

F(zu)dxu

∥∥∥∥ (86)

=

∥∥∥∥∫ r

s

F
(
zu − zs + zs

)
dxu

∥∥∥∥ (87)

≤
∫ r

s

(
LF ∥zu − zs + zs∥+ ∥F(0)∥op

)
∥dxu∥ (88)

≤
∫ r

s

(
LF ∥zu − zs∥+ LF ∥zs∥+ ∥F(0)∥op

)
∥dxu∥ (89)

=
(
LF ∥zs∥+ ∥F(0)∥op

)
∥x∥1-var,[s,r] + LF

∫ r

s

∥zu − zs∥ ∥dxu∥ . (90)
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Now since zs is the solution of a CDE evaluated at s, it can be bounded by Lemma 3.7 by

∥zs∥ ≤
(
∥z0∥+ ∥F(0)∥op ∥x∥1-var,[0,s]

)
exp(LF ∥x∥1-var,[0,s]). (91)

This means that

∥zr − zs∥ (92)

≤
[
LF

(
∥z0∥+ ∥F(0)∥op ∥x∥1-var,[0,s]

)
exp(LF ∥x∥1-var,[0,s]) + ∥F(0)∥op

]
∥x∥1-var,[s,r] (93)

+ LF

∫ r

s

∥zu − zs∥ ∥dxu∥ . (94)

We may now use Gronwall’s Lemma and the fact that ∥x∥1-var,[0,s] ≤ Lx for all s ∈ [0, 1] to obtain that

∥zr − zs∥ ≤

[
LF

(
∥z0∥+ ∥F(0)∥op Lx

)
exp(LFLx) + ∥F(0)∥op

]
exp(LFLx) ∥x∥1-var,[s,r] . (95)

and thus

∥zr − zs∥ ≤ C1(LF,F, Lx) ∥x∥1-var,[s,r] . (96)

This means that the variations of z on arbitrary intervals [r, s] are bounded by the variations of x on the same interval, times
an interval independent constant.

From this, we may immediately conclude that

∥z∥1-var,[0,t] ≤ C1(LF,F, Lx) ∥x∥1-var,[0,t] , (97)

which concludes the proof for a general CDE.

We now turn to fθ ∈ FΘ. The previous result allows to bound the total variation of a CDE and thus of the trajectory of the
latent state. Using this proposition with

C1(LGψ
,Gψ, Lx) :=

[
LσBALσ

(
BUBx +Bv +BbLx

)
exp(LσBALx) + LσBb

]
exp(LσBALx)

yields

∥z∥1-var ≤ C1(LGψ
,Gψ, Lx)Lx. (98)

This concludes the proof for fθ with continuous input. For a discrete input, the proof directly transfers by remarking that

∥∥zD∥∥1-var,[0,1] =

K−1∑
k=1

∥∥∥zDtk − zDtk−1

∥∥∥ (99)

and by using the discrete Gronwall Lemma.
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D.3. Proof of Theorem A.7

For all t ∈ [0, 1], one has the decomposition

wt − vt = w0 − v0 +

∫ t

0

F(ws)dxs −
∫ t

0

G(vs)drs (100)

= w0 − v0 +

∫ t

0

(
F(ws)− F(vs)

)
dxs +

∫ t

0

F(vs)dxs −
∫ t

0

G(vs)drs (101)

= w0 − v0 (102)

+

∫ t

0

(
F(ws)− F(vs)

)
dxs (103)

+

∫ t

0

F(vs)d(xs − rs) (104)

+

∫ t

0

(
F(vs)−G(vs)

)
drs. (105)

We control every one of these terms separately and conclude by applying Gronwall’s Lemma. Writing

A :=

∥∥∥∥∫ t

0

(
F(ws)− F(vs)

)
dxs

∥∥∥∥ ,
B :=

∥∥∥∥∫ t

0

F(vs)d(xs − rs)

∥∥∥∥ ,
C :=

∥∥∥∥∫ t

0

(
F(vs)−G(vs)

)
drs

∥∥∥∥
it is clear that

∥wt − zt∥ ≤ ∥w0 − z0∥+A+B + C. (106)

Control of the term A. One has

A ≤
∫ t

0

∥F(ws)− F(vs)∥op ∥dxs∥ . (107)

Since F is LF-Lipschitz, this gives

A ≤ LF

∫ t

0

∥ws − vs∥ ∥dxs∥ . (108)

Control of the term B. One gets using integration by parts∫ t

0

F(vs)d(xs − rs) = (xt − rt)− (x0 − r0)−
∫ t

0

(xs − rs)
⊤dF(vs). (109)

This gives

B ≤ ∥x0 − r0∥+ ∥x− r∥∞,[0,t] (1 + ∥F(v)∥1-var,[0,t]). (110)

Since F is LF-Lipschitz, one gets

∥F(v)∥1-var,[0,t] ≤ LF ∥v∥1-var,[0,t] . (111)

Since v is the solution to a CDE, we can resort to Proposition A.6 to bound its total variation. This yields

∥v∥1-var,[0,t] ≤ C1(LF,F, Lr) ∥r∥1-var,[0,t] (112)

and finally

B ≤ ∥x0 − r0∥+ ∥x− r∥∞,[0,t] (1 + LFC1(LF,F, Lx) ∥r∥1-var,[0,t]). (113)
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Control of the term C. Finally, we get that

C ≤
∫ t

0

∥F(vs)−G(vs)∥op ∥drs∥ (114)

≤ max
v∈Ω(G)

∥F(v)−G(v)∥op Lr (115)

where we recall that Ω(G) is the closed ball

Ω(G) =
{
u ∈ Rp | ∥u∥ ≤ (∥v0∥+ ∥G(0)∥Lr) exp(LGLr)

}
.

Indeed, since v is the solution of a CDE, its norm at any time t ∈ [0, 1] is bounded as stated in Lemma 3.7. One can therefor
bound the difference ∥F(vs)−G(vs)∥op by considering all possible values of v.

Putting everything together. Combining the obtained bounds on all terms, one is left with

∥wt − vt∥ ≤ ∥w0 − v0∥ (116)
+ ∥x0 − r0∥+ ∥x− r∥∞,[0,t] (1 + LFLrC1(LF,F, Lx)) (117)

+ Lr max
v∈Ω(G)

∥F(v)−G(v)∥op (118)

+ LF

∫ t

0

∥ws − vs∥ ∥dxs∥ . (119)

The proof is concluded by using Gronwall’s Lemma A.4. If the path (xt) is continuous, we resort to its continuous version.
If it is piecewise constant, we use its discrete version. The path (∥wt − vt∥)t only needs to be measurable and bounded.
There are no assumptions on its continuity. This finally yields

∥wt − vt∥ ≤

(
∥w0 − v0∥+ ∥x0 − r0∥ (120)

+ ∥x− r∥∞,[0,t]

(
1 + LFLrC1(LF,F, Lx)

)
+ max
v∈Ω(G)

∥F(v)−G(v)∥op Lr

)
(121)

× exp(LFLx). (122)

Now, notice that in our proof, the two CDEs are exchangeable. This means that we immediately get the alternative bound

∥wt − vt∥ ≤

(
∥w0 − v0∥+ ∥x0 − r0∥ (123)

+ ∥x− r∥∞,[0,t]

(
1 + LGLxC1(LG,G, Lr)

)
+ max
v∈Ω(F)

∥F(v)−G(v)∥op Lx

)
(124)

× exp(LGLr) (125)

where we recall that
Ω(F) =

{
u ∈ Rp | ∥u∥ ≤ (∥w0∥+ ∥F(0)∥Lx) exp(LFLx)

}
.

D.4. Proof of Theorem A.8

One has

∥fθ1(x)− fθ2(x)∥ =
∥∥Φ⊤

1 z
1
1 − Φ⊤

2 z
2
1

∥∥ ≤ ∥Φ1 − Φ2∥
∥∥z11∥∥+Bα

∥∥z11 − z21
∥∥ . (126)

Using Theorem A.7, one gets that∥∥z11 − z21
∥∥ ≤ exp(LσBALx)

(∥∥z10 − z20
∥∥+ Lx ∥G1 −G2∥∞,Ω

)
, (127)
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where

Ω ⊂
{
u ∈ Rp | ∥u∥ ≤ (Lσ(BUBx +Bv) + LσBbLx) exp(LσLALx)

}
.

We first bound ∥∥z10 − z20
∥∥ ≤ Lσ ∥U1 −U2∥Bx + Lσ ∥v1 − v2∥ . (128)

One also has that

∥G1 −G2∥∞,Ω ≤ Lσ ∥A1 −A2∥ ×max
u∈Ω

∥u∥+ Lσ ∥b1 − b2∥ (129)

It follows from the inclusion of Ω that

max
u∈Ω

∥u∥ ≤ (Lσ(BUBx +Bv) + LσBbLx) exp(LσLALx). (130)

Since z11 is bounded as the endpoint of a NCDE, one gets using Theorem A.7 that

∥Φ1 − Φ2∥
∥∥z11∥∥ ≤ Lσ

[
BUBx +Bv + (BA +Bb)L

]
exp(LσLxBA) ∥Φ1 − Φ2∥ (131)

Putting everything together, one gets that

∥f1(x)− f2(x)∥ ≤ L1 ∥Φ1 − Φ2∥ (132)
+ L2 ∥A1 −A2∥+ L3 ∥b1 − b2∥ (133)
+ L4 ∥U1 −U2∥+ L5 ∥v1 − v2∥ (134)

with

L1 := Lσ

[
BUBx +Bv + (BA +Bb)L

]
exp(LσLxBA), (135)

L2 := Bα exp(2LσBALx)LxLσ(Lσ(BUBx +Bv) + LσBbLx), (136)
L3 := Bα exp(LσBALx)LxLσ (137)
L4 := BαBx exp(LσBALx)Lσ (138)
L5 := Bα exp(LσBALx)Lσ. (139)

which concludes our proof. The proof for |fθ1(xD)− fθ2(x
D)| is identical.


