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ABSTRACT

Distributional robustness is a central goal of prediction algorithms due to the prevalent
distribution shifts in real-world data. The prediction model aims to minimize the worst-
case risk among a class of distributions, a.k.a., an uncertainty set. Causality provides
a modeling framework with a rigorous robustness guarantee in the above sense, where
the uncertainty set is data-driven rather than pre-specified as in traditional distributional
robustness optimization. However, current causality-inspired robustness methods possess
finite-radius robustness guarantees only in the linear settings, where the causal relationships
among the covariates and the response are linear. In this work, we propose a nonlinear
method under a causal framework by incorporating recent developments in identifiable
representation learning and establish a distributional robustness guarantee. To our best
knowledge, this is the first causality-inspired robustness method with such a finite-radius
robustness guarantee in nonlinear settings. Empirical validation of the theoretical findings
is conducted on both synthetic data and real-world single-cell and ICU data, also illustrating
that finite-radius robustness is crucial.

1 INTRODUCTION

In real-world applications, data distributions often shift between training and deployment environments,
leading to degraded performance of machine learning (ML) models. These shifts can arise from changes in
data collection methods, environmental conditions, or adversarial perturbations. Distributional robustness
addresses this challenge by ensuring that models perform well across a range of possible distributions, rather
than just the training distribution. This is particularly critical in high-stakes domains such as healthcare,
finance, and autonomous systems, where unreliable predictions can have severe consequences. By focusing
on robustness, we aim to build models that generalize reliably under some distribution shifts. The goal of
distributional robustness, specifically, is to optimize models for the worst-case scenario within a predefined
set of possible distributions, known as the uncertainty set. This approach contrasts with traditional empirical
risk minimization (ERM), which focuses solely on average performance on training data. By minimizing the
worst-case risk among an uncertainty set, distributionally robust models are better equipped to handle unseen
distributional shifts. The uncertainty set can be defined in various ways, such as through statistical distances
(Mohajerin Esfahani & Kuhn, 2018), moment constraints (Wiesemann et al., 2014; Bertsimas et al., 2018;
Hanasusanto & Kuhn, 2018), or causal assumptions (Rojas-Carulla et al., 2018; Rothenhäusler et al., 2021).
This flexibility allows the framework to be tailored to specific application domains and types of distribution
shifts.

Causal models offer a principled way to define uncertainty sets based on the underlying data-generating
process, rather than relying on postulated distances. Based on causal relationships, these models typically try
to identify invariant features that remain stable in different environments (Peters et al., 2016; Louizos et al.,
2017; Pfister et al., 2021), providing a natural foundation for robustness. This data-driven approach avoids the
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need for ad hoc definitions of uncertainty sets, which may not capture the true nature of distributional shifts.
Furthermore, causal frameworks enable the incorporation of domain knowledge, enhancing the interpretability
and reliability of the resulting models.

Most causality-inspired robustness methods enforce invariance constraints, for instance, approaches such as
Arjovsky et al. (2019); Christiansen et al. (2021) aim to ensure that predictions remain invariant under arbi-
trarily strong perturbations or distribution shifts. In contrast, methods like anchor regression (Rothenhäusler
et al., 2021) and DRIG (Shen et al., 2023) offer finite-radius robustness guarantees for an uncertainty set of
finite-strength perturbations. However, existing methods that provide finite-radius guarantees have been con-
fined to settings where the relationships among variables are linear, restricting their applicability to domains
such as certain economic or physical systems. Yet, many modern applications, including image recognition
and genomics, exhibit highly nonlinear interactions, and extending finite-radius robustness guarantees to such
settings remains an open challenge.

To our best knowledge, we make the first attempt to develop a causality-inspired robustness method with a
finite-radius robustness guarantee in nonlinear settings. This is achieved by integrating causal principles with
modern techniques in representation learning, allowing us to handle nonlinear dependencies while maintaining
robustness. This advancement opens up new possibilities for applying causal methods to a broader range
of problems, including those involving high-dimensional and nonlinear data. Unlike traditional approaches
such as adversarial training, and predefined distributional robustness optimization (DRO) frameworks, which
often fail to generalize effectively in the presence of complex dependencies or multi-source heterogeneity, our
method provides a unified solution that bridges DRO, causality, and nonlinear representation learning. This
new proposal addresses the limitations of existing methods and offers a more comprehensive and flexible
framework for robust prediction. Furthermore, our framework avoids relying on strong assumptions about
causal identifiability or predefined robustness metrics, instead allowing the data itself to drive the learning
process. This flexibility is particularly important in real-world scenarios, where the training data do not
contain enough information to identify the underlying causal mechanisms, but its heterogeneity can be
exploited to define the uncertainty set. We validate our theoretical results through experiments on both
synthetic datasets and real-world single-cell, and ICU datasets.

2 RELATED WORK

2.1 DISTRIBUTIONALLY ROBUST OPIMIZATION.

Despite significant advances in machine learning, the deployment of ML models in real-world applications
often reveals their limitations and vulnerabilities. These challenges arise from distributional shifts (Mansour
et al., 2009; Rothenhäusler et al., 2021; Shen et al., 2023), adversarial attacks (Goodfellow et al., 2014; Madry
et al., 2017), and noisy or incomplete data.

This led to an increase in interest in combining robust prediction schemes with other methodologies, such as
representation learning and causality (Schölkopf et al., 2021), or reinforcement learning and distributional
robustness (Smirnova et al., 2019; Lu et al., 2024). One foundational work toward achieving robustness in
a distributional sense is Delage & Ye (2010) who formalized DRO using moment-based uncertainty sets.
A more recent approach considers DRO in terms of Wasserstein distance (Mohajerin Esfahani & Kuhn,
2018; Hanasusanto & Kuhn, 2018; Kuhn et al., 2019). An interesting remark on the Wasserstein approach
is noted in Gao et al. (2024), essentially relating LASSO and several other estimators to solutions of DRO
problems. However, though it enjoys certain theoretical guarantees, the approach considers the worst-case
distribution contained within a region in Wasserstein distance, hence yielding overly conservative predictions.
A different yet similar approach can be seen in Popescu (2005) or Zhen et al. (2025), where structural
properties of distributions (e.g. symmetry, unimodality, and convexity) are integrated into an uncertainty
set based on moments. Wiesemann et al. (2014) generalizes moment-based ambiguity sets using conic
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inequalities, allowing for more flexible moment constraints beyond just first and second moments. For further
background in general DRO, we refer the reader to Rahimian & Mehrotra (2022).

2.2 INVARIANCE-FOCUSED FRAMEWORKS

Traditional approaches to robustness, such as regularization or adversarial training, provide valuable insights
but often struggle to generalize across different types of challenges. This limitation has driven interest in
methods that aim to exploit the invariant properties of the data. Arjovsky et al. (2019) propose Invariant Risk
Minimization (IRM), a framework designed to encourage models to learn invariant predictors across diverse
training environments. This paradigm is especially relevant when models are deployed in scenarios where
distributional shifts are expected, as it focuses on isolating relationships that remain robust under varying
conditions.

Risk extrapolation (REx) (Krueger et al., 2021) refines the principle of invariance by explicitly penalizing risk
disparities across training domains. Its V-REx variant minimizes the variance of domain-specific risks through
a regularization penalty. This formulation encourages robustness against extreme shifts by extrapolating risks
beyond observed domains. Although V-REx theoretically recovers causal predictors under mechanism shifts,
its empirical performance is highly sensitive to label noise and spurious correlations in finite-sample regimes.
Crucially, V-REx inherits IRM’s limitation of requiring strict risk invariance—an assumption violated when
heterogeneous environments contain non-invariant causal mechanisms. Adaptive risk minimization (ARM)
(Zhang et al., 2021) represents a paradigm shift toward test-time adaptability. Unlike static multi-environment
frameworks (e.g., IRM, V-REx), ARM meta-trains models to dynamically adjust parameters using context
sets from test distributions.

Other directions of theoretical studies in this direction include studying the objective of IRM, and its potential
problems (Rosenfeld et al., 2020), as well as distributional matching guarantees in terms of environments
needed (Chen et al., 2022). Further interesting results on online domain generalization are considered in
Rosenfeld et al. (2022).

Causality-inspired methods. In contrast to classical DRO methods, where the set of perturbations against
which the model is protected is prespecified and often overly conservative, recent causality-inspired frame-
works focus on isolating the relevant directions along which distributional shifts occur, in a data-driven
way. A novel work by Rothenhäusler et al. (2021) introduces a causality inspired framework that guarantees
robustness against shifts in mean. Building on this foundation, Shen et al. (2023) proposed the Distributional
Robustness via Invariant Gradients (DRIG) framework, which extends these guarantees to both mean and
variance. Both works exploit the heterogeneity of the data originating from multiple sources.

2.3 LATENT REPRESENTATION LEARNING.

One of the central concerns in context of representation learning and dimensionality reduction is the question
of identifiability — whether the features or representations learned genuinely reflect the underlying data
structure or are they not more than products of the chosen combination of hyperparameters. Research in this
field has advanced in many interesting directions and has become increasingly productive in recent years
(Khemakhem et al., 2020a;b; Schölkopf et al., 2021; Kivva et al., 2022; Moran et al., 2021; Wang et al., 2023).
This leap forward features an examination of the assumptions regarding latent variables, the nature of their
generative processes and distributions, and even of their decoder functions. Notable work by Khemakhem
et al. (2020a) investigates the setting of conditionally independent latent variables given an observed auxiliary
variable, through the iVAE framework.

Other approaches have sought to provide identifiability guarantees using polynomial decoders (Ahuja et al.,
2023), volume-preserving decoders (Yang et al., 2022), sparse VAEs (Moran et al., 2021), and about
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identifiability in general (Roeder et al., 2021; Buchholz et al., 2023). However, despite all these impressive
results, a breakthrough work by Kivva et al. (2022) sets a new standard and challenges the necessity of auxiliary
information in the latent structure for achieving strong guarantees for a broad class of functions. Most of these
works conclude that identifiability of the hidden representation is possible only up to an affine transformation.
Saengkyongam et al. (2023) propose the Rep4Ex framework, which uses interventional heterogeneity
to recover latent state representations up to an affine transformation, enabling reliable extrapolation to
unseen interventions. Assuming a linear structural causal model with exogenous interventions and full-
support residuals, Rep4Ex enforces “linear invariance” through a custom autoencoder objective, learning
representations that generalize across observed and off-support actions. In contrast, our approach frames
robustness to bounded shifts as a finite-radius DRO problem, providing closed-form certificates under noise
assumptions.

3 METHOD

3.1 MODEL SETUP

We observe a d-dimensional covariate X and a real target variable Y . It is often reasonable to assume the
data distribution is entailed by an underlying causal mechanism, which is much weaker than assuming the
identifiability of such a causal mechanism. We would like to also account for nonlinear causal relationships.
One way to incorporate nonlinearity is through a nonlinear representation map of the covariates X that
transforms a complex distribution of X to a better-structured latent space where the causal relationship can
be as simple as linear.

Specifically, we assume there exists a function ϕ∗ : Rd → Rk for d ≥ k such that the observed variables
(X,Y ) follow a structural causal model (SCM) in the usual or observational setting:(

ϕ∗(X)

Y

)
= B

(
ϕ∗(X)

Y

)
+ ε (1)

where ε ∈ Rk+1 has zero expectation, and is allowed to have correlated components and B denotes the
adjacency matrix of the causal graph. We will refer to ϕ∗ as true encoder. We assume I − B to be invertible,
where I denotes the identity matrix, which is guaranteed if the graph is acyclic. This model allows for
nonlinear causal relationships between the covariates and between X and Y , which can be represented as a
linear SCM up to a nonlinear transformation of the covariates.

In practice, we often encounter distribution shifts due to interventions on observed or latent variables. We
consider a multi-environment setup as in Shen et al. (2023), where for each environment indexed by e, the
distributions of the transformed covariates and the response are shifted by a random, additive intervention,
i.e., (

ϕ∗(Xe)

Y e

)
= B

(
ϕ∗(Xe)

Y e

)
+ ε+ δe (2)

where δe ∈ Rk+1, denoting the additive intervention, is independent of ε. We assume during training, we
have access to multiple environments E , where one of them, indexed by 0 ∈ E , is the observational setting
such that δ0 = 0, while the others are interventional settings, each with a distinct intervention variable δe.

Furthermore, we are interested in out-of-distribution prediction, where the data may exhibit a different
underlying distribution, namely, according to(

ϕ∗(Xv)

Y v

)
= B

(
ϕ∗(Xv)

Y v

)
+ ε+ v (3)
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where the intervention variable v ∈ Rk+1 follows an unseen distribution different from that of δe’s and is
independent of ε, while the transformation ϕ∗ and the graph structure B stay the same.

Our target is an optimal nonlinear prediction model that is robust among distributions generated according
to equation 3 for a class of new interventions. When ϕ∗ is the identity map, Shen et al. (2023) presented an
approach to achieve an optimal linear model that is robust among certain test distributions. This motivates us
to develop a two-step approach that consists of a first representation learning step to learn ϕ∗ up to a certain
non-identifiable equivalence class and a second step applying a robust prediction objective on top of the
learned representations. For an overview of notation we refer to table 2.

3.2 TWO-STEP APPROACH

3.2.1 REPRESENTATION LEARNING STEP

Shen & Meinshausen (2024) proposed Distributional Principal Autoencoder (DPA) that learns low-
dimensional representations while preserving the data distribution in the reconstructions. We build our
representation learning step upon DPA, where the encoder maps from the data space to the latent space and
the stochastic decoder maps from the latent space to the data space:

X
ϕ(.)−−→ Z

dec(.,ε̃)−−−−→ X̂

where ε̃ follows the standard normal distribution, and where ϕ and dec denote an encoder and decoder,
respetively. The original DPA ensures that the decoder produces reconstructions X̂ that follow the same
distribution as the original data X , and the encoder minimizes the unexplained variability in the conditional
distribution of X|ϕ(X). These are achieved by minimizing the following objective function jointly over the
encoder and decoder:

LDPA = EXEε̃∥X − dec(ϕ(X), ε̃)∥ − 1

2
EXEε̃,ε̃′∥dec(ϕ(X), ε̃)− dec(ϕ(X), ε̃′)∥,

where ε̃, ε̃′ are independently drawn from the standard normal distribution. For a fixed encoder, the objective
function LDPA is the expected negative energy score for the conditional distribution of X|ϕ(X); see Shen &
Meinshausen (2024) for details.

Here, we account for heterogeneity across different environments by encouraging the learned representations
from the encoder to follow a mixture of Gaussians. To ensure this, a third neural network, called the prior
network g, is introduced in addition to the standard encoder-decoder framework already present. The prior
network takes the environment labels E as input and produces a sample of the latent vector Zg from a mixture
of Gaussians; specifically, g(E, ξ) = µg(E) + ξΣg(E) for ξ standard normal, and µg and Σg denote the
estimated mean and root of the covariance matrix, respetively.

E
g(.,ξ)−−−→ Zg

Furthermore, since we want to encourage the latent to emulate a mixture of Gaussians, we also augment the
loss function of the DPA to enforce the encoder output matches the distribution of the prior. The new loss
term is the negative energy score for the conditional distributions of enc(X)|E:

LG = EX,EEξ∥ϕ(X)− g(E, ξ)∥ − 1

2
EEEξ,ξ′∥g(E, ξ)− g(E, ξ′)∥

where ξ, ξ′ are independently drawn from a standard normal distribution. The formulation can be thought
of as a conditional version of the DPA. Indeed, just as the optimum of the loss function LDPA in Shen &
Meinshausen (2024) was motivated by the goal of ensuring

decopt(z, ε̃) = X|{ϕopt(X) = z}, in distribution ∀z,
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the augmentation loss function LG was inspired by the goal of achieving

gopt(e, ξ) = ϕopt(X)|{E = e}, in distribution ∀e

where ϕopt, decopt, and gopt, denote the optimized encoder, decoder and prior network, respectively.

The final augmented loss function reads

LRL = LDPA + αLG, (4)

for a selected hyperparameter α. We define

(ϕopt, decopt) ∈ argmin
(ϕ,dec)

LRL,

where we also sometimes refer to ϕopt as ϕ̂. Moreover, optimizing LRL gives ϕ̂(X) = Ẑ. Since DPA learns
the distribution of X , as well as the distribution of its principal components in the latent space, the estimated
latent vector is an affine transformation of the true latent vector ẑ = Az + c, for an invertible matrix A and
a vector c. Affine identifiability is guaranteed in a range of settings, and it can be achieved by imposing
conditions on the distribution of latent, variables (for example, presence of interventions), or on the mixing
function. Since the autoencoder scheme learns to match the distribution of X , affine identification is ensured
by Lemma 2 from Kivva et al. (2022).

It is worth noting that there are also other similar results which can be used to ensure affine identification
in this setup similar to this. For example, since interventions are present in the considered setting, Lemma
5 from Ahuja et al. (2023) can also be applied using VAE (Kingma et al., 2013). These approaches mainly
differ in the assumptions they impose. Assumptions in Kivva et al. (2022) are distributional, they posit a
GMM structure in the latent space and require matching of distributions, whereas assumptions in Ahuja
et al. (2023) constrain the decoder class (e.g., to polynomials) and require an exact reconstruction identity
(which can be enforced via a VAE). Both frameworks are valid in this methodology under their respective
assumptions; we adopt the distributional setting as in Kivva et al. (2022) because it naturally complements
the second step of our method. Some known applicable results on identifiability can be found in Appendix B.

3.2.2 CAUSALITY-INSPIRED ROBUSTNESS STEP

Motivated by its guarantees for distributional robustness in linear settings and its adjustable robustness radius
parameter, γ ≥ 0, we employ the DRIG method (Shen et al., 2023) to learn a robust linear model on top of the
representations learned in the first step. Specifically, let Ẑe = ϕ̂(Xe) be the learned representations for each
environment e ∈ E . Additionally, DRIG requires that all environments be centered relative to the mean of the
reference environment, for both Ẑe, Y e. To satisfy this requirement, we adopt the following centering step;

Ẑe
c = Ẑe − E[Ẑ0] = A(Ze − E[Z0]) = AZe

c , Y
e
c = Y e − E[Y 0]

where this operation constitutes a linear transformation of the true latent variable. We then define the linear
coefficients by

b̂γ = argmin
b

Lγ
CIR(b), (5)

for

Lγ
CIR(b) = E[Y 0

c − b⊤Ẑ0
c ]

2 + γ
∑
e∈E

ωe

(
E[Y e

c − b⊤Ẑe
c ]

2 − E[Y 0
c − b⊤Ẑ0

c ]
2

)
,

where ωe > 0 denote environment weights and it holds
∑

e∈E ω
e = 1. For example, in the uniform case,

ω = 1/|E|, or ωe = ne/n, where ne denotes the number of samples from environment e. We remark that b̂γ
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can be computed explicitly, by solving the equations obtained by first order conditions, and using empirical
risk instead of population risk;

b̂γ =

(
(1− γ) Ẑ

0

c
⊤Ẑ

0

c + γ
∑
e∈E

ωeẐ
e

c
⊤Ẑ

e

c

)−1(
(1− γ)Ẑ

0

c
⊤Y0

c + γ
∑
e∈E

ωeẐ
e

c
⊤Y0

c

)
, (6)

where Z,Y are in bold since they represent matrices and vectors of of dimension sample size× latent
dimension, sample size×1, respectively.

3.2.3 FINAL ALGORITHM

We now summarize our two-step algorithm as follows:

• Learn ϕ̂ by optimizing LRL in equation 4.

• Estimate b̂ from (Ẑc, Yc) as the solution of equation 6.

• Define the final prediction model as f̂(x) = b̂⊤ẑc, where ẑc = ϕ̂c(x).

We call our method CIRRL (Causality-Inspired Robustness via Representation Learning).

3.3 THEORETICAL GUARANTEES

This subsection formalizes the theoretical guarantees for robustness and identifiability. Proofs of all the
results can be found in Appendix C. To quantify the robustness of a prediction model f , we use the following
worst-case risk:

Lγ(f) = sup
v∈Cγ

Ev[Y − f(X)]2,

where

Cγ =

{
v ∈ Rk+1 | E[vv⊤] ⪯ S0 + γ

∑
e∈E

ωe

(
Se − S0 + µeµe⊤

)}
with Se = cov[δe] and µe = E[δe]. In the case where f can be rewritten as f(x) = b⊤ϕ(x) for some vector
b and an arbitrary function ϕ, the worst-case risk Lγ(f) can be rewritten as Lγ(b

⊤ϕ) = supv∈Cγ Ev[Y −
b⊤ϕ(X)]2. The following lemma characterizes the set of perturbations against which the model is robust, in
terms of v and its distribution. Let ϕc(X) := ϕ(X)− Eϕ(X0) denote the centered version of ϕ.

Proposition 1. Assume that the SCMs (Equations 2, 3) hold as described above. Let ϕ : Rd → Rk be an
affine transform of ϕ∗, i.e. ϕ(x) = Nϕ∗(x) +m for an invertible k × k matrix N , and a vector m. Then, the
loss function Lγ(b

⊤ϕc) has explicit form, namely

Lγ(b
⊤ϕc) = E[Y 0 − b⊤ϕc(X

0)]2 + γ
∑
e∈E

ωe

(
E[Y e − b⊤ϕc(X

e)]2 − E[Y 0 − b⊤ϕc(X
0)]2
)
,

where ωe > 0 denote environment weights such that
∑

e∈E ω
e = 1.

This proposition provides a characterization of robustness guarantees, showing that the model can tolerate
perturbations v whose second moments are bounded by a weighted combination of second moments of
training environments. Importantly, the degree of robustness can be controlled through the hyperparameter
γ. Under relatively mild conditions (see Appendix B), the latent variables can be identified up to an affine
transformation. For example, for a piecewise affine decoder function f .
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Lemma 2. [Kivva et al. (2022)] LetE denote an auxiliary variable (e.g. environment label) and dim(E) = 1.
Under the Gaussian mixture model (GMM) for (E,Z)1, as defined in Appendix B and for f a piecewise affine
decoder function, if f is weakly injective (see Appendix B), P (E,Z) can be identified from P (X) up to an
affine transform.

Since the optimized DPA matches the distribution of X̂ to the distribution of X we obtain an affine transform
of the true latents. This provides a crucial foundation for designing a method that leverages a linear estimator
on top, to obtain predictions. The following technical assumption is the last ingredient needed to ensure
optimality within all L2 functions.

Assumption 1. Let E[v] = Σ[(I − B)−1
1:k,·]

⊤α for some α ∈ Rk, where Σ = Cov[ε+ v].

This assumption means that the average effect of v on Y in the SCM passes only through Z. This is easy to
see, as the resulting is a vector of linear combinations of rows of (I − B)−1

1:k,·, which corresponds to the total
causal effect on the vector Z. For a more detailed discussion of technical assumptions, see Appendix C.2.
Based on the above results, the following theorem establishes the central theoretical finding of this work. It
indicates that our learned prediction model is the most robust among all square-integrable functions.

Theorem 3. Under SCMs described in equations 2, 3, and Assumption 1 assume that ε, v are elliptical
(Definition 2) and recall that ε and v are independent. Let X denote the unbounded support of X and L2(X )
the usual space of square-integrable functions over X . Then,

Lγ(f̂) = min
f∈L2(X )

Lγ(f)

for f̂(X) = b̂⊤ϕ̂c(X).

Remark 1. Examples of elliptical distributions include multivariate Gaussian and multivariate t-distributions.

4 EXPERIMENTS

We validate our theoretical results in a simulated environment and two real datasets. For context, we compare
our method to other approaches that can be adopted in the setting concerning nonlinear and robust prediction.
Namely, empirical risk minimization (ERM), invariant risk minimization (IRM), risk extrapolation (V-REx),
adaptive risk minizimation (ARM), and DRIG estimator. All of IRM, ERM, V-REx, ARM, and CIRRL are
parametrized by fully connected neural networks with a comparable number of parameters, while DRIG is
applied naively to observed X values. A single (L4) GPU was used to train all models, and Adam (Kingma &
Ba, 2014) was used for optimization. For details of the hyperparameters used in optimization, we refer to
Appendix D. To conserve space, dataset descriptions are provided in Appendix E.

Artificial data. We exclude DRIG from simulation studies since it shows far more inferior performance
than other models. It is clear that CIRRL significantly outperforms all considered baselines (Figure 1). In
addition to the usual setting, we also evaluate CIRRL in a misspecified scenario through disregarding the
distributional assumption in Theorem 3. Specifically, we generate the OOD set from a χ2-distribution2. The
rest of the experimental setup mirrors that of the scenario in the well-specified case.

Real data. CIRRL delivers substantial and reliable gains under real-world distribution shifts (Table 1). On
the ICU benchmark, CIRRL achieves the lowest mean squared error and the smallest worst-environment loss;
while DRIG is close on some metrics, CIRRL is favored when the median is taken into account, indicating

1More concretely, Z|E = e should follow a Gaussian with a mean and covariance dependent on e.
2Its degrees of freedom approximately corresponding to 1−norm of v

8
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Figure 1: Synthetic dataset for well-specified (left) & misspecified setting (right)- final OOD MSEs for IRM,
CIRRL, ERM, ARM, VREx for various perturbation strengths η (Appendix E). The inferiority of IRM to
other methods could be attributed to the finite nature of the perturbations (see Appendix F.1).

a consistently better central tendency as well as improved tail behavior. Crucially, both CIRRL and DRIG
dramatically reduce the catastrophic worst-case errors exhibited by ERM, this demonstrates that invariant
regularization visibly mitigates difficulties in hostile environments. On the single-cell dataset CIRRL is
the clear leader across all three summary statistics, showing both higher average accuracy and far greater
robustness than competing approaches. ERM’s combination of a small ICU median with a very large mean
and worst case reveals a skewed environment distribution. By contrast, CIRRL (and to a lesser extent DRIG)
trade a small amount of the performance to deliver more dependable behavior overall. This is a desirable
property for biomedical applications where worst-case safety is important. Notably, although simple linear
baselines can perform well in biomedical tasks (Londschien et al., 2025; von Kügelgen et al., 2025), CIRRL
not only matches or surpasses those baselines but also outperforms every nonlinear alternative we evaluated,
offering the best combination of accuracy and robustness. For experiment details, see Appendices E, F.

Table 1: Squared error comparison on real datasets. Worst denotes the worst MSE among environments.
Model ICU Single-cell data

Mean Median Worst Mean Median Worst
CIRRL 0.413 0.240 2.970 0.332 0.179 0.606
ERM 3.550 0.079 37.47 0.402 0.226 0.772
IRM 2.634 1.640 18.23 0.405 0.216 0.728
VREX 0.928 0.427 5.454 0.380 0.183 0.912
ARM 0.601 0.360 3.673 0.404 0.215 0.798
DRIG (linear) 0.414 0.269 2.974 0.356 0.323 0.703

5 CONCLUSION

In this work, we proposed a robust framework for estimating target variables in high-dimensional settings,
designed to handle distribution shifts. We demonstrated its effectiveness on both synthetic and real-world
datasets, consistently outperforming traditional methods like ERM, IRM, ARM, V-REx, and DRIG. Our
synthetic experiments confirmed the model’s resilience to distributional variations, including deviations from
ellipticity, suggesting potential for broader applications without strict structural assumptions. Future work
could explore more complex latent structures, interactions between observed and unobserved variables, and
relax the ellipticity assumption. Extensions to non-independent data or sequential environments also present
promising directions.
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A SYMBOLS

Table 2: Table of Notation

SYMBOL MEANING

B ∈ R(k+1)×(k+1) ADJACENCY MATRIX OF THE LATENT CAUSAL GRAPH
I IDENTITY
ϕ∗ TRUE DECODER FUNCTION
X,Xe OBSERVED COVARIATES, OBSERVED COVARIATES IN ENVIRONMENT e, RESPECTIVELY
Z,Ze LATENT VARIABLES, LATENT VARIABLES IN ENVIRONMENT e, RESPECTIVELY
Y, Y e RESPONSE, RESPONSE IN ENVIRONMENT e, RESPECTIVELY

ε ∈ Rk+1 NOISE VARIABLE
ξ, ε̃ NOISE VARIABLES FOR g, DEC, RESPECTIVELY

δe ∈ Rk+1 INTERVENTION IN ENVIRONMENT e
v ∈ Rk+1 INTERVENTION IN THE TEST ENVIRONMENT

ϕOPT, ϕ̂ OPTIMIZED ENCODER FUNCTION
DECOPT OPTIMIZED DECODER FUNCTION
gOPT LEARNED AND OPTIMIZED PRIOR ENCODER FUNCTION
µg,Σg g ESTIMATES OF THE LATENT MEAN AND ROOT COVARIANCE

b̂ ESTIMATED DRIG COEFFICIENT
γ PERTURBATION STRENGTH TO ACCOUNT FOR IN DRIG ESTIMATION
Cγ UNCERTAINTY SET OF DRIG
f̂ FINAL MODEL
L2(A) SPACE OF SQUARE INTEGRABLE FUNCTIONS OVER A
η PERTURBATION STRENGTH IN THE TEST ENVIRONMENT - SIMULATED DATA

B IDENTIFIABILITY

Definition 1. (Weakly injective) Let f : Rk → Rd and k ≤ d . A function f is said to be weakly injective, if

• There is a point x0 ∈ Rd and δ > 0 with |f−1(x)| = 1 for all x in the image of f intersected with
the δ-ball around x0, and

• the set {x ∈ Rd : |f−1(x)| = ∞} ⊆ f(Rk) has Lebesgue measure zero.

Assuming P follows a Gaussian mixture, together, E with Z encodes the latent structure

E = e ∼ Pλ(E = e)

Z|E = e ∼ N (µe,Σe)

E → Z → X

where Pλ denotes the marginal distribution of E that depends on λj , and
∑J

j=1 λj = 1 denote the positive
weights of the components in the Gaussian mixture.

For multivariate but discrete E, one is required to reconstruct everything just from the distribution of X .
Under stronger conditions, it is also possible to identify P (E).

Lemma 4. (Kivva et al., 2022) Let the GMM model as defined above hold and let f be piecewise affine. If f
is weakly injective, P (Z) is identifiable from P (X) up to an affine transform.
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Ahuja et al. (2023) assume that the interior of the support of z is nonempty subset of Rk, and that the decoder
function f is an injective polynomial of finite degree. Also, assuming that the interior of the encoder image is
a nonempty subset of Rk

Lemma 5. If the autoencoder solves the reconstruction identity dec ◦ enc(x) = x for all x in its support,
under the constraint that the learned decoder is a polynomial of the same degree as the true decoder, then it
achieves affine identification, ie recovers an affine transformation of the true latent variables.

For a deeper overview of similar and stronger results, concerning even more general decoders, we refer the
reader to Khemakhem et al. (2020b); Kivva et al. (2022); Ahuja et al. (2023); Buchholz et al. (2023).

B.1 DISCUSSION OF COMPATIBLE ASSUMPTIONS

Although the proposed objective superficially resembles a VAE loss (reconstruction + latent regularization),
however, key differences are: (1) We use the DPA objective (energy matching) rather than a KL divergence,
which encourages matching distributions rather than likelihood; (2) The prior is environment-conditioned
(through g(E, ξ)), so we learn a different Gaussian for each E; (3) The goal is not just representation learning
but causal robustness. In other words, we could view our model as a conditional (Mixture) VAE on X|E, but
with an energy-based penalty (Eq.(4)) and with a second robust regression step on top. To clarify these points:
the VAE viewpoint is useful intuition but CIRRL is explicitly designed for invariance/robustness rather than
generative modeling. We refer to Shen & Meinshausen (2024) for more details about this type of loss function
and its relations to VAEs.

Furthermore, it is possible to obtain analogous results by relying on Lemma 5 instead of Lemma 2. In the
former case, using a VAE would ensure the reconstruction identity; however, the polynomial condition would
remain unclear.

C PROOFS

Proof of Propositon 1. Similar to the proof of Theorem 2 in Shen et al. (2023), replacing X with ϕ∗(X).
From the SCM, it is known that

ϕ∗(Xv) = (I − B)−1
1:k,·(ε+ v) as well as Y v = (I − B)−1

k+1,·(ε+ v)

and by centering it is clear that, ϕc(Xv) = N(I − B)−1
1:k,·(ε+ v) = Nϕ∗(Xv) while Y v

c = Y v .

Let us denote Y v − b⊤ϕc(X
v) =

(
(I − B)−1

1:k,· − b⊤N(I − B)−1
k+1,·

)
(ε+ v) = w⊤(ε+ v). Then, rewriting

the expectation under Pv gives

Ev[Y − b⊤ϕc(X)]2 = E[w⊤(ε+ v)]2 (7)

= w⊤E[(ε+ v)(ε+ v)⊤]w (8)

= E0[Y − b⊤ϕc(X)]2 + w⊤E[vv⊤]w (9)

Taking the supremum over v ∈ Cγ on both sides only influences the second expression of the right hand side

sup
v∈Cγ

w⊤Ev[vv
⊤]w = w⊤

(
S0 + γ

∑
e∈E

ωe(Se − S0 + µeµe⊤)

)
w (10)

= E[w⊤δ0]2 + γ
∑
e∈E

ωe(E[w⊤δe]2 − E[w⊤δ0]2) (11)
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Noticing that by independence of ε, δe and the fact that ε is centered E0[Y − b⊤ϕc(X)]2 + E[w⊤δ0]2 =
E[Y 0 − b⊤ϕc(X

0)]2 holds, as well as

E[w⊤δe]2 − E[w⊤δ0]2 = E[w⊤δe]2 + E[ε⊤δe]2 − E[ε⊤δe]2 − E[w⊤δ0]2 (12)

= E[Y e − b⊤ϕc(X
e)]2 − E[Y 0 − b⊤ϕc(X

0)]2 (13)

for all environments e ∈ E, finishes the proof.

The following technical lemma studies a helpful expression combining affine transforms of a random variable
and a conditional expectation in case of normal distribution.

Definition 2. (spherically symmetric distribution, elliptical symmetric distribution)

• A random vector Y ∈ Rd follows a spherically symmetric distribution, if there exists a scalar
function ψ, such that ψ(u⊤u) = E[eiu⊤Y ]. In this case, we denote Y ∼ Sd(ψ).

• A random vector X ∈ Rd follows an elliptically symmetric distribution with parameters µ,Σ, ψ, if
X = µ+AY in distribution, for Σ = AA⊤, A ∈ Rd×k, rk(A) = k and Y following a spherical
distribution with a scalar function ψ. In this case, we denote X ∼ Ed(µ,Σ, ψ).

Further examples of elliptical distributions include symmetric multivariate Laplace, Kotz, and logistic
distribution.For a better overview of their properties, we refer to Fang (1990).

Lemma 6. Let X ∈ Rd, and X ∼ Ed(µ,Σ, ψ). Then, for a full-rank matrix M ∈ Rk×d with k ≤ d, the
conditional expectation E[X|MX] is affine in MX , i.e. there is a matrix A ∈ Rd×k and a vector c ∈ Rd

such that
E[X|MX] = AMX + c.

Proof of Lemma 6. Since X ∼ Ed(µ,Σ, ψ), it is clear that MX ∼ Ek(Mµ,MΣM⊤, ψ), and also(
X
MX

)
∼ Ed+k

((
µ
Mµ

)
,

(
Σ ΣM⊤

MΣ MΣM⊤

)
, ψ

)
. (14)

Furthermore, similar to the Gaussian case, the conditional X|MX also follows an elliptically symmetric
distribution and its expectation is known (Fang, 1990),

E[X|MX] = µ+ΣM⊤(MΣM⊤)−1M(X − µ) (15)

= ΣM⊤(MΣM⊤)−1MX + (I − ΣM⊤(MΣM⊤)−1M)µ, (16)

which is an affine function of MX .

Corollary 7. In case X is a centered random variable as above, then E[X|MX] is a linear function of MX .

Remark 2. The matrix ΣM⊤(MΣM⊤)−1M is an (oblique) projection onto the row space ofM , transformed
by Σ.

Proof of Theorem 3.

sup
v∈Cγ

Ev[Y − b̂⊤ϕ̂c(X)]2 = min
b∈Rk

sup
v∈Cγ

Ev[Y − b⊤Nϕ∗(X)]2 (17)

= min
b∈Rk

sup
v∈Cγ

Ev[Y − b⊤ϕ∗(X)]2 (18)
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Now consider the minimizer of Ev[Y − f(X)]2, namely Ev[Y |X]. Since X,Y are d-separated by ϕ∗(X) in
the SCM, we see how Ev[Y |X] = Ev[Y |X,ϕ∗(X)] = Ev[Y |ϕ∗(X)] and moving forward, it becomes clear
that

Ev[Y |ϕ∗(X)] = (I − B)−1
k+1,·E

[
ε+ v

∣∣∣∣(I − B)−1
1:k,·(ε+ v)

]
(19)

by Lemma 6 = (I − B)−1
k+1,·AM(ε+ v) + (I − B)−1

k+1,·(I −AM)µv, (20)

for A = ΣM⊤(MΣM⊤)−1,M = (I − B)−1
1:k,·,Σ = Σε + Σv. AM is a projection matrix projecting onto

the row-space of M , transformed by Σ. In case µv can be represented as ΣM⊤α for some α ∈ Rk, then it is
clear that (I −AM)µv = 0 is always the case. Hence, Ev[Y |X] is a linear function of ϕ∗(X) as as whole, it
is true that for some a ∈ Rk

min
f∈L2(X )

Ev[Y − f(X)]2 = Ev

[
Y − Ev[Y |X]

]2
(21)

= Ev[Y − a⊤ϕ∗(X)]2 (22)

≥ min
b∈Rk

Ev[Y − b⊤ϕ∗(X)]2 (23)

The reverse inequality between the two is always true. Since for any v ∈ Cγ

min
f∈L2(X )

Ev[Y − f(X)]2 = min
b∈Rk

Ev[Y − b⊤ϕ∗(X)]2,

it also holds
min

f∈L2(X )
sup
v∈Cγ

Ev[Y − f(X)]2 = min
b∈Rk

sup
v∈Cγ

Ev[Y − b⊤ϕ∗(X)]2.

C.1 RELATIONSHIP TO PRIOR WORK

We emphasize that our combination of DPA (or another method like VAE) and DRIG is non-trivial and yields
a novel theoretical guarantee in the nonlinear setting. To our knowledge, this is the first causality-inspired
DRO method that provides a finite-radius robustness certificate when the covariate-to-response relationship
is nonlinear. Theorem 3 in our paper is analogous in spirit to the main result of Shen et al. (2023) but is
strictly stronger: it establishes optimality of our predictor over all measurable functions (not just linear ones)
following an SCM (equations 2, 3). The proof relies on the identifiability of latent representations and the
linear latent-to-Y model, which were not handled in prior work.

Our objective superficially resembles a VAE loss (reconstruction + latent regularization). However, key
differences are: (1) We use the DPA objective (energy matching) rather than a KL divergence, which
encourages matching distributions rather than likelihood; (2) The prior is environment-conditioned (through
g(E, ξ)), so we learn a different Gaussian for each E; (3) The goal is not just representation learning but
causal robustness. In other words, we could view our model as a conditional (Mixture) VAE on X|E, but
with an energy-based penalty and with a second robust regression step on top. The VAE viewpoint is useful
intuition but our method is explicitly designed for invariance/robustness rather than generative modeling.
We refer to Shen & Meinshausen (2024) for more details about this type of loss function and its relations to
VAEs.

Equation 5 looks similar to an IRM/REx-style objective. Indeed, one can think of it as a Lagrangian for a
DRO problem: the first term is the (squared-error) loss in the reference environment, and the weighted sum of
differences penalizes deviations of other environments from the reference performance. Crucially, however,
we derived this form from Proposition 1 (robust optimization) rather than by demanding an invariance
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constraint. Concretely, Proposition 1 shows that minimizing our DRO risk leads to exactly the objective in
equation 5. In IRM, one would force all environments to have equal risk, while our objective penalizes their
squared risk discrepancies.

C.2 DISCUSSION OF TECHNICAL ASSUMPTIONS

The GMM condition of (E,Z) is a technical assumption to apply the identifiability result lemma 2. In our
model, we indeed enforce that is a Gaussian mixture via the prior network, which satisfies lemma 2. In words,
lemma 2 says that ifX is generated by a piecewise-affine decoder from a latent Z that is Gaussian conditioned
on E, then one can recover Z up to an affine transformation from X . Assumption 1 states that the mean effect
of the test intervention v on Y passes only through the latent Z. Formally E[v] = Σ[(I − B)−1

1:k,·]
⊤α means

that E[v] lies in the column space of the latent-to-Y effect rows. Intuitively, it ensures the average shift in can
be represented as a linear combination of the latent variables’ total effects. In practice, it is used in a proof to
reduce an affine expression to a linear one (see, e.g., equation 19 in the proof of theorem 3, Appendix C).

The GMM assumption on Z|E is indeed a modeling choice for two reasons: theory and algorithmic
regularization. Theoretically, the GMM is used to guarantee identifiability of up to affine (Lemma 2).
In practice, however, performance is not very sensitive to this assumption. For example, in our synthetic
experiment (NOTEWHICH), we tested an OOD case where the latent shifts were drawn from a χ2 distribution
(i.e. non-Gaussian). The results were almost identical to the Gaussian case, suggesting CIRRL still works
even when the mixture prior is misspecified. The Gaussian prior is mainly a convenient choice (and a limit
case of the elliptical assumption in Theorem 3), but the method can handle non-Gaussian data as well. We
also note that if Z|E truly followed some other known parametric form, one could adapt our prior network
accordingly; but the GMM is a flexible “default”. Furthermore, the Gaussian mixture assumption originating
from results (Kivva et al., 2022), where they guarantee identifiability in case one learns the distribution. There
are also other avenues, using for example VAE would produce full reconstruction at optimal parameters, and
there are other identifiability results (Khemakhem et al., 2020a; Ahuja et al., 2023) one could use instead of
GMMs.

Lemma 2 and Assumption 1 serve distinct but complementary purposes in our two-stage framework. Lemma
2 is concerned exclusively with representation learning: under the Gaussian-mixture prior and a piecewise-
affine decoder, it guarantees that the encoder recovers the true latent variables up to an unknown affine
transformation, providing a “consistent” embedding space in which linear methods remain valid. Assumption
1, on the other hand, is a statement about the test-time perturbation in equation 3: it requires that the average
intervention vector lie in the subspace defined by the latent-to-output effect, which in turn ensures that the
population-optimal predictor E[Y |X] is a linear function of the latents. They address entirely different aspects,
Lemma 2 ensures we can safely apply linear techniques to the learned representation, while assumption
1 ensures that the causal shifts themselves remain linear in that space. They together justify our use of a
causality-inspired robust linear estimator on Ẑ. In other words, once one has a reliable, affine-equivalent
embedding (by Lemma 2), one can invoke results from distributional robustness for linear SCMs (via
Assumption 1) to obtain the finite-radius robustness guarantee of the method.

D HYPERPARAMETERS

The architecture of the baseline (IRM, ARM, VREx, ERM) networks, including depth, width, and hyperpa-
rameters such as batch normalization, learning rate, dropout, and the number of training epochs, was designed
to match the corresponding networks in DPA. During training, the models were fed batches of (X,Y ) pairs,
and the network predicted Y directly from X . Hyperparameters that have not been changing: width was
generally taken to be 400 units in all networks as well as a batch norm. In the DPA all networks had the
same depth of two in experiments with all datasets and four for studies on single-cell data. All experiments
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used Adam for optimization, with a learning rate 10−4 and α = 10−1. The latent dimension was chosen
considering a point of type elbow (see Remark 4), after which there was no significant performance gain in
terms of the objective function L. Most experiments do not require significant memory to run as the models
are essentially common neural networks and using a GPU usually take between 7 and 12 minutes for 1000
epochs of training.

In all experiments, VREx and IRM shown for best β and λ, respectively, ∈ { 1
100 ,

1
10 , 1, 10, 100}, ARM for

best T ∈ { 1
10 ,

1
2 , 1, 2, 5}, CIRRL and DRIG for γ = 15 in real data experiments and γ = 3 in artificial ones.

For comments on the choice of γ and other hyperparameters, see Appendix D.
Remark 3 (Hyperparameter γ). Across our experiments a recurring pattern is CIRRL’s low sensitivity
to the robustness radius γ once γ is sufficiently large. Only the small values of γ (for example 0, 1, 2)
produce noticeable changes in performance; these cases can be viewed as borderline model misspecifications.
Concretely, γ = 0 reduces the estimator to one that effectively ignores all environments except the reference
environment, while γ = 1 treats interventional and reference environments with equal weight. Because
intervened environments often contain far fewer samples than the reference environment (for example in
single-cell), small choices of γ fail to reflect the intended robustness objective and the nature of the data: they
underweight the contribution of interventions and therefore do not exploit the invariances or stable features
the method is designed to recover.
Remark 4 (Latent dimension k). In our experiments we chose the latent dimension k using the “elbow”
method on the training loss curve (Figure 5): performance jumped from k = 1 to k = 2 and then plateaued. In
fact, as shown in the synthetic experiment, adding more than two latent factors did not improve performance,
so we picked the smallest at which the curve flattened. In practice one trains the DPA using the largest
considered latent dimension and then selects the the first dimensions with the most variance. A visual-elbow
rule is common and computationally easy. Importantly, Theorem 3 does not require knowing k exactly. Our
analysis (Proposition 1 and Theorem 3) holds for any affine transformation of the true latent vector, so if is
overestimated, the extra dimensions can simply be ignored by the linear predictor (their weights will be zero
or irrelevant).

E SYNTHETICALLY GENERATED DATA

It is often helpful and insightful to test new methods and theories in controlled settings, for example, in
simulated or lab environments, to ensure that everything works as expected. Let X ∈ Rd, let Z ∈ Rk, and let
Y be a real variable. As before, it is implicitly assumed that k ≤ d, as well as d ≥ 2. Let ϕ∗ : Rd → Rk

denote the true encoder function. The aim is to generate data from environments according to the causal
graph similar to the one in subsection 3.1. The true encoder function in synthetic experiments is chosen as a
polynomial, parametrized through a random coefficient matrix which adheres to the constraints described in
Ahuja et al. (2023) section 4.

That is, X admits a lower dimensional representation Z = ϕ∗(X), which is a nonlinear function of X , while
Y itself is a linear function of Z. For an environment e ∈ E , the corresponding modified version of the
structural equations as noted in equation 2 is(

ϕ∗(Xe)

Y e

)
= B

(
ϕ∗(Xe)

Y e

)
+ ε+ δe (24)

where e ∈ E and e = 0 denotes the observational environment and δe denotes the intervention which is
independent of ε. Analogously, the test setting, for v also independent of ε, as in equation 3.(

ϕ∗(Xv)

Y v

)
= B

(
ϕ∗(Xv)

Y v

)
+ ε+ v (25)

To begin, a random directed graph G is generated, with edge probabilities of 1
2 . To enforce the acyclic

condition, the edges of the random graph G are filtered to eliminate cycles. In particular, the new graph will
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only include edges where the source node has a higher index than the target node. The remaining edges are
then assigned a weight drawn from the normal distribution. Let B denote the adjacency matrix of this directed
acyclic graph (DAG) as above, and let C denote its inverse (I−B)−1. Let b denote the first k components of
the (k + 1)-st row, Bk+1,1:k.
Next, random positive definite matrices with norm 1 are generated to serve as the covariance matrices Σe of
the interventions δe in each environment, as well as normalised random vectors µe to be used as their means.
The second moment of the test intervention v is then derived from the covariance matrices and means of the
individual interventions

Ξη =
η

|E|
∑
e∈E

(
Σe + µeµ

⊤
e

)
and is controlled by the parameter η, which is given as input. The covariance matrix of ε is generated similarly
to those of δe. The role of η is to control the strength of perturbation within the test set.
Furthermore, the means and covariance matrices are used to sample ε as well as δe from the normal distribution,
for each environment e. The data points are subsequently generated as(

Ze

Y e

)
= C(ε+ δe). (26)

Lastly, Xe is obtained by plugging Ze into the specified latent function. The latent function can be taken as a
polynomial of given degree, with some constraints on the dimensionalities of X or Z as mentioned in Ahuja
et al. Ahuja et al. (2023).
Alternatively, the latent function can also be chosen as an initialised ReLU network of given width and depth
to cosplay as a nonlinear function. Training data points are collected, as well as their labeled environments
encoded inE, and are divided in batches to be used in training. Concerning the data for the test environment, ε
is sampled analogously as in the training setting, but v is sampled as a Gaussian with mean µv and covariance
Ξη − µvµ

⊤
v where µv can be given as input or it defaults to µv = η

|E|
∑

e∈E µe. Also similarly to the train
setting, the data points are subsequently generated as(

Zv

Y v

)
= C(ε+ v). (27)

and Xv is obtained after plugging Zv into the same latent function. Furthermore, in case of student’s
t-distribution, the vector ε+ v is derived with one additional step before multiplication by C. Taking ε+ v
generated as above, denote it by ζ. Since ζ is Gaussian, the vector

ζ ′ := ζc ·
√
ν

u
+ meanζ , u ∼ χ2

ν ,

where ζc is simply ζ centered, follows a multivariate student’s t-distribution with ν degrees of freedom. By
abuse of notation, denote ζ ′ by ε+ v and plug it into equation 27.

Additionally, since the same number of observations is drawn from each environment, the weights ωe simplify
to the uniform weights in this context. There is also an option to consider the setting where one excludes
any intervention on the target variable Y , this would mean that the means and covariance matrices of δe, v
are generated with a last entry, respectively, row being zero, and the matrices are in that case only positive
semidefinite.

The submitted code also contains an oracle estimator, namely the MSE of DRIG applied on the true latent
variables, which is considered to be the theoretically optimal achievable DRIGs MSE in case of perfect
reconstruction. Furthermore, the experimental data was drawn using perturbation strength η = 10.
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E.1 SYNTHETIC EXPERIMENT DETAILS

In simulated experiments, the data was generated according to the SCM introduced in Subsection 3.1, and
the technical details are described in Appendix E. We sample one observational and four interventional
environments with 2000 samples, each, from a two-dimensional latent variable model and embed them in
10 dimensional space using a polynomial decoder function. Out-of-distribution (OOD), or the test set, is
generated with a fixed perturbation strength (Appendix E), with latents drawn from a Gaussian and χ2 for the
well-specified and misspecified case, respectively.

E.2 SINGLE-CELL DATASET

We evaluated the method using a large single-cell RNA sequencing dataset Replogle et al. (2022). This dataset
involves genome-wide CRISPR-based perturbations performed on millions of human cells to systematically
target expressed genes. For our analysis, we focus specifically on the subset of data derived from RPE1 cells,
which emphasize genes likely to play critical roles and exhibit responsiveness to interventions. Following
the preprocessing steps established by Chevalley et al. (2022), we selected the 10 genes with the highest
expression levels to serve as observed variables. Among these, one gene is treated as the response variable,
while the other nine are treated as predictors, based on the reasoning provided by Shen et al. (2023). Our
training set consists of 11,485 reference samples, supplemented by data from 10 distinct interventional
environments, each corresponding to a targeted perturbation of one of the observed genes. The number of
samples per intervention varies between 100 and 500. Furthermore, the dataset includes numerous additional
environments, where interventions are applied to unobserved genes outside the set of 10 selected genes. These
unseen environments, which differ from those in the training set, are used as test scenarios to evaluate the
robustness of prediction models across diverse distributions.

E.3 INTENSIVE CARE UNIT DATASET

We further evaluate our model using two large intensive care unit (ICU) electronic health record repositories:
MIMIC-III (Johnson et al., 2019; Bennett et al., 2023; Londschien et al., 2025), which contains de-identified
ICU admissions from Beth Israel Deaconess Medical Center, and the multi-site eICU database (Johnson et al.,
2021), which aggregates ICU records from U.S. hospitals other than the MIMIC-III site. The prediction target
is each patient’s mean heart rate measured during the 48–72 hour window after ICU admission. Predictor
variables include patient demographics together with a curated set of clinical and laboratory measurements.
After preprocessing, the analysis uses 31 covariates, with 784 eICU records partitioned into four region-based
training environments and 67 MIMIC-III records reserved for testing. Because the observational (ignorability)
assumption does not hold in this setting, our focus is on learning models that generalize across environments.

We select the 17 covariates which show less than 10% of missing values: blood urea nitrogen (bun), calcium
(ca), chloride (cl), creatinine (crea), glucose (glu), hemoglobin (hgb), heart rate (hr), potassium (k), mean
arterial pressure (map), sodium (na), oxygen saturation (o2sat), respiratory rate (resp), white blood cell count
(wbc), age, sex, height, and weight. Among these, we impute the missing values with zero, and add an
indicator variable to denote the imputed rows, which produces 14 new variables. The training environments
are taken as regions in eICU. All 31 variables are used to predict the outcome.

F FURTHER PLOTS OF EXPERIMENTS

F.1 WHY IRM UNDERPERFORMS

In our experiments, we observed that IRM gave little or no improvement over ERM. We believe this is
because IRM enforces “exact invariance” which may not align with the causal structure of our latent model:
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Figure 2: Single-cell dataset. Figure presents boxplots of the MSE across environments. In each group of four
boxes—each corresponding to a specific value of γ (as indicated on the x-axis).Note that both IRM and ERM
do not depend on γ, which is why we exclude them from this figure. The dotted lines overlaid on each group
indicate the worst performing environment, marking the maximum MSE error (or worst quantile) observed.

Figure 3: Boxplots for environment MSEs on single-cell test data for all models considered on a log scale.
Naive DRIG, CIRRL are evaluated for γ = 15.

IRM can fail when there is no strictly invariant linear predictor in the chosen representation space. By
contrast, our DRO formulation (CIR) finds the predictor that minimizes worst-case risk under bounded latent
shifts. IRM’s invariance criterion can lead to trivial solutions in this setting, whereas our method seeks a
robust-but-not-overly-conservative solution.

In principle, our synthetic SCM admits a single invariant linear predictor once the true latent factors are
recovered. However, IRM must learn both a representation and a predictor simultaneously, without any
mechanism to guarantee that aligns with the true encoder . In practice, IRM’s pressure to enforce exact
invariance across only a few finite “environment” shifts causes it to collapse to trivial or near-ERM solutions:
the learned typically entangles causal factors so that no single can achieve optimality in every environment.

More fundamentally, IRM’s invariance criterion effectively demands robustness under all possible shifts,
which is an unbounded requirement, whereas our finite radius (compare figure 1) perspective recognizes
that training environments arise from a specific, limited set of perturbations. When only moderate, discrete
shifts are observed, insisting on perfect invariance can be too stringent: it forces the predictor to guard
against hypothetical changes far beyond those seen in data, often at the cost of worse performance on realistic
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Figure 4: ICU dataset DRIG, CIRRL dependence on γ.

Figure 5: Simulated (left), and single-cell (right) dataset - values of optimized loss function L (equation 4).
In case there is a clear elbow point, as in the left figure, one should choose it as the latent dimension for the
model. However, if the elbow point is less pronounced as it is the case in the second figure, we recommend
choosing a value slightly to its right, in this example three or four.

shifts. Finite robustness, by contrast, tailors the worst-case optimization to the actual perturbation magnitude.
Empirically, we observe IRM offering little to no improvement over ERM on our synthetic data, even though
an invariant predictor exists in principle, because its invariance penalty is too brittle for finite, discrete-sample
shifts. This accords with Rosenfeld et al. (2020), who demonstrate that IRM can “fail catastrophically” and
often yields no benefit over ERM when only moderate, finite shifts occur.

F.2 ERROR BARS OF EXPERIMENTS AND ABLATION STUDIES

The GMM regularization is partly motivated by the results of Kivva et al. (2022), who rely on the framework
to generating the latents from a GMM. It can also be interpreted as a way to ensure a common invariant
structure among the environments. For an ablation study of α, consider the figure below.
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Figure 6: Synthetically generated dataset of latent dimension two (left) & single-cell dataset (right) - the
panels illustrate the evolution of OOD MSE error of the proposed model in terms of chosen robustness radius
γ. Notably, in the first case ,the finite nature of the perturbation is clear, as the performance degrades for
overly conservative values of γ. This occurrence is less clear in the second case, but still visible in the median.
For the right panel, from top to bottom in shades of red: maximum, 90th, 75th quantile, median, 25th, 10th
quantile, and minimum of the MSE across test environments. The black dashed line represents the mean.

Figure 7: Simulated (left), single-cell (right), learning curves over 1000 epochs for different values of
α ∈ {0, 1

1000 ,
1

100 ,
1
10 , 1, 10} colored blue, orange, green, red, purple, brown, respectively. Considering only

the lower pairs of plots, it is evident that α = 1
10 (red) achieves the best trade-off among the selected values

for the optimized loss L. The upper row depicts performance in terms of training and test MSE, respectively.

G LLM USAGE

We used ChatGPT 4 and Claude Sonet 4 for grammar and phrasing improvements, improving code for
experiments, and summarizing certain sections into more compact paragraphs, all of which have been fully
revised by the authors. No LLM was used for data analysis, results generation, or core technical contribution.
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Figure 8: Synthetic data; test loss progression during training with bands denoting one and two standard
deviation gaps across 10 seeds for γ = 3 and η values of 5,10,15,20.

Figure 9: Single-cell; test loss progression during training with bands denoting one and two standard deviation
gaps across 10 seeds for γ values of 5,10,15,20.
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