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A B S T R A C T

Despite the recent emergence of video captioning models, how to generate the text description with specific
entity names and fine-grained actions is far from being solved, which however has great applications such as
basketball live text broadcast. In this paper, a new basketball benchmark for entity-aware video captioning is
proposed. Specifically, we construct a multimodal basketball game knowledge graph (KG_NBA_2022) storing
basketball game records as well as detailed information on teams and players. Then, a multimodal basketball
game video captioning (VC_NBA_2022) dataset that contains 9 types of fine-grained shooting events and 286
players’ knowledge (i.e., images and names) is constructed based on KG_NBA_2022 in an automatic approach.
We also develop a simple yet effective knowledge guided entity-aware video captioning network (KEANet)
based on a candidate player list in an encoder–decoder form for basketball live text broadcast. The temporal
contextual information in video is encoded by introducing the Bi-directional Gated Recurrent Unit (Bi-GRU)
module. And the entity-aware module is designed to model relationships among players and emphasize key
players. Extensive experiments on multiple sports benchmarks demonstrate that KEANet effectively leverages
additional knowledge and outperforms advanced video captioning models.
1. Introduction

Video captioning (VC) is a crucial computer vision task that requires
the model to output corresponding text descriptions based on a given
video. By associating visual information and text elements, this task has
been blossoming and gaining increasing attention owing to its many
promising applications, including automatic video title generation [1],
visually-impaired assistance [2,3], video storytelling [4] and online
video search [5,6].

Despite the recent rapid development in video captioning, existing
methods [7–16] often struggle in real-world scenarios as they fail to
generate text descriptions with specific entity names and fine-grained
actions. As the basketball live text broadcast example in Fig. 1, the bas-
ketball video involves multi-person actions and complex scenes, which
pose significant challenges to model’s performance and generalization.
Note that conventional models can only generate the simple sentence
to describe the video from a macroscopic perspective (e.g., a man fails
to make a shot and another man gets the rebound). In contrast, if
the model has game-related knowledge, such as players who appear
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in the game and fine-grained actions in basketball, it can generate
a knowledge-grounded text description (e.g., Brandon Ingram misses
the 2pt jump shot and Justise Winslow gets the defensive rebound).
In addition, existing common used benchmarks, including MSVD [17],
YouCook [18], MSR-VTT [19], and ActivityNet Captions [20], simplify
the task by using indefinite pronouns like ‘‘a man’’, ‘‘a woman’’ or ‘‘a
group of men’’ instead of specific entity names. And the actions in
the annotated captions are coarse-grained. These benchmarks cannot
provide relevant knowledge beyond videos and fine-grained action an-
notations to develop models to generate text descriptions with specific
entity names and fine-grained actions.

An increasing number of researchers have discovered that con-
ventional methods and benchmarks for video captioning fail to meet
the requirements of practical applications, and have made numer-
ous attempts to address this issue. Mkhallati et al. [21] publicly re-
lease SoccerNet-Caption, the first dataset for dense video captioning in
soccer broadcast videos. Although this work focuses on entity-aware
video captioning, it cannot provide any additional knowledge for the
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Fig. 1. Comparison of conventional captioning with knowledge-grounded captioning.
Different specific entity names are marked red and blue, respectively. And fine-grained
actions are marked green.

model to generate text descriptions with specific entity names. Ayyubi
et al. [22] first train an entity perception detector to detect entities
in video frames. They then utilize a large language model to retrieve
relevant knowledge and enrich the visual content, thereby generating
entity-aware text descriptions for news video summary. However, this
approach is limited by the performance of entity perception detector
and large language model. Furthermore, Qi et al. [23] construct a
unimodal knowledge graph and a benchmark (Goal) for soccer com-
mentary. The provided knowledge is not comprehensive and lacks
visual aspects. It can be seen that these methods are tailored to different
domains. Introducing relevant background knowledge is crucial for
generating text descriptions with specific entity names in a particular
field.

In this work, we focus on the task of knowledge guided entity-
aware basketball video captioning (KEBVC), which requires the model
to comprehend the given video and generate text descriptions that
include specific entity names and fine-grained actions based on the
additional game-related knowledge. We propose a new multimodal
knowledge graph supported video captioning benchmark for basket-
ball live text broadcast. Specifically, we collect 25 NBA full-games
multimodal data from professional basketball platforms in 2022–2023
season, including events, player and team information, as well as
videos. To facilitate further processing, we pre-process and structure
the collected data, presenting it as a multimodal knowledge graph, as
depicted in Fig. 2. The knowledge graph not only helps in organizing
and presenting the information systematically but also leverages its
relationships and nodes to automatically extract relevant data, forming
a high-quality dataset. Subsequently, a multimodal basketball game
video captioning dataset named VC_NBA_2022 is constructed based on
nodes in KG_NBA_2022 and relationships among the selected nodes
with an automatic approach. VC_NBA_2022 dataset comprises 9 types
of basketball shooting events and 286 players’ knowledge (i.e., images
and names), with data samples illustrated in Fig. 3.

We utilize the relationships within the knowledge graph to obtain
game-related knowledge, specifically the players who participate in the
games corresponding to the videos. To effectively utilize game-related
knowledge in the VC_NBA_2022 dataset, we propose a simple yet
effective knowledge guided entity-aware network (KEANet) based on
a candidate player list in an encoder–decoder form for basketball live
text broadcast. KEANet is comprised of 3 separate unimodal encoders
for videos, players’ images, and players’ names, as well as a pre-
trained language model that serves as the text decoder for generating
descriptions of the given videos. Moreover, a Bi-GRU [24] module is
introduced to encode temporal contextual information, while an entity-
aware module is designed to model the associations among candidate
players and emphasize key players.

The main contributions of this paper are as follows:

• We provide an in-depth analysis to discover characteristics of
basketball domain and construct a multimodal basketball game
2 
knowledge graph. This knowledge graph stores records of bas-
ketball games, as well as information about teams and players
in an organized manner. Based on nodes and relationships in
knowledge graph, a multimodal basketball game video captioning
benchmark is constructed in an automatic approach.

• We develop a simple yet effective knowledge guided entity-aware
video captioning network based on a candidate player list in
an encoder–decoder form, which attentively incorporates key
information from the additional knowledge to generate text de-
scriptions with specific entity names.

• To validate the generalization of the proposed model, we conduct
experiments on the proposed basketball dataset and the foot-
ball domain dataset Goal [23]. The proposed model outperforms
existing advanced models, achieving leading performance.

2. Related works

2.1. Computer vision with knowledge graph

A knowledge graph (KG) is essentially a large-scale semantic net-
work that consists of entities and concepts as nodes, with various
semantic relationships among them as edges [25]. The application of
knowledge graphs have greatly promoted the rapid development of
computer vision. Zhuo et al. [26] utilize the mined category-attribute
relationships in a knowledge graph and the similarity between seen
categories and unseen ones for more reliable knowledge transfer. One
of the main challenges in the video–text retrieval task is identifying
fine-grained semantic associations between video and text. To address
this issue, under the guidance of additional knowledge, Fang et al. [27]
utilize associations between concepts to extend new concepts and
enrich the representation of videos. This approach enables a more accu-
rate matching of video and text, leading to improved retrieval results.
Gu et al. [28] propose a text-knowledge graph augmented transformer,
which integrates additional knowledge and leverages multimodal infor-
mation to mitigate the challenges posed by long-tail words.

In this work, we extract data from knowledge graph by utilizing
relationships and nodes to automatically construct the basketball video
captioning dataset. In addition, we utilize the relationships in the
knowledge graph to provide each video with game-related knowledge,
such as a list of players who appear in each game, thereby helping the
model generate text descriptions with entity names.

2.2. Video captioning

Video captioning is a crucial task in video understanding, where
models generate text descriptions for given videos. Some works [9,16,
29–36] utilize a visual encoder to extract video representations from
a set of video frames, and a language decoder transfer these represen-
tations to the corresponding descriptions. Recently, CLIP (Contrastive
Language-Image Pre-training) [37] has demonstrated its superior per-
formance on various visual-linguistic tasks relying on large-scale con-
trastive pre-training with image-text pairs. Therefore, Clip4Caption [14]
employs CLIP to acquire the aligned visual-text representation, leading
to significant improvements in video captioning performance. Ren
et al. [38] first incorporate object counting into remote sensing image
captioning, making the generated text descriptions more specific and
accurate. Inspired by meta-learning [39], Yang et al. [40] extract meta-
features from natural and remote sensing image classification tasks,
transferring this prior knowledge to remote sensing visual captioning.
This approach effectively addresses the scarcity of annotated data
in remote sensing visual captioning. Benefiting from the flexibility
of the transformer architecture [41], SwinBERT [8] introduces the
Video Swin Transformer [42] as the video encoder to encode spatial–
temporal representations from video frames. None of the previously
mentioned works can address the challenge of generating action entity
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Fig. 2. An example of a multimodal basketball game knowledge graph.
Fig. 3. Data sample from the proposed dataset. Each video is annotated by fileid, action type, caption, player images and player names. Each of players involved in caption as
well as their teammates serve as candidate players.
names effectively. In stark contrast, we propose to incorporate addi-
tional game-related knowledge based on an encoder–decoder model
structure to generate text descriptions with specific entity names and
fine-grained actions for basketball live text broadcasts. This demon-
strates the practicality of our entity-aware video captioning in real
applications.

2.3. Video captioning benchmarks

Existing widely used benchmarks that support the conventional
video captioning task include MSVD [17], MSR-VTT [19], YouTube [43]
and VATEX [44]. These benchmarks are open-domain databases that
enhance the generalization of models. However, they suffer from com-
mon limitations: the text descriptions are too concise, ignoring the
names of specific entities and fine-grained action types. Some works
have attempted to enrich these benchmarks and develop models to
generate text descriptions with more fine-grained information. Fang
et al. [45] construct a benchmark annotated with captions and com-
monsense descriptions. This commonsense benchmark develops models
to generate captions, as well as 3 types of commonsense descriptions:
intention, effect, and attribute. Yu et al. [46] propose a fine-grained
sports narrative benchmark that focuses on the detailed actions of
subjects, but this benchmark ignores the names of specific subjects. To
3 
assist visually impaired individuals in enjoying movies, Yue et al. [47]
construct a large-scale Chinese movie benchmark, which requires mod-
els to generate role-aware narration paragraphs when there are no
actors speaking. Byeong et al. [48] propose a benchmark for automat-
ically generating commentary on baseball games. The descriptions in
this benchmark focus on player categories rather than specific player
names. To achieve meaningful news summarization, Ayyubi et al. [22]
propose the task of summarizing news video directly to entity-aware
captions. They also release a large-scale dataset to support research on
this task. Mkhallati et al. [21] release a benchmark for soccer broad-
casts commentaries. Although the text descriptions in the benchmarks
contain specific player names, they do not provide any experimental
support for generating captions with specific names. On the contrary,
each specific name is replaced by a specific token (e.g., [TEAM],
[COACH], [REFEREE], and [PLAYER]).

Qi et al. [23] utilize the unimodal knowledge graph for real-time
soccer commentary, incorporating all pre-match and player-team infor-
mation without a selection mechanism. This indiscriminate inclusion
could introduce noise, affecting caption accuracy. Contrastingly, our
approach first employs a multimodal knowledge graph, integrating
both text and visual information, such as player names and images. This
enriches the context for video captioning, improving the match with
video content. Second, we propose an entity-aware module, modeling
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Table 1
Statistics of the events in KG_NBA_2022.

Events Foul Rebound Violation Timeout Free throw Enter the game Turnover Jump ball Shot

num. 986 2649 68 271 1103 1189 774 49 4400

‘‘num.’’ is the abbreviation of ‘‘number’’. Numbers in bold indicate the highest two values.
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associations among candidate players and incorporating key players’
knowledge. This effectively reduces noise and enhances caption preci-
sion. These advancements distinguish our work from Qi et al.’s [23]
nd other existing models, demonstrating the potential of multimodal

knowledge and entity-aware in video captioning tasks.

2.4. Spatial–temporal feature modeling

In the field of video understanding, effectively modeling spatial–
temporal features is crucial for capturing the complex relationships
between the spatial and temporal dimensions of video data. Video
data is inherently dynamic, with objects moving across frames and
evolving over time, making it essential to model both the spatial
information (e.g., object locations, shapes) and temporal dependencies
(e.g., motion) to understand the content of a video.

Recent developments have introduced more sophisticated appro
aches to spatial–temporal feature modeling. Yang et al. [49,50] pro-
ose the spatial–temporal attention to help model simultaneously con-

sider temporal context and spatial details, thereby generating de-
tailed and accurate descriptions. Temporal dynamics modeling is a key
challenge in video generation. Therefore, Fei et al. [51] investigate
ow to enhance diffusion models’ awareness of video dynamics to
chieve high-quality text-to-video generation. Fei et al. [52] introduce

a fine-grained structural spatial–temporal alignment framework that
nhances video-language models by utilizing novel graph transform-
rs for spatial–temporal video feature propagation and introducing a
patial–temporal Gaussian differential graph transformer to capture
bject changes across. Yang et al. [53] improve person re-identification
erformance by extracting and integrating features from a spatial–

temporal perspective. Park et al. [54] model spatial–temporal infor-
mation by utilizing the spatial–temporal forward and backward SSM
mechanism [55], which captures both non-sequential spatial and se-
quential temporal relationships in video. This approach allows the
model to efficiently process videos while effectively capturing long-
ange dependencies across both space and time. Zhang et al. [56]
ropose a multi-object tracker based on spatial–temporal topological
onstraints to address challenges like irregular motion patterns, sim-

ilar appearances, and frequent occlusions. Specifically, it introduces
 feature adaptive association module to establish spatial–temporal
ssociations between motion and appearance, enabling complemen-
ary integration of appearance and motion features for more accurate
racking.

It is obvious that spatial–temporal feature modeling is crucial for
ideo understanding tasks. In this paper, we employ the convolutional

neural network ResNet-18 [57] to extract local spatial feature from
ach frame and utilize the Bi-GRU [24] to model the temporal con-

text across frames, thereby achieving more accurate video content
understanding.

3. Proposed benchmark

In this section, we first construct a multimodal knowledge graph to
tore the records of games and the information of teams and players.
hen, we utilize relationships and nodes in the graph to automat-

cally extract relevant data and construct a multimodal basketball
dataset. This automated construction method reduces the heavy costs
of laborious manual annotations.
4 
3.1. Data collection and pre-processing

Our knowledge graph is based on basketball game videos with cor-
responding event descriptions. To begin constructing the multimodal
basketball game knowledge graph, we collect full-game play-by-play
data from 50 games, including event descriptions, the time on the score-
board corresponding to the events, score records, player information,
and team information from a professional basketball data platform.1
The corresponding videos are collected from a basketball broadcast
platform.2 After filtering out videos with low resolution and chaotic
content, only 25 games are retained. To structure the collected data, fol-
owing steps are needed to process it: (1) Categorize basketball events.
2) Parse and structure the descriptions for each type of event. (3)
atch event descriptions with their corresponding video timestamps.

By analyzing the play-by-play data, game events can be divided
into 9 categories, including ‘‘Foul’’, ‘‘Rebound’’, ‘‘Violation’’, ‘‘Time-
out’’, ‘‘Free throw’’, ‘‘Enter the game’’, ‘‘Turnover’’, ‘‘Jump ball’’, and
‘‘Shot’’. Each text description has its owns keyword, such as in the
description of the ‘‘Foul’’ event, ‘‘Personal foul by G. Temple (drawn
by A. Drummond)’’, where the keyword is ‘‘foul’’. Therefore, the type
of this event is ‘‘Foul’’. For this semi-structured data, the sentence is
parsed into multi-tuples using the character index of the keyword and
specific words that appear in the sentence, such as ‘‘drawn by’’. To in-
corporate video information into the multi-tuples, the video timestamp
is intended to be associated with the text description. OCR (Optical
Character Recognition) is employed to identify the time on the score-
board in each frame and record the timestamp of the current frame.
Specifically, we employ the open-source OCR toolkit PaddleOCR3 and
Tesseract-OCR [58] to recognize the time simultaneously. By using
multiple OCR toolkits, we can improve the overall accuracy of recog-
ition. This is because one toolkit may succeed where the other fails.
n addition to event information, player and team information are also
tored in multi-tuples. Through these efforts, the collected data is struc-
ured into a multimodal basketball game knowledge graph containing
1 489 events and 42 870 relationships. Fig. 2 shows an example of the

multimodal basketball game knowledge graph (KG_NBA_2022).

3.2. Multimodal basketball video captioning dataset

To construct a dataset containing videos, text descriptions, and
additional game-related knowledge (i.e., player images and names), the
ertinent data is extracted from the knowledge graph by utilizing rich

relations. In basketball, shot and rebound events are the most prevalent.
Meanwhile, we count the number of different types of events in the
knowledge graph. Table 1 shows that there are 4400 shot events and
2649 rebound events, which are the most common types of events.

ased on the aforementioned common knowledge and statistical data,
ideos and event descriptions about shot and rebound are extracted
rom KG_NBA_2022 to construct the dataset. To be more realistic, the
ext descriptions need to be further modified.

When a shot fails to score in basketball, it is often followed by a
ebound event. In line with this pattern, we have combined the shot
nd rebound into a single event. Shots in basketball can be categorized
s two-point (2pt) shots, three-point (3pt) shots, and layups. Rebounds

are further divided into defensive (def.) rebounds and offensive (off.)

1 https://www.basketball-reference.com
2 https://fishkernba.com
3 https://github.com/PaddlePaddle/PaddleOCR

https://www.basketball-reference.com
https://fishkernba.com
https://github.com/PaddlePaddle/PaddleOCR
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Fig. 4. Illustration of extracting relevant data using relationship extraction from the knowledge graph and constructing the dataset.
Table 2
Statistics of the labels in VC_NBA_2022.

Labels 2p
-succ.

2p
-fail.-off

2p
-fail.-def.

2p
-layup
-succ.

2p
-layup
-fail.-off.

2p
-layup
-fail.-def.

3p
-succ.

3p
-fail.-off.

3p
-fail.-def.

Train num. 469 146 397 442 133 251 470 202 652
Test num. 95 41 95 108 32 67 125 61 162

‘‘succ.’’ and ‘‘fail.’’ are abbreviations of ‘‘success’’ and ‘‘failure’’, respectively.
Table 3
Comparisons of different video caption datasets.

Dataset Sentences
per second

Verbs per
sentence

Verb
ratio

MSR-VTT 0.067 1.37 14.8%
YouCook 0.056 1.33 12.5%
ActivityNet Captions 0.028 1.41 10.4%
VC_NBA_2022 0.182 1.73 14.8%

Numbers in bold indicate the highest value.

rebounds. The classification scheme of our dataset, based on the NBA
dataset [59], is utilized for group activity recognition. However, unlike
the NBA dataset, where all videos are 6 s long and divided into
72 frames, we consider that different events may have varying du-
rations. Consequently, in our dataset, videos of different lengths are
uniformly divided into 72 frames. Additionally, we have incorporated
text descriptions and player information into our dataset.

As shown in Fig. 4, the event-action relation in the graph is
utilized to extract 9 types of events, and the video-time relation in
the graph is utilized to obtain the video timestamp of each event.
Specifically, we first roughly estimate the start and end timestamps
of the event based on the existing timestamp. Each clip undergoes a
manual review process to ensure accurate start and end timestamps.
Subsequently, the video-description relation is utilized to obtain the
text description, which is then matched with the corresponding video
clip. We extract player-related information (player images and player
names) from KG_NBA_2022 through the team-player and player-name
relations. Since each event involves certain players, only the involved
individuals and their teammates need to be considered as candidate
players for video annotation.

Taking the sentence ‘‘B. Ingram misses 2-pt jump shot from 19 ft and
defensive rebound by J. Winslow’’ as an example, we will explain our
text modification process. Due to the difficulty in generating distance
5 
Fig. 5. Word cloud of VC_NBA_2022 and Goal datasets. The bigger the font, the more
percentage it occupies.

in video captioning task, the ‘‘from 19 ft’’ in the sentence is removed.
Based on the attribute information of the player in KG_NBA_2022,
the abbreviated name (‘‘J. Winslow’’) in the sentence is replaced with
the full name (‘‘Justise Winslow’’). This change might increase the
complexity of name generation but is more aligned with real-world
scenarios. To improve text fluency, alterations are made based on
the character index. Specifically, we identify the index of keywords
like ’’defensive’’ and apply a rule (‘‘defensive/offensive rebound by
SOMEONE’’ ⟹ ‘‘SOMEONE gets the defensive/offensive rebound’’)
to revise the sentence. Finally, there are a total 3977 videos,4 each
of which belongs to one of 9 types of events. Each video has one
text description and several candidate players information (images and
names). We randomly select 3162 clips for training and 786 clips for
testing. We also provide word-cloud-based statistics in Fig. 5(a) to
reveal the relative amount of different words. It shows that the top-4

4 The scale of the current dataset is not large enough, which is emergent
to be enriched in our subsequent research.
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Fig. 6. The architecture of knowledge guided entity-aware video captioning network (KEANet) based on a candidate player list in an encoder–decoder form.
subjects in VC_NBA_2022 are ‘‘jump’’, ‘‘shot’’, ‘‘3pt’’, and ‘‘defensive’’,
followed by ‘‘rebound’’, ‘‘2pt’’, ‘‘layup’’, and ‘‘makes’’. Table 2 shows
the sample distributions across different labels of events.

In Table 3, the comparison of our dataset with MSR-VTT, YouCook
and ActivityNet Captions further demonstrates the fine-grained details
of our captioning annotations. VC_NBA_2022 has the most sentences
per second of 0.182, while the other datasets are all below 0.1. This
indicates that our dataset contains more detailed information in its
descriptions. Moreover, VC_NBA_2022 has 1.73 verbs in a sentence on
average, higher than 1.41 for ActivityNet Captioning and 1.37 for MSR-
VTT. Similarly, the verb ratio of VC_NBA_2022, computed by dividing
the total number of verbs by the total number of words in the sentence,
is also significantly higher than that of the other three datasets. This
highlights that our dataset primarily focuses on the fine-grained actions
of the subjects, aligning with our original intent.

In real-world scenarios, the number of NBA players is limited. Our
dataset contains 25 games from 23 teams, 3948 video clips, and a total
of 286 players. Our task focuses on entity-aware video captioning in the
sports domain, where text descriptions include not only player names
but also player actions (e.g., three-point shots, two-point shots) and
interactions between players (e.g., assists, blocks). Additionally, venues
and lighting conditions vary across different games. All of the above
factors increase the diversity of the data.

4. Knowledge guided entity-aware basketball video captioning

4.1. Problem formulation

To generate precise and concise text descriptions for basketball live
text broadcast, we introduce the concept of K EBVC task. In this task,
the model is required to comprehend the content of the provided video
and generate text descriptions that include specific entity names and
fine-grained actions based on the additional knowledge. This task can
be formulated as: given the basketball video 𝑉𝑏, the objective is to
select video-related player knowledge 𝐾𝑝 = 𝑠

(

𝑉𝑏
)

and generate the text
description 𝐷𝑣,𝑘.

( ) ( ( ))
K EBVC ∶ 𝐷𝑣,𝑘 = 𝑚 𝑉𝑏, 𝐾𝑝 = 𝑚 𝑉𝑏, 𝑠 𝑉𝑏 , (1)

6 
where 𝑠 (⋅) denotes the model’s abilities on aligning video and knowl-
edge (player information). 𝑚 (⋅) transfers video and knowledge to text
description.

4.2. Proposed model

For the K EBVC task, we propose a simple yet effective knowledge
guided entity-aware video captioning network (KEANet) based on a
candidate player list in an encoder–decoder form. The overall structure
of KEANet framework is shown in Fig. 6. Given the raw video frames
which are of size 𝑇 × 3 ×𝐻 ×𝑊 , consisting of 𝑇 frames and each has
3 × 𝐻 × 𝑊 pixels, we feed them into a CNN-based visual encoder in
KEANet and extract the video feature 𝐹𝑇 ∈ R𝑇×𝐷𝑟×ℎ×𝑤. 𝐷𝑟 is the hidden
size of visual feature. The global representation of 𝐹𝑇 is then fed into
Bi-GRU module to further encode temporal contextual information and
obtain the feature 𝐹𝑣 ∈ R𝑇×𝐷.

𝐹𝑣 = 𝑊1
(

GRU
(

AvgPool
(

𝐹𝑇
)))

, (2)

where 𝑊1 ∈ R𝐷𝑟×𝐷 is the linear mapping layer, which maps the video
feature to text space. 𝐷 is the hidden size of the decoder module.
GRU (⋅) denotes the Bi-GRU module and AvgPool (⋅) denotes the average
pooling layer.

Each video has corresponding 𝑁 candidate players’ information as
the additional knowledge to assist in generating a text description with
specific entity names. Each player image is of size 3 × 𝐻𝑝 × 𝑊𝑝. For
candidate players’ images, we employ a CNN-based visual encoder to
extract features 𝐹𝑁 ∈ R𝑁×𝐷𝑟×ℎ𝑝×𝑤𝑝 . The global features 𝐹𝑝 ∈ R𝑁×𝐷 of
𝑁 images are obtained by (3).

𝐹𝑝 = 𝑊2
(

AvgPool
(

𝐹𝑁
))

, (3)

where 𝑊2 ∈ R𝐷𝑟×𝐷 is a linear mapping layer, which maps the image
feature to text space.

The text encoder of large language model T5 [60] is employed to
transform candidate names into a sequence of embeddings 𝑇𝑛 ∈ R𝑁×𝐷.
After that, the image features 𝐹𝑝 and name features 𝑇𝑛 are added by
corresponding positions to obtain multimodal player features 𝐹𝑚 ∈
R𝑁×𝐷.
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Table 4
Combined inference performance on VC_NBA_2022.

Model CIDEr METEOR Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 Eps

V2C 13.7 18.7 45.9 50.1 39.5 27.0 14.9 0.0
Clip4Caption 70.4 26.7 51.2 49.1 42.5 35.4 28.8 20.9
Clip4Captiona 117.2 27.5 52.0 50.5 43.7 37.0 29.4 28.3
SwinBERT 69.1 26.5 49.0 47.8 41.4 34.5 28.4 20.7
SwinBERTa 120.1 27.9 52.1 51.3 43.9 37.4 30.3 29.1
CoCap 70.5 27.4 50.7 49.8 42.3 35.6 28.9 21.2
CoCapa 122.3 28.3 52.9 52.2 44.6 38.0 30.3 29.0
OmniViD 71.2 27.5 50.7 49.7 42.4 36.5 29.2 22.6
OmniViDa 125.2 28.6 53.3 52.5 45.2 38.7 30.5 30.5
KEANet 138.5 28.0 54.9 53.1 46.4 38.8 32.4 31.0

Numbers in bold indicate the best performance.
a Denotes the model with the candidate player list.

Basketball events involve interactions between multiple players. For
xample, in ‘‘Myles Turner makes the 2pt layup with an assist from
yrese Haliburton’’, ‘‘Myles Turner’’ scores a two-point layup with the

assist of ‘‘Tyrese Haliburton’’. Therefore, we design an entity-aware
odule to emphasize key players from a candidate player list. The

rchitecture of entity-aware module is shown in Fig. 6. Entity-aware
module first utilizes the entity-video interaction sub-module to fuse
player features and video features to obtain 𝐹𝑓 . This connects the
players to the video content, putting the players in a specific scene.

𝐹𝑓 = 𝜎

(

𝐹𝑚𝑊𝑞1 ⋅
(

𝐹𝑣𝑊𝑘1
)T

√

𝐷

)

⋅ 𝐹𝑣𝑊𝑣1, (4)

where 𝑊𝑞1 ∈ R𝐷×𝐷, 𝑊𝑘1 ∈ R𝐷×𝐷 and 𝑊𝑣1 ∈ R𝐷×𝐷 are learnable
atrices. 𝜎 (⋅) denotes the softmax function.
𝐹𝑓 is then sent to the entity-entity interaction sub-module to model

the relationship among candidate players.

𝐹𝑓 = 𝜎

(

𝓁
(

𝐹𝑓
)

⋅𝑊𝑞2 ⋅
(

𝐹𝑓𝑊𝑘2
)T

√

𝐷

)

⋅ 𝓁 (

𝐹𝑓
)

⋅𝑊𝑣2, (5)

where 𝑊𝑞2 ∈ R𝐷×𝐷, 𝑊𝑘2 ∈ R𝐷×𝐷 and 𝑊𝑣2 ∈ R𝐷×𝐷 are learnable
atrices. 𝓁 (⋅) denotes the Layer Normalization.

The player features based on attention are concatenated with the
video features and subsequently fed into the T5 decoder ΨT5 (⋅) to
generate the text description 𝐶.

𝐶 = ΨT5
(

𝑊3
(

Concat
[

𝓁
(

MLP
(

𝐹𝑎
)

+ 𝐹𝑎
)

, 𝐹𝑣
]))

, (6)

where 𝑊3 ∈ R𝐷×𝐷 is a linear mapping layer, which maps the concate-
nated feature to the vector space of T5 model. Concat [, ] denotes the
concatenation function in Python, and MLP (⋅) denotes the MLP layer.

The Bi-GRU module, 3 linear layers, entity-aware module and text
ecoder are trained to maximize the log-likelihood over the training set

given by (7).

𝛩 =
𝑁𝐶
∑

𝑡=1
𝑙 𝑜𝑔Pr

(

𝑦𝑡|𝑦𝑡−1,
[

𝐹𝑚, 𝐹𝑣
]

;𝛩
)

, (7)

where 𝑦𝑡 denotes the one-hot vector probability of each word at time 𝑡.
𝑁𝐶 denotes the length of caption. And 𝛩 denotes learnable parameters.

5. Experiments

To evaluate the performance of the proposed model, KEANet is
ompared with advanced video captioning models on VC_NBA_2022
nd Goal [23]. We further conduct ablation experiments to verify the

effectiveness of each component in KEANet.

5.1. Implementation details

The proposed KEANet utilizes ResNet-18 [57] pre-trained on the
ImageNet dataset [61] as the visual encoder, whose hidden size 𝐷𝑟
is 512. KEANet is trained on the proposed VC_NBA_2022 and Goal
 t

7 
datasets with 100 training epochs. In these datasets, 𝑇 frames are
sampled by using segment-based method [62]. A high resolution of
video frame is helpful for the model to understand the players’ action
in the video. Each frame size is 1280 × 720. 𝑇 is set to 18. The size
of player’s image is 180 × 120 and the number of candidate players in
each video is not fixed. For the large language model T5, the hidden
size is 768. It is worth noting that the parameters of the visual encoder
and text encoder are frozen during training. During the training stage,
KEANet is optimized by ADAM [63] with the learning rate of 3e-5 and
weight decay of 1e-4. Beam search with a beam size of 2 is utilized for
nference. The proposed KEANet is implemented with Python 3.7 and

PyTorch 1.12, and is performed on a server with an Nvidia 3090ti GPU.

5.2. Evaluation metrics

Existing video captioning benchmarks mainly adopt ngram-based
metrics, including CIDEr [64], METEOR [65], Rouge-L [66], and BLEU
[67]. BLEU evaluates the quality of the generated text by calculating
he n-gram overlap between the generated text and reference text.
ouge-L pays more attention to generating the longest common sub-
equence between the generated text and reference text, and evaluates
entence quality in this way. METEOR takes more factors into account,
ncluding stem matching, synonym matching, and word order. CIDEr
tilizes TF-IDF [68] to assign different weights to n-grams of varying

lengths, then calculates the cosine similarities of n-grams between
the generated text and reference text, averaging them to obtain the
final score. These metrics primarily emphasize the consistency of text
rather than the accuracy of semantics. In other words, if the generated
ext differs from the reference in structure or vocabulary, it may be
enalized by these n-gram based evaluation metrics, even if the con-
eyed information is completely correct. However, for entity names,
hey cannot be replaced with similar words. To accurately evaluate
he performance of specific entity name generation, we introduce the
ntity-precision score (Eps), which is calculated by dividing the number

of correctly predicted names by the total number of names. For Eps, we
xtract entity names from the ground truth and generated texts.

5.3. Results on VC_NBA_2022

KEANet is compared with five advanced video captioning models,
ncluding V2C [45], Clip4Caption [14], SwinBERT [8], CoCap [15]

and OmniViD [16]. V2C is a Transformer-based model that generates
relevant commonsense descriptions of the given video. Clip4Caption
employs CLIP to acquire the aligned visual-text representation for
better generating text descriptions. SwinBERT introduces Video Swin

ransformer to encode spatial–temporal representations from video
rames. CoCap fuses the motion feature, residual feature, and video
eature through the encoder. Then the fused features are sent into the
ecoder to generate video descriptions. OmniViD is a unified generative
ramework that can address various video tasks, including action recog-
ition, captioning, video question answering, dense video captioning
nd visual object tracking. V2C, Clip4Caption, SwinBERT and OmniViD
ake only videos as input. CoCap takes the motion feature, residual
eature and video feature as input. And the above models are all trained
nd tested on our proposed VC_NBA_2022 dataset.

As shown in Table 4, KEANet outperforms other 5 models by a
large margin on CIDEr. This notable performance can be attributed to
he way CIDEr calculates cosine similarities of n-grams between the
enerated text and reference text. Highly accurate name prediction
ontributes to a higher cosine similarity between the n-grams of the
enerated text and the reference text. V2C, Clip4Caption, SwinBERT,
oCap and OmniViD exhibit lower performance in accurately gener-
ting names, resulting in much lower CIDEr scores. Although KEANet
chieves the best performance across all metrics, the differences are not
s pronounced in METEOR, Rouge-L, and BLEU. This can be attributed
o the concise nature of the text descriptions in the dataset, primarily



Z. Xi et al. Neurocomputing 619 (2025) 129177 
Fig. 7. Qualitative results on VC_NBA_2022 dataset. (V2C: Video2Commonsense; C4C: Clip4Caption; SwB: SwinBERT; CCP: CoCap; OVD: OmniViD; KEA: our proposed model; GT:
the ground truth). Different specific entity names are marked in red and blue, respectively. And fine-grained actions are marked green. Since V2C does not have its own tokenizer
and vocabulary list, it cannot decode names. So, names are replaced with the special token <UNK>.
consisting of names and fine-grained actions. Notably, KEANet outper-
forms CoCap 9.8% on Eps and outperforms OmniViD 8.4% on Eps. The
higher Eps indicates better name prediction. These results underscore
the capability of our model to generate accurate names and fine-grained
actions in live text broadcast task. Moreover, The model’s performance
significantly improves when augmented with additional knowledge.
For instance, Clip4Captiona achieves a 48.8% increase in CIDEr and
a 7.4% improvement in Eps. Similarly, OmniViDa improves OmniViD’s
CIDEr by 54.0% and Eps by 7.9%. The above experimental results show
the effectiveness of additional knowledge (candidate player list) for
entity-aware video captioning.

Fig. 7 shows the qualitative results on VC_NBA_2022 dataset, in-
cluding generation results of V2C, Clip4Caption, SwinBERT, CoCap,
OmniViD and our KEANet model. V2C, Clip4Caption, SwinBERT, Co-
Cap and OmniViD can correctly generate some actions but fail to
8 
generate correct entity names because these names never appear dur-
ing training. However, with the help of the additional game-related
knowledge, our KEANet could well relate entities in video clips with the
fine-grained actions. These cases demonstrate that our newly proposed
KEANet model more consistently with the requirement of practical
application.

Further, we study the relation between the metric CIDEr and Eps.
To this end, we plot the performance of Clip4Caption (C4C), Swin-
BERT (SwB), CoCap (CCP), OmniViD (OVD) and KEANet (KEA) with
different Eps in Fig. 8. The plot shows that this relationship is ap-
proximately linear: more accurate entity name generation imply better
model performance.
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Fig. 8. The relationship between metric CIDEr and Eps.

5.4. Results on goal

Goal is a benchmark which contains over 8.9k soccer video clips,
22k sentences and 42k knowledge triples. These sentences are con-
verted from the commentator’s audios. This type of comment sentences
have a certain degree of colloquialism and are relatively long. There-
ore, this dataset poses certain challenges. On this basis, we filter out
entences and videos that do not contain entity names. We modify the

format of the dataset to be the same as VC_NBA_2022. In addition, we
save the names of teams and players in the dataset. The revised Goal
dataset is shown in Fig. 9.

KEANet is compared with five advanced video captioning mod-
els, including V2C, Clip4Caption, SwinBERT, CoCap and OmniViD.
V2C, Clip4Caption, SwinBERT and OmniViD take only videos as input.

oCap takes the motion feature, residual feature and video feature
s input. And they are all trained and tested on the revised Goal

dataset. As shown in Table 5, we compare the performance of V2C,
lip4Caption, SwinBERT, and KEANet on several metrics including
IDEr, METEOR, Rouge-L, and BLEU-1. KEANet is supported by ad-
itional knowledge that it can generate text descriptions with entity

names. Therefore, the KEANet outperforms other models in all met-
rics. When additional knowledge is added to Clip4Caption, SwinBERT,
CoCap and OmniViD, their performance is improved. This indicates
that the introduction of additional knowledge (candidate player list)
is beneficial for entity aware video captioning task.

Fig. 10 shows the qualitative results on Goal dataset, including
eneration results of V2C, Clip4Caption, SwinBERT, CoCap, OmniViD
nd our KEANet. Compared to the other five models, KEANet can gen-

erate more correct entity names and partial actions. The above results
ndicate that, even in challenging tasks such as sports commentary,
ith the support of additional knowledge, the model can generate text
ith entity names.

5.5. Ablation study

To verify the contributions of the additional knowledge and other
modules in KEANet, we also perform an ablation study by progressively
adding these as input. The results of ablation study are shown in
Table 6. Model ① consists of Resnet-18 and T5 decoder, with its
nput being solely video. Model ② adds the Bi-GRU module on top
f model ①. The Bi-GRU models the temporal contextual relationships
etween video frames, enabling the model to better understand the
ynamic information in videos and predict more accurate action cat-
gories. Therefore, model ② has shown improvements in all metrics
elative to model ①, except for the Eps score. From the comparison
 c

9 
Table 5
Combined inference performance on Goal.

Method CIDEr METEOR Rouge-L BLEU-1

V2C 0.1 2.1 3.4 3.4
Clip4Caption 2.2 5.0 5.5 5.7
Clip4Captiona 2.5 5.2 5.8 5.9
SwinBERT 2.2 5.1 5.3 5.7
SwinBERTa 2.6 5.5 6.0 5.9
CoCap 2.3 5.0 5.3 5.5
CoCapa 2.5 5.3 5.8 5.9
OmniViD 3.0 5.9 9.1 10.7
OmniViDa 3.9 6.4 10.6 14.4
KEANet 3.7 6.4 10.5 14.9

Numbers in bold indicate the best performance.
a Denotes the model with the candidate player list.

results between of model ① and model ③, it can be observed that adding
layers’ images to model ① does not improve the performance. During

the training stage, if the model has not been exposed to enough specific
names, or has not learned how to infer names from video and image
features, it may not be able to generate these names. The comparison
results between model ① and model ④ show a significant improvement
by solely adding players’ names based on the model ①. Providing a
list of names as input allows the model to effectively integrate this
information with video features, leading to more accurate generation
of names. This is likely providing the model with additional context
information to help it make more accurate predictions. From the com-
parison results between model ④ and model ⑤, we can find that player
images can emphasize the roles based on entity names and improve the
names’ prediction. From the comparison results of models ⑤-⑧, it can
be observed that adding entity-aware and Bi-GRU modules can improve
the performance. The entity-aware module can model the associations
among players and focus on key players. The Bi-GRU module can model
the temporal contextual information of video frame features, capturing
the action information. From the above results, the additional players
knowledge brings significant gains in entity awareness. The model can
generate text descriptions with specific player names and fine-grained
actions through additional knowledge and temporal modeling.

5.6. Impact of dynamically changing knowledge on performance of KEANet

In real-world scenarios, factors such as player trades and team
recruitment can result in variations in the player roster across dif-
ferent games. Consequently, the dynamic nature of knowledge might
mpact the model’s performance. To explore the extent to which this
ynamic knowledge affects KEANet’s performance, we conduct two
xperiments on the VC_NBA_2022 dataset: (1) KEANet-random: The
andidate player list for each video in the training set remains un-
hanged, while two players in the candidate list for each video in
he testing set are randomly replaced; (2) KEANet-key: The candidate
layer list for each video in the training set remains unchanged, while
wo key players in the candidate list for each video in the testing set are
andomly replaced. Here, key players refer to the top-10 most frequent
layers in the entire dataset. By randomly replacing players in the
andidate player lists, we simulate real-world scenarios where player
hanges (dynamic knowledge) occur.

The corresponding experimental results are shown in Fig. 11. After
randomly replacing players, the KEANet’s performance shows a decline.
or example, the CIDEr score drops from 138.5 to 121.1 and 117.2,
hile the BLEU-4 score decreases from 32.4 to 31.0 and 29.2. Changes

n the inputs of KEANet leads to a decline in its performance. It is well
nown that player changes within a team, especially within a single
eason, are relatively infrequent. Our dataset is collected from games
uring the 2022–2023 season, where knowledge variation is minimal.
urthermore, we utilize the entire roster of both teams from the video
lip rather than just the players on the field, which largely ensures
onsistency in knowledge between the training and testing sets.
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Fig. 9. Data sample from the revised Goal dataset. Each video is annotated by fileid, team_id, caption, player images and player names. Each of the players involved in caption
as well as their teammates serve as candidate players. The caption in this sample includes the names of players and team.
Fig. 10. Qualitative results on Goal dataset. (V2C: Video2Commonsense; C4C: Clip4Caption; SwB: SwinBERT; CCP: CoCap; OVD: OmniViD; KEA: our proposed model; GT: the
ground truth). The different specific entity names are marked in red. And the fine-grained actions are marked green. Since V2C does not have its own tokenizer and vocabulary
list, it cannot decode names. So, names are replaced with the special token <UNK>.
Table 6
Ablation study on VC_NBA_2022.

Model Ki Kn Ea Bi-GRU CIDEr METEOR Rouge-L BLEU-4 Eps

① 20.1 20.6 40.9 23.0 5.5
② ✓ 23.5 22.7 43.1 24.4 5.7
③ ✓ 18.0 20.0 38.0 23.2 10.0
④ ✓ 110.6 25.2 49.1 27.3 24.9
⑤ ✓ ✓ 115.7 25.6 53.1 28.1 26.6
⑥ ✓ ✓ ✓ 119.3 26.8 53.3 29.5 27.5
⑦ ✓ ✓ ✓ 122.2 27.3 54.6 30.5 29.5
⑧ ✓ ✓ ✓ ✓ 138.5 28.0 54.9 32.4 31.0

Ki and Kn denote the player images knowledge and player names knowledge, respec-
tively. Ea is the entity-aware module and Bi-GRU is the bi-directional GRU module.
Numbers in bold indicate the best performance.

5.7. Error analysis

Error analysis is conducted by presenting cases of KEANet on the
proposed VC_NBA_2022 dataset. As shown in Fig. 12, we show sev-
eral errors. (1) Player Mismatching: when the number of players in
the sentence is more than one, the model may decode the name of
one of the players incorrectly. (2) Action Confusion: model tends to
confuse similar-looking actions, such as layups and close-range two-
point jump shots. (3) Lack Distance-aware Perception: model tends to
confuse three-point jump shots and long-range two-point jump shots.
For example, the player appears to be shooting a three-point shot, but
is actually inside the three-point line.

Given the above result, we discuss some potential ways for devel-
oping an advanced models for KEBVC task. First, beyond the current
10 
object detection, it is necessary to enhance the model’s ability to under-
stand and handle names. Second, regarding action confusion, this may
be because the model is not sensitive enough to subtle differences in the
video to accurately distinguish similar actions. We need to improve the
feature extraction abilities of the model to more accurately recognize
similar-looking actions. Third, for the lack of distance perception, this
may be because the model has trouble processing spatial information,
especially when judging the relative distance of players from the basket.
This indicates that we need to further improve the spatial awareness of
our model.

6. Conclusion, limitation and future work

In this paper, we introduce the task of knowledge guided entity-
aware video captioning (KEBVC) for basketball live text broadcast. To
investigate this task, we construct a multimodal basketball game knowl-
edge graph (KG_NBA_2022) that stores records of basketball games
as well as information about teams and players. Through partial re-
lationships and nodes in the knowledge graph, a new multimodal
basketball game video captioning dataset is then constructed in an
automatic approach. We also propose a simple yet effective knowledge
guided entity-aware video captioning network (KEANet) for generating
captions with specific entity names by leveraging the game-related
knowledge, i.e., a list of players who participate in the games cor-
responding to the videos. Without the aid of additional detection,
this simple method effectively assists the model in generating players’
names. Furthermore, our experiments validate the significance of incor-
porating additional knowledge, such as player images and entity names,
in enhancing entity-aware video captioning performance.
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Fig. 11. Impact of dynamically changing knowledge on performance of KEANet.

Fig. 12. Representative error cases of the generated captions, which correspond to the
player mismatching, action confusion and lack distance-aware perception. GT denotes
the ground truth description and PR denotes the generated description.

As an initial exploration of entity-aware video captioning for bas-
ketball live text broadcast with additional knowledge, our work still
preserves several limitations that need to be improved. Firstly, due to
the simplicity of the additional knowledge, although our model can
generate player names, there is still significant room for accuracy im-
provement. Therefore, it is necessary to expand the existing knowledge
graph and extract more comprehensive and informative knowledge
from sports-related knowledge graphs for sports entity-aware caption-
ing. Secondly, in future research, we aim to expand the dataset and
enrich the diversity of the captions. Thirdly, the dynamic nature of
knowledge changes would affect the model’s performance. In future
work, we will explore more effective methods to enhance the model’s
robustness. Fourthly, player counting has potential benefits for basket-
ball live text broadcast, as it can provide more detailed information
and enhance the contextual relevance of captions (e.g. two defenders
are blocking the shooter). Future work will focus on extending and
improving in this direction. Despite these limitations, we believe that
11 
incorporating the candidate player list is valuable for the task of sports
entity-aware captioning. And our KG_NBA_2022 and VC_NBA_2022 can
be valuable resources for numerous active researchers.
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