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Abstract
Tokenization efficiency plays a critical role in the
performance and cost of large language models
(LLMs), yet most models rely on static tokeniz-
ers optimized on general-purpose corpora. These
tokenizers’ fixed vocabularies often fail to adapt
to domain- or language-specific inputs, leading
to longer token sequences and higher computa-
tional costs. We introduce zip2zip, a frame-
work that enables LLMs to dynamically adjust
the token vocabulary at inference time, allow-
ing for fewer generated tokens and thus faster
inference. zip2zip consists of three key compo-
nents: (1) a tokenizer based on Lempel-Ziv-Welch
(LZW) compression that incrementally merges co-
occurring tokens into reusable hypertokens on the
fly; (2) an embedding layer that computes embed-
dings for newly formed hypertokens at runtime;
and (3) a causal language modeling variant that
trains the model to operate on hypertokenized,
compressed sequences. We show that an exist-
ing LLM can be zip2zip-fied in 10 GPU-hours
via parameter-efficient finetuning. The resulting
zip2zip LLMs effectively learn to use hyperto-
kens at inference time, reducing input and output
sequence length by 20–60%, with significant im-
provements in inference latency. Code will be
released at https://github.com/epfl-dlab/zip2zip.

1. Introduction
Large language models (LLMs) have shown impressive
versatility across a broad spectrum of tasks and do-
mains (Brown et al., 2020; Bubeck et al., 2023), including
biomedical tests (Nori et al., 2023), mathematical reason-
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ing (Frieder et al., 2023), programming (Jiang et al., 2024),
and multiple human languages. A critical underlying com-
ponent of this flexibility is the tokenizer, which defines
the model’s vocabulary and governs how raw text is con-
verted into token sequence fed to the model. The efficiency
of the tokenization scheme—i.e., how compactly a text is
represented as tokens—has significant impact on model
performance. In particular, a more compact tokenization
yields three key benefits: (1) larger effective context win-
dow; (2) lower computational (and thus monetary) cost; and
(3) shorter response times.

Despite its importance, the tokenizer used in most LLMs
produces a fixed, static vocabulary using algorithms such as
Byte Pair Encoding (Sennrich et al., 2016) over large-scale,
general-purpose web corpora. While this globally optimized
vocabulary performs reasonably well on average, it often
fails to adapt to domain-specific or language-specific distri-
butions (Ahia et al., 2023; Petrov et al., 2023), where the text
distribution diverges significantly from the pretraining data.
The resulting mismatch leads to longer token sequences, in-
creasing both memory and compute demands, as well as the
end user’s cost by a factor of 2-3x when processing domain-
specific text (Ahia et al., 2023). To mitigate this issue, prior
work has explored expanding the token vocabulary during
domain or language adaptation to improve tokenization ef-
ficiency (Wang et al., 2019; Zhao et al., 2024; Kim et al.,
2024; Liu et al., 2023; 2024). While effective, this approach
needs to be repeated for each target domain or language and
requires maintaining separate tokenizers. Meanwhile, com-
mercial LLM providers trend toward increasing the size of
token vocabularies—growing from 32K to 128K (Grattafiori
et al., 2024) and even up to 200K (Abdin et al., 2024) to-
kens—to improve overall tokenization efficiency. However,
prior work (Dagan et al., 2024; Liang et al., 2023) shows that
simply enlarging the vocabulary yields diminishing returns
in domain adaptation, and vocabularies past a certain size
can potentially degrade model performance (Liang et al.,
2023).

These limitations point to a compelling need for an adaptive
tokenization mechanism—one that can dynamically tailor
the vocabulary to the input text at inference time, with-
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Figure 1: Overview of the zip2zip inference pipeline. At each decoding step, the model has a growing context composed of both base
tokens (blue) and hypertokens (green). The static vocabulary of size 6 remains fixed, while the dynamic vocabulary is continuously
expanded by merging co-occurring tokens using LZW compression. The codebook (right) maps hypertoken IDs to their corresponding
base tokens. As decoding progresses, new hypertokens created at step t (e.g., “to be”, “or not”) become immediately available for reuse
at step t+. Additionally, output tokens, once generated, instantly become eligible for compression. Hypertokens are also eligible for
merging, enabling the formation of nested hypertokens. The final output sequence (bottom) is reconstructed via LZW decompression.

out retraining the model or maintaining separate tokenizers.
Such a mechanism would allow the model to construct new
domain-specific tokens on-the-fly, so to enhance tokeniza-
tion efficiency. However, adaptive tokenization poses ar-
chitectural challenges, as both the embedding layer and the
language modeling head in transformer models (Vaswani
et al., 2017) are static matrices tied to a fixed vocabulary
size.

In this paper, we propose zip2zip (with a hat-tip to
seq2seq (Sutskever et al., 2014)), a method that equips
LLMs with a dynamic token vocabulary, enabling inference-
time token adaptation. zip2zip achieves adaptive tokeniza-
tion through continuous vocabulary expansion at runtime, al-
lowing the model to represent a repeated or domain-specific
pattern with a single long token rather than inefficient short
tokens. This requires modest modifications to both the
transformer architecture and the language modeling ob-
jective. zip2zip comprises three key components: (1)
Tokenizer: an integration of Lempel-Ziv-Welch (LZW)
compression1 (Welch, 1984) into the tokenization process,
which continuously merges frequently co-occurring token
sequences into reusable longer tokens (hypertokens) at run-
time; (2) Architecture: a lightweight encoder added to the
transformer that computes embeddings for newly formed
tokens on the fly; (3) Training: a compression-aware causal
language modeling variant that trains the model directly
on LZW-compressed sequences, aligning learning with the
inference-time token distribution. The name zip2zip re-
flects its dual role in achieving compression of both the
input tokens (the first zip) and output tokens (the second
zip), thereby jointly improving the efficiency of input en-

1LZW is the algorithm used in zip compression tool, which
inspired the name zip2zip.

coding and output decoding. We finetune Phi-3-4B and
Phi-3-14B to support zip2zip using as few as 100M
tokens—requiring only 10 and 40 H100 GPU hours, re-
spectively—for effective adaptation. The resulting models
demonstrate strong inference-time compression capabilities
and achieve 20–60% reductions in both input and output
sequence lengths, translating to up to 60% improvements in
end-to-end latency.

To make it easy to upgrade existing LLMs to zip2zip,
we release an efficient, open-source implementation of the
framework. It includes (1) a fast Rust-based LZW tokenizer,
(2) a drop-in model architecture compatible with Hugging
Face Transformers and vLLM, (3) a training pipeline for
LZW-compression-based finetuning. Existing LLMs can
be seamlessly extended with zip2zip, gaining adaptive to-
kenization capabilities through parameter-efficient finetun-
ing—without any changes to the base model or tokenizer.

2. zip2zip
2.1. Dynamic Token Vocabulary

To enable dynamic tokenization at inference time, we asso-
ciate each LLM with a hyper-vocabulary Vh that augments
the model’s static token vocabulary. Tokens from the orig-
inal vocabulary V are referred to as base tokens. Each
entry in the hyper-vocabulary is a hypertoken, representing
a merged sequence of base tokens. The total vocabulary for
a zip2zip model is the union V ∪ Vh. At the beginning of
each inference session, Vh is initialized as an empty set, and
is incrementally populated during decoding by identifying
and merging recurring token subsequences in the context
window, as illustrated in Figure 1.
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Continuous Vocabulary Expansion. As decoding pro-
ceeds, zip2zip continuously merge co-occurring tokens as
new hypertokens to Vh and recurrently apply merging on
newly generated tokens. This continual expansion allows
the model to represent longer, recurring sequences of base
tokens compactly. Hypertokens are treated as first-class
tokens within the model, used interchangeably with base
tokens throughout the decoding process. Importantly, this
process occurs entirely during inference, without modifying
the underlying tokenizer or requiring model retraining.

LZW Algorithm. We implement vocabulary expansion
using the Lempel-Ziv-Welch (LZW) compression algo-
rithm—a dictionary-based, lossless compression method
that incrementally builds a codebook of variable-length se-
quences. In our setting, the codebook is initialized with the
base token vocabulary V and expands by adding new hyper-
tokens on the fly as recurring token patterns are encountered.
To control the growth of the dynamically expanding vocabu-
lary, we impose a maximum merge size M that restricts how
many base tokens a single hypertoken can represent. LZW
is particularly well-suited for zip2zip due to the following
properties:

(1) it is streaming—hypertokens created at step t can be
immediately reusable at step t+1; in contrast, methods like
BPE require access to the full sequence and operate offline;

(2) it is self-contained—input base tokens can be per-
fectly reconstructed from the compressed token sequence
alone2;

(3) it is unambiguous—when both base tokens and hy-
pertokens are available, which one to use is consistently
determined by the LZW algorithm without ambiguity.

2.2. Hyper-Embedding and Hyper-Projection

Hypertokens do not have fixed embedding vectors in the
original model’s embedding layer (and projection layer), as
they are not part of the original vocabulary. To compute the
embedding of a hypertoken, we learn a mapping from the
base token embeddings to the hypertoken embedding. We
achieve this by introducing a hyper-encoder, which is a neu-
ral network that takes the embeddings of the constituent base
tokens as input and outputs the corresponding hypertoken
embedding. Specifically, for a sequence of M base tokens
y1:M := y1 . . . yM , the hyper-encoder fϕ : VM → Rd
produces the hypertoken embedding h = fϕ(y1:M ) ∈ Rd,
where M is the maximum merge size and d is the embedding
dimension. For hypertokens composed of fewer than M
base tokens, we pad the input sequence to length M . Since
the embedding map for base tokens remains unchanged, the
hyper-encoder fϕ essentially maps the concatenated base

2There is no need to persist or transmit the codebook across in-
ference calls, preserving compatibility with existing LLM libraries
and interfaces.

token embeddings from a (M × d)-dimensional space to a
d-dimensional hypertoken embedding vector, performing
nonlinear dimensionality reduction.

For the output projection layer, if the underlying transformer
ties the embedding and the projection matrices, one can
reuse the same hyper-encoder to compute the representation
used for projection. Otherwise, a separate hyper-encoder is
trained to produce the hypertoken projection vectors.

Let V be the original vocabulary of base tokens, with size
|V|, Vh be the set of hypertokens, with size |Vh|, E,P ∈
R|V|×d be the base token embedding/projection matrix. We
define the augmented embedding matrix Ẽ ∈ R(|V|+|Vh|)×d

and projection matrix P̃ ∈ R(|V|+|Vh|)×d as:

Ẽ =

[
E
H

]
, P̃ =

[
P
Ph

]
(1)

where:

• H ∈ R|Vh|×d is the matrix of hypertoken embeddings,
defined as

H =


fϕ(y

(1)
1:M )
...

fϕ(y
(|Vh|)
1:M )

 ∈ R|Vh|×d (2)

• Ph ∈ R|Vh|×d is the projection matrix of hypertokens,
computed similarly with projection network fψ

2.3. Architecture

We illustrate the architecture of zip2zip in Figure 2. The
input text is first tokenized into base tokens (STEP 1), which
are then passed through an online LZW compressing mod-
ule that compresses the token sequence into a stream of
hypertokens (STEP 2). Since hypertokens are not part of
the model’s original embedding layer, their embedding vec-
tors are computed on-the-fly using the hyper-encoder during
inference (STEP 3–4). Once embedded, both base token em-
beddings and hypertokens embeddings are passed through
the standard transformer layers of the base model, produc-
ing contextualized hidden states (STEP 5–6). This step is
identical to vanilla transformer, with hypertokens and base
tokens treated equally. At the output projection layer, hyper-
token projection vectors (same as the hypertoken embedding
vectors in the tied case, and computed by a separate hyper-
encoder otherwise) are appended to the original projection
matrix in the language modeling head (STEP 7). This allows
the model to compute a joint logits over the union of the
base vocabulary and the hyper vocabulary V ∪ Vh (STEP 8).

logitst ∈ R|V|+|Vh| = h⊤
t P̃

⊤ =
[
h⊤
t P

⊤ h⊤
t P

⊤
h

]
(3)

where ht ∈ Rd is the hidden state at timestep t.

3



Figure 2: zip2zip architecture. At inference time, base tokens
are compressed into hypertokens using LZW (STEPS 1–2). A
hyper-encoder computes embeddings for hypertokens (STEP 3–
4), which are processed by the base LLM (STEPS 5–6). Output
representations are projected jointly on base and hyper-projection
layers (STEP 7), producing joint logits and sampled tokens (STEPS
8–10), which can be decoded back to base tokens (STEPS 11–12).

The resulting probability distribution is over V ∪Vh, and the
sampled token ẑt may be either a base token or a hypertoken
(STEP 9).

pt ∈ R|V|+|Vh|
+ = softmax(logitst) (4)

ẑt ∈ V ∪ Vh = argmax
i∈{1,...,|V∪Vh|}

logitst[i] (5)

In the next cycle, the newly generated token ẑt ∈ V ∪ Vh
(STEP 10) —whether base or hyper—is appended to the
input sequence, and the process repeats (back to STEP 1).

At the end of generation, the hypertoken sequence is de-
compressed via the LZW decoding function into a sequence
of base tokens (STEP 11–12). The whole process works
in a fully autoregressive way, where newly generated to-
kens will also be merged into hypertokens for future steps.
Furthermore, we highlight two points:

Consistent Vocabulary Updates. The expanding vocab-
ulary—comprising newly created hypertokens—must be
updated in a consistent manner across both the input em-
bedding layer and the output projection layer, maintaining
a consistent view of the hypertoken set. Failure to update
both sides consistently can result in two types of errors:

(1) hypertokens that cannot be decoded, or (2) the model
attempting to decode a non-existing hypertoken.

Hyper-Embedding Cache. Although hypertoken embed-
dings are computed on-the-fly, they are context-independent
and can thus be cached across inference steps. Similar to
the transformer’s KV-cache, this enables incremental up-
dates: only newly created hypertokens need to be processed
at each step. Since the codebook grows linearly with the
number of tokens in the context n, the total cache size grows
also linearly in memory. Thus, the computational cost for
hypertoken embeddings remains constant per step—i.e., one
token embedding is computed per step.

2.4. Training zip2zip models

Objective. Let D denote the target text distribution. Given a
language model πθ parameterized by θ, standard pretraining
seeks to minimize the causal language modeling (CLM)
objective, which corresponds to the expected negative log-
probability of data sequences under the model:

min
θ

Ey∼D [− log πθ(y)] , (6)

where πθ(y) denotes the probability of the token sequence
y under the model πθ.

Let C be an online compression algorithm (e.g., LZW),
and ϕ be the parameters of the hyper-encoder. Given a
sequence y ∼ D, let z = C(y) be its compressed form.
In zip2zip, we aim to optimize the same CLM loss, but
over the compressed sequences z. The training objective
becomes:

min
θ,ϕ

Ey∼D [− log πθ,ϕ(C(y))]

= min
θ,ϕ

Ez∼C(D) [− log πθ,ϕ(z)] .
(7)

Here, we slightly abuse the notation to let πθ,ϕ(z) denote the
probability assigned to the compressed sequence z, parame-
terized by the base model weights θ and the hyper-encoder
parameters ϕ.

To construct the compressed dataset C(D), we first tokenize
the corpus using a standard tokenizer, and then apply the
LZW compression algorithm. This preprocessing step is
performed once prior to training and can be efficiently par-
allelized through batching.

Parallelizable Training via Causal Masking. Although hy-
pertokens introduce additional vocabulary dynamics, train-
ing remains fully parallelizable. We leverage the standard
causal masking mechanism used in language models, allow-
ing the model to predict the next token—whether a base
token or a hypertoken—at each position in parallel. To
eliminate the need for sequential codebook updates during
inference, we precompute a fixed codebook by applying
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LZW compression to the entire input sequence. This pre-
computed codebook is then used consistently throughout
training to condition token predictions, ensuring efficiency
and compatibility with standard training pipelines.

Auxiliary Reconstruction Loss. We introduce an auxiliary
reconstruction objective that encourages a hypertoken em-
bedding to retain sufficient information about its underlying
base token sequence. Specifically, the model is trained to
reconstruct the original base token embeddings from the
hypertoken embedding. We jointly optimize the language
model and the hyper-encoder using a combined loss that
includes both the standard next-token prediction loss and
the auxiliary reconstruction loss. Formally, we optimize:

min
θ,ϕ,ψ

Ey∼D [− log πθ,ϕ(C(y))]

+λ Ey1:M [∆ (y1:M , fψ (fϕ(y1:M )))] ,
(8)

where fϕ : VM → Rd is the hyper-encoder, fψ : Rd → VM
is the decoder aiming to reconstruct the corresponding base
tokens from their hyper-embedding, and ∆ : VM × VM →
R is the reconstruction loss function, such as the cross-
entropy loss, between the base tokens y1:M and the recon-
structed base tokens fψ (fϕ(y1:M )). The hyperparameter
λ controls the trade-off between the prediction error of the
language model and the reconstruction error of the autoen-
coder. This joint optimization objective encourages the
hyper-encoder to learn a compact d-dimensional manifold
embedded in the higher-dimensional (M × d) space of base
token embeddings, while the language model πθ,ϕ learns to
predict the next (hyper)token given the preceding context.
The reconstruction loss can be viewed as a form of auto-
encoding, where the hypertoken acts as a compressed latent
representation and reconstruction encourages the preserva-
tion of semantic content and the compression to be lossless.

Adapting Pretrained Language Models. The proposed
objectives (Equation 7, 8) integrate naturally with pretrained
language models. In this setting, the base model can be
frozen while training only the hyper-encoder to adapt to
compressed token sequences. Parameter-efficient methods
such as LoRA (Hu et al., 2022) may also be used to adapt
select components of the base model, enabling effective
adaption with minimal computes.

2.5. Efficiency Advantage

zip2zip improves efficiency by increasing the average to-
ken length, thereby reducing the number of tokens required
to represent the same text. This compression applies to
both inputs (e.g., prompts) and outputs (e.g., completions),
leading to shorter effective context lengths. As a result, the
model performs fewer computations—both in the attention
mechanism and the feedforward layers—and, more impor-
tantly, requires fewer autoregressive decoding steps during

inference. Since the latency of large language models is pri-
marily driven by the cost of sequential decoding, reducing
the number of output tokens by n% leads to an approximate
n% speedup in decoding latency, which we will demonstrate
empirically in Section 3.6. A more detailed discussion of
FLOPs is provided in Appendix B for completeness.

3. Experiments
To evaluate the effectiveness of zip2zip, we adapt the
Phi-3 models (3B and 14B) within the zip2zip frame-
work. We evaluate our adapted models across four dimen-
sions: (1) token efficiency, (2) language modeling perplex-
ity, (3) downstream task performance, (4) inference effi-
ciency. For perplexity and downstream benchmarks, we use
the widely adopted lm-evaluation-harness framework (Gao
et al., 2024).

3.1. Training Setup

Rather than updating the full model weights, we adopt
parameter-efficient finetuning using LoRA (Hu et al., 2022).
In addition, we train the hyper-embedding and hyper-
projection modules. We set the maximum merge size to
M = 3 and use a two-layer transformer encoder as the
hyper-encoder. Ablation studies on M and hyper-encoder
architecture can be found in Appendix A. For comparison,
we also perform continual finetuning of the base model us-
ing LoRA under identical training conditions, serving as a
baseline (denoted as Cont. Finetune in the Tables) The fine-
tuning process is highly efficient, requiring approximately
10 H100-GPU hours for a 4B-parameter model and up to
40 H100-GPU hours for a 14B-parameter model, using only
0.1 billion training tokens. Interestingly, the reconstruction
loss converges to near zero during training, indicating that
the model can almost perfectly recover the original base
token sequences from the hypertoken representations. This
highlights the learned compression is highly information-
preserving. Details of the training setup, compute infras-
tructure, and dataset curation are provided in Appendices D
and E.

3.2. Sample Outputs and Hypertoken Patterns

We present several examples to provide intuition into how
the zip2zip model generates text.

We see that the model successfully generates a mixture of
hypertokens and base tokens in the output (see Figure 3).
The hypertoken ratio is as high as 40% in the Python code
generation example, and 20% in the biomedical text gen-
eration example. Many of the hypertokens correspond to
semantically meaningful units or domain-specific terms as
shown in Table 1. For a more fine-grained visualization
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Figure 3: Zip2Zip output examples. Blue: base tokens; Yellow: hypertokens (composed of 2 base tokens); Orange: hypertokens
(composed of 3+ base tokens).

Table 1: Examples of hypertokens formed by zip2zip across three domains

Code Generation Biomedical French
tor + ch = torch m + R + NA = mRNA E + iff + el = Eiffel

Att + ention = Attention trans + cribed = transcribed de + la = de la

Multi + Head = MultiHead synth + esis = synthesis Gust + ave = Gustave

k + dim = kdim cell + ular = cellular comm + enc + é = commencé

of hypertoken with zip2zip , we provide visualizations of
token streams in Appendix 8.

3.3. Token Efficiency

Given an input text x and a tokenizer, we define token ef-
ficiency η := Bytes(x)

Tokens(x) as the average number of bytes
represented by each token, where Bytes(x) refers to the
number of bytes in the UTF-8 encoding of x. This mea-
sures how compactly a tokenizer encodes input text—higher
values of η indicate more efficient tokenization.

We evaluate token efficiency using the tokenizers of four
LLMs—Llama-3 (Grattafiori et al., 2024), Qwen-2 (Yang
et al., 2024), Phi-4 (Abdin et al., 2024), and Gemma-
3 (Team et al., 2025)—each associated with a different
base vocabulary size ranging from 128K to 256K. Token
efficiency is measured across five representative domains,
sampled from publicly available datasets: code (Lozhkov
et al., 2024b), math (LI et al., 2024), chat (Ding et al., 2023),
multilingual (Penedo et al., 2024), and web (Lozhkov et al.,
2024a). Table 2 shows that applying LZW zip2zip con-
sistently improves token efficiency across all tokenizer and
domains. Gains are particularly strong in structured domains
like code and math—50% higher than the base tokenizer.
Interestingly, models with larger vocabulary sizes do not al-
ways achieve better token efficiency, suggesting that simply
enlarging the vocabulary size is not sufficient to improve it.

3.4. Perplexity

We evaluate the perplexity of zip2zip models on four cor-
pora: Wikitext (Merity et al., 2016), the Pile (Gao et al.,
2020), and two subsets of Paloma (Magnusson et al., 2023):
mC4, a multilingual subset of C4, and dC4 (aka C4-100D),
a subset of C4 spanning 100 domains. Given a token se-
quence x = x1, . . . , xN , and a model q, perplexity and
byte-level perplexity (Radford et al., 2019; Magnusson

et al., 2023) are defined as: PPL :=
(∏N

i=1 q(xi)
)−1/N

,

Byte-PPL :=
(∏N

i=1 q(xi)
)−1/B

= PPL1/η, where B is
the number of UTF-8 bytes of the text, and η denotes the to-
ken efficiency (i.e., bytes per token). Token-level perplexity
depends on the tokenization scheme and is unsuitable for
cross-tokenizer comparison. We instead report byte-level
perplexity, a vocabulary-agnostic metric that normalizes for
tokenization differences. Table 3 shows that zip2zip model
has a modest increase in Byte-perplexity, indicating a drop
in language modeling performance.

3.5. Evaluation on NLP Benchmarks

We next evaluate zip2zip’s performance on real-world
tasks. We evaluate on seven widely used NLP benchmarks,
including ARC-[Challenge, Easy] (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), LAMBADA (Paperno et al.,
2016), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk
et al., 2019), Winogrande (Sakaguchi et al., 2019) and
GSM8K (Cobbe et al., 2021). As shown in Table 4, the
model finetuned with zip2zip performs similarly to the
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Table 2: Token efficiency (bytes/token) across domains for different tokenizers w/wo zip2zip.

Tokenizer Code Math Chat Multilingual Web

Llama-3-128K (Grattafiori et al., 2024) 4.1 2.7 5.1 3.8 4.6
+zip2zip 6.3 (+54%) 4.0 (+48%) 6.4 (+25%) 4.7 (+24%) 5.4 (+17%)
Qwen-2-150K (Yang et al., 2024) 4.0 2.3 5.1 3.7 4.4
+zip2zip 6.2 (+55%) 3.7 (+61%) 6.4 (+25%) 4.6 (+24%) 5.2 (+18%)
Phi-4-200K (Abdin et al., 2024) 4.1 2.7 5.4 4.6 4.7
+zip2zip 6.3 (+54%) 4.1 (+52%) 6.7 (+24%) 5.5 (+20%) 5.4 (+15%)
Gemma-3-256K (Team et al., 2025) 3.3 2.3 5.0 4.4 4.5
+zip2zip 5.6 (+70%) 3.7 (+61%) 6.4 (+28%) 5.4 (+23%) 5.4 (+20%)

Table 3: Byte-perplexity (↓) on four corpora using a 1024-token
context window.

Model Method Wiki Pile mC4 dC4

Phi-3.5-4B Base 1.62 1.88 1.94 1.77
Cont. finetune 1.63 1.89 1.94 1.77
zip2zip 1.71 2.02 2.04 1.84

Phi-3-14B Base 1.43 1.72 1.82 1.67
Cont. finetune 1.47 1.79 1.86 1.68
zip2zip 1.56 1.90 1.96 1.75

Table 4: Two-shot accuracy (in %) across 7 NLP benchmarks.
Higher is better. Standard deviations (bootstrapped) ≈ 0.02 across
all tasks. C.F.=Continuous finetune, Z2Z=zip2zip.

Benchmark Phi-3.5-4B Phi-3-14B

Base C.F. Z2Z Base C.F. Z2Z

ARC-c 0.60 0.60 0.57 0.62 0.62 0.62
ARC-e 0.83 0.82 0.83 0.80 0.88 0.86
HS 0.66 0.63 0.61 0.70 0.66 0.68
OBQA 0.46 0.47 0.46 0.51 0.52 0.51
PIQA 0.79 0.82 0.82 0.83 0.87 0.85
WG 0.75 0.75 0.75 0.76 0.80 0.79
GSM8K 0.82 0.40 0.15 0.84 0.52 0.25

baseline on most tasks. However, on GSM8K, where the
primary task involves numerical computation, the model
exhibits significant degradation. Due to the sensitivity of
such tasks to tokenization, it occasionally generates mal-
formed or repeated numbers. While token-level operations
are already known to be challenging for LLMs (Singh &
Strouse, 2024), adaptive tokenization appears to exacerbate
this issue.

To validate the effectiveness of zip2zip on non-English
languages, we evaluate the model on machine transla-
tion tasks, including WMT14 (Macháček & Bojar, 2014),
WMT16 (Bojar et al., 2016). The results, shown in Table 5,
indicate a small performance degradation across BLEU,
CHRF, and TER metrics when using zip2zip. However,
the drop is relatively minor, suggesting that the model re-

tains strong multilingual capabilities even in the compressed
representation.

Table 5: Machine translation performance on WMT benchmarks.
Scores are averaged across both translation directions. Standard
deviations (approximately 1.0 ∼ 2.0) are reported in Table 10 in
Appendix C.

Model Method Metric WMT14
En-Fr

WMT16
En-De

WMT16
En-Ro

Phi-3.5-4B

Base
BLEU↑ 33.6 39.2 17.7
CHRF↑ 58.3 63.2 45.5
TER↓ 53.0 47.9 73.4

Cont.
finetune

BLEU↑ 36.5 42.3 16.7
CHRF↑ 61.0 65.4 45.8
TER↓ 51.5 44.9 79.7

zip2zip
BLEU↑ 34.1 39.7 14.3
CHRF↑ 59.4 64.5 44.2
TER↓ 54.5 48.0 93.5

Phi-3-14B

Base
BLEU↑ 39.1 43.1 21.3
CHRF↑ 62.6 65.6 51.0
TER↓ 49.3 44.1 70.5

Cont.
finetune

BLEU↑ 38.9 48.4 21.8
CHRF↑ 63.2 70.1 52.0
TER↓ 48.8 39.8 68.3

zip2zip
BLEU↑ 36.4 44.8 19.5
CHRF↑ 62.8 68.1 50.1
TER↓ 51.2 42.9 72.9

3.6. Inference Efficiency

zip2zip reduces decoding time by lowering the number of
tokens that need to be generated. However, it introduces ad-
ditional FLOPs due to the on-the-fly computation of hyper-
embeddings by the hyper-encoder. To address this overhead,
we implement hyper-embedding caching and optimize the
computation using a custom Triton kernel. We report sepa-
rate timings for prefill and decoding across multiple models,
with and without zip2zip, in Table 6.

As we show in Table 6, zip2zip achieves a significant
speedup in all four settings. Both prefill and decoding times
are significantly reduced, with the most substantial gains
observed in the 512+256 setting with the Phi-3.5-4B model.
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Table 6: Throughput (tokens/sec) comparison of the zip2zip framework against the baseline Hugging Face Transformers generate
and MLX generate implementation. Performance is detailed for prefill and decode phases across various context lengths (first value in
column headers) combined with a 256-token generation length. zip2zip demonstrates notable throughput improvements, in both prefill
and decoding phase.

Setting Method 256+256 512+256 1024+256 2048+256

Prefill Decode Prefill Decode Prefill Decode Prefill Decode

Hardware: Apple M1 (16GB RAM)

Phi-3-4B
Base model 165.0 7.3 211.3 7.5 200.9 7.1 196.6 6.8
zip2zip 145.5 7.9 231.4 10.1 189.6 7.4 233.8 7.3
Relative % -11.8% +7.5% +9.5% +34.8% -6.6% +3.9% +18.9% +7.5%

Hardware: NVIDIA H100 80GB GPU

Phi-3.5-4B
Base model 700.9 56.2 1347.2 54.4 2689.4 52.8 4993.2 53.1
zip2zip 936.6 61.4 2722.1 79.8 4326.7 61.5 9258.1 61.9
Relative % +33.6% +9.3% +102.6% +46.6% +60.9% +16.6% +85.4% +16.5%

Phi-3-14B
Base model 724.4 44.6 1356.3 43.8 2328.6 45.1 3849.5 42.2
zip2zip 1024.6 54.9 1973.0 61.1 3657.0 66.8 7239.1 46.3
Relative % +41.5% +23.0% +45.5% +39.5% +57.0% +48.1% +88.1% +9.6%

Improvements are significantly stronger on datacenter-grade
GPUs like the NVIDIA H100 and more modest on consumer
hardware (e.g., Apple M1).

Efficient LZW Tokenization. zip2zip introduces an ad-
ditional LZW compression step during inference and a de-
compression step at the end of generation. As a result,
the efficiency of LZW-integrated tokenization is important
to overall performance. To minimize overhead, we imple-
mented a Rust-based zip2zip tokenizer that outperforms
the Python version (see Figure 4) and matches the latency
of HuggingFace’s fast BPE tokenizer.

Figure 4: zip2zip tokenizer latency (ms) vs. HF tokenizer.

4. Related Work
Vocabulary Expansion. Several works have explored ex-
panding the tokenizer vocabulary to better support specific
domains or languages. Zhao et al. (2024); Kim et al. (2024);
Liu et al. (2023; 2024) adapt LLaMA to Chinese, Korean,
and specialized domains such as mental health and law by
appending new tokens. Wang et al. (2025); Liu et al. (2024)
conducted studies on how to effectively expand the vocab-
ulary by better selecting the subset of tokens to add. In
contrast, zip2zip is the first to enable dynamic vocabu-
lary expansion at inference time, constructing new tokens
based on the input context without requiring retraining or
modifying the tokenizer ahead of time.

Prompt Compression. Prompt compression methods in-
clude GistTokens (Mu et al., 2023), Selective Context (Li
et al., 2023), LLMLingua (Jiang et al., 2023), Summary Vec-
tors (Chevalier et al., 2023), In-context Autoencoder (Ge
et al., 2024), and others (Wingate et al., 2022) reduce the
input token length and but do not impact the number of out-
put tokens, which often dominates overall generation time.
In contrast, zip2zip compresses both the input and output
token sequences.

Latent Tokens Representation. The concept of latent to-
ken representations, or patches, has been mostly explored in
computer vision, with methods like Token Merging (Bolya
et al., 2023) and Token Pooling (Marin et al., 2023) aiming
to reduce sequence length while preserving semantic con-
tent. Recently, Byte Latent Transformer (BLT) (Pagnoni
et al., 2024) extended this concept to language modeling
by discarding tokens entirely and operating directly at the
byte level. Both BLT and zip2zip adopt a hierarchical
modeling of input for LLMs, but they differ in three key
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ways: (1) Goal: BLT aims to replace the tokenizer, whereas
zip2zip seeks to expand and improve it; (2) Algorithm:
BLT uses entropy-based segmentation, while zip2zip ap-
plies LZW-based token compression; (3) Training: BLT
requires training from scratch, whereas zip2zip enables
continued adaptation of pretrained models. Lester et al.
(2024) propose improving language model efficiency by
training LLMs directly on text compressed with arithmetic
coding. While both approaches leverage compression to
enhance efficiency, zip2zip emphasizes dynamic vocabu-
lary expansion to enable uptraining of existing models. In
contrast, Lester et al. (2024) requires training from scratch.

5. Discussion and Limitations
Beyond LZW. While we adopt LZW for dynamic construc-
tion of hypertokens, zip2zip is broadly compatible with
any online compression algorithm. Future work may ex-
plore alternative schemes that provide different trade-offs
between compression efficiency and model performance.

Codebook Management Strategy. The LZW algorithm
grows the codebook linearly with the number of tokens in
the context window. Empirical results show that only about
25% of hypertokens are reused during generation, leaving
substantial room for optimization. Two potential improve-
ments are: (1) pruning or selective retention strategies to
reduce unused entries, and (2) codebook prefilling, which
could be beneficial if likely tokens can be anticipated before
input processing.

Compression–Quality Trade-off. There is an inherent
trade-off between compression and modeling: as the to-
ken space is compressed more aggressively, redundancy
is reduced—but so is predictability—making it harder for
the model to forecast the next (hyper)token. In the extreme,
optimal compression schemes such as arithmetic coding pro-
duce sequences that are statistically indistinguishable from
random noise, rendering them unlearnable by language mod-
els (Lester et al., 2024). Empirically, we observe this effect
as increased perplexity under higher compression levels (Ta-
ble 3), which can undermine the benefits of compression
by degrading generation quality (though minor in the tasks
in Table 4 and Table 5). Striking the right balance between
compression and model performance remains an important
direction for future research.

6. Conclusion
We introduced zip2zip, a framework for inference-time vo-
cabulary adaptation with LLMs. By integrating LZW-based
token compression with a dynamic hypertoken embedding
mechanism, zip2zip enables substantial reductions in se-
quence length and decoding steps, leading to improved in-
ference efficiency with minimal architectural modifications.

Our experiments demonstrate that zip2zip maintains strong
performance across a range of tasks while achieving signifi-
cant gains in inference efficiency. These findings highlight
the promise of integrating dynamic tokenization into LLMs,
opening up new directions for research in LLM efficiency.
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A. Ablation Studies
Definition A.1 (Compression Rate). We define the compression rate as the ratio between the number of tokens after
compression (Ncomp) and the number of tokens in the original uncompressed text (Norig), expressed as a percentage:

Compression Rate =
Ncomp

Norig
× 100%.

A lower compression rate indicates greater reduction in token count, and thus more effective compression.

A.1. LZW Maximum Merge Size

The last column of Table 7 shows how the maximum merge size M affects compression rate when the context window
length is 2048. As M increases, compression rate improves significantly, especially from M = 1 to M = 3. Beyond that,
gains diminish, suggesting M = 3 strikes a good balance between efficiency and compression rate.

Table 7: Effect of maximum merge size (M ) on byte-level perplex-
ity and compression rate. Perplexity is measured for Phi-3.5-4B
across four corpora with a 1024-token context window. Compression
rate is evaluated over the training corpus with a 2048-token context.
M = 1 corresponds to no compression.

M Wiki Pile mC4 dC4 Compression Rate(%)

1 1.62 1.70 2.00 1.91 100.00
2 1.96 2.21 2.55 2.22 75.30
3 1.72 1.84 2.15 2.00 71.21
4 1.71 1.84 2.14 1.99 68.93
5 1.72 1.84 2.14 1.99 68.41

Interestingly, the relationship between maximum merge
size and training loss in Figure 5 as well as perplexity
in Table 7 is non-monotonic. The baseline case with
M = 1 (i.e., no zip2zip compression) yields the low-
est perplexity overall, which is expected and consistent
with prior findings that compression typically incurs a
trade-off in model performance. Among the compressed
settings, the case M = 2 performs the worst, with notice-
ably slower convergence and higher final loss. In contrast,
the case M = 3 achieves the best performance within
the compressed configurations, striking a favorable bal-
ance between compression and prediction performance.
While M = 4 and M = 5 also perform reasonably well,
they exhibit slightly higher loss than M = 3, suggesting
diminishing returns or possible over-compression at larger maximum merge sizes (see Figure 5).

Figure 5: Effect of maximum merge size M on zip2zip training loss: M = 1 (no compression) achieves the lowest loss overall.
Among compressed settings, M = 3 performs best, while M = 2 shows the worst convergence. Larger M (4 and 5) yield slightly worse
results than M = 3.

Table 7 reports the byte-level perplexity across four corpora using a 1024-token context window. The results align closely
with the training loss trends observed earlier. Setting M = 1 (i.e., no compression) consistently achieves the lowest
perplexity across all datasets, reaffirming that compression introduces a performance trade-off. Notably, M = 2 performs
the worst across all corpora, exhibiting the highest perplexity values. For merge sizes M = 3, M = 4, and M = 5,
perplexity scores are nearly identical, suggesting that moderate compression can be achieved without significantly sacrificing
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language modeling quality—provided M = 2 is avoided. This consistency across loss and perplexity metrics further
supports the robustness of maximum merge size M = 3 as the most effective trade-off point.

A.2. Hyper-encoder architecture

Table 8: Ablation of hyper-encoder architecture on byte-
perplexity (↓) across four corpora using a 1024-token context window.
Performance improves with increasingly expressive architectures.

Model Method Wiki Pile mC4 dC4

Phi-3.5-4B averaging 1.81 1.97 2.29 2.08
1-attention-layer 1.73 1.86 2.16 2.01
1-transformer-layer 1.71 1.83 2.13 1.99
2-transformer-layer 1.72 1.84 2.15 2.00

We ablate the architecture of the hyper-encoder to eval-
uate its effect on language modeling performance, as
shown in Table 8. We compare increasingly expressive ar-
chitectures, starting with a simple averaging method that
introduces no additional parameters. This baseline yields
the highest perplexity, highlighting its limited capacity.
Adding a single attention layer significantly improves
performance, and further gains are observed with a 1-
layer transformer encoder. The 2-layer transformer offers
marginal additional benefit, suggesting that a lightweight
transformer (1–2 layers) is sufficient for effective hyper-
token modeling.

Figure 6 illustrates the effect of hyper-encoder architecture on zip2zip training loss. We observe that the simple averaging
method converges the fastest but plateaus at a relatively high loss, reflecting its limited capacity. As model complexity
increases—with attention and transformer layers—the convergence becomes slower, yet the final loss is significantly lower.
Notably, the 1-layer and 2-layer transformer encoders yield the best performance, demonstrating that additional parameters
enable the model to better capture structure, albeit at the cost of slower training dynamics.

Figure 6: Effect of hyper-encoder architecture on zip2zip training loss. Averaging (no additional parameters) converges quickly but
to a higher loss. As architectural complexity increases—from attention to transformer layers—convergence becomes slower, but the final
loss is lower. This highlights a trade-off between training speed and modeling capacity.

B. FLOPs Estimation for zip2zip

Following the assumptions of Kaplan et al. (2020), we estimate training FLOPs (Γ) as:

Γ ≈ 6 ·Ntokens ·Nparams,

where Ntokens is the total number of processed tokens and Nparams is the number of trainable parameters. This estimate
ignores the quadratic attention cost, assuming:

12 · dmodel ≪ sequence length.

For zip2zip, this becomes:
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Γz2z ≈ 6 ·Ntokens · ρ ·Nparams(1 + α),

where ρ is the compression ratio, and α accounts for the overhead of the hyper-encoder applied at the embedding and LM
head. The relative FLOPs ratio is then:

Γz2z

Γ
= ρ · (1 + α).

Assuming the hyper-encoder mirrors the base model’s configuration, we estimate:

α ≈ lM

L
,

where l is the number of hyper-encoder layers, M is the maximum merge size, and L is the number of base model layers.
We illustrate this estimate across several model scales in Table 9, showing that the relative FLOPs overhead from the
hyper-module remains modest (typically under 15%).

Model L M l α = lM
L

LLM-4B 14 2 1 0.14
LLM-7B 32 2 2 0.13
LLM-70B 80 3 3 0.11
LLM-400B 128 3 4 0.09

Table 9: Relative FLOPs overhead from the hyper-module across different model sizes.

C. Additional Results
Machine Translation

We report standard deviations for machine translation results across WMT benchmarks in Table 10, computed using the
lm-evaluation-harness codebase.

Table 10: Machine translation performance on WMT benchmarks (BLEU↑, CHRF↑, TER↓) with standard deviations (±) from
bootstrapped estimates. Scores are averaged across both directions.

Model Method WMT14 En-Fr WMT16 En-De WMT16 En-Ro
BLEU CHRF TER BLEU CHRF TER BLEU CHRF TER

Phi-3.5-4B Base 33.6±2.1 58.3±1.4 53.0±1.7 39.2±1.9 63.2±1.6 47.9±1.8 17.7±1.5 45.5±1.3 73.4±2.4
Cont. finetune 36.5±2.2 61.0±1.6 51.5±1.8 42.3±1.8 65.4±1.4 44.9±1.7 16.7±1.4 45.8±1.5 79.7±2.3
zip2zip 34.1±1.9 59.4±1.5 54.5±2.0 39.7±1.7 64.5±1.6 48.0±1.9 14.3±1.6 44.2±1.4 93.5±2.5

Phi-3-14B Base 39.1±2.0 62.6±1.4 49.3±1.9 43.1±2.0 65.6±1.5 44.1±1.7 21.3±1.5 51.0±1.4 70.5±2.2
Cont. finetune 38.9±2.2 63.2±1.4 48.8±1.9 48.4±2.0 70.1±1.3 39.8±1.9 21.8±1.4 52.0±1.3 68.3±2.9
zip2zip 36.4±2.1 62.8±1.5 51.2±1.8 44.8±2.1 68.1±1.6 42.9±1.8 19.5±1.5 50.1±1.3 72.9±2.6

D. Technical Details
Model and Training Configuration

• Pretrained Model: microsoft/Phi-3-medium-4k-instruct

• Sequence Length: 1024

• Total Batch Size: 32,768 tokens

• Learning Rate Schedule: Cosine decay
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• Learning Rate Range: Max = 3e-4, Min = 1e-5

• LoRA rank and alpha value: Both are 32

• Training Steps: 10,000

• Validation Interval: Every 100 steps

• Checkpoint Interval: Every 500 steps

• Pytorch Model Compilation: Enabled

LoRA Configuration

• Rank: 16

• Alpha: 16

• Target Modules: qkv_proj, o_proj, gate_proj, down_proj, up_proj

System and Libraries

• Hardware: 4 × NVIDIA A100-SXM4-80GB GPUs, 64-core CPU (128 threads)

• Key Libraries:

– PyTorch >= 2.5.0

– Transformers >= 4.47.0

– Datasets <= 3.1.0

– Accelerate >= 0.26.0

Compute Resources

We report the compute resources used for training our models in Table 11. All training was conducted on internal servers
equipped with NVIDIA H100 GPUs. We estimate GPU-hours by multiplying wall-clock training time by the number of
GPUs used. No additional compute was used beyond the reported experiments; we did not perform parameter grid search,
large-scale hyperparameter tuning, or exploratory runs that were excluded from the paper.

Table 11: Training compute resources for zip2zip experiments.

Model GPUs Time GPU Type GPU-Hours

Phi-3.5-Medium (14B) 4 15h 46m NVIDIA H100 80GB 63.0
Phi-3.5-Mini (4B) 2 7h 0m NVIDIA H100 80GB 14.0

Inference. All evaluations complete within 1 hour on a single A100 GPU, demonstrating the runtime efficiency of
zip2zip.

E. Data Mixture
To support effective fine-tuning, we construct a curated dataset with balanced representation across diverse domains,
including code, mathematics, dialogue, general web content, and multilingual text. The final dataset contains approximately
1 billion compressed tokens.

Table 12 summarizes the constituent datasets and their respective proportions. A visualization of the dataset composition
and sequence length characteristics is shown in Figure 7.

The multilingual subset in fineweb-2 includes the following languages: Mandarin Chinese (cmn_Hani), German (deu_-
Latn), Japanese (jpn_Jpan), Spanish (spa_Latn), French (fra_Latn), Italian (ita_Latn), Portuguese (por_Latn), Dutch
(nld_Latn), and Arabic (arb_Arab).
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Dataset Domain Proportion (%)

HuggingFaceFW/fineweb-edu(Lozhkov et al., 2024a) Web / Knowledge 20%
devngho/the-stack-llm-annotations-v2(Lozhkov et al., 2024b) Code 25%
AI-MO/NuminaMath-1.5(LI et al., 2024) Math 20%
HuggingFaceH4/ultrachat_200k(Ding et al., 2023) Chat / Dialogue 20%
HuggingFaceFW/fineweb-2(Penedo et al., 2024) Multilingual 15%

Table 12: Training data composition across domains.

Figure 7: Left: Proportional breakdown of the fine-tuning dataset across five domains. Right: Cumulative distribution of
input sequence lengths per domain (log scale). Code and multilingual data exhibit longer tail distributions, indicating greater
variability in sequence lengths.

F. Token Stream Visualization

19



(a) Default Tokenization of some Python code. (b) The same code with adaptive tokenization.

(c) Default Tokenization of some biomedical text. (d) The same text with adaptive tokenization.

(e) Default Tokenization of text in French. (f) The same text with adaptive tokenization.

Figure 8: Examples comparing default and adaptive tokenization. Dotted-line frames highlight where the differences are
most noticeable.

20


	Introduction
	zip2zip
	Dynamic Token Vocabulary
	Hyper-Embedding and Hyper-Projection
	Architecture
	Training zip2zip models
	Efficiency Advantage

	Experiments
	Training Setup
	Sample Outputs and Hypertoken Patterns
	Token Efficiency
	Perplexity
	Evaluation on NLP Benchmarks
	Inference Efficiency

	Related Work
	Discussion and Limitations
	Conclusion
	Ablation Studies
	LZW Maximum Merge Size
	Hyper-encoder architecture

	FLOPs Estimation for zip2zip
	Additional Results
	Technical Details
	Data Mixture
	Token Stream Visualization

