
VRSBench: A Versatile Vision-Language Benchmark
Dataset for Remote Sensing Image Understanding

Xiang Li Jian Ding Mohamed Elhoseiny
King Abdullah University of Science and Technology

{xiang.li.1,jian.ding,mohamed.elhoseiny}@kaust.edu.sa

Abstract

We introduce a new benchmark designed to advance the development of general-
purpose, large-scale vision-language models for remote sensing images. Although
several vision-language datasets in remote sensing have been proposed to pursue
this goal, existing datasets are typically tailored to single tasks, lack detailed
object information, or suffer from inadequate quality control. Exploring these
improvement opportunities, we present a Versatile vision-language Benchmark
for Remote Sensing image understanding, termed VRSBench. This benchmark
comprises 29,614 images, with 29,614 human-verified detailed captions, 52,472
object references, and 123,221 question-answer pairs. It facilitates the training and
evaluation of vision-language models across a broad spectrum of remote sensing
image understanding tasks. We further evaluated state-of-the-art models on this
benchmark for three vision-language tasks: image captioning, visual grounding,
and visual question answering. Our work aims to significantly contribute to the
development of advanced vision-language models in the field of remote sensing.
The data and code can be accessed at https://vrsbench.github.io.

The high-resolution aerial image from GoogleEarth shows a waterfront scene with residential areas and 

harbor facilities. Three distinct harbors can be seen, one located on the left side and another on the right 

side of the image. Between them, there are homes with different colored rooftops, green lawns, and 

driveways. A ship is docked in the central part of the bottom edge, and the water body exhibits gentle 

ripples. Various small vehicles are scattered throughout the residential area, parked near the houses.

Question: How many harbors are visible? Answer: 3

Question: What is the object located furthest to the top? Answer: Small vehicle

Question: Are the visible vehicles near water? Answer: No
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Object ID=1: The small vehicle that is the farthest to the top.

Object ID=4: The harbor located on the left side of the scene with multiple docks extending into the water.

Object ID=7: The harbor situated on the right side of the image with a large dock area.

Figure 1: Examples of an image and corresponding annotations in VRSBench dataset. Our annotations
include object referring, visual question answering, and detailed captions.

1 Introduction

Remote sensing models seek to understand the Earth’s surface using imagery captured from overhead,
offering a unique perspective of our physical world. This technique is instrumental in various
applications, such as land use mapping, urban planning, precision agriculture, disaster management,
etc. In the past few years, the success of large vision-language models (LVLMs)[1, 2, 3, 4, 5] in natural
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scenes has inspired a trend of applying LVLMs to remote sensing [6]. Recent efforts have explored
LVLMs for various remote sensing image understanding tasks, including scene classification [7, 8],
image captioning [9, 10, 11, 12, 13, 14, 15, 16, 17], visual grounding [18, 19, 20], visual question
answering (VQA) [21, 22, 23, 24, 25, 26], and general-purpose models [27, 28], etc.

However, directly applying LVLMs to remote sensing images presents challenges. LVLMs are
typically trained on internet data, which differs significantly from remote sensing data. Remote
sensing images often feature very small objects (sometimes only 10 pixels) and require complex
spatial reasoning from an overhead view. Building effective LVLMs for remote sensing requires
large-scale, high-quality datasets tailored to this field. Recent works[27, 28, 29] have attempted to
train LVLMs with a combination of existing text-enriched remote sensing data, achieving reasonable
performance. However, further improvements are limited by the current vision-language datasets in
remote sensing, which have the following limitations:

(i) Existing vision-language datasets primarily cater to single image perception tasks, e.g., image
captioning. Recent works explore integrating multiple datasets to accommodate a wider array of
tasks [28, 29]. Such integration, while crucial, introduces challenges including inconsistent data
annotations, variations in data quality, and the complexity of merging different data formats and
sources, all of which can hinder model performance and scalability.

(ii) Most commonly used remote sensing image caption datasets, such as UCM-Captions [30] and
RSICD [10], provide only brief descriptions, lacking detailed object information. Recent work
RSGPT [27] provides high-quality, human-generated detailed image captions; however, the dataset
comprises only 2,585 image-text pairs. This limited scope restricts its potential for training robust
vision-language models in remote sensing applications. Although recent works, such as RS5M [31]
and RemoteClip [7], introduced large-scale remote sensing image-text pair datasets, these annotations
are automatically generated by image caption models and lack human verification. Given the current
limitations of automatic captioning technology, such image-text data often suffer from accuracy
issues and a lack of quality control.

(iii) Most existing remote sensing visual grounding datasets are designed under simplistic scenarios
where the referring objects typically stand alone within their category. For instance, in the widely used
DIOR-RSVG [19] datasets, a large portion of objects are unique within the categories, which leads to
38.36% of objects being easily distinguished by the object category alone. Finally, the majority of
current VQA datasets in remote sensing employ automated methods for generating question-answer
pairs. These automatically generated pairs often encompass a limited variety of unique questions
and answers, which may not be sufficiently diverse to facilitate open-ended question-answering in
real-world applications.

In this study, to address these limitations, we introduce a novel versatile benchmark for vision-
language understanding of remote sensing images. VRSBench comprises 29,614 images, each
enriched with human-verified detailed captions, complex object referring, and question-answer pairs,
check Table 1 for a detailed comparison with existing datasets. This dataset facilitates the training
and evaluation of vision-language models across a spectrum of remote sensing image understanding
tasks. Fig. 1 gives an example of a selected image and associated annotations.

The key contributions of our work are summarized as follows:

• We introduce a new semi-automatic vision-language data collection pipeline which includes
four key steps: object attributes extraction, prompt engineering, GPT-4 inference, and human
verification. This pipeline enables a fast collection of large-scale datasets with human-level
annotation quality.

• Based on the semi-automatic data collection pipeline, we collect VRSBench dataset that
provides detailed image captioning, visual grounding, and visual question-answer labels
in a unified dataset, and therefore, enables a comprehensive evaluation of multiple vision-
languages capabilities based on this dataset.

• VRSBench provides large-scale human-verified annotations that feature several advantages:
1) it provides a large-scale collection of human-verified, high-quality captions rich in
object details; 2) it offers more realistic object refers in which each referring sentence
unambiguously identifies an object among multiple similar ones within the same category;
3) it features a diverse collection of open-ended question-answer pairs in natural language.
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• We develop three benchmarks based on our VRSBench dataset, including detailed image
caption, visual grounding, and visual question answering, and evaluate the performance of
several state-of-the-art LVLMs.

Table 1: Comparison between existing remote sensing vision-language datasets and our VRSBench
dataset. Values in parentheses in the Caption column indicate the average number of words in captions.
OBB denotes orientated bounding box. A small portion of question-answer pairs in RSIVQA are
annotated by human annotators.

Dataset Year #Image Caption Grounding VQA Human
#Captions Details #Refers OBB #VQAs Open-ended

UCM-Captions [30] 2016 2,100 10,500 (12) q 0 q 0 - ¥
RSICD [10] 2017 10,921 54605 (12) q 0 q 0 - ¥
RS5M [31] 2023 5M 5M (49) ¥ 0 q 0 - q
RSICap [27] 2023 2,585 2,585 (60) ¥ 0 q 0 - ¥
RSVG [18] 2022 4,239 0 q 7,933 q 0 - ¥
DIOR-RSVG [19] 2023 17,402 0 q 38,320 q 0 - ¥
RRSIS-D [20] 2024 17,402 0 q 17,402 ¥ 0 - ¥
RSVQA-HR [21] 2020 10,659 0 q 0 q 1,066,316 q q
RSIVQA [22] 2021 37,264 0 q 0 q 111,134 ¥ ¥
VQA-TextRS [24] 2022 2,144 0 q 0 q 6,245 ¥ ¥
RSIEval [27] 2023 100 0 q 0 q 933 ¥ ¥
VRSBench 2024 29,614 29,614 (52) ¥ 52,472 ¥ 123,221 ¥ ¥

2 Pipeline

To construct our VRSBench dataset, we employed multiple data engineering steps, including attribute
extraction, prompting engineering, GPT-4 inference [32], and human verification. These processes are
meticulously designed to ensure the integrity and utility of the dataset for remote sensing applications.

Instructions: you are an AI visual assistant tasked with analyzing remote sensing images. Given
an input image and object information. Your job is to create a detailed image caption, referring 
sentences for distinct objects, as well as question-answer pairs…

Extracted image and object information: {'source': image source, 'resolution': image resolution, 
'objects': [{'obj_id': object id, 'obj_cls': object category, 'obj_bbox': bounding box, 'is_unique': 
unique within category, 'obj_position': object position, 'obj_size': object size, ...}]}

Inputs: image, image and object information in JSON format.
Outputs: {'caption', detailed image caption, 'objects': [{obj_id, referring_sentence},...], 'qa_pairs': 
['ques_id': question id, 'question': question, 'type': question type, 'answer': answer]}

Guidelines: 1) modify uncertain or meaningless elements; 2) modify error referring; 2) remove 
self-answering questions…
Outputs: corrected annotations.

GPT-4
Inference

Attribute
Extraction

Prompt
Engineering

Human
Verification

Figure 2: Dataset creation pipeline. We generate object information from detection labels and use
carefully designed instructions to prompt GPT-4 to generate annotations from input images along
with object information. All annotations are verified by human annotators.

2.1 Attribute Extraction

Initially, we extract image information, including the source and resolution, as well as object
information—such as the object category, bounding box, color, position (absolute and relative), and
size (absolute and relative)—from existing object detection datasets. We also determine whether an
object is unique within its category, which is important for crafting accurate reference sentences.
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In this study, we utilize two prominent open-access object detection datasets, DOTA-v2 [33] and
DIOR [34], to develop our VRSBench dataset. Due to the unavailability of test labels for DOTA-v2,
we incorporate only its training and validation sets. We divide each image into patches measuring 512
× 512 pixels. Notably, each image patch from DOTA-v2 contains, on average, 14.2 instances, while
each patch from the DIOR dataset averages only 3.3 instances. This higher instance density in DOTA-
v2 offers a more challenging and diverse training environment compared to existing remote sensing
visual grounding datasets, such as DIOR-RSVG [19] and RRSIS-D [35], that are typically sourced
from the DIOR dataset. Moreover, the visual grounding task predominantly involves identifying
horizontal bounding boxes (HBB) based on referential descriptions. By constructing our dataset upon
the framework of DOTA-v2, VRSBench facilitates the grounding of objects with orientated bounding
boxes (OBB), thereby extending the capabilities of traditional visual grounding methods.

2.2 Prompt Engineering

We carefully design the following instructions to prompt GPT-4V to create detailed image captions,
object referring, and question-answer pairs. Detailed instructions for each task are provided in the
supplementary.

“You are an AI visual assistant tasked with analyzing remote sensing images. For each image, you
receive image meta information and a list of objects in the format of .... Your job is to create a
detailed image caption and referring sentences for 1-5 distinct objects, if multiple are present, as well
as 3-10 question-answer pairs. Each referring sentence should unambiguously refer to one object.
Finally, you need to return a JSON file in the format: {caption: detailed image caption, objects:
[obj_id: object id, ref: referring sentence,...], qa_pairs: [ques_id: question id, question: question,
type: question type, answer: answer]}. Do not return any notes after the JSON.”

2.3 GPT-4V Inference

Given input prompts, we call OpenAI API1 to automatically generate annotations. We iteratively
refine our instructional prompts to generate annotations, meticulously enhancing these instructions
to ensure the quality of the annotations. In the responses generated by GPT-4V, undesirable terms,
such as “not provide”, “not specified”, and “unknown”, may be present. Should any of the specified
excluding phrases appear in GPT-4V’s output, the procedure requires that GPT-4V be recursively
invoked to regenerate responses until the output is free of any excluding phrases. This iterative
process is attempted a maximum of five times, after which the final response is utilized for generating
annotations. Ultimately, any caption sentences, object-referring sentences, or question-answer pairs
containing these excluding phrases are excised from final annotations.

2.4 Human Verification

With our carefully designed prompts, most of the annotations generated by GPT-4V are accurate.
Nevertheless, a significant number of outputs remain suboptimal. This shortfall is likely attributable
to the model’s limited exposure to remote sensing imagery, which impedes its capacity to interpret
complex structures within these images. Additionally, it is important to note that even advanced
language models, such as the GPT-4V system, exhibit a degree of hallucinatory outputs [36].

To improve the quality of the dataset, we engage human annotators to validate each annotation gener-
ated by GPT-4V. This validation process incorporates domain experts to guarantee that annotators
have a comprehensive understanding of the assigned tasks. Initially, domain experts establish detailed
guidelines, which include directives such as: 1) eliminate any uncertain or irrelevant elements; 2)
ensure each referring sentence unambiguously identifies the intended object; 3) exclude questions
that inherently contain their answers. More details about the annotation guidelines can be found in
the supplementary. The verification of each image requires approximately 120 seconds, culminating
in a total of 1,004 hours devoted to human verification. Each image verification costs around 0.21
USD and leads to a total cost of 6,200 USD for human verification. To enhance the quality of our
dataset, we have instituted a secondary validation phase involving a meticulous re-evaluation of
2,000 images. This step is designed to uncover prevalent annotation discrepancies and to refine the
annotators’ understanding of the task requirements.

1https://platform.openai.com/docs/api-reference
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3 VRSBench Dataset

3.1 Dataset Overview

Our VRSBench dataset contains 29,614 remote sensing images, with high-quality human-verified
annotations. It comprises 29,614 caption sentences, 52,472 referring sentences, and 123,221 question-
answer pairs. Each image is of 512× 512 pixels. Details of each type of annotation are given below.
Note that original object detection labels and object attributes are also provided in our annotations.

3.2 Detailed Caption

VRSBench captions provide comprehensive descriptions that encompass both abstract image attributes
and detailed object-specific information. Each caption initiates with a general overview of the image,
subsequently delving into explicit and precise details present within the image. Attributes of the
image include the source, resolution, color or panchromatic distinction, and the type of scene depicted.
Conversely, object attributes cover object quantity, color, shape, size, and spatial positioning of each
object, encompassing both its absolute location within the image and its relative positioning in relation
to other objects. Descriptions are confined to manifest features, eschewing any elements that are
uncertain or ambiguous. Additionally, captions may incorporate other visually discernible objects
not supplied by the source object detection datasets, such as buildings, houses, roads, and trees, if
these elements are clear and unambiguous. Each caption typically comprises 3-7 sentences, with an
average length of 54 words. A summary of these caption statistics is detailed in Fig. 3.

(a) PDF of word count (b) PDF of sentence number

#images 29,614
#vocabulary size 9,588

#total words 1,526,338
#caption sentences 114,366

Avg. #sentences in caption 4
Avg. caption length 52

(c) Statistics of VRSBench captions.

Figure 3: Statistics of the VRSBench caption dataset. (a) Probability density function (PDF) of
caption length. (b) PDF of the sentence number. (c) Summative statistics.

3.3 Object Referring

In VRSBench, each image is analyzed to identify 1-5 distinct objects, and referring sentences are
provided for each. These sentences are carefully crafted such that each can independently and
unambiguously identify an object without reliance on other sentences. We utilize distinctive features
to clearly differentiate the referred objects from others within the image. These features span a
variety of object attributes including color, shape, position, size, relative position, and relative
size, among others. Note that the original DOTA-v2 and DIOR datasets contain 18 and 20 object
categories respectively, which are merged into 26 object categories in our dataset. Please check the
supplementary for category merging details. Figure 4 provides a summary of referring sentences of
our VRSBench dataset.

3.4 Visual Question Answering

Based on all visible elements and object information, we provide 3-10 question-answer pairs about
diverse types, including object category, object existence, object quantity, object color, object size,
object position, direction, scene characteristics, and complex reasoning, and provide an answer
for each question. Instead of only focusing on objects from source detection datasets, we also ask
questions about objects that are not provided, such as houses, roads, and trees if they are obvious and
non-ambiguous. When collecting annotations, we ensure each question has a definite answer without
any ambiguity, and answer each question using a single word or phrase. We show the statistics of
question-answer pairs in Figure 5.
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Figure 4: Statistics of object referring sentences of VRSBench dataset. (a) Distribution of the 10
most frequent object categories. (b) Distribution of the word length of referring sentences. (c)
Distribution of object size. (d)Word cloud of the top 50 words in referring sentences. (e) Distribution
of unique/non-unique objects in each category.

Figure 5: Statistics of question-answer pairs in VRSBench. (a) Distribution of question types. (b)
Word cloud of top 50 most frequent words in questions. (c) Word cloud of top 50 most frequent
words in answers.

4 Benchmark Evaluation

4.1 Benchmark Overview

Based on VRSBench, we construct three distinct tasks for advancing remote sensing image under-
standing:

• VRSBench-Cap: This challenge requires the prediction of a comprehensive description for a
given remote sensing image, encapsulating intricate object details and contextual relevance.

• VRSBench-Ref: The task involves identifying and localizing specific objects from a given
remote sensing image based on textual descriptions.

• VRSBench-VQA: This task aims to answer questions related to visual content in a given
remote sensing image.

To facilitate benchmark evaluation, we partition our VRSBench dataset into two distinct, non-
overlapping splits designated for model training and evaluation. We split the datasets according to
official splits of DOTA [33] and DIOR [34] datasets, where their training images are used to build
the training set of VRSBench and their validation sets are used as the test set. Table 2 delineates the
statistics of two splits.
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Table 2: VRSBench data split.

train test
#Images 20,264 9,350
#Captions 20,264 9,350
#Refers 36,313 16,159
#VQAs 85,813 37,408

For the above three tasks, we benchmark state-of-the-art
models, including LLaVA-1.5 [37], MiniGPT-v2 [38], and
GeoChat [28], to demonstrate the potential of LVLMs for re-
mote sensing image understanding. LLaVA-1.5 [37], MiniGPT-
v2 [38], Mini-Gemini [2], and GeoChat [28] are generalist
models that are naturally designed for general-proposed im-
age understanding. We, therefore, report the performance of
these methods under joint training of all three tasks, i.e., image
captioning, visual grounding, and VQA.

Note that all these comparison methods include a multi-stage training process. To ensure a fair
comparison, we reload the models that are initially trained on large-scale image-text alignment
datasets, and then finetune each method using the training set of our VRSBench dataset. We employ
CLIP-ViT(L-14) [39] as the vision encoder and use the Vicuna-7B model [40] as the Large Language
Model (LLM). For LLaVA-1.5 [37], Mini-Gemini [2], and GeoChat [28], we adhere to the original
model specifications, utilizing two MLP layers with GeLU activation [41]. For MiniGPT-v2[38], we
implement a single MLP layer as described in the original paper. For each comparing method, we
finetune the model on the training set of VRSBench dataset for 5 epochs. Following GeoChat [28],
we use LoRA [42] finetuning to finetune all comparing methods, with a rank of 64. To understand
the benefit of fientuning on VRSBench, we include the baseline GeoChat [28] without training on
our VRSBench dataset for comparison.

We further evaluate the performance of GPT-4V, which is generally known as one of the most
powerful close-source vision-language models, on three tasks based on our VRSBench dataset. To
achieve this, we directly call GPT-4V API to generate detailed captions, referring object locations,
and answers for visual questions, with the following instructions. Note that we do not include object
information in this experiment.

4.2 Detailed Image Caption

Evaluation metrics. For model evaluation, we follow standard practices by utilizing a set of
established metrics including BLEU [43], ROUGE_L [44], METEOR [45], and CIDEr [46]. For
BLEU, we consider n-gram precision with n values of 1, 2, 3, and 4. We also report average caption
lengths to assess the details of generated captions. Furthermore, we note that traditional caption
evaluation metrics may not be suitable for long captions. We, therefore, use an LLM-based caption
evaluation metric called CLAIR2 proposed in [47] for our detailed image caption task.

Results. Table 3 shows the comparative performance of different methods in detailed image caption-
ing of our VRSBench dataset. As demonstrated in the table, the baseline GeoChat model, when not
finetuned on the VRSBench dataset, exhibits significantly poorer performance compared to models
that have been finetuned on VRSBench. The LLaVA-1.5 [37] model that has undergone fine-tuning on
VRSBench achieves the highest performance, reaching a BLEU-1 score of 48.1 and a CIDEr score of
33.9. The GPT-4V model shows the best performance on the CLAIR score. This is expected because
the CHIAR score itself is calculated using GPT-4 in our experiments. Moreover, the generated
captions have an average word length of 49, which closely approximates the average length of ground
truth captions. Note that detailed image captioning is a more challenging task than conventional
image caption, therefore, the performance falls far behind. More advanced vision-language modeling
techniques are desired to handle this challenging task.

Table 3: Detailed image caption performance on VRSBench dataset. Avg_L denotes the average
word length of generated captions. Boldface indicates the best performance.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE_L CIDEr CLAIR Avg_L
GeoChat w/o ft [28] 13.9 6.6 3.0 1.4 7.8 13.2 0.4 0.42 36
GPT-4V [32] 37.2 22.5 13.7 8.6 20.9 30.1 19.1 0.83 67

MiniGPT-v2 [38] 36.8 22.4 13.9 8.7 17.1 30.8 21.4 0.73 37
LLaVA-1.5 [37] 48.1 31.5 21.2 14.7 21.9 36.9 33.9 0.78 49
GeoChat [28] 46.7 30.2 20.1 13.8 21.1 35.2 28.2 0.77 52
Mini-Gemini [48] 47.6 31.1 20.9 14.3 21.5 36.8 33.5 0.77 47

2https://github.com/davidmchan/clair
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4.3 Visual Grounding

Benchmark settings. In this study, we focus on the grounded localization task, which aims to predict
bounding boxes for referring objects. In our experiments, we use horizontal bounding boxes for
model training and evaluating the grounding performance. Results on OBB visual grounding can be
found in the supplementary.

Evaluation metrics. For model evaluation, we employ the metric accuracy@τ to assess performance.
Accuracy is determined by calculating the Intersection over Union (IoU) between the predicted
bounding box and the ground-truth box. A prediction is considered accurate if the IoU exceeds the
threshold τ . In our experiments, we choose two different IoU thresholds, i.e., 0.5 and 0.7.

Results. Table 3 shows the visual grounding performance of different methods on our VRSBench
dataset. From the table, the model finetuned on the VRSBench significantly outperforms the baseline
GeoChat model without finetuning. Furthermore, all models demonstrate superior performance in
tasks involving unique object referring compared to non-unique object referring. This superiority is
expected, as it is generally easier to localize objects uniquely identified within their categories than to
differentiate among multiple instances within the same category. Note that even though MiniGPT-v2
gets worse overall grounding performance, it performs better at grounding non-unique objects.

Furthermore, GPT-4V exhibits markedly inferior performance compared to models specifically
trained on image captioning and visual grounding tasks, primarily due to the absence of object
information in its prompts. Despite the notable successes of existing closed-source multimodal large
language models (LLMs), such as GPT-4, in comprehending natural images, their effectiveness is
notably reduced when not fine-tuned on remote sensing imagery.

More importantly, even the best-performing GeoChat model fails to achieve satisfactory performance
levels, with a grounding accuracy of 49.8% at a threshold of 0.5. This shortfall is attributed to the
demanding scenarios presented in the VRSBench dataset, which includes multiple instances of the
same category as the target object. This highlights the necessity for more advanced vision grounding
techniques to effectively tackle these complexities.

Table 4: Visual grounding performance on VRSBench dataset. Boldface indicates the best perfor-
mance.

Method Unique Non Unique All
Acc@0.5 Acc@0.7 Acc@0.5 Acc@0.7 Acc@0.5 Acc@0.7

GeoChat w/o ft [28] 20.7 5.4 7.3 1.7 12.9 3.2
GPT-4V [32] 8.6 2.2 2.5 0.4 5.1 1.1

MiniGPT-v2 [38] 40.7 18.9 32.4 15.2 35.8 16.8
LLaVA-1.5 [37] 51.1 16.4 34.8 11.5 41.6 13.6
GeoChat [28] 57.4 22.6 44.5 18.0 49.8 19.9
Mini-Gemini [48] 41.1 9.6 22.3 4.9 30.1 6.8

4.4 Visual question answering

Evaluation metrics. We categorize the questions in the test set into 10 distinct types: object category,
presence, quantity, color, shape, size, position, direction, scene characteristic, and reasoning. The first
eight categories relate to object-level questions, whereas the last two are aligned with scene-level,
and reasoning-level questions, respectively. We present the overall accuracy as well as the accuracy
for each individual question type. To ensure a robust evaluation, we use GPT-4 to determine for each
question whether the answers match ground truth texts, with the prompt: “Question: {question},
Ground Truth Answer: {ground_truth}, Predicted Answer: {predicted answer}. Does the predicted
answer match the ground truth? Answer 1 for match and 0 for not match. Use semantic meaning not
exact match. Synonyms are also treated as a match, e.g., pond and swimming pool.”.

Results. Table 5 shows the VQA performance of different methods on our VRSBench dataset. As
shown in the table, the baseline GeoChat [28] model without finetuning gets an average accuracy of
40.8%. Further finetuning on our VRSBench training set significantly boosts the average accuracy
to 76.0%. GPT-4V gets a reasonable performance but still falls a lot behind fine-tuned models,
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suggesting that detailed object information contributes a lot to the visual question answering task on
our benchmark.

Table 5: Visual question answering performance on VRSBench dataset. Boldface indicates the best
performance.

Method Category Presence Quantity Color Shape Size Position Direction Scene Reasoning All
# VQAs 5435 7789 6374 3550 1422 1011 5829 477 4620 902
GeoChat w/o ft [28] 48.5 85.9 19.2 17.0 18.3 32.0 43.4 42.1 44.2 57.4 40.8
GPT-4V [32] 67.0 87.6 45.6 71.0 70.8 54.3 67.2 50.7 69.8 72.4 65.6

MiniGPT-v2 [38] 61.3 26.0 46.1 51.0 41.8 11.2 17.1 12.4 49.3 21.9 38.2
LLaVA-1.5 [37] 86.9 91.8 58.2 69.9 72.2 61.5 69.5 56.7 83.9 73.4 76.4
GeoChat [28] 86.5 92.1 56.3 70.1 73.8 60.4 69.3 53.5 83.7 73.5 76.0
Mini-Gemini [48] 87.8 92.1 58.8 74.0 75.3 58.0 68.0 56.7 83.2 74.4 77.8

5 Related Work

5.1 Remote Sensing Image Captioning Datasets

Image captioning in remote sensing is a well-established task that focuses on creating descriptive text
for overhead imagery. Commonly used datasets such as UCM-Captions [30], Syndey-Captions [30],
and RSICD [10] have been instrumental by offering brief scene descriptions. However, these datasets
typically provide short and less detailed captions that overlook intricate object details. Recent efforts,
such as RSGPT [27], have introduced high-quality, human-generated detailed captions, though the
dataset is limited to just 2,585 image-text pairs, which hampers its utility for developing robust vision-
language models in remote sensing. In contrast, RS5M [31] introduced a substantial dataset featuring
5 million detailed captions. However, these captions are generated automatically, resulting in quality
that is not guaranteed. In stark contrast, our VRSBench dataset includes 29,614 human-verified
captions that are not only of high quality but also rich in detail, ensuring both reliability and practical
utility for advanced remote sensing applications.

5.2 Remote Sensing Visual Grounding Datasets

Visual grounding in remote sensing has recently emerged as an intriguing field of study. Unlike
referring expressions in natural images, those in RSVG frequently involve complex geospatial
relationships, and the objects of interest may not be prominently visible. The first RSVG dataset
was introduced in [18], featuring 4,239 images from GoogleEarth and 7,993 referring expressions.
Subsequently, Zhan et al. [19] introduced the DIOR-RSVG dataset, which includes 17,402 remote
sensing images and 38,320 referring expressions across 20 object categories. Recent studies [35, 20]
have developed visual grounding datasets for remote sensing that include object segmentation;
however, these tend to be smaller in scale. In contrast, our VRSBench dataset incorporates a
substantial number of object-referring expressions.

5.3 Remote Sensing Visual Question Answering Datasets

RSVQA [21] established the first VQA benchmark dataset for remote sensing images. This dataset
comprises RS images sourced from OpenStreetMap, accompanied by automatically generated ques-
tions and answers. It includes 772 images with 77,232 question-answer pairs in the low-resolution
collection and 10,659 images with 1,066,316 pairs in the high-resolution collection. Zheng et al.[22]
launched the RSIVQA dataset, a remote sensing VQA dataset that features approximately 37k im-
ages and 110,000 question-answer pairs. A small portion of question-answer pairs in RSIVQA are
annotated by human annotators. Al et al.[24] introduced an innovative dataset, VQA-TextRS, which
consists of 2,144 RS images and 6,245 question-answer pairs generated and annotated by humans in
an open-ended format. More recently, the RSIEval[27] dataset features 936 human-crafted question-
answer pairs from 100 remote sensing images. Similarly, our VRSBench dataset also incorporates
open-ended question-answer pairs, created by GPT-4V and validated by human annotators, with
123,221 question-answer pairs.
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6 Conclusion and future work

In this work, we introduce VRSBench, a versatile vision-language dataset and benchmark for
remote sensing image understanding. This comprehensive dataset not only addresses the limitations
of previous datasets that either ignore detailed object information or suffer from quality control
issues but also enriches the field by providing a diverse range of annotations including detailed
captions, object referring, and visual question answering with rich object information and verified by
human annotators. Our benchmark challenges, specifically designed around the VRSBench dataset,
demonstrate the practical utility of our dataset in advancing the capabilities of vision-language models
in the domain of remote sensing.

Currently, the VRSBench dataset is limited to annotations for RGB images. In future work, we aim
to enhance VRSBench by incorporating annotations from a variety of remote sensing data types,
including infrared images, multi- and hyperspectral images, Synthetic Aperture Radar (SAR) images,
and temporal datasets. This expansion will significantly broaden the dataset’s utility across diverse
observation conditions, facilitating more accurate and timely applications in remote sensing.

7 Broader Impact

VRSBench provides a comprehensive benchmark for developing and evaluating generalist vision-
language models in both remote sensing and computer vision. This dataset not only supports the
training and evaluation of advanced vision-language models but also boosts their ability to tackle
complex real-world scenarios in remote sensing.
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