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Abstract
Disease progression is often monitored by intermittent
follow-up “visits” in longitudinal cohort studies, result-
ing in interval-censored failure time outcomes. Fur-
thermore, the timing and frequency of visits is often
found related to a person’s history of disease-related
variables in practice. This article develops a semi-
parametric estimation approach using weighted bino-
mial regression and a kernel smoother to analyze
interval-censored failure time data. Visit times are
allowed to be subject-specific and outcome-dependent.
We consider a collection of widely used semiparamet-
ric regression models, including additive hazards and
linear transformation models. For additive hazards mod-
els, the nonparametric component has a closed-form
estimator and the estimators of regression coefficients
are shown to be asymptotically multivariate normal
with sandwich-type covariance matrices. Simulations
are conducted to examine the finite sample performance
of the proposed estimators. A data set from the Toronto
Psoriatic Arthritis (PsA) Cohort Study is used to illus-
trate the proposed methodology.
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1 INTRODUCTION

In longitudinal cohort studies from disease clinics, disease progression or the occurrence of an
adverse clinical event is often assessed at periodical follow-up visits. It results in interval-censored
failure times. That is, the event of interest is known only to occur between two consecutive vis-
its instead of being observed exactly. For example, Finkelstein (1986) studied early breast cancer
patients who were monitored for the cosmetic effects of adjuvant therapy. Patients were seen at
the clinic every 4–6 months. The event of interest is the appearance of breast retraction (dimpling)
which only can be ascertained to lie in a 4–6-month interval between two appointments. Another
example is the Toronto Psoriatic Arthritis (PsA) Cohort Study (Gladman & Chandran, 2010),
where patients’ joint activities and damage are assessed by physician evaluation or radiographical
examination at clinic visits. Thus failure time outcomes, such as the time to damage reach-
ing a certain level, are subject to interval censoring. Patients are scheduled to visit the clinic
every 6–12 months, but actual intervisit times vary substantially both within and across subjects.
Moreover, the times between visits are related to factors associated with the progression of joint
damage. Similar situations arise in many other settings involving clinical trials and observational
follow-up studies.

Several approaches have been developed to conduct semiparametric analysis with
interval-censored data. Many of them focus on the Cox proportional hazards model specifically,
for example, Finkelstein (1986), Goetghebeur and Ryan (2000), Zhang et al. (2010), among others.
Lin et al. (1998) and Zeng et al. (2006) considered additive hazards models and Zhang, Sun, Zhao,
and Sun (2005) discussed linear transformation models. However, most existing methods in the
literature assume that visit times at which failure status may be observed are independent of the
failure time, conditional on covariates in the model of interest. Interval censoring has received
much less attention in settings where the visit times are not conditionally independent in this
sense. It was considered by van der Laan and Robins (1998) for case-I interval-censored data (cur-
rent status data); they developed an inverse-probability-of-censoring weighted (IPCW) estimator.
In the general case (case-II) the most common approach has been joint modeling of the failure
time and visit time processes using shared or correlated random effects; see, for example, Zhang,
Sun, and Sun, (2005), Zhang et al. (2007), and Chen et al. (2012). However, in joint models, the
interpretation of the estimates of regression coefficients is conditional on both observed covari-
ates and unobservable random effects; moreover, time-invariant random effects that are usually
adopted in practice may not be plausible in dynamic processes where the mechanism connecting
visits and failure varies over time.

Our objective is to develop a marginal modeling approach, based on a variety of semiparamet-
ric regression models, that avoids conditioning on too many covariates and on latent variables
while allowing for dependent visit times. The marginal or partly conditional effects of specified
factors on event risk are often of interest in biomedical research and public health studies. For
example, Finkelstein (1986) compared the effect of treatment on the rate of deterioration of the
cosmetic state between patients who received adjuvant chemotherapy and those who received
radiotherapy alone. In the PsA example, one point of interest is to compare the risk of joint dam-
age between PsA patients who have certain genomic characteristics and those who do not (as we
discuss in Section 4).

We extend methods in Zhu et al. (2017, 2018) that establish weighted estimating equations
for the survivor status observed at visits, based on the framework of direct binomial regres-
sion (Azarang et al., 2017; Fine, 1999; Scheike & Zhang, 2007). Inverse-intensity-of-visit (IIV)
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238 ZHU et al.

weighting was introduced for general longitudinal data processes observed at irregular, inter-
mittent times (Buzkova, 2010; Buzkova & Lumley, 2007, 2009; Lin et al., 2004; Pullenayegum &
Feldman, 2013). It works by assuming a visit time model based on the observed past history of out-
comes, visit times, and risk factors. In this article, we extend the IIV weighting approach to some
commonly used semiparametric regression models for the case-II interval-censored data. This
involves kernel smoothing for nonparametric estimation of the baseline survivor function and
regression coefficients estimated by solving an IIV-weighted profile estimating equation. Large
sample theory is developed, based on profile likelihood theory. Finite sample properties of the
estimators are examined in simulation studies and compared with methods that assume inde-
pendent visit times. We first focus on additive hazards models and then extend the approach to a
more flexible semiparametric model family which has a linear transformation form and includes
the Cox proportional hazards model as a special case. Finally, we fit a variety of semiparametric
regression models to data from the Toronto PsA Cohort Study as illustrations.

The remainder of the article is organized as follows. Section 2 introduces some semiparametric
failure time regression models, reviews the IIV weighting approach, presents the methodologi-
cal results for additive hazards models and then discusses the extension to linear transformation
models. Simulation studies on the finite sample performance of the proposed estimators are pre-
sented in Section 3. The methods are applied to the Toronto PsA Cohort Study in Section 4.
Section 5 addresses conclusions and discussion. Some theoretical results are for convenience
provided in appendices and/or in online supporting information.

2 METHODOLOGY

2.1 Generalized linear failure time models

We consider semiparametric regression models for failure time Ti which can be written as

S(t|Ai) = g{h(t) + AT
i (t)}, (1)

where S(t|Ai) = P(Ti > t|Ai) denotes the survivor function of Ti conditional on a vector of
time-fixed covariates Ai, g(⋅) is a known monotone differentiable link function (Cook & Law-
less, 2018), h(t) is completely unspecified, and (t) denotes a vector of time-invariant or possibly
time-varying coefficients. Our focus here is on time-fixed covariates Ai, which are of frequent
interest in clinical practice. The model can be extended to handle external time-dependent covari-
ates (Kalbfleisch & Prentice, 2002), but it must usually be severely restricted when covariates can
be measured only at the intermittent visit times.

Aalen (1980) proposed a general linear model which specifies hazard functions with an
additive form,

𝜆(t|Ai) = 𝜆0(t) + AT
i 𝜷(t), (2)

where 𝜆0(t) is an unspecified baseline hazard function, 𝜷(t) = (𝛽1(t), … , 𝛽q(t)) is a q× 1 vector of
time-varying coefficients, and A is a q× 1 vector of time-fixed covariates. It is noted that the most
attractive feature of Aalen’s additive hazards model is that it naturally allows time-varying coef-
ficients, so it provides a flexible alternative to the Cox model (Cox, 1972) when the assumption
of proportional hazards does not hold. Pros and cons of additive models are discussed by
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ZHU et al. 239

Martinussen and Scheike (2006) and Aalen et al. (2008). Previously, Lin et al. (1998) have proposed
martingale estimating equations to analyze interval-censored data based on additive hazards
models in the case with independent observation times, and for the case of dependent visit
times, joint random effects models have been considered by Wang et al. (2010, 2018) and Zhao
et al. (2015), among others. The methodology we introduce in Section 2.3 adjusts for dependent
visit times and results in consistent estimates of the marginal effects of Ai on Ti. Note that model
(2) can be rewritten as

S(t|Ai) = exp{−Λ0(t) − AT
i (t)},

where (t) = (∫ t
0 𝛽1(u)du, … , ∫ t

0 𝛽q(u)du)T and Λ0(t) = ∫ t
0 𝜆0(u)du is the cumulative hazard

function at t. Thus, it can be viewed as a special case of (1) with g(x) = exp(−x).
In addition, (1) with time-fixed coefficients, that is, (t) ≡ 𝜷, can be considered as a linear

transformation model discussed in Kalbfleisch (1978), Dabrowska and Doksum (1988a, 1988b),
Cheng et al. (1995), and Chen et al. (2002). It is equivalently written as

h(Ti) = −AT
i 𝜷 + 𝜖i, (3)

where 𝜖i is a random error with distribution function F = 1− g and g is a known decreasing
function mentioned in (1); h(t) is an unspecified strictly increasing function, which maps the pos-
itive half-line onto the whole real line. This class includes many popular regression models in
survival analysis. For example, g(x) = exp{−exp(x)} and g(x) = 1∕{1 + exp(x)} correspond to pro-
portional hazards and proportional odds models, respectively. If h(t) is specified, it also covers the
parametric accelerated failure time models (Dabrowska & Doksum, 1988b).

Model (1) has been applied to competing risks or multistate problems in which S(⋅) denotes
the probability of being in a certain state or death from a certain cause; it is then referred to
as direct binomial regression (Azarang et al., 2017; Cook & Lawless, 2018; Fine, 1999; Scheike
et al., 2008; Scheike & Zhang, 2007). Since we observe a binary survival indicator Y i(t)= I(Ti > t)
at each visit time t, the model (1) provides a flexible and convenient framework for parameter
estimation with failure time data. We call (1) a generalized linear failure time model in the sense
that it can be considered as a generalized linear model defined for binary outcome Y i(t) across
all t. Model (1) is also used in the analysis of interval-censored data, primarily for current status
data (e.g., Jewell & Van Der Laan, 2004; Shiboski, 1998; among others), under the assumption of
independent censoring. In a subsequent section, we develop a novel semiparametric estimation
method using the direct binomial regression framework for case-II interval-censored data where
failure is known only to have occurred between two consecutive visits, that is, Ti ∈ (tij− 1, tij].
Inverse-intensity-of-visit (IIV) weights which we introduce in the next section will be adopted
to adjust for the informative visit times tij when the assumption of independent censoring is not
satisfied.

2.2 Review of inverse-intensity-of-visit (IIV) weighting methods

First of all, we review briefly the inverse-intensity-of-visit (IIV) weighting method initially intro-
duced by Lin et al. (2004) for analyzing longitudinal data. It considers visits as a recurrent event
process (Cook & Lawless, 2007) and incorporates the inverse of the visit intensity function as a
weight into the analysis of the irregularly observed longitudinal data.
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240 ZHU et al.

We define the counting process {Ni(t), t ≥ 0} for visits; Ni(t) is the cumulative number of vis-
its for subject i up to time t. We also write Ni(t) = ∫ t

0 dNi(s), where dNi(s) indicates whether
individual i has a visit at time s. It is assumed for simplicity that there is a common end of
follow-up time 𝜏 for all individuals, and we let Ci(≤ 𝜏) be a random drop-out time for sub-
ject i. Then, Ci(t)= I{t <Ci} indicates that the individual is still being followed at time t and
dN∗

i (t) = Ci(t)dNi(t) indicates an observed visit at time t; 0 ≤ ti1 < ti2 < … < timi < Ci denote the
mi random visit times observed for subject i. Since our focus in this article is the discussion about
intermittent visit times, in the following development we assume that drop-out time Ci is indepen-
dent of the failure time and visits processes, conditional on covariates in the failure time model.
The case with dependent drop-out times is discussed at the end of Appendix A.3.

We use an overbar to denote the history of a variable process, for example, V i(t) = {Vi(s), 0 ≤
s ≤ t} denotes the history of the covariate V i(s) through time t for subject i. We also define
Hi(t−) = {Ci(t−),Ni(t−),Y i(t−),Ai,Vi(t−)} as the history of past outcomes, visits, and covariates,
where Ai represents a vector of time-fixed covariates of primary interest in the outcome model
and Vi(t) denotes a vector of time-varying variables which could be related to the event time out-
come process and/or the visit time process. Following Lin et al. (2004), it is assumed that there
exists a vector Zi(t−) which depends only on the observed components of Hi(t−) such that

E{dN∗
i (t)|Hi(t−),Yi(t)} = E{dN∗

i (t)|Zi(t−)} = Ci(t)𝜆N{t|Zi(t−)}dt. (4)

The assumption (4) is also known as a sequentially missing at random (SMAR) condition
(Hogan et al., 2004; Robins et al., 1995). We assume a positivity condition that 𝜆N{t|Zi(t−)} is
positive and bounded for all Zi(t−) and t ∈ [0, 𝜏].

IIV weights are generally defined by

wi(t) = 1∕𝜆N{t|Zi(t−)}, ∀ t ≥ 0. (5)

The denominator, 𝜆N{t|Zi(t−)}, is the visit intensity at time t given the observed history. Mod-
els used in the analysis of recurrent events can be applied to model the visit time process and thus
to estimate the intensity. We give a brief review of this in Appendix A.1.

The IIV weighting approach can be extended for analyzing dependently interval-censored fail-
ure time data using a weighted version of binomial pseudo-likelihood approach. Zhu et al. (2017,
2018) respectively considered parametric regression models and nonparametric estimation of
marginal failure time distributions. In this article, we aim to extend the IIV weighting approach
for estimating marginal or partly conditional regression effects in semiparametric regression
models (1).

2.3 Semiparametric estimation for additive hazards models

We consider first an additive hazards model with time-invariant coefficients 𝜷. That is, condi-
tional on a vector of time-fixed covariates Ai, failure time Ti has hazard function

𝜆(t|Ai) = 𝜆0(t) + AT
i 𝜷.

For time-varying coefficients, it is noted that 𝜷(t) can be parametrized by a set of specified
functions or smooth basis functions such as B-splines or regression splines. We illustrate this
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ZHU et al. 241

scenario in our real data application in Section 4 and provide relevant theoretical results in
Appendix A.2.

The survivor function of Ti is specified by

S(t|Ai) = S0(t) exp(−AT
i 𝜷t), (6)

where S0(t) = exp{−Λ0(t)} is the baseline survivor function which is unspecified. We will use
an IIV weighted version of binomial estimation (e.g., Scheike et al., 2008) based on the fact that
E{Yi(t)|Ai} = S(t|Ai). Extension from (2.2) in Zhu et al. (2017) and (5) in Zhu et al. (2018) leads to
the following IIV-weighted estimating equations for baseline survivor function S0(t) at any given
t and for regression coefficients 𝜷. To obtain a smooth estimate of S0(t) given the subject-specific
intermittent visit times tij, we use the local smoothing method of Fan (1993) in (7). We consider

Ψ1n{S0(t), 𝜷} = 1
n

n∑
i=1

∫
𝜏

0
Kh(t − u)wi(u)

{
Yi(u) − S0(t) exp(−AT

i 𝜷u)
}

dN∗
i (u)

= 1
n

n∑
i=1

mi∑
j=1

Kh(t − tij)wi(tij)
{

Yi(tij) − S0(t) exp(−AT
i 𝜷tij)

}
= 0, (7)

Ψ2n{S0(t), 𝜷} = 1
n

n∑
i=1

∫
𝜏

0

wi(u)uAi
{

Yi(u) − S0(u) exp(−AT
i 𝜷u)

}{
1 − S0(u) exp(−AT

i 𝜷u)
} dN∗

i (u)

= 1
n

n∑
i=1

mi∑
j=1

wi(tij)tijAi
{

Yi(tij) − S0(tij) exp(−AT
i 𝜷tij)

}{
1 − S0(tij) exp(−AT

i 𝜷tij)
}

= 0, (8)

where wi(tij) is the IIV weight at tij for subject i defined in (5); Kh(u)=K(u/hn)/hn, where hn → 0+,
as n→∞, is a positive bandwidth sequence and K(⋅) denotes a symmetric kernel density function
that satisfies the conditions we state later. These estimating equations can be obtained from a
weighted pseudo-likelihood function given by summing binomial log likelihood functions based
on Y i(tij).

It can be seen that for a given value 𝜷 the first estimating equation (7) leads to a closed-form
estimator of the baseline survivor function, that is,

Ŝ0(t; 𝜷) =

∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij)Yi(tij)∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp(−AT
i 𝜷tij)

. (9)

Then, �̂� is obtained by solving the following profile estimating equation with Ŝ0(tij; 𝜷) substi-
tuted by (9).

Ψn{𝜷} = 1
n

n∑
i=1

mi∑
j=1

wi(tij)tijAi
{

Yi(tij) − Ŝ0(tij; 𝜷) exp(−AT
i 𝜷tij)

}{
1 − Ŝ0(tij; 𝜷) exp(−AT

i 𝜷tij)
} = 0. (10)

Once we obtain �̂� from (10), the estimate of baseline survivor function S0(t) is obtained by
Ŝ0(t; �̂�) using (9).
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242 ZHU et al.

The estimating equation (10) has the form of an IIV-weighted version of a generalized esti-
mating equation (Liang & Zeger, 1986) with independence working correlation matrix. It leads to
a consistent estimator �̂� of 𝜷, provided that assumption (4) is true and weight wi(t) is consistently
estimated. We describe the asymptotic properties of �̂� in Theorem 1 below, under the following
conditions:

• Condition 1. As n→∞, the number of visits mi is finite for all i with probability one.
• Condition 2. The true baseline survivor function S0(t) is twice continuously differen-

tiable for all t ∈ [0, 𝜏], and we assume that supt∈[0,𝜏]E||Yi(t) − S0(t; 𝜷) exp(−AT
i 𝜷t)||3 < ∞ for

any 𝜷.
• Condition 3. Kernel function K(⋅) is a bounded twice continuously differentiable symmetric

probability density function vanishing outside of a compact set, with ∫ u2K(u)du < ∞ and
∫ K2(u)du < ∞.

• Condition 4. Weight wi(t) = 1∕𝜆N{t|Zi(t−)} is bounded in [0, 𝜏] and is consistently estimated.

Theorem 1. Let 𝜷0 ∈ int(ℬ) be the true value of 𝜷 , where ℬ is a compact subset of Rq. We also
let �̂� be the solution of Ψn(𝜷) = 0 from (10). Under Conditions 1–4, it can be shown that if hn → 0+
and nh4

n → 0 as n→∞, �̂� is a
√

n-consistent estimator of 𝜷0, and it has the following asymptotic
distribution, √

n
(
�̂� − 𝜷0

) D
→ N(0,D−1VD−1), (11)

where

V = E

[ mi∑
j=1

{wi(tij)tijAi

1 − 𝜇ij
− wi(tij)Q(tij)

}
{Yi(tij) − 𝜇ij}

]⊗2

,

D = E
⎡⎢⎢⎢⎣

mi∑
j=1

wi(tij)tijAi

{
S

T
0 (tij; 𝜷0) exp{−AT

i 𝜷0tij} − 𝜇ijtijAT
i

}
1 − 𝜇ij

⎤⎥⎥⎥⎦ ,
and

𝜇ij = S0(tij; 𝜷0) exp{−AT
i 𝜷0tij},

H(tij) = E
[
exp{−AT

i 𝜷0tij}
]
,

Q(tij) = E

[
tijAi exp{−AT

i 𝜷0tij}
1 − 𝜇ij

]
H−1(tij),

S
T
0 (tij; 𝜷0) = S0(tij)E

[
AT

i exp{−AT
i 𝜷0tij}

]
tijH−1(tij),

where a⊗2 = aaT for any vector a.
We remark that the covariance structure of �̂� presented in Theorem 1 is consistent with the

result in theorem 1 in Fan et al. (2007) and theorem 1 in Chen et al. (2018) in the framework of
profile likelihood. We obtain variance estimates for �̂� by replacing expectations in expressions for
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ZHU et al. 243

V and D with observed sample means evaluated at𝜷0 = �̂�, S0(t) = Ŝ0(t; �̂�). The proof of Theorem 1
and discussion about other theoretical results, for example, the asymptotic distribution of Ŝ0(t; �̂�),
is provided in the appendices A.2–A.5.

The estimator of baseline survivor function Ŝ0(t; �̂�) is smooth and defined for any t ≥ 0, but it
is not monotone in general. Similar to theorem 1 in Mammen (1991), it can be shown that Ŝ0(t; �̂�)
is asymptotically monotone with the use of an optimal bandwidth, if the true function S0(t) is
sufficiently smooth and strictly decreasing. To achieve monotony for finite samples, we suggest an
isotonic regression (Barlow et al., 1972) applied to the cumulative distribution function estimator
F̂0(t; �̂�) = 1 − Ŝ0(t; �̂�), similar to the smooth-isotonic (SI) estimator discussed in Mammen (1991).
The monotonized estimator F̂†

0(t; �̂�) can be given by the max–min formula (Barlow et al., 1972)
or by the pool-adjacent-violators algorithm (PAVA) (Miles, 1959). We use R function isoreg to
implement the PAVA in subsequent simulation and real data analysis.

So far, we propose the IIV-weighted estimators of baseline survivor function S0(t) and regres-
sion coefficients 𝜷 for additive hazards models. Next, we show how to extend this estimation
method and algorithm to the class of linear transformation models.

2.4 Extension to linear transformation models

In this section, we consider the linear transformation models in the form

S(t|Ai) = g{h(t) + AT
i 𝜷}. (12)

Semiparametric estimation of 𝜷 based on model (12) has been studied by Cheng et al. (1995),
Fine et al. (1998), Chen et al. (2002), and Zeng and Lin (2006), among others, for right-censored
time-to-event data. Here, we introduce an iterative algorithm that incorporates the IIV weights
for dependently interval-censored data.

Similar to Section 2.3, we construct two IIV-weighted estimating equations to estimate h(t)
for any t and 𝜷

Ψ1n{h(t), 𝜷} = 1
n

n∑
i=1

mi∑
j=1

Kh(t − tij)wi(tij)[Yi(tij) − g{h(t) + AT
i 𝜷}] = 0, (13)

Ψ2n{h(t), 𝜷} = 1
n

n∑
i=1

mi∑
j=1

wi(tij)Aig′(𝜇ij){Yi(tij) − g(𝜇ij)}
g(𝜇ij){1 − g(𝜇ij)}

= 0, (14)

where 𝜇ij = h(tij) + AT
i 𝜷 and g′(x) = dg(x)∕dx for any variable x.

Unlike (7) for additive hazards models, the local-smoothed estimating equation for non-
parametric component h(t), given in (13), does not have a closed-form solution. We propose an
iterative estimation procedure that alternates between updating estimates of 𝜷 and h(t), similar
to that described in Chen et al. (2002). It is summarized as follows.

Step 1: specify an initial value for 𝜷, denoted by �̂�(1), which can be given by a naive estimate
based on model (12) with dependent interval censoring not adjusted for.

Step 2: given �̂� (k) for any k≥ 1, solve the estimating equation Ψ1n{h(t), �̂� (k)} = 0 based on (13)
to obtain the estimate ĥ(t).
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244 ZHU et al.

Step 3: substitute ĥ(t) in Ψ2n{h(t), 𝜷} = 0 given in (14) to obtain an updated estimate of 𝜷,
denoted by �̂�(k+1).

Step 4: increase k by one and go back to steps 2 and 3; repeat until specified convergence
criteria are satisfied, for example, ||�̂�(k+1) − �̂�(k)|| < 10−4.

The asymptotic distribution of �̂� could be developed similarly as in Theorem 1, but the absence
of a closed-form estimator ĥ(t) will lead to additional technical challenges; we consider this as
future work. Alternatively, we propose a nonparametric bootstrap to estimate the standard error of
�̂� and examine the performance of our method based on a Cox model via simulation in Section 3.2.

3 SIMULATION STUDIES

3.1 Simulation study for an additive hazards model

In this section we examine the finite sample performance of the proposed method for an additive
hazards model. We consider a setting where models involving a single covariate A are of inter-
est, but there exists another observed covariate V which is probably related both to T and to the
visit process. Martinussen and Vansteelandt (2013) discussed the collapsibility of additive haz-
ards models, which facilitates the simulation scenarios we consider. We simulate the exposure
variable Ai from a Bernoulli(0.5) distribution. We then generate an auxiliary variable V i from
N(Ai, 1). It is assumed that both Ai and V i are risk factors of failure time Ti and may also be predic-
tors of patients’ visit times. We generate Ti from an exponential distribution with hazard function
given by 𝜆(t|Vi,Ai) = 𝛽∗0 + 𝛽∗1 Vi + 𝛽∗2 Ai. Following Martinussen and Vansteelandt (2013), it can
be shown that the distribution of Ti conditional on Ai alone is still of additive hazards form with
hazard function

𝜆(t|Ai) = 𝜆0(t) + 𝛽2Ai, (15)

where 𝜆0(t) = 𝛽∗0 − 𝛽∗2
1 t, and 𝛽2 = 𝛽∗2 + 𝛽∗1 . We let 𝛽∗0 = 0.5 for nonnegative 𝛽2 and 0.8 for negative

𝛽2, 𝛽∗1 = 0.2, and 𝛽∗2 = −0.6,−0.4,−0.2, 0, or 0.2 so that true values of 𝛽2 range from −0.4 to 0.4
with an increment of 0.2 to represent various scenarios. Model (15) gives the survivor function

S(t|Ai) = S0(t) exp(−𝛽2Ait), (16)

where S0(t) is treated nonparametrically and regression coefficient 𝛽2 is of primary interest for
estimation and inference.

To generate random and irregular visit times, we discretize the time scale using a very fine
grid (100 per unit of time) so that visit times simulated approximate those from a continuous time
process; this represents what occurs in practice, where time is usually recorded in discrete units
like days, though continuous time models are typically used for analysis. That is, the visit process
is discrete on the grid 0= a0 < a1 < … < aM = 5 with ak = 0.01k for k= 1, … , M with M = 500. At
each ak, we generate a binary visit indicator dNik based on model P(dNik = 1|Ai,Vi) = exp(𝛾0 +
𝛾1Vi + 𝛾2Ai) with 𝛾0 = −4.5, 𝛾1 = 0 or 0.8 to indicate an independent visit scheme or dependent
visit scheme, respectively, and 𝛾2 = 0.1. As a result, the times between visits have a geometric
distribution, with about 8 visits per person for the group with Ai = 0 and 18 visits per person for
the group with Ai = 1. This mimics a scenario common in clinical practice where A can be viewed
as a treatment indicator and patients who receive more aggressive treatment are expected to be
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(a) n = 100 (b) n = 500

F I G U R E 1 Kernel estimator by (9), monotonized by an isotonic estimator, and the Turnbull’s estimator of
baseline survivor function S0(t) from one simulation for n= 100 or n= 500, where 𝛽2 = 0.4, 𝛾1 = 0.8

observed more frequently. It is noted that when 𝛾1 ≠ 0, V i is a shared risk factor for failure and visit
times but is not included in the target model (16). This renders visit times outcome-dependent
with respect to that model. On the other hand, when 𝛾1 = 0 the visit process is independent of
failure time. We set administrative end of follow-up for all individuals as 𝜏 = 5; this results in
about 80% of the subjects with Ai = 0 and 95% of those with Ai = 1 experiencing failure by then.
For simplicity we do not allow premature loss to follow-up, so all Ci(t)= 1.

We perform estimation using the procedure in Section 2.3. We treat the visit time process as
though it was continuous and estimate the IIV weights wi(t) by fitting model (A3) with Zi(t−) =
(Ai,Vi)T and cut-points (0.40, 0.75, 1.0). That is,

𝜆N{t|Ai,Vi;𝜓1, 𝜓2} =
4∑

j=1
𝜌jIj{Gi(t)} exp(𝜓1Ai + 𝜓2Vi). (17)

This family of models contains a close approximation to the discrete process used to simu-
late visit times. We solve score function (A4) using R function phreg in package eha. A marginal
visit intensity, estimated by the increments of the Nelson–Aalen estimator of the cumulative rate
function, that is, ŝ(t) =

∑n
i=1 dN∗

i (t)∕
∑n

i=1 Ci(t), is used to stabilize the IIV weights.
Simulation results about regression parameter 𝛽2 in model (15) or (16) are summarized in

Table 1. Estimating equation (10) is solved by R function nleqslv. Standard errors of 𝛽2 are obtained
as described following Theorem 1. To obtain a monotone estimate of the baseline survivor func-
tion, as discussed at the end of Section 2.3, an isotonic regression is applied to the kernel smooth
estimator Ŝ0(t; 𝛽2), shown in Figures 1 and 2. The isotonic estimator of cumulative distribution
function, that is, F̂†

0(t; 𝛽2), is obtained by using R function isoreg, and then Ŝ†
0(t; 𝛽2) = 1 − F̂†

0(t; 𝛽2).
Our simulation is conducted based on R version 3.6.2. Sample sizes considered were n= 100 and
n= 500, and N = 500 simulated samples were generated for each setting.
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246 ZHU et al.

T A B L E 1 Simulation summary of parameter 𝛽2 in model (15)

Unstabilized weights Stabilized weights Midpoint approx

TRUE Bias SSE ASE ECP bias SSE ASE ECP Bias SSE ASE ECP
n= 100 −0.4 −0.011 0.156 0.143 0.944 −0.015 0.164 0.156 0.942 0.053 0.112 0.112 0.912

−0.2 −0.006 0.166 0.156 0.946 −0.010 0.171 0.159 0.948 0.036 0.124 0.126 0.934

𝛾1 = 0 0 0.002 0.110 0.109 0.954 0.001 0.113 0.112 0.958 0.006 0.091 0.095 0.964

0.2 0.009 0.133 0.134 0.950 0.008 0.136 0.136 0.960 −0.014 0.105 0.111 0.958

0.4 0.020 0.168 0.162 0.950 0.020 0.175 0.165 0.946 −0.049 0.117 0.127 0.954

𝛾1 = 0.8 −0.4 −0.003 0.163 0.152 0.940 −0.005 0.166 0.156 0.946 0.048 0.115 0.117 0.934

−0.2 −0.005 0.174 0.164 0.938 −0.008 0.177 0.168 0.944 0.043 0.134 0.133 0.936

0 0.001 0.115 0.114 0.952 0.000 0.117 0.117 0.950 −0.005 0.097 0.102 0.966

0.2 0.008 0.140 0.137 0.948 0.007 0.143 0.140 0.946 −0.009 0.116 0.121 0.962

0.4 0.019 0.172 0.164 0.938 0.019 0.177 0.166 0.944 −0.026 0.134 0.141 0.944

n= 500 −0.4 0.005 0.065 0.063 0.938 0.005 0.066 0.064 0.936 0.123 0.044 0.044 0.220

−0.2 0.000 0.072 0.069 0.942 0.000 0.074 0.070 0.938 0.070 0.050 0.049 0.692

𝛾1 = 0 0 −0.001 0.051 0.049 0.932 −0.001 0.051 0.049 0.936 0.001 0.039 0.038 0.940

0.2 0.000 0.061 0.059 0.938 −0.001 0.062 0.060 0.932 −0.055 0.044 0.044 0.754

0.4 0.004 0.074 0.073 0.946 0.004 0.075 0.074 0.942 −0.129 0.048 0.049 0.240

𝛾1 = 0.8 −0.4 0.009 0.073 0.070 0.934 0.009 0.073 0.071 0.942 0.117 0.049 0.046 0.306

−0.2 0.003 0.079 0.075 0.944 0.003 0.080 0.076 0.944 0.073 0.054 0.052 0.692

0 0.000 0.053 0.051 0.930 0.000 0.054 0.052 0.930 −0.007 0.043 0.041 0.924

0.2 0.000 0.063 0.062 0.938 0.000 0.064 0.062 0.930 −0.054 0.049 0.047 0.778

0.4 0.004 0.076 0.074 0.950 0.004 0.077 0.075 0.948 −0.116 0.055 0.054 0.410

Note: Parameter 𝛾1 is set to be 0 for an independent visit process and to be 0.8 for a dependent visit process. SSE denotes
the sampling standard error; ASE is the sampling mean of asymptotic standard errors; ECP is the empirical coverage
probability calculated for 95% CIs. Bandwidth h is specified to be h= 0.5 for sample size n= 100 and h= 0.3 for sample
size n= 500. Simulation results are summarized based on 500 replicates.

We want to compare the proposed estimators with existing methods. However, the literature
on semiparametric additive hazards models with interval-censored data is very limited, and we
did not find any method which is easily implementable. Instead, we use the midpoint of (tij− 1, tij]
where Ti fell as the approximate occurrence time and then analyze the mimicked right-censored
data by R function aalen in package timereg. This midpoint approximation method is widely
adopted in practice to analyze interval-censored data especially when visit gaps are not very wide.
In Table 1, it is seen that for each scenario, our proposed estimators (stabilized or nonstabilized)
have very small bias and moderate variance. The average asymptotic standard errors are close to
the sampling standard errors. Empirical coverage probabilities of the 95% confidence intervals
(CIs) for 𝛽2 are close to the nominal level. On the other hand, midpoint approximation method
leads to nonnegligible bias, and bias increases with sample size, making coverage probabilities of
95% CIs far away from the nominal level for n= 500, while it is hard to differentiate whether bias
comes from the ignorance of informative visit times or from approximation.
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F I G U R E 2 Estimates of baseline survivor function S0(t) averaged over 100 simulations for n= 100 and
𝛽2 = 0.4. Independent visit scheme and dependent visit scheme are simulated by specifying 𝛾1 = 0 or 𝛾1 = 0.8

In Table 1, we note that stabilized estimators have slightly larger variances than the
unstabilized estimators. This is because our baseline visit intensity 𝜆N0{Gi(t)} in (A2) is defined
with the elapsed time from the most recent previous visit related to an individual’s visit history,
so it is not cancellable by ŝ(t). This is different from the cases in Lin et al. (2004) and Buzkova and
Lumley (2007, 2009) where their denominator and numerator are both based on Markov mod-
els so baseline intensities are canceled or exempted. Although our stabilized weights lead to a bit
more variation of 𝛽2, we found in additional simulations (not given here) and in Zhu et al. (2018)
that it can improve the normal approximation for 𝛽2 when weights have extremely large variabil-
ity. Therefore, we recommend stabilized weights for real data analysis where intervisit times vary
widely, as in the analysis of the PsA data in Section 4.

We employ the Epanechnikov kernel K(u)= (3/4)(1−u2) for −1≤u≤ 1 for calculating
Ŝ0(t; 𝛽2) in (9) throughout this article. Bandwidth selection should also satisfy the conditions in
Theorem 1. In our simulation, we selected bandwidths which minimize the mean squared error
of estimates, that is, 1

500

∑500
s=1 (𝛽2s − 𝛽2s)2, among {0.1, 0.2, … , 1.0}. As a result, h= 0.5 was selected

for n= 100 and h= 0.3 was selected for n= 500, though simulation results differ very slightly
with different bandwidths. A bias-variance tradeoff was noticed in nonparametric estimation in
Zhu et al. (2018), but it seems that semiparametric estimators of regression coefficients are not
very sensitive to bandwidth selection. In practice, bandwidth is often selected data adaptively via
cross-validation while adopting some assessment metrics (e.g., minimization of prediction error).
Optimal choices of kernel bandwidths may improve the asymptotic properties and finite sample
performance of estimators; this will be considered in future work.

Figure 1 shows the kernel estimate Ŝ0(t; 𝛽2) and the isotonic estimate Ŝ†
0(t; 𝛽2) from one simu-

lation sample for each of n= 100 and n= 500. It is seen in Figure 1 that isotonic regression corrects
segments of the kernel estimate where it is increasing, while for a larger sample size (e.g., n= 500),
our baseline survivor estimator (9) is further smoothed and closer to be monotonic. Turnbull’s
(Turnbull, 1976) estimator is a well-known nonparametric estimator of the survivor function for
interval-censored data. However, like many other standard methods, it requires that censoring is
independent. We plot Turnbull’s estimates in Figures 1 and 2 for comparison with our estimates.
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248 ZHU et al.

T A B L E 2 Investigation of the estimation of parameter 𝛽2 in model (15) under misspecified visit time model

Wrong weight model Correct weight model

TRUE Bias SSE ASE ECP Bias SSE ASE ECP
−0.4 −0.012 0.066 0.062 0.942 0.005 0.067 0.065 0.942

−0.2 −0.015 0.072 0.068 0.930 0.001 0.073 0.070 0.944

0 −0.016 0.050 0.048 0.926 −0.002 0.050 0.049 0.932

0.2 −0.015 0.060 0.058 0.930 −0.001 0.060 0.059 0.944

0.4 −0.012 0.072 0.070 0.932 0.002 0.072 0.071 0.952

Note: Parameter 𝛾1 is set to be 0.8 to simulate a dependent visit process. Sample size is n= 500. Bandwidth is given by h= 0.3.
Simulation results are summarized based on 500 replicates.

In Figure 1, we see that Turnbull’s estimate has regions where it is not uniquely defined, shown
by gray areas in the plot. Our kernel estimator defined in (9) does not have that problem as long
as at least one visit falls in the window [t − h, t + h] for any t. In addition, Turnbull’s estimator
does not agree with our proposed estimator in some places. Because visit times are dependent
when 𝛾1 = 0.8, this may cause Turnbull’s estimator to be biased. This is demonstrated in Figure 2,
where we plot our estimates Ŝ†

0(t; 𝛽2) and Turnbull’s estimates averaged over 100 simulations in
comparison with the true curves. We see that both estimators agree with the true curve when visit
times are independent (i.e., 𝛾1 = 0), but when 𝛾1 = 0.8, Turnbull’s estimator shows some bias.

As suggested by reviewers, we examine the robustness of our IIV-weighted method under a
misspecified weight model. In particular, we simulate visit indicators using the model P(dNik =
1|Ai,Vi) = exp{−4 + 0.8Vi + 0.1Ai − 0.05(Vi + 2)2} but still fit the same working model for the
estimation of IIV weights using (17). In Table 2, it can be seen that under the misspecified weight
model, the proposed estimator has similar variance but a little larger bias, and coverage probabil-
ities of 95% CIs of regression coefficient 𝛽2 are slightly lower than the nominal level. In addition,
we note that models for the visit process can be checked using known methods (e.g., Cook &
Lawless, 2007), so significant misspecification of the model used to obtain weights is avoidable.

So far, we focus on the discussion of the case where visits continue to occur after a failure
event; that is, the visit process does not discontinue following the occurrence of failure. This is
the case in many settings in clinical practice where nonterminal events are of research interest,
for example, joint damage progression for patients with PsA. The case where visits stop after a
terminal failure event such as death is briefly discussed in Section 5. The methods proposed here
can readily be modified to deal with that case.

3.2 Simulation study for a Cox proportional hazards model

Examination of an arbitrary generalized linear failure time model in Section 2.1 by simulation
is difficult since data generation models in which integrating (collapsing) over some covariates
results in a marginal model of the desired form may not exist. For example, a Cox model with some
covariates marginalized does not in general produce a marginal Cox model; the collapsibility of
Cox models is discussed in Martinussen and Vansteelandt (2013). We consider a special case of
the Cox model related to a normal model for covariates, and then derive the marginal model by
using the normal distribution’s collapsibility. It can be shown that the marginal model in this case
retains the form of proportional hazards. More details can be found in Zhu et al. (2017); below we
briefly describe how data were simulated based on a Cox model.
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ZHU et al. 249

T A B L E 3 Simulation summary of parameter 𝜃1 based on a Cox model

IIV-weighted method Semiparametric MLE

Bias SSE BSE ECP Bias SSE BSE ECP
n= 100 𝛾1 = 0 0.084 0.249 0.301 0.964 −0.086 0.288 0.378 0.984

𝛾1 = 0.8 0.060 0.511 0.467 0.912 0.059 0.305 0.412 0.956

n= 500 𝛾1 = 0 0.037 0.119 0.127 0.950 −0.029 0.120 0.118 0.930

𝛾1 = 0.8 <0.001 0.285 0.273 0.940 0.127 0.121 0.120 0.806

Note: Parameter 𝛾1 is set to be 0 for an independent visit process and to be 0.8 for a dependent visit process. SSE denotes the
sampling standard error; BSE is the sampling mean of bootstrapped standard errors estimated by 100 bootstrap samples; ECP
is the empirical coverage probability calculated for 95% CIs. Bandwidth h is specified to be 0.5 when 𝛾1 = 0 and 0.8 when
𝛾1 = 0.8 for sample size n= 100 and 0.3 for sample size n= 500. Simulation results are summarized based on 500 replicates.

We still generate Ai which is of primary interest from a Bernoulli(0.5) distribution
and then generate a time-varying auxiliary variable V i(ak) from N(−2Ai, 32). To simulate
the failure time outcome Ti, we assume that the discrete time hazard of Ti at time ak is
P(Yik = 0|V ik−1,Ai,Y ik−1 = 1) = Φ(𝜂0 + 𝜂1Vik−1 + 𝜂2Ai), where Φ denotes the distribution func-
tion of a standard normal distribution. The marginal model controlling for Ai alone can be shown
to have 𝜆ik ≈ P(Yik = 0|Ai,Y ik−1 = 1) = Φ{c {𝜂0 + (𝜂2 + 𝜂1𝛽1)Ai}}, where c = 1∕

√
1 + 9𝜂2

1; it

can also be rewritten in proportional hazards form as P(Yik = 0|Ai,Y ik−1 = 1) = e𝜃0 exp(𝜃1Ai),
where 𝜃0 = log {Φ(c 𝜂0)}, 𝜃1 = log

{
Φ[c (𝜂0+𝜂2+𝜂1𝛽1)]

Φ(c 𝜂0)

}
. Then Y ik, k= 1, … , M, are generated from

Bernoulli(𝜆ik) distributions until a zero occurs. Our objective in this simulation study is to use
the iterative algorithm described in Section 2.4 to estimate the marginal effect of A on T, that is,
𝜃1. Parameters are specified by 𝜂0 = −7, 𝜂1 = 1.2, and 𝜂2 = 0.5. The true value of 𝜃1 is −1.26 in
this setting. The visit process is simulated the same as in Section 3.1; we let 𝛾0 = −3.5, 𝛾1 = 0, and
𝛾2 = −0.5 for independent visit times and 𝛾0 = −6, 𝛾1 = 0.8, and 𝛾2 = 0.5 for dependent visit times.

Weight estimation is the same as in Section 3.1. Model components are estimated by solv-
ing (13) and (14) following the algorithm described in Section 2.4. In Table 3, we compare
our proposed method with a semiparametric maximum likelihood estimation (MLE) algorithm
implemented by R function ic_sp in package icenReg (Anderson-Bergman, 2017). Using our selec-
tion criteria, for n= 100, the bandwidth h was chosen to be 0.5 for the case of independent visit
times (𝛾1 = 0) and be 0.8 for dependent visit times (𝛾1 = 0.8); for n= 500, h was chosen to be 0.3
regardless the specification of 𝛾1. Nonparametric bootstrap standard errors are estimated by the
standard errors of the estimates from 100 bootstrap samples for each method. It is seen in Table 3
that when sample size is small the MLE based on an assumption of independent visit times is not
very biased and it performs similarly as our proposed method. However, for larger sample size, for
example, n= 500, it leads to substantially larger bias than our proposed method and to coverage
probabilities lower than the 95% nominal level when 𝛾1 = 0.8.

4 APPLICATION TO A PSA COHORT

The University of Toronto Psoriatic Arthritis (PsA) Clinic registry was established in 1978 by Dr.
Dafna Gladman (Gladman & Chandran, 2010). So far about 1200 patients have been recruited
to the clinic, making it one of the largest cohorts of PsA in the world. PsA may, over time,

 14679469, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12511 by E

ast C
hina N

orm
al U

niversity, W
iley O

nline L
ibrary on [13/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



250 ZHU et al.

lead to damage in a patient’s joints. At intermittent visits to the clinic the joints are examined
either physically or radiologically, and a large number of other measurements are also made.
Visits are suggested by protocol 6–12 months apart, but their actual timing varies considerably
over time and across individuals. In fact, visit times are related to prior disease history, past
visit history, and a variety of disease-related variables. For example, patients who have stronger
disease activity or receive more aggressive treatment are found more likely to visit frequently
and regularly.

Human leukocyte antigens (HLA) have been discovered to be strongly predictive of the pro-
gression of rheumatoid arthritis. We have compared the risks of arthritis mutilans, a severe stage
of the disease which is defined as having five or more joints (out of 64) with the highest grade
of damage, with respect to HLA-B27, and estimated the distribution of time to arthritis mutilans
for each group separately (Zhu et al., 2018). Our objective in this analysis is to assess the associ-
ation between HLA-B27 and the risk of first joint damage. This can be accomplished by fitting
a semiparametric regression model with Ai = I(HLA-B27 is positive) as a covariate, where I(⋅) is
the indicator function.

Our analysis focuses on 407 patients who did not have clinical joint damage at their time of
enrolment (340 with HLA-B27 negative and 67 with HLA-B27 positive). We study the time to the
first presence of joint damage up to 15 years after enrolment for these patients. Among them, it is
found that 192 (154 with HLA-B27 negative, 38 with HLA-B27 positive) developed joint damage
by a later follow-up visit, and 215 still had no joint damage at the end of 15 years follow-up. Joint
damage is only assessed at visits to the clinic, so the occurrence time of first joint damage is subject
to interval censoring.

These patients enrolled over a substantial period of time, which affects their follow-up length
and number of visits. The B27 negative group had an average of 10 visits and the B27 posi-
tive group nine visits per person, with the average time between visits approximately 1.5 years.
Thus, we choose the bandwidth for our kernel estimators of baseline survivor function to be
1 year. For estimating the IIV weights, visit gap times are fitted with model (A3) with cut-points
selected according to a nonparametric estimate of the baseline intensity. Covariates included in
the visit gap time model are gender, age*, psoriasis (PS) duration and PsA duration at the time
of enrolment, family history of PS (yes/no), family history of PsA (yes/no), and the status for
human leukocyte antigen HLA-B27* (positive/negative) as time-fixed variables and erythrocyte
sedimentation rate* (ESR), total number of active (inflamed) joints, use of NSAIDs (nonsteroidal
anti-inflammatory drugs), DMARDs* (disease-modifying antirheumatic drugs), or biologics*
medications, year* (of most recent visit), and median length* (of past visit gaps) as time-varying
variables. Time-varying covariate values are measured at the most recent visit time except for
medication status (NSAIDs, DMARDs, and biologics) which could change between visits. Factors
significant at 𝛼 = .05 are annotated by *. The Nelson–Aalen (NA) estimate of the marginal visit
intensity is employed to stabilize the IIV weights; the value of ŝ(tij) was taken as the increment
in the NA estimate at time tij. The stabilized weights have first, second, and third quartiles 0.57,
1.65, and 3.33.

We consider and compare here a variety of outcome models in the generalized linear family;
the models are seen to agree quite closely, and we then compare the additive hazards models
with nonparametric estimates. We first consider the linear transformation model (3) where the
distribution function of 𝜖 has the form

F𝜖(t) =

{
1 − {1 + r exp(t)}−1∕r if r ≠ 0
1 − exp{−exp(t)} if r = 0

.
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ZHU et al. 251

F I G U R E 3 Estimates of survivor functions
S(t|A), A= 0 or 1, based on additive hazards (AH)
model, Cox model and proportional odds (PO)
model; regression coefficient is assumed to be
time-invariant. Solid curves denote that HLA-B27
is positive (A= 1) and dashed curves denote that
HLA-B27 is negative (A= 0)
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This family has been discussed by Dabrowska and Doksum (1988a), Chen et al. (2002), and Zeng
and Lin (2006), among others; it covers the Cox model with r = 0 and proportional odds (PO)
model with r = 1, respectively. Figure 3 displays the fitted survivor functions with r = 0 or 1 and
compares them with the time-invariant coefficient additive hazards model (6). It is seen that all
these models give very similar estimates of the survivor functions up to 6 years from enrolment.
The Cox model agrees closely with the additive hazards model beyond 6 years; the PO model
differs gradually from the other two after 6 years for the HLA-B27 positive group. However, there
are only six patients who have the failure event occurring after 6 years for the HLA-B27 positive
group. Each model results in estimates with large variance in that region. The additive hazards
model gives the regression coefficient estimate 0.047 with a standard error of 0.025, giving an
approximate 95% confidence interval (−0.002, 0.096), so the p-value for a test of no difference in
the risks of first joint damage between patients with and without HLA-B27 is just over 5%.

Next, we consider an additive hazards model with time-varying coefficient (2) in addition
to the constant coefficient model. Different formulations of 𝛽(t) (t is in years) are considered as
follows.

Model 1: 𝛽(t) = 𝛽1, Model 3: 𝛽(t) = 𝛽1I(t ≤ 6) + 𝛽2I(t > 6),

Model 2: 𝛽(t) = 𝛽1 + 𝛽2e0.01t, Model 4: 𝛽(t) = 𝛽1 + 𝛽2t +
5∑

j=3
𝛽jCj(t).

Model 4 uses restricted cubic splines with five knots, where Cj, j= 3, 4, 5, denote three piece-
wise cubic basis functions. About the number of knots, three to five knots are often selected in
practice, and it is found that five knots are enough to provide a good fit to most real data (Harrell
Jr., 2015; Stone, 1986). We chose the five knots as equally spaced percentiles (5%, 20%, 35%, 50%,
and 65%) of the marginal distribution of time to first joint damage using Turnbull’s estimator up
to the last failure time in the whole sample, so as to have an equal number of events contributing
to the estimation of 𝛽(t) at a given time t. The resulting estimates of coefficients in Model 4 are
𝛽1 = −0.153, 𝛽2 = 0.001, 𝛽3 = −0.012, 𝛽4 = 0.025, and 𝛽5 = −0.022.

To assess model fit, we compare the estimates from Models 1 to 4 with the IIV-weighted
nonparametric estimates following the method introduced in Zhu et al. (2018) by plotting the
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F I G U R E 4 Estimates of survivor functions S(t|A) based on time-invariant and different forms of
time-varying coefficient AH models with A= I(HLA-B27 is positive)

estimated survivor curves S(t|A) for each group in Figure 4. It is seen that Model 4 with cubic
splines for coefficients is in close agreement with the nonparametric estimate for each group
which is attributed to its flexibility. The other three models produce similar results but agree
slightly less well with the nonparametric estimate for group A= 1. We also plot Turnbull’s esti-
mates as an unadjusted method for comparison. We can see from Figure 4 that they do not differ
much from the proposed estimator except before 2 years for the positive group and after 10 years
for the negative group.

5 DISCUSSION

Irregular outcome-related visit times are common in longitudinal studies of chronic disease and
in other settings. We propose an IIV-weighted semiparametric estimation approach to analyze
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interval-censored failure time data when the assumption of independent censoring does not hold.
This approach adjusts for dependent interval censoring and allows estimation in marginal and
partly conditional failure time models, which are often of interest in clinical studies.

Modeling failure time data and longitudinal data jointly by specifying submodels for each pro-
cess and employing random effects to account for interprocess correlation is an alternative way
to handle informative visit times. As we discussed in Section 1, interpretation of estimated coef-
ficients in the model for failure time data is different in that case, and depends on unobservable
random effects. Our method, on the other hand, gives direct marginal effects of covariates in the
failure time model of interest.

We focus on situations where visits do not discontinue after failure occurs. This is the case for
the PsA study we consider, and many other examples involving nonterminal event as outcome.
The approach here can also be applied to the case where visits stop after the occurrence of failure.
Pseudo-visit times can be imputed based on the assumed visit time model, for example, (A2), or
we can discretize the time scale with a fine grid and assume visits occur at designated time points
following failure. Event status, Y i(tij), at such pseudo-visit times is obviously known, and are
still included in estimating equations such as (9) and (10) to estimate model components. More
details about this can be found in Zhu et al. (2017), where simulation studies for both terminal
and nonterminal failure time events are conducted.

In addition, we use isotonic regression to correct the kernel-smoothed estimator of non-
parametric component and obtain a monotone estimator, for example, Ŝ†

0(t; �̂�) or ĥ
†
(t; �̂�). Our

reviewers suggest that we could employ an isotonic regression intermediately between (13) and
(14) to monotonize the nonparametric estimator. We tried this in the simulation for the Cox model
in Section 3.2 and found that results are very close to those we presented in Table 3. In fact, we
plot the kernel estimator of baseline survivor and the kernel-isotonic baseline survivor estimator
for additive hazards model in Figure 1. It is seen that even for n= 100 the kernel estimate is fairly
close to the kernel-isotonic estimate, and they further merge as sample size increases. To incor-
porate monotone constraints into the profile likelihood framework is an interesting topic, but the
theoretical derivation remains an open question and we consider it as future work.

We compared our fitted models with the nonparametric estimator proposed in Zhu
et al. (2018) to evaluate model fitting for each HLA-B27 group separately in Section 4. Regarding
general strategies for model selection and evaluation, when there is a single categorical covariate
A, comparison with nonparametric estimates are viable options. Another possibility is to assess
each model’s predictive performance in terms of calibration or discrimination. For example, Wu
and Cook (2020) developed an inverse probability weighting approach to compute the area under
a receiver operating characteristic curve (ROC) for general interval-censored data. However, like
most other existing methods, they assumed that censoring is independent, so further extension
is required to apply to the case we discuss here.

Finally, we reiterate our remark in Section 1 that the IIV weighting approach requires that
visit times depend only on past observed history of visits and disease-related factors. Viola-
tions of this assumption can occur; for example, a change in a disease-related factor since the
last visit may influence when the next visit occurs. This cannot be addressed without sup-
plementary data being collected about the reasons for visits, or on outcome-related variables
between visits, though sensitivity analysis can be conducted by making unverifiable assump-
tions. In recent work, Cook and Lawless (2019) discuss situations where the conditions on visits
made here may be violated, and where visits that are related to recent disease history (termed
“disease-driven visits”) can be identified. We mention also that long periods where no visits occur
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254 ZHU et al.

before an administrative end-of-follow-up time are sometimes seen; this may be due to a person
becoming lost-to-follow-up earlier, with no date for this being recorded. There is no reliable
method for dealing with such long visit gap times unless auxiliary data that help to determine
whether there has been loss-to-follow-up can be obtained. It is recommended that longitudi-
nal studies be conducted so as to minimize such situations; this can be done by having subjects
adhere as closely as possible to scheduled visit times, so that premature losses to follow-up become
known. It is also helpful if information concerning events between visits, or the reasons for a visit,
can be collected.
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APPENDIX

A.1 Discussion about the estimation of IIV weight
To model the visit time process and estimate the IIV weight defined in (5), recurrent event models
can be considered. For example, Lin et al. (2004) and later authors used a multiplicative intensity
model based on Markov assumption

𝜆N{t|Zi(t−)} = 𝜆N0(t) exp{𝜶TZi(t−)}, (A1)

where 𝜆N0(t) is an unspecified baseline visit intensity. Parameters 𝜶 can be estimated by partial
likelihood for Cox models (Cox, 1975) and the nonparametric baseline intensity can be estimated
by the Breslow estimator (Breslow, 1974). Stabilized weights can be adopted to mitigate potential
adverse effects caused by the variability of weight estimates. In that case, the IIV weight wi(t) in (5)
is replaced by si(t)∕𝜆N{t|Zi(t−)}, where si(t) is a marginal or partly conditional visit intensity given
only time-fixed covariates in the failure time model (Lin et al., 2004; Robins & Finkelstein, 2000).

However, in many applications the visit intensity depends much more strongly on the elapsed
time since the most recent visit than on the process age t. Then, modulated renewal processes
(Cook & Lawless, 2007) defined for the gap times between consecutive visits are more plausible
in this sense. For example Zhu et al. (2017, 2018) considered a proportional hazards modulated
renewal process

𝜆N{t|Zi(t−);𝜶} = 𝜆N0{Gi(t)} exp{𝜶TZi(t−)}, (A2)

where Gi(t) = t − tiNi(t−) is the elapsed time since the most recent visit prior to t. We remark that
process age terms (e.g., t) can be included in Zi(t−) as predictors if desired.

Another modeling option is to use flexible parametric baseline intensities 𝜆N0{Gi(t);𝝆} for the
visit process. This results in estimates that automatically satisfy the positivity condition, and also
reduces the variability of estimated weights. A convenient choice is piecewise-constant intensities

𝜆N{t|Zi(t−);𝜶} =
J∑

j=1
𝜌jIj{Gi(t)} exp{𝜸TZi(t−)}, (A3)

where 𝝆 = (𝜌1, … , 𝜌J)T are unknown nonnegative constants, Ij(x)= I{x ∈ (dj− 1, dj]}, and 0 =
d0 < d1 < … < dJ = 𝜏 are the corresponding cut-points. Parameters 𝜶 = (𝝆T , 𝜸T)T can be esti-
mated by solving the likelihood score function (Cook and Lawless 2007, ch. 5))

U†
n(𝜶) =

n∑
i=1

{ mi∑
j=1

𝜕 log 𝜆i{Gi(tij)}
𝜕𝜶

−
mi+1∑
j=1

∫
Gi(tij)

0

𝜕𝜆i(s)
𝜕𝜶

ds

}
, (A4)

where we write 𝜆i{Gi(t)} ∶= 𝜆N{t|Zi(t−);𝜶} in (A3) with some abuse of notation and let timi+1 =
Ci. We adopt this approach for the estimation of visit intensity through this article.

A.2 Methodological results developed for Model (2) with time-varying coefficients
This section extends the methodology and theoretical results developed in Section 2.3 based on the
additive hazards model (2) to time-varying coefficients defined by a set of specified functions. We
let 𝜷(t) = (𝛽1(t), … , 𝛽q(t))T and assume each coefficient 𝛽𝓁(t), 𝓁 = 1, … , q, could be a constant
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258 ZHU et al.

𝛽𝓁 , a specified function of process age t such as 𝛽𝓁(t) = 𝛽𝓁e0.01t, or is represented by smooth basis
functions as we did in the analysis of the PsA data in Section 4.

We define 𝛽𝓁(t; 𝜷𝓁) = BT
d (t)𝜷𝓁 where Bd(t) = (B1(t), … ,Bd(t))T is a d-dimensional vector of

functions of t defined on [0, 𝜏] (e.g., spline basis functions with d degrees of freedom) and 𝜷𝓁 is
a d× 1 vector of unknown coefficients corresponding to the 𝓁th covariate A𝓁 . Then, the survivor
function is given by

S(t|Ai) = S0(t) exp{−AT
i (t; 𝜷)},

where (t; 𝜷) = (∫ t
0 𝛽1(u; 𝜷1)du, … , ∫ t

0 𝛽q(u; 𝜷q)du)T . It can be written as

(t; 𝜷) = [Iq×q ⊗ B
T
d (t)]𝜷 =∶ Bd(t)𝜷, (A5)

where B
T
d (t) = (∫ t

0 B1(u)du, … , ∫ t
0 Bd(u)du), 𝜷 = (𝜷T

1 , … , 𝜷T
q )T , ⊗ denotes the Kronecker prod-

uct and Iq×q is a q× q identity matrix.
Estimating equations (9) and (10) in Section 2.3 can be accordingly modified as

Ŝ0(t; 𝜷) =

∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij)Yi(tij)∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷}

, (A6)

and

Ψn{𝜷} = 1
n

n∑
i=1

mi∑
j=1

wi(tij)BT
d (tij)Ai

[
Yi(tij) − Ŝ0(tij; 𝜷) exp{−AT

i Bd(tij)𝜷}
][

1 − Ŝ0;(tij; 𝜷) exp{−AT
i Bd(tij)𝜷}

] = 0. (A7)

Then, the asymptotic distribution of �̂� in Theorem 1 can be slightly modified under similar
conditions with

V = E

[ mi∑
j=1

{
wi(tij)BT

d (tij)Ai

1 − 𝜇ij
− wi(tij)Q(tij)

}
{Yi(tij) − 𝜇ij}

]⊗2

,

D = E
⎡⎢⎢⎢⎣

mi∑
j=1

wi(tij)BT
d (tij)Ai

{
S

T
0 (tij; 𝜷0) exp{−AT

i Bd(tij)𝜷0} − 𝜇ijAT
i Bd(tij)

}
1 − 𝜇ij

⎤⎥⎥⎥⎦ ,
and

𝜇ij = S0(tij; 𝜷0) exp{−AT
i Bd(tij)𝜷0},

H(tij) = E
[
exp{−AT

i Bd(tij)𝜷0}
]
,

Q(tij) = E

[
B

T
d (tij)Ai exp{−AT

i Bd(tij)𝜷0}
1 − 𝜇ij

]
H−1(tij),

S
T
0 (tij; 𝜷0) = S0(tij)E

[
AT

i exp{−AT
i Bd(tij)𝜷0}

]
Bd(tij)H−1(tij).

In the subsequent sections, we discuss the proofs of Theorem 1 under the flexible parametrization

S(t|Ai) = S0(t) exp{−AT
i Bd(t)𝜷}.
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ZHU et al. 259

For time-fixed coefficients case (6), similar derivations can be done with Bd(t) substituted by t.

A.3 Asymptotic consistency
We first discuss the consistency of Ŝ0(t; 𝜷0) defined in (A6), where 𝜷0 is the true value of 𝜷. Then,
for any t ∈ [0, 𝜏]

Ŝ0(t; 𝜷0) − S0(t) =

∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij)
[
Yi(tij) − S0(t) exp{−AT

i Bd(tij)𝜷0}
]∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}

=

∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij)
[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}

+

∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij)
[
{S0(tij) − S0(t)} exp{−AT

i Bd(tij)𝜷0}
]∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}

=∶ (A1n + A2n), (A8)

where A1n is the asymptotical variance term; A1n is of mean zero and converges to zero uniformly
with rate

√
log(n)∕nh (Chen et al., 2018; Fan et al., 2007; Mack & Silverman, 1982).

The asymptotical bias stems from A2n. Specifically, by the literature of kernel regression and
Taylor expansion,

A2n =
S′

0(t)
∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}(tij − t)∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}

+
0.5S′′

0 (t)
∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}(tij − t)2∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}

+ op(h2)

=∶
S′

0(t)H1n(t)
Hn(t)

+
0.5S′′

0 (t)H2n(t)
Hn(t)

+ op(h2)

→ −S′
0(t)h

2
(
∫ K(u)u2du

)
E
[

AT
i
𝜕Bd(t)
𝜕t

𝜷0 exp{−AT
i Bd(t)𝜷0}

]/
E
[
exp{−AT

i Bd(t)𝜷0}
]

+ 0.5S′′
0 (t)h

2
(
∫ K(u)u2du

)
+ op(h2)

=∶ B0(t)h2 + op(h2). (A9)

The limiting values of Hn(t), H1n(t), and H2n(t) are provided in part (a) of Web-Appendix S.1.
Because Ψn(𝜷0) defined in (A7) is a sample average over n and Ŝ0(t; 𝜷0)

P
→ S0(t) uniformly as

n→∞ as discussed above, by the law of large numbers, we know that as n→∞, Ψn(𝜷0) converges
to

∫
𝜏

0
E

{
wi(u)BT

d (u)Ai
[
Yi(u) − S0(u) exp{−AT

i Bd(u)𝜷0}
][

1 − S0(u) exp{−AT
i Bd(u)𝜷0}

] dN∗
i (u)

}

= ∫
𝜏

0
E

{
wi(u)BT

d (u)Ai
[
Yi(u) − S0(u) exp{−AT

i Bd(u)𝜷0}
][

1 − S0(u) exp{−AT
i Bd(u)𝜷0}

] E{dN∗
i (u)|Hi(u−),Yi(u)}

}
.
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260 ZHU et al.

By assumption (4), the above equation equals

∫
𝜏

0
E

{
wi(u)BT

d (u)Ai
[
Yi(u) − S0(u) exp{−AT

i Bd(u)𝜷0}
][

1 − S0(u) exp{−AT
i Bd(u)𝜷0}

] Ci(u)𝜆N{u|Zi(u−)}du

}

= ∫
𝜏

0
E

{
wi(u)BT

d (u)Ai
[
Yi(u) − S0(u) exp{−AT

i Bd(u)𝜷0}
][

1 − S0(u) exp{−AT
i Bd(u)𝜷0}

] Ci(u)
1

wi(u)
du

}

= ∫
𝜏

0
E

{
B

T
d (u)Ai

[
E{Yi(u)|Ai,Ci(u)} − S0(u) exp{−AT

i Bd(u)𝜷0}
][

1 − S0(u) exp{−AT
i Bd(u)𝜷0}

] Ci(u)du

}

= ∫
𝜏

0
E

{
B

T
d (u)Ai

[
S0(u) exp{−AT

i Bd(u)𝜷0} − S0(u) exp{−AT
i Bd(u)𝜷0}

][
1 − S0(u) exp{−AT

i Bd(u)𝜷0}
] Ci(u)du

}
= 0.

Here, we assume the random drop-out time process Ci(t) is independent of the outcome process
Y i(t) and auxiliary prognostic processes given Ai for simplicity. However, if Ci is observable or
can be approximated, this can be relaxed by involving an inverse-probability-of-censoring weight
based on an additional sequential ignorability assumption for drop-out times. In the following,
for the simplicity of derivation, we consider the case without random censoring, that is, dN∗

i (t) =
dNi(t) and Ci(t)= 1, for all i and all t ≥ 0.

It has been shown that Ψn(𝜷0)
P
→ 0. Because �̂� is the solution of Ψn(𝜷) = 0, then we have

�̂�
P
→ 𝜷0, as n→∞.

A.4 Asymptotic distribution and variance estimation of 𝜷
We expand Ψn(�̂�) around 𝜷0 by Taylor series, and then get

0 = Ψn(𝜷0) + Ψ′
n(𝜷0)(�̂� − 𝜷0) + (1∕2)(�̂� − 𝜷0)Ψ′′

n (�̃�)(�̂� − 𝜷0)T ,

where �̃� is a point between �̂� and 𝜷0; Ψ′
n(𝜷) and Ψ′′

n (𝜷) respectively denote the first and second
derivative of Ψn w.r.t. 𝜷, and we assume that they both have finite expectations for any 𝜷. Then,
Ψ′

n(𝜷) = Op(1) and Ψ′′
n (𝜷) = Op(1) for all 𝜷 by the law of large numbers, because they are both

written as sample averages. Then,√
n(�̂� − 𝜷0) =

{
−Ψ′

n(𝜷0)
}−1

{√
nΨn(𝜷0)

}
+ op(1). (A10)

First, we write
√

nΨn{𝜷0} as

√
nΨn{𝜷0} = 1√

n

n∑
i=1

mi∑
j=1

wi(tij)BT
d (tij)Ai

[
Yi(tij) − Ŝ0(tij) exp{−AT

i Bd(tij)𝜷0}
]

1 − Ŝ0(tij) exp{−AT
i Bd(tij)𝜷0}

= 1√
n

n∑
i=1

mi∑
j=1

wi(tij)BT
d (tij)Ai

[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]

1 − S0(tij) exp{−AT
i Bd(tij)𝜷0}

− 1√
n

n∑
i=1

mi∑
j=1

wi(tij)BT
d (tij)Ai

{
Ŝ0(tij) − S0(tij)

}
exp{−AT

i Bd(tij)𝜷0}

1 − S0(tij) exp{−AT
i Bd(tij)𝜷0}

+ op(1)
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ZHU et al. 261

=∶ C1n − C2n + op(1).

Define

b(𝜷0) = E

{ mi∑
j=1

wi(tij)BT
d (tij)AiB0(tij) exp{−AT

i Bd(tij)𝜷0}

1 − S0(tij) exp{−AT
i Bd(tij)𝜷0}

}
, (A11)

where B0(tij) is defined in (A9) for t = tij. By (A8), we have

C2n −
√

nb(𝜷0)h2 = 1√
n

n∑
i=1

mi∑
j=1

wi(tij)BT
d (tij)Ai exp{−AT

i Bd(tij)𝜷0}

nHn(tij)
[
1 − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]

×
n∑

i1=1

mi1∑
j1=1

Kh(tij − ti1j1)wi(ti1j1)
{

Yi(ti1j1) − 𝜇i1j1

}
+ op(1),

where

Hn(tij) =
1
n

n∑
i1=1

mi1∑
j1=1

Kh(tij − ti1j1)wi(ti1j1) exp{−AT
i Bd(ti1j1)𝜷0},

𝜇i1j1 = S0(ti1j1) exp{−AT
i Bd(ti1j1)𝜷0}.

Switching the order of summations, we then get

C2n −
√

nb(𝜷0)h2 = 1√
n

n∑
i1=1

mi1∑
j1=1

wi(ti1j1)Qn(ti1j1)
{

Yi(ti1j1) − 𝜇i1j1

}
+ op(1),

where

Qn(ti1j1) =
1
n

n∑
i=1

mi∑
j=1

Kh(tij − ti1j1)wi(tij)BT
d (tij)Ai exp{−AT

i Bd(tij)𝜷0}

Hn(tij)
[
1 − S0(tij) exp{−AT

i Bd(tij)𝜷0}
] .

Thus,

√
nΨn(𝜷0) +

√
nb(𝜷0)h2 = 1√

n

n∑
i=1

mi∑
j=1

{
wi(tij)BT

d (tij)Ai

1 − 𝜇ij
− wi(tij)Qn(tij)

}
{Yi(tij) − 𝜇ij} + op(1).

Second, −Ψ′
n(𝜷0) in (A10) can be written as

−Ψ′
n(𝜷0) =

1
n

n∑
i=1

mi∑
j=1

wi(tij)BT
d (tij)Ai exp{−AT

i Bd(tij)𝜷0}
[
𝜕Ŝ0(tij; 𝜷0)∕𝜕𝜷T

0 − Ŝ0(tij; 𝜷0)AT
i Bd(tij)

]
1 − Ŝ0(tij; 𝜷0) exp{−AT

i Bd(tij)𝜷0}

+ op(1).

Applying the law of large numbers, as n→∞, we have −Ψ′
n(𝜷0) converge to
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262 ZHU et al.

D = E
⎧⎪⎨⎪⎩

mi∑
j=1

wi(tij)BT
d (tij)Ai

[
S

T
0 (tij; 𝜷0) exp{−AT

i Bd(tij)𝜷0} − S0(tij) exp{−AT
i Bd(tij)𝜷0}AT

i Bd(tij)
]

1 − S0(tij) exp{−AT
i Bd(tij)𝜷0}

⎫⎪⎬⎪⎭ ,
where S

T
0 (t; 𝜷0) is given in the part (b) of Web-Appendix S.1.

Based on (A10) and following the central limit theorem and Slutsky’s theorem, we have

√
n(�̂� − 𝜷0 + D−1b(𝜷0)h2)

D
→ N(0,D−1VD−1),

where we assume that D is nonsingular and

V = E

[ mi∑
j=1

{
wi(tij)BT

d (tij)Ai

1 − 𝜇ij
− wi(tij)Q(tij)

}
{Yi(tij) − 𝜇ij}

]⊗2

,

where Q(t) is the limit value of Qn(t) which is provided in the part (a) of Web-Appendix S.1.
Assuming nh4 → 0 when n→∞, we have the asymptotic distribution as stated in Theorem 1.

Now, we discuss how to estimate the variance of �̂�. Components in V̂ar(�̂�) = (1∕n)D̂−1
n V̂ nD̂−1

n
are estimated by

D̂n = 1
n

n∑
i=1

mi∑
j=1

wi(tij)BT
d (tij)Ai

[
̂S

T
0 (tij; �̂�) exp{−AT

i Bd(tij)�̂�} − �̂�ijAT
i Bd(tij)

]
1 − �̂�ij

,

V̂ n = 1
n

n∑
i=1

[ mi∑
j=1

{
wi(tij)BT

d (tij)Ai

1 − �̂�ij
− wi(tij)Q̂n(tij)

}
{Yi(tij) − �̂�ij}

]⊗2

,

where

Q̂n(t) =
1
n

n∑
i=1

B
T
d (t)Ai exp{−AT

i Bd(t)�̂�}
1 − �̂�(t)

Ĥ−1
n (t),

Ĥn(t) =
1
n

n∑
i=1

exp{−AT
i Bd(t)�̂�},

̂S
T
0 (t; �̂�) =

Ŝ0(t; �̂�)
∑n

i=1
[
AT

i exp{−AT
i Bd(t)�̂�}

]
Bd(t)∑n

i=1
[
exp{−AT

i Bd(t)�̂�}
] ,

�̂�(t) = Ŝ0(t; �̂�) exp{−AT
i Bd(t)�̂�} and �̂�ij = �̂�(tij).

A.5 Asymptotic distribution of Ŝ0(t; �̂�)
Similar to (A8) and (A9) in Appendix A.3, given �̂� is the solution of Ψn(𝜷) = 0 from (A7), that is,
Ψn(�̂�) = 0, it can be shown that

Ŝ0(t; �̂�) − S0(t) = (A1n + A2n)(1 + op(1)),

 14679469, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12511 by E

ast C
hina N

orm
al U

niversity, W
iley O

nline L
ibrary on [13/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHU et al. 263

and

A2n = B0(t)h2 + op(h2),

is the asymptotic bias term. We then discuss the asymptotic normality of A1n:

A1n =

∑n
i=1
∑mi

j=1 Kh(t − tij)wi(tij)
[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]∑n

i=1
∑mi

j=1 Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0}

.

Recall that

Hn(t) =
1
n

n∑
i=1

mi∑
j=1

Kh(t − tij)wi(tij) exp{−AT
i Bd(tij)𝜷0},

and it is shown in part (a) in Web-Appendix S.1 that, as n→∞, we have Hn(t) converges to

H(t) = E
[
exp{−AT

i Bd(t)𝜷0}
]
.

We now investigate the asymptotic normality of

Jn(t) ∶=
1
n

n∑
i=1

mi∑
j=1

Kh(t − tij)wi(tij)
[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]
.

It is easily seen that E{Jn(t)}= 0. Thus, we next calculate Var{Jn(t)}.

Var{Jn(t)} = 1
n2

n∑
i=1

Var

{ mi∑
j=1

Kh(t − tij)wi(tij)
[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]}

= 1
n2

n∑
i=1

E

{ mi∑
j=1

Kh(t − tij)wi(tij)
[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]}2

= 1
n2

n∑
i=1

mi∑
j=1

E
{

Kh(t − tij)wi(tij)
[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]}2(1 + o(1))

= 1
n2

n∑
i=1

mi∑
j=1

E
{

K2
h(t − tij)w2

i (tij)
[
Yi(tij) − S0(tij) exp{−AT

i Bd(tij)𝜷0}
]2} (1 + o(1))

= 1
n2

n∑
i=1

∫
𝜏

0
K2

h(t − s)E
{

w2
i (s)[Yi(s) − S0(s) exp{−AT

i Bd(s)𝜷0}]2dNi(s)
}
(1 + op(1))

= 1
n ∫

𝜏

0
K2

h(t − s)E
{

wi(s)[Yi(s) − S0(s) exp{−AT
i Bd(s)𝜷0}]2} ds(1 + op(1))

= 1
nhn ∫ K2(u)E

{
wi(t − uh)[Yi(t − uh) − S0(t − uh) exp{−AT

i Bd(t − uh)𝜷0}]2} du

(1 + op(1))

= 1
nhn

(
∫ K2(u)

[
E
{

wi(t)[Yi(t) − S0(t) exp{−AT
i Bd(t)𝜷0}]2} + O(h)u

]
du
)
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(1 + op(1))

= 1
nhn

(
E

{
[Yi(t) − S0(t) exp{−AT

i Bd(t)𝜷0}]2

𝜆N{t|Zi(t−)}

}
∫ K2(u)du + O(h)∫ K2(u)udu

)
(1 + op(1))

=∶ P(t)
nhn

(1 + op(t)),

where P(t) ∶= E
{

[Yi(t)−S0(t) exp{−AT
i Bd(t)𝜷0}]2

𝜆N{t|Zi(t−)}

}{∫ K2(u)du
}

. Note that ∫ K2(u)udu = 0 and it is
assumed in condition 3 that ∫ K2(u)du < ∞.

It follows from Lyapunov central limit theorem that√
nhnJn(t)

D
→ N(0,P(t)),

provided that supt∈[0,𝜏] E||Yi(t) − S0(t) exp{−AT
i Bd(t)𝜷0}||3 < ∞ and other conditions stated in

Theorem 1 are satisfied. Then, by Slutsky’s theorem we have the asymptotic normality of Ŝ0(t) as√
nhn{Ŝ0(t) − S0(t)}

D
→ N(0,H(t)−2P(t)), as n → ∞.
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