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ABSTRACT

Pretrained Language Models (PLMs) such as BERT and its variants have achieved
remarkable success in natural language processing. To date, the interpretability of
PLMs has primarily relied on the attention weights in their self-attention layers.
However, these attention weights only provide word-level interpretations, failing
to capture higher-level structures, and are therefore lacking in readability and
intuitiveness. In this paper, we propose a hierarchical Bayesian deep learning
model, dubbed continuous latent Dirichlet allocation (CLDA), to go beyond word-
level interpretations and provide concept-level interpretations. Our CLDA is
compatible with any attention-based PLMs and can work as either (1) an interpreter
which interprets model predictions at the concept level without any performance
sacrifice or (2) a regulator which is jointly trained with PLMs during finetuning to
further improve performance. Experimental results on various benchmark datasets
show that our approach can successfully provide conceptual interpretation and
performance improvement for state-of-the-art PLMs.

1 INTRODUCTION

Pretrained language models (PLMs) such as BERT Devlin et al. (2018) and its variants Lan et al.
(2019); Liu et al. (2019); He et al. (2021) have achieved remarkable success in natural language
processing. These PLMs are usually large attention-based neural networks that follow a pretrain-
finetune paradigm, where models are first pretrained on large datasets and then finetuned for a specific
task. As with any machine learning models, interpretability in PLMs has always been a desideratum,
especially in decision-critical applications (e.g., healthcare).

To date, the interpretability of PLMs has primarily relied on the attention weights in their self-
attention layers. However, these attention weights only provide raw word-level importance scores as
interpretations. Such low-level interpretations fail to capture higher-level semantic structures, and are
therefore lacking in readability, intuitiveness and stability. For example, low-level interpretations
often fail to capture influence of similar words to predictions, leading to unstable or even unreasonable
explanations (see Sec. 4.2 for details).

In this paper, we make an attempt to go beyond word-level attention and interpret PLM predictions at
the concept (topic) level. Such higher-level semantic interpretations are complementary to word-level
importance scores and tend to more readable and intuitive. The core of our idea is to treat a PLM’s
contextual word embeddings (and their corresponding attention weights) as observed variables and
build a probabilistic generative model to automatically infer the higher-level semantic structures (e.g.,
concepts or topics) from these embeddings and attention weights, thereby interpreting the PLM’s
predictions at the concept level.

Specifically, we propose a class of hierarchical Bayesian deep learning models, dubbed continuous
latent Dirichlet allocation (CLDA), to (1) discover concepts (topics) from contextual word embeddings
and attention weights in PLMs and (2) interpret individual model predictions using these concepts. It
is worth noting that CLDA is ‘continuous’ because it treats attention weights as continuous-value
word counts and models contextual word embeddings with continuous-value entries; this is in stark
contrast to typical latent Dirichlet allocation Blei et al. (2003) that can only handle bag-of-words (both
words and word counts are discrete values). Our CLDA is compatible with any attention-based PLMs
and can work as either an interpreter, which interprets model predictions at the concept level without
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any performance sacrifice, or a regulator, which is jointly trained with PLMs during finetuning to
further improve performance. Our contributions are as follows:

• We propose a novel class of models, CLDA, to go beyond word-level interpretations and in-
terpret PLM predictions at the concept level, thereby improving readability and intuitiveness.

• Our CLDA is compatible with any attention-based PLMs and can work as either an inter-
preter, which interprets model predictions without performance sacrifice, or a regulator,
which is jointly trained with PLMs during finetuning to further improve performance.

• We provide empirical results across various benchmark datasets which show that CLDA
can successfully interpret predictions from various PLM variants at the concept level and
improve PLMs’ performance when working as a regulator.

2 RELATED WORK

Pretrained Language Models. Pretrained language models are large attention-based neural networks
that follow a pretrain-finetune paradigm. Usually they are first pretrained on large datasets in a self-
supervised manner and then finetuned for a specific downstream task. BERT Devlin et al. (2018)
is a pioneering PLM that has shown impressive performance across multifple downstream tasks.
Following BERT, there have been variants, such as Albert Lan et al. (2019), DistilBERT Sanh et al.
(2019), and Tinybert Jiao et al. (2019), that achieve performance comparable to BERT with fewer
parameters. Other variants such as RoBERTa Liu et al. (2019) and BART Lewis et al. (2019) improve
the performance using more sophisticated training schemes for the masked language modeling
learning objective. More recently, there have also been BERT variants that design different self-
supervised learning objectives to achieve better performance; examples include DeBERTa He et al.
(2021), Electra Clark et al. (2020), and XLNet Yang et al. (2019). While these PLMs naturally provide
attention weights for each word to intepret model predictions, such low-level interpretations fail to
capture higher-level semantic structures, and are therefore lacking in readability and intuitiveness. In
contrast, our CLDA goes beyond word-level attention and interpret PLM predictions at the concept
(topic) level. These higher-level semantic interpretations are complementary to word-level importance
scores and tend to more readable and intuitive.

Topic Models. Our work is also related to topic models Blei (2012); Blei et al. (2003), which
typically build upon latent Dirichlet allocation (LDA) Blei et al. (2003). Topic models takes the
(discrete) bag-of-words representations of the documents (i.e., vocabulary-length vectors that count
word occurrences) as input, discover hidden topics from them during training, and infer the topic
proportion vector for each document during inference Blei et al. (2003); Blei & Lafferty (2006);
Wang et al. (2012); Chang & Blei (2009). Besides these ‘shallow’ topic models, there has been recent
work that employs ‘deep’ neural networks to learn topic models more efficiently Card et al. (2017);
Xing et al. (2017); Peinelt et al. (2020), using techniques such as amortized variational inference.
There is also work that improves upon traditional topic models by either leveraging word similarity as
a regularizer for topic-word distributions Das et al. (2015); Batmanghelich et al. (2016) or including
word embeddings into the generative process Hu et al. (2012); Dieng et al. (2020); Bunk & Krestel
(2018). Here we note several key differences between our CLDA and the methods above. (1) These
methods focus on learning topic models from scratch given a collection of raw documents, while our
CLDA learns topic models directly from the latent representations inside PLMs. (2) They assume
word representations are static (i.e., the representation of a word remains the same across different
documents), while PLMs’ word representations are contextual (i.e., the representation of a word
varies across different documents according to context). In contrast, our CLDA does not have such
an assumption. (3) They assume word counts are discrete numbers, which is not applicable to PLMs
where each word has a continuous-valued (or real-valued) word count (i.e., its attention weight). In
contrast, our CLDA naturally handles continuous-valued word counts from PLMs in a differentiable
manner to enable end-to-end training. Therefore these prior methods are not applicable to PLMs.

3 METHODS

In this section, we formalize the problem of conceptual interpretation of PLMs, and describe our
methods for addressing this problem.
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Problem Setting and Notation. We consider a corpus of M documents, where the m’th document
contains Lm words, and a PLM f(Dm), which takes as input the document m (denoted as Dm)
with Lm words and outputs (1) a CLS embedding cm ∈ Rd, (2) Lm contextual word embeddings
em ≜ [emj ]

Lm
j=1, and (3) the attention weights a(h)m ≜ [a

(h)
mj ]

Lm
j=1 between each word and the last-layer

CLS token, where h denotes the h’th attention head. We denote the average attention weight over
H heads as amj =

1
H

∑H
h=1 a

(h)
mj and correspondingly am ≜ [amj ]

Lm
j=1 (see the PLM at the bottom

of Fig. 1). In PLMs, these last-layer CLS embeddings are used as document-level representations
for downstream tasks (e.g., document classification). Furthermore, our CLDA assumes K concepts
(topics) for the corpus. For document m, our CLDA interpreter tries to infer a concept distribution
vector θm ∈ RK (also known as the topic proportion in topic models) for the whole document and a
concept distribution vector ϕmj = [ϕmji]

K
i=1 ∈ RK for word j in document m. In our continuous

embedding space, the i’th concept is represented by a Gaussian distribution,N (µi,Σi), of contextual
word embeddings. The goal is to interpret PLMs’ predictions at the concept level using the inferred
document-level concept vector θm, word-level concept vector ϕmj , and the learned embedding
distributions {N (µi,Σi)}Ki=1 for each concept (see Sec. 4.2 for more detailed descriptions and
visualizations).

3.1 CONTINUOUS LATENT DIRICHLET ALLOCATION
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Figure 1: Overview of our CLDA framework.

Method Overview. Different from static word
embeddings Mikolov et al. (2013) and topic
models, PLMs produce contextual word embed-
dings with continuous-value entries [emj ]

Lm
j=1

and more importantly, associate each word
embedding with a continuous-value attention
weight [amj ]

Lm
j=1; therefore this brings unique

challenges.

To effectively discover latent concept structures
learned by PLMs at the dataset level and inter-
pret PLM predictions at the data-instance level,
our CLDA treats both the contextual word em-
beddings and their associated attention weights
as observations to learn a probabilistic gener-
ative model of these observations, as shown
in Fig. 1. The key idea is to use the attention
weights from PLMs to compute a virtual continuous count for each word, and model the contextual
word embedding distributions with Gaussian mixtures. The generative process of CLDA is as follows
(we mark key differences from LDA in blue and show the corresponding graphical model in Fig. 2):

1. For each document m, 1 ≤ m ≤M ,

(a) Draw the document-level concept distribution vector θm ∼ Dirichlet(α)

(b) For each word j, 1 ≤ j ≤ Lm,
i. Draw the word-level concept index zmj ∼ Categorical(θm)

ii. With a continuous word count wmj ∈ R from the PLM’s attention weights,
A. Draw the contextual word embedding of the PLM from the corresponding

Gaussian component emj ∼ N (µzmj
,Σzmj

)

Given the generative process above, discovery of latent concept structures in PLMs at the dataset
level boils down to learning the parameters {µi,Σi}Ki=1 for the K concepts. Intuitively the global
parameters {µi,Σi}Ki=1 are shared across different documents, and they define a mixture of K
Gaussian distributions. Each Gaussian distribution describes a ‘cluster’ of words and their contextual
word embeddings.

Similarly interpretations of PLM predictions at the data-instance level is equivalent to inferring the
latent variables, i.e., document-level concept distribution vectors θm and word-level concept indices
zmj . Below we highlight several important aspects of our CLDA designs.
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Attention Weights as Continuous Word Counts. Different from typical topic models Blei et al.
(2003); Blei (2012) and word embeddings Mikolov et al. (2013) that can only handle discrete word
counts, our CLDA can handle continuous (virtual) word counts; this better aligns with continuous
attention weights in PLMs. Specifically, we denote as wmj the continuous word count for the j’th
word in document m. We explore three schemes of computing wmj :

• Identical Weights: Use identical weights for different words, i.e., wmj = 1,∀m, j. This is
equivalent to typical discrete word counts.

• Attention-Based Weights with Fixed Length: Use wmj = L′amj , where L′ is a fixed
sequence length shared across all documents.

• Attention-Based Weights with Variable Length: Use wmj = Lmamj/
∑Lm

k=1 amk, where
Lm is true sequence length without padding. Note that in practice,

∑Lm

i=1 amk ̸= 1 due to
padding tokens in PLMs.

𝜶 𝜽𝒎 𝑧mj 𝒆𝒎𝒋

M
Lm

𝑤#$

𝝁% 𝚺%
K

BERT

Figure 2: Graphical model of our CLDA.
The striped circle represents continuous
word counts.

Theoretical Analysis Comparing Different Schemes.
We provide theoretical analysis in the Appendix show-
ing the advantages of attention-based schemes against the
identical scheme.

Differential Word Counts as Variables. As discussed
above, CLDA use attention weights [amj ]

Lm
j=1 to compute

virtual word counts [wmj ]
Lm
j=1 in our contextual topic mod-

els, making them continuous and differentiable. Therefore,
the gradients of CLDA’s learning objectives (as discussed
in Sec. 3.2) w.r.t. the attention weights can backprop
through the large neural PLM during joint training. This
makes it possible for CLDA to work as a PLM regulator (or regularizer) to further improving the
PLM’s performance via such joint training. Alternatively, we could also choose not to backprop the
CLDA’s learning objective through the PLM; this way, CLDA can work as a PLM interpreter without
affecting the PLM’s accuracy (more details in Sec. 3.3).

Contextual Continuous Word Representations. Note that different from topic models Blei et al.
(2003) and typical word embeddings Mikolov et al. (2013); Dieng et al. (2020) where word represen-
tations are static, word representations in PLMs are contextual; specifically, the same word can have
different embeddings in different documents (contexts). For example, the word ‘soft’ can appear
as the j1’th word in document m1 and as the j2’th word in document m2, and therefore have two
different embeddings (i.e., em1j1 ̸= em2j2 ).

Correspondingly, in our CLDA, we do not constrain the same word to have a static embedding;
instead we assume that a word embedding is drawn from a Gaussian distribution corresponding to
its latent topic. It is also worth noting that word representations in CLDA is continuous, which is
different from typical topic models Blei et al. (2003) based on (discrete) bag-of-words representations.

3.2 INFERENCE AND LEARNING

Below we discuss the inference and learning procedure for CLDA. We start by introducing the
inference of document-level and word-level concepts (i.e., zmj and θm) given the global concept
parameters (i.e., {(µi,Σi)}Ki=1), and then introduce the learning of these global concept parameters.

3.2.1 INFERENCE

Inferring Document-Level and Word-Level Concepts. We formulate the problem of interpret-
ing PLM predictions at the concept level as inferring document-level and word-level concepts.
Specifically, given global concept parameters {(µi,Σi)}Ki=1, the contextual word embeddings
em ≜ [emj ]

Lm
j=1, and the associated attention weights am ≜ [amj ]

Lm
j=1, a PLM produces for each

document m, our CLDA infers the posterior distribution of the document-level concept vector θm,
i.e., p(θm|em,am, {(µi,Σi)}Ki=1), and the posterior distribution of the word-level concept index
zmj , i.e., p(zmj |em,am, {(µi,Σi)}Ki=1).

Variational Distributions. These posterior distributions are intractable; we therefore resort to
variational inference Jordan et al. (1998); Blei et al. (2003) and use variational distributions q(θm|γm)
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and q(zmj |ϕmj) to approximate them. Here γm ∈ RK and ϕmj ≜ [ϕmji]
K
i=1 ∈ RK are variational

parameters to be estimated during inference. This leads to the following joint variational distribution:

q(θm, {zmj}Lm
j=1|γm, {ϕmj}

Lm
j=1) = q(θm|γm) ·

∏Lm

j=1
q(zmj |ϕmj) (1)

Evidence Lower Bound. For each document m, finding the optimal variational distributions is then
equivalent to maximizing the following evidence lower bound (ELBO):

L(γm, {ϕmj}
Lm
j=1;α, {(µi,Σi)}Ki=1) = Eq[log p(θm|α)] +

∑Lm

j=1
Eq[log p(zmj |θm)]

+
∑Lm

j=1
Eq[log p(emj |zmj ,µzmj

,Σzmj )]− Eq[log q(θm)]−
∑Lm

j=1
Eq[log q(zmj)], (2)

where the expectation is taken over the joint variational distribution in Eqn. 1.

Likelihood with Continuous Word Counts. One key difference between CLDA and typical topic
models Blei et al. (2003); Blei (2012) is the virtual continuous word counts (discussed in Sec. 3.1).
Specifically, we define the likelihood in the third term of Eqn. 2 as:

p(emj |zmj ,µzmj
,Σzmj ) = [N (emj ;µmj ,Σmj)]

wmj . (3)
Note that Eqn. 3 is the likelihood of wmj (virtual) words, where wmj can be a continuous value
derived from the PLM’s attention weights (details in Sec. 3.1).

Correspondingly, in the third item of Eqn. 2, we have:

Eq[log p(emj |zmj ,µzmj
,Σzmj )] =

∑
m,j,i

ϕmjiwmj logN (emj |µi,Σi)

=
∑

m,j,i
ϕmjiwmj{− 1

2 (emj − µi)
TΣ−1

i (emj − µi)− log[(2π)d/2|Σi|1/2]} (4)

Update Rules. Taking the derivative of the ELBO in Eqn. 2 w.r.t. ϕmji (see the Appendix for details)
and setting it to 0 yields the update rule for ϕmji:

ϕmji ∝ wmj

|Σi|1/2
exp[Ψ(γmi)−Ψ(

∑
i′
γmi′)− 1

2 (emj − µi)
TΣ−1

i (emj − µi)] (5)

with the normalization constraint
∑K

i=1 ϕmji = 1.

γmi = αi +
∑

j
ϕmjiwmj , (6)

where α ≜ [αi]
K
i=1 is the hyperparameter for the Dirichlet prior distribution of θm. In summary, the

inference algorithm will alternate between updating ϕmji for all (m, j, i) tuples and updating γmi
for all (m, i) tuples.

3.2.2 LEARNING

Learning Dataset-Level Concept Parameters. The inference algorithm in Sec. 3.2.1 assumes
availability of the dataset-level (global) concept parameters {(µi,Σi)}Ki=1. To learn such these
parameters, one needs to iterate between (1) inferring document-level variational parameters γm as
well as word-level variational parameters ϕmj in Sec. 3.2.1 and (2) learning dataset-level concept
parameters {(µi,Σi)}Ki=1.

Update Rules. Similar to Sec. 3.2.1, we expand the ELBO in Eqn. 2 (see the Appendix for details),
take its derivative w.r.t. µi, set it to 0, yielding the update rule for learning µi:

µi =
∑

m,j ϕmjiwmjemj∑
m,j ϕmjiwmj

, (7)

Similarly, setting the derivatives w.r.t. Σ to 0, we have

Σi =
∑

m,j ϕmjiwmj(emj−µi)(emj−µi)
T∑

m,j ϕmjiwmj
. (8)

Effect of Attention Weights. From Eqn. 7 and Eqn. 8, we can observe that the attention weight of
the j’th word in document m, i.e., amj , affects the virtual continuous word count wmj (see Sec. 3.1),
thereby affecting the update of the dataset-level concept center and covariance µi and Σi.
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Figure 3: Probabilistic graphical model
of our smoothed CLDA.

Specifically, if we use attention-based weights with fixed
length or variable length in Sec. 3.1, the continuous word
count wmj will be proportional to the attention weight
amj . Therefore, when updating the concept center µi as
a weighted average of different word embeddings emj ,
CLDA naturally places more focus on words with higher
attention weights amj from PLMs, consequently making
the interpretations sharper and improving performance
(see Sec. 4.2 for detailed results and the Appendix for
theoretical analysis).

Interestingly, we also observe that PLMs’ attention
weights on stop words such as ‘the’ and ‘a’ tend to be
much lower; therefore CLDA can naturally ignore these
concept-irrelevant stop words when learning and inferring concepts (topics). This is in contrast to
typical topic models Blei et al. (2003); Blei (2012) that require preprocessing to remove stop words.

Smoothing with Prior Distributions on {(µi,Σi)}Ki=1. To alleviate overfitting and prevent singu-
larity in numerical computation, we impose priors distributions on µi and Σi to smooth the learning
process (Fig. 3). Specifcally, we use a Normal-Inverse-Wishart prior on µi and Σi as follows:

Σi ∼ IW(Λ0, ν0), µi|Σi ∼ N (µ0,Σk/κ0),

where Λ0, ν0, µ0, and κ0 are hyperparameters for the prior distributions. With the prior distribution
above, the update rules for µi and Σi become:

µi =
k0µ0+nµ̃i

k0+n
, Σi =

Λ0+Si+
κ0n
k0+n

(µ̃i−µ0)(µ̃i−µ0)
T

ν0+n−K−1
, (9)

Si =
∑

m,j
ϕmjiwmj(emj − µ̃i)(emj − µ̃i)

T , (10)

where n =
∑

m,j ϕmjiwmj is the total virtual word counts used to estimate µi and Σi. Eqn. 9 is the
smoothed version of Eqn. 7 and Eqn. 8, respectively. From the Bayesian perfective, they correspond
to the expectations of µi’s and Σi’s posterior distributions (see the Appendix for detailed derivation).

Online Learning of µi and Σi. PLMs are deep neural networks trained using minibatches of data,
while Eqn. 7 and Eqn. 8 need to go through the whole dataset before each update. We therefore use
exponential moving average (EMA) to work with minibatchs (see the Appendix for details).

3.3 CLDA AS PLM INTERPRETERS AND REGULATORS

CLDA can be used as either a PLM interpreter, which interprets model predictions at the concept
level without any performance sacrifice, or a PLM regulator, which is jointly trained with PLMs
during finetuning to further improve performance. This is possible because both the word counts and
contextual word embeddings in CLDA is continuous and differentiable. Below we start with more
details on the differentiability and then introduce our CLDA interpreter and CLDA regulator.

Algorithm 1 Algorithm for CLDA Regulators (w/o EMA)
Input: Pretrained fae(·) and fc(·), initialized g(·), initialized {γm}Mm=1, {Φ}Mm=1, and {Ω}Mm=1,
documents {D}Mm=1, number of epochs T.
for t = 1 : T do

for m = 1 : M do
Update Φm and γm using Eqn. 5 and Eqn. 6, respectively.
Update fae(·), fc(·), and g(·) using Eqn. 11.

Update Ω using Eqn. 9.

Differentiable Continuous Word Counts and Contextual Word Embeddings. One of CLDA’s
advantage is that it handle continuous word counts and word embeddings. Such continuity translates
to better differentability, and therefore is particularly desirable when ones wants to jointly train CLDA
and a PLM to further improve PLM performance.

As shown in Fig. 2, CLDA connects to a PLM through the attention weights amj (related to the
word counts wmj) and contextual word embeddings emj . Therefore, if the CLDA learning objective

6



Under review as a conference paper at ICLR 2023

Dimensionality Reduction of Embeddings with Topics
He playfully chided the Senate’s little
bitty tax relief plan. [SEP] We don’t
need a little bitty tax relief plan.

Concept (Topic) 24: capital,
Congress, John, Clinton, Senate, gov,
fort, secretary

Concept (Topic) 20: delegation, prep,
speaker, suspect, mono, seat, police,
house, right, chair, oversee, ask

Document Topic: 24    Prediction: True

“Close cooperation between law 
enforcement agencies and 
intelligence services lie at the heart 
of the ongoing fight against terrorism,” 
Mr. Howard said. [SEP] Close 
cooperation between regional law 
enforcement agencies and 
intelligence services was at the heart

Concept (Topic) 27: Margaret, Mary,
lieu, Scott, Sue, Congress, Shelley

Concept (Topic) 83: your, replace,
county, hill,

Document Topic: 83   Prediction: True

Green tea consumption is associated with 
decreased risk of breast , pancreatic , colon , 
oesophageal , and lung cancers in humans . 
[SEP] Tea protects from some diseases . 

Concept (Topic) 91: physiology, chemical, 
insulin, diabetes, fry, weigh
Document Topic: 91    Prediction: False

The united states told Polish leaders it wants 
to open formal negotiations on the possibility 
of locating ground-based interceptor missiles 
in their country as part of a larger missile 
defense system [SEP] United states wants 
to enlarge their missile defense system.

Concept (Topic) 13: Prussia, Hell, Salzburg, 
Magnet, Juan, Berlin, Raleigh, hood, 
Hanover, shopping, Hui, Torino
Document Topic: 13    Prediction: True

It said it carried out both the Taba and 
Sharm El - Sheikh attacks in obedience to 
the leaders of Jihad [SEP] Sheikh Osama 
Bin Laden and Sheikh Ayman Al - Zawahri
are the leaders of Al Qaeda .

Concept (Topic) 67: Quran, shah, Pasha, 
Shiva, mir, Kuwait, mosque, Iran 
Document Topic: 67 Prediction: False

Dimensionality Reduction of Embeddings with Topics
MRPC RTE

Figure 4: Visualization of CLDA’s learned topics of contextual word embeddings. Left: MRPC’s
dataset-level interpretation with two example documents. Concept 83 is relatively far from the other
three concepts in the embedding space; therefore we omit it on the left panel for better readability.
Right: RTE’s dataset-level interpretation with three example documents.

(Eqn. 2) differentiable w.r.t. amj and emj , these gradients can then be propagated to the PLM
parameters and help finetune the PLM. The derivative of the ELBO in Eqn. 2 w.r.t. emj is: ∂L

∂emj
=∑

i ϕmjiwmjΣ
−1
i (µi − emj). Similarly we can get the derivative w.r.t. amj using the chain rule,

where ∂wmj

∂amj
depends on the choice of schemes for computing wmj from amj (described inSec. 3.1),

and ∂L
∂wmj

is: ∂L
∂wmj

=
∑

i ϕmji(µi − emj)
TΣ−1

i (µi − emj).

CLDA as a PLM Interpreter. Using CLDA as a PLM interpreter is straightforward. One only
needs to first learn the global concept parameters µi and Σi according to Sec. 3.2.2, and then infer
document-level concept vectors θm and word-level concept indices zmj . Together, they provide
dataset-level, document-level, and word-level conceptual interpretations for PLM predictions.

CLDA as a PLM Regulator. One could also use CLDA as a regulator (or regularizer) when
finetuning a PLM. Assume a PLM that produces attention weights and contextual word embeddings
for document m, i.e., (am, em) = fae(Dm), as well as the CLS embedding cm = fc(c̃m,am, em);
here c̃m is the CLS embedding of the second-last layer. To better see the connection between CLDA
and PLMs, we can rewrite the ELBO in Eqn. 2 as:

Lc

(
γm,Φm;Ω,am, em

)
= Lc

(
γm,Φm;Ω, fae(Dm)

)
,

where Φm ≜ {ϕmj}
Lm
j=1 is the collection of word-level concept parameters for document m, and

Ω = {(µi,Σi)}Ki=1 is the global concept parameters. Assuming a document-level predictor g(cm)
and denoting the ground-truth label as ym, we have the PLM loss during finetuning:

Lp

(
g(fc(c̃m, fae(Dm))), ym

)
.

Putting them together, we have the joint loss:

Lj = Lp

(
g(fc(c̃m, fae(Dm))), ym

)
+ λLc

(
γm,Φm;Ω, fae(Dm)

)
. (11)

When finetuning a PLM, one can iterate between updating (1) the PLM parameters in fae(·), fc(·),
and g(·), (2) the CLDA global concept parameters Ω, and (3) the CLDA document-level and word-
level concept parameters γm and Φm. Note that fae(·) contains most of the parameters in PLMs and
appears in the CLDA loss term Lc; therefore CLDA can improve the finetuning process in PLMs.
Alg. 1 shows an overview of CLDA training when used as a PLM regulator (to prevent clutter, we
show the version without EMA).

Theoretical Analysis. In the Appendix, we provide theoretical guarantees that under mild assump-
tions our CLDA can learn concept-level interpretations for PLMs, especially in noisy data.
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4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We use the GLUE benchmark Wang et al. (2018) to evaluate our methods. This benchmark
includes multiple sub-tasks of predictions, with the paired sentences as inputs. In this paper, we use
six datasets from GLUE (CoLA, MRPC, STS-B, QQP, RTE, and SST-2) to perform evaluation.

Implementation. Our training/validation/test data split of GLUE datasets follows exactly Devlin
et al. (2018). All PLMs are base models from vanilla settings, with the hidden dimension of 768. The
BERT Models are optimized by AdamW Kingma & Ba (2014) Optimizer, using a learning rate of
10−4 with linear warmup and linear learning rate decay. We finetune the models until metrics on
validation sets get the highest score (see the Appendix for more implementation details).

Evaluation Metrics. We follow previous work Devlin et al. (2018) on the GLUE benchmark, and
use the provided testing scores as our evaluation metrics for the 4 datasets, i.e., Matthew’s correlation
for CoLA, F1 score and accuracy for MRPC and QQP, Pearson/Spearman correlation for STS-B, and
accuracy for RTE and SST-2.

Baselines. We compare our methods with the following four baselines: BERT Devlin et al. (2018),
BART Lewis et al. (2019), RoBERTa Liu et al. (2019), and DeBERTa He et al. (2021). The basic
settings of CLDA-augmented PLMs at the BERT side are kept consistent with the Base models for
fair comparison (see the Appendix for details).

4.2 CONCEPTUAL INTERPRETATION (MORE RESULTS IN THE APPENDIX)

Dataset-Level Interpretations. To showcase CLDA’s capability as a PLM interpreter, we use CLDA
trained on MRPC and RTE, respectively, sample 3 concepts (topics) for each dataset, and plot the
word embeddings of the top words (closest to the center µi) in these concepts using PCA. Fig. 4(left)
shows the concepts from MRPC. We can observe Concept 20 is mostly about policing, including
words such as ‘suspect’, ‘police’, and ‘house’. Concept 24 is mostly about politics, including words
such as ‘capital’, ‘Congress’, and ‘Senate’. Concept 27 contains mostly names such as ‘Margaret’
and ‘Mary’. Similarly, Fig. 4(right) shows the concepts from RTE. We can observe Concept 67 is
related to Islam and includes words such as ‘Quran’ and ‘Pasha’. Concept 13 is related to Europe and
includes European countries/names such as ‘Prussia’ and ‘Salzburg’. Concept 91 is healthcare-related
and includes words such as ‘physiology’ and ‘insulin’.

Document-Level Interpretations. For document-level conceptual interpretations, we sample two
example documents from MRPC (Fig. 4(left)) and three from RTE (Fig. 4(right)), where each
document contains a pair of sentences. The MRPC task is to predict whether one sentence paraphrases
the other. For example, in the first document of MRPC, we can see that our CLDA correctly interprets
the model prediction ‘True’ with Concept 24 (politics). The RTE task is to predict whether one
sentence entail the other. For example, in the second document of RTE, CLDA correctly interprets
the model prediction ‘True’ with Concept 13 (countries).

Word-Level Interpretations. For word-level conceptual interpretations, we can observe that CLDA
interpret the PLM’s prediction on MRPC’s first document (Fig. 4(left)) using words such as ‘senate’
and ‘bitty’ that are related to politics. Note that the word ‘bitty’ is commonly used (with ‘little’)
by politicians to refer to the small size of tax relief/cut plans. Similarly, for RTE’s first document
(Fig. 4(right)), CLDA correctly identifies Concept 67 (Islam) and interprets the model prediction
‘False’ by distinguishing between keywords such as ‘Jihad’ and ‘Al Qaeda’.

4.3 QUANTITATIVE RESULTS

To evaluate CLDA as a PLM regulator, we use BERT, RoBERTa, BART, and DeBERTa as base
models for our CLDA, leading four different CLDA models, BERT-CLDA, RoBERTa-CLDA, BART-
CLDA, and DeBERTa-CLDA, respectively. Table 1 shows the performance of our CLDA variants
and the correspondingly base PLMs on six benchmark datasets, CoLA, MRPC, STS-B, QQP, RTE,
and SST-2.
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Table 1: Results on GLUE benchmark datasets.

Dataset CoLA MRPC STS-B QQP RTE SST-2
Metrics Matthew’s Corr. F1/Acc. Pear./Spea. Corr. F1/Acc. Acc. Acc.

BERT-Base 51.2 73.3/66.6 82.5/81.2 66.0/85.1 57.1 88.2
BERT-CLDA (Ours) 52.2 82.2/74.6 84.0/82.8 70.3/88.7 60.3 92.2
RoBERTa-Base 59.0 79.9/66.5 83.3/82.2 52.5/78.1 67.4 93.8
RoBERTa-CLDA (Ours) 59.1 78.2/71.4 83.5/82.4 69.5/88.1 70.1 94.7
BART-Base 46.9 85.4/79.8 87.6/86.5 70.5/88.8 62.6 91.9
BART-CLDA (Ours) 49.5 85.6/80.0 87.6/86.6 70.7/88.9 64.7 92.6
DeBERTa-Base 57.2 86.3/81.8 89.6/88.8 70.4/88.9 64.8 92.4
DeBERTa-CLDA (Ours) 59.8 86.7/82.1 89.8/89.0 71.5/89.1 68.4 94.0

Average-Base 53.7 81.2/73.7 85.8/84.7 64.9/85.2 63.0 91.6
Average-CLDA (Ours) 54.9 83.2/77.0 86.2/85.2 70.5/88.7 65.9 93.4

The last two rows show the average predictive performance across different PLM base models for
different datasests. We can observe that on average, our CLDA significantly outperforms the baselines
in all datasets. Notably, in the largest dataset, QQP, our CLDA improves upon the baselines by 5.6%
in terms of F1 score and by 3.5% in terms of accuracy. Moreover, even for ‘difficult’ natural language
inference tasks such as RTE, CLDA can still improve the average accuracy by a large margin of
2.9%. When using RoBERTa as the base model, CLDA achieves absolute improvements of 17.0%
and 10.0% for F1 score and accuracy, respectively. Note that STS-B and SST-2 are relatively ‘easy’
datasets, and even the BERT-Base model could achieve correlation higher than 82% and accuracy
higher than 88%, respectively. In this case the room for improvement is minimal. However, our
CLDA could still lead to slight improvement in terms of Pearson correlation and Spearman correlation
for STS-B, as well as reasonable accuracy improvement for SST-2.

4.4 ABLATION STUDIES

Table 2: Ablation studies for the CoLA dataset in
terms of Matthew’s correlation.
Model BERT RoBERTa BART DeBERTa

Base 51.2 59.0 46.9 57.2

CLDA-Identical 50.4 55.6 47.0 51.9
CLDA-Variable 52.2 57.5 47.4 59.5
CLDA-Fixed 52.2 59.1 49.5 59.8

To evaluate different schemes of computing the
virtual word counts wmj from attention weights
(as introduced in Sec. 3.1), we perform abla-
tion studies on the CoLA dataset using differ-
ent PLM base models. Table 2 shows the re-
sults on the base model and CLDA with identi-
cal weights (CLDA-Identical), attention-based
weights with variable length (CLDA-Variable),
and attention-based weights with fixed length
(CLDA-Fixed).

One observation is that CLDA-Identical tends to underperform the PLM base models, while both
CLDA-Variable and CLDA-Fixed can significantly outperform the base models. This verifies the
importance of using attention weights to compute the virtual continuous word counts. Another
interesting observation is that CLDA-Fixed slightly outperforms CLDA-Variable. Note that both
CLDA-Fixed and CLDA-Variable use attention weights to compute virtual continuous word counts;
the difference is that in CLDA-Variable assigns longer documents more (total) weights when learning
the global concept parameters (Eqn. 7 and Eqn. 8), while CLDA-Fixed treats each document fairly (as
if they had fixed length). Therefore Table 2 shows that it is beneficial to assume different documents
have fixed total virtual word counts for CLDA.

5 CONCLUSION

We develop CLDA as a genearal framework to interpret pretrained word embeddings at the concept
level. Our CLDA is compatible with any attention-based PLMs. It can not only interpret how PLMs
make predictions, but also help improve contextual word embeddings in an end-to-end manner,
thereby boosting predictive performance.
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A DETAILS ON LEARNING CLDA

Update Rules. Similar to Sec. 3.2.1 of the main paper, we expand the ELBO in Eqn. 2 of the
main paper, take its derivative w.r.t. µi and set it to 0: ∂L

∂µi
=

∑
m,j ϕmjiwmjΣ

−1
i (emj − µi) = 0,

yielding the update rule for learning µi:

µi =
∑

m,j ϕmjiwmjemj∑
m,j ϕmjiwmj

, (12)

where Σ−1
i is canceled out. Similarly, setting the derivatives w.r.t. Σ to 0, i.e., ∂L

∂Σi
=

1
2

∑
m,j ϕmjiwmj(−Σ−1

i +Σ−1
i (emj − µi)(emj − µi)

TΣ−1
i ), we have

Σi =
∑

m,j ϕmjiwmj(emj−µi)(emj−µi)
T∑

m,j ϕmjiwmj
. (13)

Online Learning of µi and Σi. Note that PLMs are deep neural networks trained using minibatches
of data, while Eqn. 7 and Eqn. 8 need to go through the whole dataset before each update. Inspired
by Hoffman et al. (2010); Oord et al. (2017), we using exponential moving average (EMA) to work
with minibatchs. Specifically, we update them as:

µi ← ρ ·N · µi + (1− ρ) ·B · µ̃i,

Σi ← ρ ·N ·Σi + (1− ρ) ·B · Σ̃i,

N ← ρ ·N + (1− ρ) ·B,

µi ←
µi

N , Σi ← Σi

N ,

where B is the minibatch size, N is a running count, and ρ ∈ (0, 1) is the momentum hyperparameter.
µ̃i and Σ̃i are the updated µi and Σi after applying Eqn. 7 and Eqn. 8 only on the current minibatch.
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Table 3: Example concepts on RTE dataset learned by CLDA.

Concepts Top Words

bio-chem cigarette biological ozone cardiovascular chemist liver chemical toxin
citizenship indies bolivian fiji surrey jamaican dutch latino caribbean
names mozart spielberg einstein bush kurt liszt hilton lynn
conspiracy secretly corrupt disperse infected ill hidden illegally sniper
administration reagan interior ambassador prosecutor diplomat legislative spokesman embassy
crime fraud laundering sheriff prosecutor corruption fool robber greed

Paired Sentences as a Document. Many modern natural language processing tasks involve predicting
a label from a pair of sentences (for example, given two sentences, predict whether one sentence
paraphrases the other). In this case, one document may contain a pair of sentences (with length
Lm1

and Lm2
, and Lm = Lm1

+ Lm2
) as PLM inputs, and γ of each sentence can be inferred as:

γm1i = αi +
∑Lm1

j=0 ϕmjiwmj , γm2i = αi +
∑Lm

j=m1
ϕmjiwmj .

B EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

We will release all code, models, and data. Below we provide more details on the experimental
settings and practical implementation.

Data Preprocessing. Our training/validation/test data split of GLUE datasets follows exactly Devlin
et al. (2018). We train our model on the training data, perform model selection (select hyperpa-
rameters) using the validation data, and evaluate methods on the test data. Our tokenization and
bert-configurations follow previous PLMs that we compare with. For fair comparison, we use low-
ercase tokenization both in base models and our CLDA models. According to different versions of
CLDA weighting, we can choose whether to calculate TF-IDF scores in documents. If we use an
identical-weight CLDA, additional computing of TF-IDF scores is necessary to filter words with little
information for our CLDA-based topic models.

Implementation. All PLMs are base models from vanilla settings, with the hidden dimension of 768.
We initialize the models with the seed 2021. The BERT Models are optimized by AdamW Kingma &
Ba (2014) Optimizer, using a learning rate of 10−4 with linear warmup and linear learning rate decay.
We finetune the models until metrics on validation sets get the highest score. We treat the training
batch-size, CLDA prior parameters, and λ (in Eqn. 11 of the main paper) as hyperparameters, and
run grid-search in training and validation to search for models with the highest possible performance.
To alleviate overfitting of CLDA during joint training, we periodically include the CLDA loss term
Lc in the joint loss Lj along epochs, i.e., using the CLDA term every 1/3/5 epochs (as a training
hyperparameter as well), along with original base PLM finetuning loss. We use the fixed scheme
for CLDA training by default to produce the results in Table 1 of the main paper. We use the
penultimate-layer word embeddings for CLDA in Eqn. 3 of the main paper, because our preliminary
results show that using the penultimate layer instead of the output layer improves performance.

Baselines. To ensure fair comparison, during fine-tuning, we select the epoch for both baselines and
CLDA entirely based on validation accuracy and report the test accuracy; in contrast, [Devlin et al.,
2018] directly chooses the 3rd epoch; we argue that this is not rigorous and potentially ‘overfits’
test sets. Also, as aforementioned, We follow the convention of topic models and preprocess the
documents into lower-case words for both baselines and CLDA; in contrast, [Devlin et al., 2018]
keeps the words unchanged. Nevertheless, note that our CLDA can interpret any PLMs without
accuracy sacrifice; therefore the exact accuracy for BERT-base is less relevant in our case.

Visualization Postprocessing. For better showcase the dataset-level concepts as in Fig. 4 of the
main paper, we may employ simple linear transformations on the embedding of words after the
aforementioned PCA step, in order to scatter all the informative words on the same figures. However,
for some datasets such as STS-B, this is not necessary so we don’t use it.

Topic (Concept) Identification. Inspired by Blei et al. (2003), we identify meaningful topics
by listing the top-5 topics for each word, computing the inverse document frequency (IDF), and
filtering out topics with the lowest IDF scores. Note that although GLUE benchmark are datasets
that consists of documents with small size, making it particularly challenging for traditional topic
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models (such as LDA) to learn topics; interestingly our CLDA can still do well in learning the topics.
We contribute this to the following observations: (1) Compared to traditional LDA using discrete
word representations, CLDA uses continuous word embeddings. In such a continuous space, topics
learned for one word can also help neighboring words; this alleviates the sparsity issue caused by
short documents and therefore learns better topics. (2) CLDA’s attention-based continuous word
counts further improves sample efficiency. In CLDA, important words have larger attention weights
and therefore larger continuous word counts. In this case, one important word in a sentence possesses
statistical (sample) power equivalent to multiple words; this leads to better sample efficiency in
CLDA.

C EXPANSION OF ELBO

We can expand the ELBO in Eqn. 2 of the main paper as:

L(γ,ϕ;α, {µ}K , {Σ}K) = logΓ(

K∑
i=1

αi)−
K∑
i=1

logΓ(αi) +

K∑
i=1

(αi − 1)(Ψ(γi)−Ψ(

K∑
j=1

γj))

+

L∑
j=1

K∑
i=1

ϕji(Ψ(γi)−Ψ(

K∑
k=1

γk))

+
∑
m,j,i

ϕmjiwmj{− 1
2 (emj − µi)

TΣ−1
i (emj − µi)

− log[(2π)d/2|Σi|1/2]}

− logΓ(

K∑
j=1

γj) +

K∑
i=1

logΓ(γi)−
K∑
i=1

(γi − 1)(Ψ(γi)−Ψ(

K∑
j=1

γj))

−
L∑

j=1

K∑
i=1

ϕji log ϕji.

(14)

D DERIVATION ON SMOOTHED CLDA

To alleviate overfitting and prevent singularity in numerical computation, we impose priors distribu-
tions on µi and Σi to smooth the learning process. Specifcally, we use a Normal-Inverse-Wishart
prior on µi and Σi as follows:

Σi ∼ IW(Λ0, ν0),

µi|Σi ∼ N (µ0,Σk/κ0),

where Λ0, ν0, µ0, and κ0 are hyperparameters for the prior distributions. With the
prior distribution above, the update rules for the parameters of the posterior distribution
NIW(µi,Σi|µ(n)

i ,Λ
(n)
i , κ

(n)
i , ν

(n)
i ) become:

µ
(n)
i =

k0µ0+nµ̃i

k0+n , (15)

Λ
(n)
i = Λ0 + Si +

κ0n
k0+n (µ̃i − µ0)(µ̃i − µ0)

T , (16)

κ
(n)
i = κ0 + n, (17)

ν
(n)
i = ν0 + n, (18)

Si =
∑

m,j
ϕmjiwmj(emj − µ̃i)(emj − µ̃i)

T , (19)

where n =
∑

m,j ϕmjiwmj is the total virtual word counts used to estimate µi and Σi. Taking the

expectations of µi and Σi over the posterior distibution NIW(µi,Σi|µ(n)
i ,Λ

(n)
i , κ

(n)
i , ν

(n)
i ), we
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Dimensionality Reduction of Embeddings with Topics
STS-B

Concept (Topic) 63: trash, flowers, airs, garden, wild, closet, sofa, vase, carrot, seeds, 
turf, playground, floors

Concept (Topic) 60: stations, rope, parachute, hose, clarinet, sink, axe, rifle

Concept (Topic) 84: guerrilla, NSA, espionage, raided, Canadian, Croatia, historic

Concept (Topic) 55: Kiev, Moscow, resistance, Algeria, agrees, Ukrainian, emerge, 
Qaeda, final

A man and a woman watch two
dogs. [SEP] A man in a 
maroon bathing suit swings on 
a rope on a lake.

Document Topic: 63, 60

Prediction: 0.118 (a)   

A woman is pouring egg into a 
frying pan. [SEP] A man is 
petting two dogs.

Document Topic: 63

Prediction: 0.115                    (b)

A cat is playing on the floor. 
[SEP] A man is slicing garlic.

Document Topic: 63

Prediction: 0.100   (c)

South Korean soldier reportedly flees after killing 5 
comrades at border with North Korea [SEP] South 
Korean soldier kills comrades and flees

Document Topic: 84, 55

Prediction: 3.905 (e)

Syria agrees to surrender chemical weapons [SEP] 
UK’s Cameron: Syria, Russia must show chemical
arms proposal is genuine.

Document Topic: 84

Prediction: 1.975 (d)

Russian opposition leader under house arrest [SEP] 
Russian opposition leader placed under house 
arrest

Document Topic: 84

Prediction: 4.672 (f)

Figure 5: Visualization of CLDA’s learned topics of contextual word embeddings. We show STS-B’s
dataset-level interpretation with six example documents. The prediction of CLDA is between the
range of [0, 5].

have the update rules as:

µi ← ENIW [µi] =
k0µ0+nµ̃i

k0+n , (20)

Σi ← ENIW [Σi] =
Λ0+Si+

κ0n
k0+n (µ̃i−µ0)(µ̃i−µ0)

T

ν0+n−K−1 , (21)

Si =
∑

m,j
ϕmjiwmj(emj − µ̃i)(emj − µ̃i)

T . (22)

Eqn. 20 and Eqn. 21 are the smoothed version of Eqn. 7 and Eqn. 8, respectively. From the Bayesian
perspective, they correspond to the expectations of µi’s and Σi’s posterior distributions.

E MORE CONCEPTUAL INTERPRETATION RESULTS

Dataset-Level Interpretations. As in the main paper, we leverage CLDA as interpreter on
STS-B and QQP, respectively, sample 4 concepts (topics) for each dataset, and plot the word
embeddings of the top words (closest to the center µi) in these concepts using PCA. Fig. 5 shows
the concepts from STS-B. We can observe Concept 63 is mostly about household and daily life,
including words such as ‘trash’, ‘flowers’, ‘airs’, and ‘garden’. Concept 60 is mostly about tools,
including words such as ‘stations’, ‘rope’, ‘parachute’, and ‘hose’. Concept 84 is mostly about
national security, including words such as ‘guerilla’, ‘NSA’, ‘espionage’, and ‘raided’. Concept 55
contains mostly countries and cities such as ‘Kiev’, ‘Moscow’, ‘Algeria’, and ‘Ukrainian’. Similarly,
Fig. 6 shows the concepts from QQP. We can observe Concept 12 is mostly about negative attitude,
including words such as ‘boring’, ‘criticism’, and ’blame’. Concept 73 is mostly about Psychology,
including words such as ‘adrenaline’, ‘haunting’, and ’paranoia’. Concept 34 is mostly about
prevention and conservatives, including words such as ‘destroys’, ‘unacceptable’, and ’prohibits’.
Concept 64 is mostly about strategies, including words such as ‘rumours’, ‘boycott’, and ’deportation’.

Document-Level Interpretations. For document-level conceptual interpretations, we sample six
example documents from STS-B (Fig. 5) and eight from QQP (Fig. 6), respectively, where each
document contains a pair of sentences. The STS-B task is to predict the semantic similarity between
two sentences with the score range of [0, 5]. For example, in Document (a) of Fig. 5, we can see
that CLDA correctly interpret the model’s predicted similarity score ‘0.118’ (which is relatively
low,) with Concept 63 (household and daily life) and Concept 60 (tools). Similarly, in Document (f)
of Fig. 5, we can see that CLDA correctly interpret the model’s predicted similarity score ‘4.672’
(which is relatively high) with Concept 84 (national security). The QQP task is to predict whether
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QQP
Dimensionality Reduction of Embeddings with Topics

Concept (Topic) 12: boring, criticism, poorer, blame, empathy, punishment, critic, destroys, cry

Concept (Topic) 73: adrenaline, predatory, haunting, paranoia, twitching

Concept (Topic) 34: destroys, unacceptable, prohibits, straining, ruined

Concept (Topic) 64: rumours, boycott, deportation, affiliation, arbitration, scandals, indicted, factions, 
competitors, bodyguards, competing

How can I turn my idea into a fundable business? 
[SEP] How do I turn my idea into a successful 
company?

Document Topic: 64

Prediction: True (f)

What are the different factions within the 
conservative party? [SEP] What are the organised 
factions of the conservative party?

Document Topic: 34

Prediction: True (g)

How can I start hacking from scratch? [SEP] 
Where/how do I start to learning hacking as a 
newbie?

Document Topic: 64

Prediction: True (h)

What are Hillary Clinton's plans for India? [SEP] 
What would be Hillary Clinton's policy on India?

Document Topic: 64

Prediction: True (e)

What is the best anime to watch when you are 
bored? [SEP] What is the most boring anime you 
have ever watched?

Document Topic: 73

Prediction: True (a)

Are there any famous cases of pronoia (the 
opposite of paranoia)? [SEP] What are some good 
examples of pronoia, the opposite of paranoia?

Document Topic: 73

Prediction: True (c)

Why do we cry while chopping an onion? [SEP] 
Why is assisted-suicide not legal for mentally ill 
people?

Document Topic: 73

Prediction: False (b)

Why is India trying to sabotage CPEC? [SEP] why 
does India oppose CPEC? 

Document Topic: 64

Prediction: True (d)

Figure 6: Visualization of CLDA’s learned topics of contextual word embeddings. We show QQP’s
dataset-level interpretation with eight example documents.

the two questions are paraphrase of each other. For example, in Document (b) of Fig. 6, we can see
that CLDA correctly interprets the model’s predicted label ‘False’ with Concept 73 (Psychology).
Similarly, in Document (e) of Fig. 6, we can see that CLDA correctly interprets the model’s predicted
label ‘True’ with Concept 64 (strategies).

Word-Level Interpretations. For word-level conceptual interpretations, we can observe that CLDA
interprets PLM’s prediction on Document (c) of Fig. 5 using words such as ‘cat’, ‘floor’, and ‘garlic’
that are related to household and daily life. Also, CLDA interprets PLM’s prediction on Document (e)
of Fig. 5 using words such as ‘soldier’ and ‘border’ that are related to national security. Similarly, for
QQP’s Document (d) (Fig. 6), CLDA correctly interprets the model prediction ‘True’ by identifying
keywords such as ‘sabotage’ and ‘oppose’ with similar meanings in the topic of strategies. For
QQP’s Document (g), (Fig. 6), CLDA interprets the words in the both sentences with the same
semantics, such as ‘conservative’ that is related to prevention and conservatives (note that in politics,
‘conservative’ refers to parties that tend to prevent/block new policies or legislation), and thereby
predicting the correct label ‘True’.

Example Concepts. Following Blei et al. (2003), we show the learned concepts on the RTE dataset
in Table 3, which is complementary to aforementioned explanations. We select several different
topics from Fig. 4 of the main paper. As in Sec. 4.2 of the main paper, we obtain top words from each
concept via first calculating the average of the each word’s corresponding contextual embeddings
over the dataset, and then getting the nearest words to each topic center (µi) in the embedding
space. As we can see in Table 3, CLDA can capture various concepts with profound and accurate
semantics. Therefore, although PLM embeddings are contextual and continuous, our CLDA can still
find conceptual patterns of words on the dataset-level.

F THEORETICAL ANALYSIS ON CONTINUOUS WORD COUNTS

Before going to the claims and proofs, first we specify some basic problem settings and assumptions.
Suppose there are K + 1 topic groups, each of which is regarded to be sampled from a parameterized
multivariate Gaussian distribution. In specific, the K + 1 ’th distribution of topic has a much larger
covariance, and in the same time, closed to the center of embedding space. The prementioned
properties can be measured by a series of inequalities:

|ΣK+1| = maxk+1
i=1 |Σi|. (23)
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The approximate marginal log-likelihood of word embeddings, i.e., the third term of the ELBO as
mentioned in Eqn. 4 of the main paper, is:

L(train) =
∑Lm

j=1
Eq[log p(emj |zmj ,µzmj

,Σzmj
)]

=
∑
m,j,i

ϕmjiwmj{− 1
2 (emj − µi)

TΣ−1
i (emj − µi)− log[(2π)d/2|Σi|1/2]}. (24)

The above equation is the training objective, yet for fair comparison of different training schemes, we
calculate the approximated likelihood with word count 1 for all words.

L(eval) =
∑Lm

j=1
Eq[log p

′(emj |zmj ,µzmj
,Σzmj

)]

=
∑
m,j,i

ϕmji{− 1
2 (emj − µi)

TΣ−1
i (emj − µi)− log[(2π)d/2|Σi|1/2]}. (25)

F.1 GAUSSIAN MIXTURE MODELS

Suppose we have a ground truth GMM model with parameters π∗ ∈ RK and {µ∗
k,Σ

∗
k}Kk=1, with K

different Gaussian distributions. In the dataset, let N and Ns denote the numbers of non-stop-words
and stop-words, respectively. Then the marginal log likelihood of a learned GMM model on a given
data sample e can be written as

p(e|{µ,Σ},π) =
K∑

k=1

πkN (e;µk,Σk). (26)

Assuming a dataset of N +Ns words {ei}N+Ns
i=1 and taking the associated weights wi for each word

into account, the log-likelihood of the dataset can be written as
N+Ns∑
i=1

p(ei|{µk,Σk}
K
k=1,π) =

N∑
i=1

log

K∑
k=1

wiπkN (ei;µk,Σk) +

N+Ns∑
i=N+1

log

K∑
k=1

wiπkN (ei;µk,Σk). (27)

Leveraging Jensen’s inequality, we obtain a lower bound of the above quantity (denoting as Θ the
collection of parameters {µk,Σk}Kk=1 and π):

LGMM (Θ, {wi}) =

N∑
i=1

wi log

K∑
k=1

πkN (ei;µk,Σk) +

N+Ns∑
i=N+1

wi log

K∑
k=1

πkN (ei;µk,Σk) + C, (28)

where C is a constant.

In the following theoretical analysis, we consider the following three different configurations of the
weights wi.
Definition F.1 (Weight Configurations). We define three different weight configurations as follows:

• Identical Weights: wi =
1

N+Ns
, i ∈ {1, 2, . . . , N +Ns}

• Ground-Truth Weights : wi =

{
1
N , i ∈ {1, 2, . . . , N}
0, i ∈ {N + 1, N + 2, . . . , N +Ns}

• Attention-Based Weights: wi =

{
λ1 ∈ [ 1

N+Ns
, 1
N ], i ∈ {1, 2, . . . , N}

λ2 ∈ [0, 1
N+Ns

], i ∈ {N + 1, N + 2, . . . , N +Ns}

Definition F.2 (Advanced Weight Configurations). We define three different weight configurations
as follows:

• Identical Weights: wi =
1

N+Ns
, i ∈ {1, 2, . . . , N +Ns}

• Ground-Truth Weights : wi =

{
1
N , i ∈ {1, 2, . . . , N}
0, i ∈ {N + 1, N + 2, . . . , N +Ns}
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• Attention-Based Weights: wi ∈

{
[ 1
N+Ns

, 1
N ], i ∈ {1, 2, . . . , N}

[0, 1
N+Ns

], i ∈ {N + 1, N + 2, . . . , N +Ns}
Definition F.3 (Optimal Parameters). With Definition F.1, the corresponding optimal parameters
are then defined as follows:

ΘI = argmax
Θ
L(Θ;w→ Identical), (29)

ΘG = argmax
Θ
L(Θ;w→ GT), (30)

ΘA = argmax
Θ
L(Θ;w→ Attention), (31)

where w → Identical, w → GT, and w → Attention indicates that ‘Identical Weights’, ‘Ground-
Truth Weights’, and ‘Attention-Based Weights’ are used, respectively.
Lemma F.4. Suppose we have two series of functions {f1,i(x)} and {f2,i(x)}, with two non-negative
weighting parameters λ1, λ2 satisfying Nλ1 +Nsλ2 = 1. We define the final objective function f(·)
as:

f(x;λ1, λ2) = λ1

N∑
i=1

f1,i(x) + λ2

Ns∑
i=N+1

f2,i(x). (32)

We assume two pairs of parameters (λ1, λ2) and (λ′
1, λ

′
2), where

λ1 ≥ λ′
1, (33)

λ2 ≤ λ′
2. (34)

Defining the optimal values of the objective function for different weighting parameters as
x̂ = argmax

x
f(x;λ1, λ2), (35)

x̂′ = argmax
x

f(x;λ′
1, λ

′
2), (36)

we then have that
f(x̂; 1

N , 0) ≥ f(x̂′; 1
N , 0). (37)

Proof. We prove this theorem by contradiction. Suppose that we have
f(x̂; 1

N , 0) < f(x̂′; 1
N , 0). (38)

According to Eqn. 49, i.e., λ1 ≥ λ′
1, and the equation Nλ1 +Nsλ2 = 1, we have

λ1λ
′
2 = λ1

1−Nλ′
1

Ns
≥ λ′

1
1−Nλ1

Ns
= λ′

1λ2. (39)

According to Eqn. 36, we have the following equality:
f(x̂;λ′

1, λ
′
2) ≤ f(x̂′;λ′

1, λ
′
2). (40)

Combined with the aforementioned assumption in Eqn. 38, we have that

λ′
2f(x̂;λ1, λ2) = λ1λ

′
2

N∑
i=1

f1,i(x̂) + λ2λ
′
2

Ns∑
i=N+1

f2,i(x̂) (41)

=(λ′
1λ2

N∑
i=1

f1,i(x̂) + λ′
2λ2

Ns∑
i=N+1

f2,i(x̂)) + (N(λ1λ
′
2 − λ′

1λ2) · 1
N

N∑
i=1

f1,i(x̂)) (42)

=λ2f(x̂;λ
′
1, λ

′
2) +N(λ1λ

′
2 − λ′

1λ2)f(x̂;
1
N , 0) (43)

<λ2f(x̂
′;λ′

1, λ
′
2) +N(λ1λ

′
2 − λ′

1λ2)f(x̂
′; 1

N , 0) (44)

=(λ′
1λ2

N∑
i=1

f1,i(x̂
′) + λ′

2λ2

Ns∑
i=N+1

f2,i(x̂
′)) + (N(λ1λ

′
2 − λ′

1λ2) · 1
N

N∑
i=1

f1,i(x̂
′)) (45)

=λ1λ
′
2

N∑
i=1

f1,i(x̂
′) + λ2λ

′
2

Ns∑
i=N+1

f2,i(x̂
′) (46)

=λ′
2f(x̂

′;λ1, λ2), (47)
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which contradicts the definition of x̂ in Eqn. 35 (i.e., x̂ maximizes f(x;λ1, λ2)), completing the
proof.

Lemma F.5. Suppose we have two series of functions {f1,i(x)} and {f2,i(x)}, with two series
of non-negative weighting parameters λ1 = [λ1,i]

N
i=1,λ2 = [λ2,i]

Ns

i=N+1 satisfying
∑N

i=1 λ1,i +∑Ns

i=N+1 λ2,i = 1. We define the final objective function f(·) as:

f(x;λ1,λ2) =

N∑
i=1

λ1,if1,i(x) +

Ns∑
i=N+1

λ2,if2,i(x). (48)

We assume two pairs of parameters (λ1,λ2) and (λ′
1,λ

′
2), where

λ1,i ≥ λ′
1,i, i ∈ {1, 2, ..., N}, (49)

λ2,i ≤ λ′
2,i, i ∈ {N + 1, N + 2, ..., Ns}. (50)

Defining the optimal values of the objective function for different weighting parameters as

x̂ = argmax
x

f(x;λ1,λ2), (51)

x̂′ = argmax
x

f(x;λ′
1,λ

′
2), (52)

x∗ = argmax f(x, 1
N ,0). (53)

Under the following Assumptions (with 1 and 0 denoting vectors with all entries equal to 1 and 0,
respectively):

1. f(x̂,0,λ2) ≤ f(x̂′,0,λ2).

2. f(x;λ,0) ≥ f(x′;λ,0), iff ∥x− x∗∥ ≤ ∥x′ − x∗∥, λ ≥ 0, ∥λ∥1 = 1.

we have that

f(x̂; 1
N ,0) ≥ f(x̂′; 1

N ,0). (54)

Proof. We start with proving the following equality by contradiction:

∥x̂− x∗∥ ≤ ∥x̂′ − x∗∥. (55)

Specifically, if

∥x̂− x∗∥ > ∥x̂′ − x∗∥, (56)

leveraging the Assumption 1 and 2 above, we have that

f(x̂;λ1,λ2) = f(x̂;λ1,0) + f(x̂;0,λ2) < f(x̂′;λ1,0) + f(x̂′;0,λ2) = f(x̂′;λ1,λ2), (57)

which contradicts Eqn. 51. Therefore, Eqn. 55 holds.

Combining Eqn. 55 and Assumption 2 above, we have that

f(x̂; 1
N ,0) ≥ f(x̂′; 1

N ,0), (58)

concluding the proof.

Based on the definitions and lemmas above, we have the following theorems:

Theorem F.6 (Advantage of ΘA in the Simplified Case). With Definition F.1 and Definition F.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., L(·, w → GT), we have that

LGMM (ΘI ;w→ GT) ≤ LGMM (ΘA;w→ GT) ≤ LGMM (ΘG;w→ GT). (59)
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Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w→ GT) among the
three:

max[LGMM (ΘI ;w → GT),LGMM (ΘA;w → GT)] ≤ max
Θ

LGMM (Θ;w → GT) = LGMM (ΘG;w → GT). (60)

Next, we set {wi}Ni=1 to λ1 and {wi}N+Ns

i=N+1 to λ2, respectively; we rewrite
log

∑K
k=1 πkN (ei;µk,Σk) as f1,i(x) for i ∈ {1, 2, . . . , N} and f2,i(x) for i ∈

{N + 1, N + 1, . . . , N +Ns}, where x corresponds to Θ ≜ (π, {µk,Σk}Kk=1). By Lemma F.4, we
have that

LGMM (ΘA;w→ GT) ≤ LGMM (ΘG;w→ GT). (61)

Combining Eqn. 60 and Eqn. 61 concludes the proof.

Theorem F.7 shows that under mild assumptions, the attention-based weights can help produce better
estimates of Θ in the presence of noisy stop-words and therefore learns higher-quality topics from
the corpus, improving both generalization performance and interpretability of PLMs.
Theorem F.7 (Advantage of ΘA in the General Case). With Definition F.2 and Definition F.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., LGMM (·, w → GT), we have that

LGMM (ΘI ;w→ GT) ≤ LGMM (ΘA;w→ GT) ≤ LGMM (ΘG;w→ GT). (62)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w→ GT) among the
three:

max[LGMM (ΘI ;w → GT),LGMM (ΘA;w → GT)] ≤ max
Θ

LGMM (Θ;w → GT) = LGMM (ΘG;w → GT). (63)

Next, we invoke Lemma F.5 by (1) setting {wi}Ni=1 to λ1 and {wi}N+Ns

i=N+1 to λ2, respectively,
and (2) rewriting log

∑K
k=1 πkN (ei;µk,Σk) as f1,i(x) for i ∈ {1, 2, . . . , N} and f2,i(x) for i ∈

{N + 1, N + 1, . . . , N +Ns}, where x corresponds to Θ ≜ (π, {µk,Σk}Kk=1). By Lemma F.5, we
then have that

LGMM (ΘA;w→ GT) ≤ LGMM (ΘG;w→ GT). (64)

Note that because f1,i(·) and f2,i(·) are Gaussian, therefore Assumption 1 and 2 in Lemma F.5 hold
naturally under mild regularity conditions.

Combining Eqn. 70 and Eqn. 71 concludes the proof.

F.2 CLDA AS INTERPRETERS

As mentioned in Eqn. 4 of the main paper, the ELBO of the marginal likelihood (denoting as Θ the
collection of parameters ϕ,γ and {µk,Σk}Kk=1) is as follows:

LCLDA(Θ; {wi}) =
∑L′

j=1
Eq [log p(emj |zmj ,µzmj

,Σzmj
)]

=
∑
m,j

wmj

∑
i

ϕmji{− 1
2
(emj − µi)

T
Σ

−1
i (emj − µi) − log[(2π)

d/2|Σi|
1/2

]}. (65)

Based on the definitions and lemmas above, we have the following theorems:
Theorem F.8 (Advantage of ΘA in the Simplified Case). With Definition F.1 and Definition F.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., L(·, w → GT), we have that

LCLDA(ΘI ;w→ GT) ≤ LCLDA(ΘA;w→ GT) ≤ LCLDA(ΘG;w→ GT). (66)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w→ GT) among the
three:

max[LCLDA(ΘI ;w → GT),LCLDA(ΘA;w → GT)] ≤ max
Θ

LCLDA(Θ;w → GT) = LCLDA(ΘG;w → GT). (67)
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Next, we set ∪m{wmj}Nm
j=1 to λ1 and ∪m{wmj}

Nm+Nm,s

j=Nm+1 to λ2, respectively; we rewrite∑
i ϕmji{− 1

2 (emj − µi)
TΣ−1

i (emj − µi) − log[(2π)d/2|Σi|1/2]} as f1,j(x) for j ∈
∪m{1, 2, . . . , Nm} and f2,j(x) for j ∈ ∪m{Nm + 1, Nm + 1, . . . , Nm + Nm,s}, where x cor-
responds to Θ ≜ (ϕ,γ, {µk,Σk}Kk=1). By Lemma F.4, we have that

LCLDA(ΘA;w→ GT) ≤ LCLDA(ΘG;w→ GT). (68)

Combining Eqn. 67 and Eqn. 68 concludes the proof.

Theorem F.8 shows that under mild assumptions, the attention-based weights can help produce better
estimates of Θ in the presence of noisy stop-words and therefore learns higher-quality topics from
the corpus, improving both generalization performance and interpretability of PLMs.
Theorem F.9 (Advantage of ΘA in the General Case). With Definition F.2 and Definition F.3,
comparing ΘI , ΘG, and ΘA by evaluating them on the marginal log-likelihood of non-stop-words,
i.e., LCLDA(·, w → GT), we have that

LCLDA(ΘI ;w→ GT) ≤ LCLDA(ΘA;w→ GT) ≤ LCLDA(ΘG;w→ GT). (69)

Proof. First, by definition one can easily find that ΘG achieves the largest L(·;w→ GT) among the
three:

max[LCLDA(ΘI ;w → GT),LCLDA(ΘA;w → GT)] ≤ max
Θ

LCLDA(Θ;w → GT) = LCLDA(ΘG;w → GT). (70)

Next, we invoke Lemma F.5 by (1) setting ∪m{wmj}Nm
j=1 to λ1 and ∪m{wmj}

Nm+Nm,s

j=Nm+1 to λ2,
respectively, and (2) rewriting

∑
i ϕmji{− 1

2 (emj − µi)
TΣ−1

i (emj − µi) − log[(2π)d/2|Σi|1/2]}
as f1,j(x) for j ∈ ∪m{1, 2, . . . , Nm} and f2,j(x) for j ∈ ∪m{Nm + 1, Nm + 1, . . . , Nm +Nm,s},
where x corresponds to Θ ≜ (ϕ,γ, {µk,Σk}Kk=1). By Lemma F.5, we then have that

LCLDA(ΘA;w→ GT) ≤ LCLDA(ΘG;w→ GT). (71)

Note that because f1,j(·) and f2,j(·) are very close to Gaussian, therefore Assumption 1 and 2
in Lemma F.5 hold naturally under mild regularity conditions.

Combining Eqn. 70 and Eqn. 71 concludes the proof.
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