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Abstract
Deep learning with noisy labels presents signif-
icant challenges. In this work, we theoretically
characterize the role of label noise from a fea-
ture learning perspective. Specifically, we con-
sider a signal-noise data distribution, where each
sample comprises a label-dependent signal and
label-independent noise, and rigorously analyze
the training dynamics of a two-layer convolutional
neural network under this data setup, along with
the presence of label noise. Our analysis identifies
two key stages. In Stage I, the model perfectly
fits all the clean samples (i.e., samples without
label noise) while ignoring the noisy ones (i.e.,
samples with noisy labels). During this stage, the
model learns the signal from the clean samples,
which generalizes well on unseen data. In Stage
II, as the training loss converges, the gradient in
the direction of noise surpasses that of the signal,
leading to overfitting on noisy samples. Eventu-
ally, the model memorizes the noise present in
the noisy samples and degrades its generalization
ability. Furthermore, our analysis provides a the-
oretical basis for two widely used techniques for
tackling label noise: early stopping and sample
selection. Experiments on both synthetic and real-
world setups validate our theory.

1. Introduction
One of the key challenges in deep learning lies in its suscep-
tibility to label noise (Angluin & Laird, 1988). The success
of deep learning stems from its exceptional ability to approx-
imate arbitrary functions (Hornik et al., 1989; Funahashi,

*Equal contribution 1RIKEN AIP 2University of Sydney
3School of Computer Science & AI, Shanghai Jiao Tong
University 4Simon Fraser University 5University of Tokyo.
Correspondence to: Andi Han <andi.han@sydney.edu.au>,
Wei Huang <wei.huang.vr@riken.jp>, Zhanpeng Zhou
<zzp1012@sjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1989), yet this ability becomes problematic in the presence
of noisy labels. Over-parameterized neural networks, which
have sufficient capacity to memorize training data, tend to
overfit noisy labels, leading to poor generalization on unseen
data (Zhang et al., 2021). Although many studies (Patrini
et al., 2017; Ma et al., 2018; Yu et al., 2019; Tanaka et al.,
2018; Han et al., 2018; Liu et al., 2023b; Chen et al., 2023a;
Xia et al., 2024) have developed methods to mitigate the
effects of label noise in practice, our theoretical understand-
ing of how label noise affects the learning process remains
incomplete. A crucial step toward bridging this gap is to
develop a comprehensive theory describing neural network
training dynamics in the presence of label noise.

Existing works have attempted to analyze the effects of la-
bel noise theoretically, but many such studies focus on the
lazy training regime (Jacot et al., 2018; Chizat et al., 2019a).
For instance, Li et al. (2020) constrained the distance be-
tween model weights and their initialization, while Liu et al.
(2023a) adopted an infinitely-wide neural network, where
the dynamics can be described by a static kernel function.
However, the lazy regime, which typically occurs in wide
neural networks with relatively large initialization, is consid-
ered undesirable in practice (Chizat et al., 2019a; Ghorbani
et al., 2020). Understanding how label noise influences
training dynamics beyond the lazy regime remains an active
research frontier.

Recently, a new line of research (Allen-Zhu & Li, 2020;
Frei et al., 2022; Cao et al., 2022; Kou et al., 2023; Xu
et al., 2024) has developed the feature learning theory to
better capture the complex, nonlinear training behaviors
of neural networks. The core idea of the feature learning
theory, which dates back to Rumelhart et al. (1986), is to
assume a simplified data distribution and analyze how neural
networks learn useful features from it—an approach that
stands in contrast to the linear dynamics observed in lazy
training. However, few works have examined how label
noise shapes these nonlinear feature-learning dynamics. To
address this, we pose the following question:

How does label noise affect the feature learning process of
neural networks?

Our main contributions. In this work, we analyze the
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w/ label noise Stage I. fit all clean samples and ignore noisy ones; learn signal. Theorem 4.1
Stage II. over-fit noisy samples; learn noise; degrade generalization. Theorem 4.2

w/o label noise the loss converges; fit all clean samples; generalize well. Theorem 4.4

Table 1: Overview of the two-phase picture and corresponding theoretical results.

feature learning process of neural networks in the presence
of label noise, unveiling a two-stage behavior. Our analysis
is based on a signal-noise data distribution. Specifically,
we consider the classification task where each data point
consists of a label-dependent signal and a label-independent
noise patch. This simplified data setup has been widely
adopted in recent theoretical advances on feature learn-
ing (Allen-Zhu & Li, 2020; Frei et al., 2022; Cao et al.,
2022; Kou et al., 2023). We introduce label noise by flip-
ping the label into other classes with a certain probability.
We then rigorously analyze the training dynamics of a two-
layer convolutional neural network under the above setup
and characterize the following two-stage picture:

• Stage I. The model perfectly fits all the clean samples
while ignoring the noisy ones1. The model mainly learns
the signal from clean samples, which generalizes well on
unseen data.

• Stage II. The training loss converges and the model over-
fits to the noisy samples. The model memorizes the noise
features from noisy samples, degrading its generalization.

For comparison, we also show that when training without la-
bel noise, the model tends to fit all training samples through-
out the training, and the test error remains well-bounded.
See Table 1 for a summary. Our two-stage picture success-
fully explains existing empirical phenomena on label noise:
neural networks tend to first learn simple patterns from clean
samples and then proceed to memorize the noisy ones (Arpit
et al., 2017; Han et al., 2018).

Our theoretical analysis also provides valuable insights into
the effectiveness of two common techniques used to address
the label noise problem, i.e., early stopping (Liu et al., 2020;
Bai et al., 2021) and sample selection (Han et al., 2018;
2020). i) For early stopping, we show that stopping the
training process at the end of the first stage ensures a low
test error, even in the presence of label noise. ii) For sample
selection, we verify that the small-loss criterion 2 (Han et al.,
2018) can provably identify the clean samples from noisy
ones. These insights ground the path towards more effective
techniques tackling the label noise problem.

1To clarify, “clean samples” refers to samples without noisy
labels, while “noisy samples” refers to those with noisy labels. The
same terminology applies for the rest of this paper.

2The samples with small loss are more likely to be the ones
which are correctly labeled, i.e., the clean samples.

In summary, our theoretical analysis provides a rich and
trackable view of training dynamics under label noise while
providing practically relevant insights, a contribution that
addresses a notable gap in deep learning theory.

2. Related Work
Feature Learning Theory. Feature learning (Geiger et al.,
2020; Woodworth et al., 2020), or the rich regime, is of-
ten used to broadly describe learning behaviors that de-
viate from the lazy regime. Despite significant interest
in exploring the mechanism behind feature learning, our
understanding remains limited (Tu et al., 2024). Recent
works (Allen-Zhu & Li, 2020; Frei et al., 2022; Allen-Zhu &
Li, 2022; Cao et al., 2022; Kou et al., 2023; Zou et al., 2023;
Chen et al., 2023b; Huang et al., 2023b; Xu et al., 2024;
Bu et al., 2024) have developed a systematic theoretical
framework to study feature learning, namely feature learn-
ing theory. By simplifying the data setup, feature learning
theory provides a tractable view of the complex non-linear
dynamics of neural networks and has offered significant
insights into the success of deep learning. For instance,
feature learning theory explains the implicit bias in various
architectures, such as convolutional neural networks (Cao
et al., 2022; Kou et al., 2023), vision transformers (Jelassi
et al., 2022; Li et al., 2023; Jiang et al., 2024), graph neural
networks (Huang et al., 2023a), and diffusion models (Han
et al., 2024; 2025). Many attempts have also been made to
understand different training schemes, including gradient
descent with momentum (Jelassi & Li, 2022), Adam (Zou
et al., 2021), sharpness-aware minimization (Chen et al.,
2024), mixup (Zou et al., 2023; Chidambaram et al., 2023)
and contrastive learning (Huang et al., 2024).

Label Noise Theories. Many existing works have tried to
theoretically analyze the training of neural networks under
label noise. Li et al. (2020); Liu et al. (2023a) studied label
noise in the lazy-training regime (Jacot et al., 2018; Chizat
et al., 2019b), constraining the distance between model
weights and their initialization, and thus cannot capture the
process of learning features from data (Rumelhart et al.,
1986; Damian et al., 2022). On the other hand, Frei et al.
(2021) focused on the early dynamics of neural networks
trained with SGD, which can be largely explained by the
behavior of a linear classifier (Kalimeris et al., 2019; Hu
et al., 2020), thereby overlooking the adverse effects of label
noise on generalization in later training stages.
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In comparison, our work characterizes the whole training
process of neural networks under label noise from a feature-
learning perspective, unveiling a novel two-stage behavior in
the training dynamics. Some recent works (Kou et al., 2023;
Meng et al., 2023; Xu et al., 2024) in feature learning theory
also considered label noise in their analysis. However, they
fail to characterize the two-stage distinct behaviors due to
differences in their setups.

3. Problem Setup
Basic Notation. We use bold letters for vectors and matrices,
and scalars otherwise. The Euclidean norm of a vector and
spectral norm of a matrix are denoted by ∥ · ∥2, and the
Frobenius norm of a matrix by ∥ · ∥F . We use y to represent
the true label and ỹ to represent the observed label. For
a logical variable a, let 1(a) = 1 if a is true, otherwise
1(a) = 0. Denote Id as the d × d identity matrix and
[n] = {1, 2, . . . , n}.

Binary Classification. We consider a binary-classification
data distribution Dtr

3, following prior works (Cao et al.,
2022; Kou et al., 2023), where each data point consists
of a label-dependent signal and a label-independent noise.
More precisely, let µ ∈ Rd be a fixed vector representing
the signal and let ξ ∈ Rd be a random vector sampled
from N (0, σ2

ξId) representing the noise. Then each data
point x ∈ R2d is defined as x = [x(1),x(2)], where one
of x(1),x(2) is chosen to be yµ and the other as ξ, Here
y ∈ {−1, 1} is the corresponding label, generated from the
Rademacher distribution, i.e., P(y = 1) = P(y = −1) = 1

2 .
We sample the training set {xi, yi}ni=1 fromDtr and assume
the training set is balanced without loss of generality.

Label Flipping. We introduce label noise for each training
sample, where the observed label ỹ may differ from the
ground-truth label y 4. Specifically, we flip the observed
label into the incorrect class with a certain probability, i.e.,
τ+ = P(ỹ = −1|y = 1), τ− = P(ỹ = 1|y = −1). We
require τ+, τ− ∈ (0, 1/2) such that neural networks can
still learn the signal from data under label noise. In addition,
we denote the clean sample set as St := {i ∈ [n] : ỹi = yi}
and the noisy sample set as Sf := {i ∈ [n] : ỹi ̸= yi}.

Two-Layer ReLU CNN. We consider a two-layer convo-
lutional neural network (CNN) with ReLU activation, as
in (Cao et al., 2022; Kou et al., 2023). Formally, given
the input data x, the output of the neural network is de-
fined as f(W,x) = F+1(W+1,x)−F−1(W−1,x), where

3The analysis can be extended to multi-class classification,
where each class is represented by distinct, orthogonal signal vec-
tor, i.e., µ1,µ2, . . . ,µk, along with one-hot labels.

4In experiments, the ground-truth labels are inaccessible, and
we can only evaluate models based on the observed labels.

F+1(W+1,x) and F−1(W−1,x) are given by

Fj(Wj ,x) =
1

m

m∑
r=1

(
σ
(
⟨wj,r, yµ⟩

)
+ σ

(
⟨wj,r, ξ⟩

))
,

for j = ±1. Here, σ(·) is the ReLU activation function,
defined as σ(x) = max{0, x}. This corresponds to a two-
layer CNN with second layer weights fixed to be ±1/m.

We initialize the entries of W independently from a zero-
mean Gaussian distribution with variance σ2

0 , i.e., w(0)
j,r ∼

N (0, σ2
0Id) for all j = ±1, r ∈ [m]. We also fix the second

layer weights uniformly to ±1, which is a common setting
used in previous studies (Arora et al., 2019; Chatterji et al.,
2021).

Gradient Descent with Logistic Loss. We consider the
logistic loss ℓ(f, ỹ) = log

(
1 + exp(−f · ỹ)

)
. Then the

training loss, or the empirical risk, can be written as:

LS(W) =
1

n

n∑
i=1

ℓ (f(W,xi), ỹi) ,

To minimize this empirical risk, we use gradient descent
(GD) with a constant learning rate η > 0,

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rLS(W

(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)jỹiξi

− η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)jyiỹiµ, (1)

where the loss derivative ℓ
′(t)
i := ℓ′(f(W(t),xi), ỹi) =

− 1
1+exp(ỹif(W(t),xi))

.

Evaluation. We characterize the generalization by evaluat-
ing the 0-1 error on the test distribution Dtest:

L0−1
D (W) = P(x,y)∼Dtest

(y · f(W,x) < 0)

Dtest mainly follows the settings of Dtr; however, to sim-
ulate spurious features in real-world scenarios, for any
(x, y) ∈ Dtest, we define x = [yµ, ξ + ζ], where ξ ∼
Unif({ξi}ni=1) and ζ ∼ N (0, σ2

ξI). In practice, spurious
features exist, which occur in both the training and test
set but lack causal relationships with the ground-truth la-
bel y (Sagawa et al., 2020; Zhou et al., 2021; Singla &
Feizi, 2021; Izmailov et al., 2022). We consider the label-
independent noise ξ in the training set as spurious features
and randomly incorporate them into the test distribution.

Signal-Noise Decomposition. In our analysis, we utilize a
proof technique termed signal-noise decomposition, which
has been widely adopted by (Li et al., 2019; Allen-Zhu &
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Li, 2020; 2022; Cao et al., 2022). The signal-noise decom-
position breaks down the weight w(t)

j,r into signal and noise
components. Formally, we express:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi, (2)

where γ
(t)
j,r and ρ

(t)
j,r,i represent the signal and noise coef-

ficients, respectively. The normalization factors ∥µ∥−2
2

and ∥ξi∥−2
2 ensure that γ

(t)
j,r ≈ ⟨w

(t)
j,r,µ⟩, and ρ

(t)
j,r,i ≈

⟨w(t)
j,r, ξi⟩. Naturally, γ(t)

j,r characterizes the process of signal

learning, while ρ
(t)
j,r,i captures the memorization of noise.

To facilitate a finer-grained analysis of the evolution of
the noise coefficients, we introduce the notations ρ(t)j,r,i :=

ρ
(t)
j,r,i1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≤ 0), following

(Cao et al., 2022). Consequently, the weight decomposition
can be further expressed as:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ

+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi +

n∑
i=1

ρ(t)
j,r,i
∥ξi∥−2

2 ξi. (3)

This decomposition translates the dynamics of weights into
dynamics of signal and noise coefficients (See Lemma C.1).

4. Main Results
Before presenting our main results, we first state our main
condition.

Notations. We denote SNR := ∥µ∥2/(σξ

√
d) to be the

signal-to-noise ratio and T ∗ = Θ̃(η−1ϵ−1nmσ−1
ξ d−1) to

be the maximum iterations for any given ϵ > 0.

Condition 4.1. Suppose there exists a sufficiently large
constant C such that the following holds.

1. The signal-to-noise ratio and label flipping probability
satisfy n · SNR2 = Θ(1), τ+, τ− = Θ(1).

2. The dimension of a single data patch d satisfies d ≥
Cmax

{
n2 log(nm/δ) log(T ∗)2, n∥µ∥2σ−1

ξ

√
log(n/δ)

}
.

3. The size of training sample n and model width m satisfy
m ≥ C log(n/δ), n ≥ C log(m/δ).

4. The magnitude of signal patch ∥µ∥2 satisfies ∥µ∥22 ≥
Cσ2

ξ log(n/δ).

5. The standard deviation σ0 of the Gaussian dis-
tribution for weights initialization satisfies σ0 ≤
C−1 min

{√
nσ−1

ξ d−1, ∥µ∥−1
2 log(m/δ)−1/2

}
.

6. The positive constant learning rate η satisfies η ≤
C−1 min

{
σ−2
ξ d−3/2n2m

√
log(n/δ), σ−2

ξ d−1n
}

.

Remarks on Condition 4.1. We first require the signal-to-
noise ratio n ·SNR2 and label flipping probability τ+, τ− to
be of constant order. Such a condition is critical for the sub-
sequent characterization of the two-stage behaviors. Other
conditions, including sufficiently large d,m, n, ∥µ∥2 and
sufficiently small σ0, η, are commonly adopted in existing
analysis (Cao et al., 2022; Kou et al., 2023; Meng et al.,
2023), to ensure sufficient over-parameterization and that
the training loss converges under gradient descent.

4.1. Feature Learning Process with Label Noise

In this subsection, we analyze the feature learning process
of neural networks under label noise. We identify two stages
where the learning dynamics exhibit distinct behaviors.

Stage I. Model Fits Clean Data. Theorem 4.1 characterizes
the learning outcome at the end of Stage I.
Theorem 4.1. Under Condition 4.1, there exists T1 =
Θ
(
η−1nmσ−2

ξ d−1
)

such that ρ(T1)
ỹi,r,i

= Θ(1) for all i ∈ [n],

r ∈ [m] with ⟨w(0)
ỹi,r

, ξi⟩ ≥ 0 and γ
(T1)
j,r = Θ(1) for all

j = ±1, r ∈ [m], and

1. γ
(T1)
j,r > ρ

(T1)
ỹi,r,i

for all j = ±1, r ∈ [m], i ∈ [n].

2. All clean samples i ∈ St satisfy ỹif(W
(T1),xi) ≥ 0.

3. All noisy samples i ∈ Sf satisfy ỹif(W
(T1),xi) ≤ 0.

Theorem 4.1 states that at the end of Stage I, the signal co-
efficients γ(T1)

j,r are larger than the noise coefficients ρ(T1)
ỹi,r,i

,
suggesting signal learning dominates the feature learning
process. During this stage, the model correctly classifies
all clean samples, i.e., ∀i ∈ St, ỹif(W(T1),xi) ≥ 0, and
classifies all noisy samples to the ground-truth classes, i.e.,
∀i ∈ Sf , yif(W(T1),xi) = −ỹif(W(T1),xi) ≥ 0.

Insights from Theorem 4.1. In Stage I, the model perfectly
fits all the clean samples while disregarding the noisy ones.
The model initially learns the signal from the data, leading
to an optimal generalization ability.

Stage II. Loss Converges and Model Fits Noisy Data.
Theorem 4.2 formalizes the learning behavior in Stage II as
the training loss converges.
Theorem 4.2. Under Condition 4.1, for arbitrary ϵ > 0,
there exists t∗ ∈ [T1, T

∗], such that training loss converges,
i.e., LS(W

(t∗)) ≤ ϵ and

1. All clean samples, i.e., i ∈ St, it holds that
ỹif(W

(t∗),xi) ≥ 0.

2. There exists a constant 0 < τ ′ ≤ τ++τ−
2 such

that there are τ ′n noisy samples, i.e., i ∈ Sf
that satisfy 1

m

∑m
r=1 ρ

(t∗)
ỹi,r,i

> 1
m

∑m
r=1 γ

(t∗)
−ỹi,r

. and
ỹif(W

(t∗),xi) ≥ 0.
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3. Test error L0−1
D (W(t∗)) ≥ 0.5min{τ+, τ−}.

Theorem 4.2 states that in Stage II, as the training loss
converges, the model continues to make correct predic-
tions on clean samples, consistent with Stage I; however,
for certain noisy samples, the averaged noise coefficient
across all neurons surpasses the averaged signal coefficient,
i.e., 1

m

∑m
r=1 ρ

(t∗)
ỹi,r,i

> 1
m

∑m
r=1 γ

(t∗)
−ỹi,r

. Consequently, for
these noisy samples, the model’s predictions align with the
noisy observed labels ỹ. In addition, if evaluating the model
on the test distribution introduced in Section 3, it results in a
constant, non-vanishing test error, which is lower-bounded
by the label flipping probability in the training set.

Insights from Theorem 4.2. With the presence of label
noise and sufficient training iterations, the model inevitably
learns the noise features from the data, which leads to de-
graded generalization.

4.2. Theoretical Supports for Techniques: Early
Stopping and Sample Selection.

Our two-stage picture provides theoretical support for two
widely used techniques to address label noise: early stop-
ping (Liu et al., 2020; Bai et al., 2021) and sample selec-
tion (Han et al., 2018; 2020). Intuitively, early stopping
aims to stop training before the loss converges, preventing
overfitting to noisy samples. On the other hand, sample
selection leverages the small-loss criterion (Han et al., 2018)
to distinguish clean samples from noisy ones, assuming
that samples with smaller losses are more likely to be clean.
Proposition 4.3 formally supports the effectiveness of these
two strategies.

Proposition 4.3 (Early stopping and sample selection). Un-
der the same conditions as in Theorem 4.1, we have that

• Early stopping: suppose the training is terminated early
at T1, then the test loss is bounded by L0−1

D (W(T1)) ≤
exp(−dn−1/C ′) for some constant C ′ > 0.

• Sample selection: At iteration T1, clean and noisy sam-
ples can be well-separated based on the training loss,
i.e., for all i ∈ St, ℓ(T1)

i ≤ log(2) and for all i ∈ Sf ,
ℓ
(T1)
i ≥ log(2).

Proposition 4.3 implies that if training is stopped during
Stage I t ≤ T1, before the loss converges, the test error can
be upper bounded arbitrarily small under the condition that
d = Ω̃(n2). Proposition 4.3 also states that noisy samples
tend to have higher loss values compared to clean samples,
and there exists a hard threshold log(2), which allows for a
perfect separation of clean samples from noisy ones.

Remarks on Proposition 4.3. We note that directly com-
puting T1 in real-world scenarios is not feasible due to the

complexity of the training dynamics and unknown data dis-
tribution. However, our theory suggests the existence of a
point T1, beyond which further training may degrade gener-
alization performance. This implies that validation accuracy
can serve as a practical surrogate for identifying , which
aligns with the common practice of early stopping at the
point of maximum validation accuracy. Indeed, our theory
explains the effectiveness of the common practice.

4.3. Feature learning Process without Label Noise

For comparison, we also analyze the feature learning process
of neural networks without label noise. The analysis follows
a similar two-stage framework as the analysis conducted
with label noise.

Model Fits All Data and Generalizes Well. Theorem 4.4
characterizes the learning outcome without label noise.

Theorem 4.4. Under Condition 4.1 with τ+, τ− = 0, there
exists T1 = Θ(η−1ϵ−1nmσ−2

ξ d−1) such that for all T1 ≤
t ≤ T ∗, yif(W(t),xi) ≥ 0 for all i ∈ [n]. In addition,
there exists a time t∗ ∈ [T1, T

∗] such that training loss
converges, i.e., LS(W

(t∗)) ≤ ϵ and

1. yif(W
(t∗),xi) ≥ 0 for all i ∈ [n],

2. Test error is bounded as L0−1
D (W(t∗)) ≤

exp
(

d
n −

n∥µ∥4
2

CDσ4
ξd

)
for some constant CD > 0.

Theorem 4.4 states that without label noise, all samples
can be classified correctly at the end of training, suggesting
that the model fits all the samples throughout the training
process. Theorem 4.4 also shows that when evaluating, the
test error can be upper bounded by exp( dn −

n∥µ∥4
2

CDσ4
ξd
). Thus,

if n·SNR2 ≥ 2CD = Θ(1), it follows that L0−1
D (W(t∗)) ≤

exp(− n∥µ∥4

2CDσ4
ξd
), which is small given the requirement on d

(see Condition 4.1).

5. Proof Sketch
In this section, we provide an overview of our proof tech-
niques for our theoretical results in Section 4.

Technical Novelty. Compared with existing works in fea-
ture learning theory, we mainly introduce two novel condi-
tions: i) n · SNR2 and ii) τ+, τ− are of the constant order.
These two conditions establish a significantly different train-
ing regime and are crucial for identifying the two-stage
picture in learning dynamics. We delve into the technical
details of these distinctions in the subsections below and in
Appendix A.
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5.1. Feature Learning Process with Label Noise

The analysis of feature learning with label noise critically
relies on Lemma 5.1, which shows the difference in terms
of model predictions between clean and noisy samples.

Lemma 5.1. Under Condition 4.1, there exists a sufficiently
large constant C1 such that for all t ∈ [0, T ∗], the following
are satisfied:

• 1
m

∑m
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤
1
m

∑m
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1 for all clean samples,

i.e., i ∈ St

• 1
m

∑m
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤
1
m

∑m
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
+ 1/C1 for all noisy samples,

i.e., i ∈ Sf .

Lemma 5.1 suggests for clean samples i ∈ St, the model
prediction ỹif(W(t),xi) is determined by 1

m

∑m
r=1

(
γ
(t)
ỹi,r

+

ρ
(t)
ỹi,r,i

)
, while for noisy samples i ∈ Sf , ỹif(W(t),xi) is

determined by 1
m

∑m
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
.

Besides Lemma 5.1, we also need to bound the scale of
coefficients throughout the training process.

Proposition 5.2. Under Condition 4.1, for any 0 ≤ t ≤ T ∗,
we can bound

0 ≤ ρ
(t)
j,r,i, γ

(t)
j,r ≤ Θ(log(T ∗)),

0 ≥ ρ(t)
j,r,i
≥ −Õ(max{σ0∥µ∥2, σ0σξ

√
d, nd−1/2}).

Proposition 5.2 states that |ρ(t)
j,r,i
| is lower bounded by a

small term based on Condition 4.1. In addition, both
ρ
(t)
j,r,i, γ

(t)
j,r are positive and cannot grow faster than a loga-

rithmic order of T ∗.

Comparison with Previous Studies. Some previous works
also need to bound the scale of coefficients during training;
however, their analysis is not applicable to our case due to
our condition that n · SNR2 = Θ(1). As a representative
example, the analysis in Kou et al. (2023) requires the auto-
matic balance of updates, i.e., the loss derivatives ℓ′(t)i are
balanced across all samples. However, in our case, due to
the SNR condition, signal coefficients are on the same scale
as noise coefficients. Consequently, the loss derivatives ℓ′(t)i

are no longer solely determined by 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

. Thus,
the automatic balance of updates cannot be derived.

Two-Stage Analysis. To prove Proposition 5.2 as well as
the main theorems in Table 1 under our Condition 4.1, we
separately consider two stages.

In Stage I, before the maximum of the coefficients reaches a
constant order, all loss derivatives can be lower bounded by

a constant, i.e., |ℓ′(t)i | ≥ Cℓ for all i ∈ [n]. This ensures the
balance of loss derivatives across all samples as |ℓ′(t)i | ≤ 1.
Such a condition allows both ρ

(t)
j,r,i, γ

(t)
j,r to increase to a

constant order, enabling the establishment of the bound in
Proposition 5.2. Furthermore, by applying Lemma 5.1, we
can assert that ỹif(W(t),xi) ≥ 0 for all i ∈ St. On the
other hand, as long as n·SNR2 ≥ c′, for some constant c′ >
0, we can demonstrate that signal learning slightly surpasses
noise memorization, concluding that ỹif(W(t),xi) ≤ 0 for
noisy samples i ∈ Sf .

In Stage II, after the coefficients reach a constant order,
the loss derivatives can no longer be lower-bounded by a
constant. To establish that Proposition 5.2 still holds in
this stage, we first rewrite the signal learning dynamics in
Lemma C.1 as follows:

γ
(t+1)
j,r = γ

(t)
j,r +

η

nm

(∑
i∈St

|ℓ′(t)i |1(⟨w
(t)
j,r, yiµ⟩ ≥ 0)

−
∑
i∈Sf

|ℓ′(t)i |1(⟨w
(t)
j,r, yiµ⟩ ≥ 0)

)
∥µ∥22.

Recall |ℓ′(t)i | = 1
1+exp(ỹif(W(t),xi))

. Based on Lemma 5.1,

|ℓ′(t)i |1(i ∈ Sf ) can be larger than |ℓ′(t)i |1(i ∈ St), which
causes γ(t)

j,r to decrease. However, we show by contradiction

that γ(t)
j,r ≤ 0 cannot occur. When γ

(t)
j,r decreases, the gap

between |ℓ′(t)i |1(i ∈ St) and |ℓ′(t)i |1(i ∈ Sf ) diminishes,
allowing γ

(t)
j,r to eventually increase in subsequent iterations.

Therefore, the upper bound for both γ
(t)
j,r , ρ

(t)
j,r,i can be de-

rived by showing that |ℓ′(t)i | converges at a rate of O(1/t)

when either γ(t)
j,r or ρ(t)j,r,i grows to a logarithmic order.

Additionally, we demonstrate that training loss converges
at some iteration t∗. Upon convergence, because of the
monotonicity of ρ(t)ỹi,r,i

and positivity of γ(t)
j,r , we can show

ỹif(W
t∗ ,xi) ≥ 0 for all i ∈ St. On the other hand,

we establish by contradiction that there must exist a con-
stant fraction of noisy samples satisfying ỹif(W

t∗ ,xi) ≥
0. Because otherwise, we would have 1

m

∑m
r=1(ρ

(t∗)
ỹi,r,i

−
γ
(t∗)
−ỹi,r

) ≤ Cϵ for some constant Cϵ > 0 over a constant frac-
tion of samples. This suggests the training loss LS(W

(t∗))
can be lower bounded by a strictly positive constant cl > 0,
which leads to a contradiction.

Finally, to establish the test error, we show that, based on the
test distribution Dtest introduced in Section 3, there exists
some sufficiently large constant C ′ that

P(yf(W(t∗),x) < 0)

≥ 1

n

n∑
i=1

P
( 1

m

m∑
r=1

σ(⟨w(t∗)
−y,r, ξi + ζ⟩)
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− 1

m

m∑
r=1

σ(⟨w(t∗)
y,r , ξi + ζ⟩) ≥ 1

m

m∑
r=1

γ(t∗)
y,r + 1/C ′

)
Next, we show that for any y = ±1, there exists some
sufficiently large constant C2 that for any i ∈ Sf ∩ Sy,
⟨w(t∗)

−y,r, ξi+ζ⟩ ≥ ρ
(t∗)
−y,r,i−1/C2, ⟨w(t∗)

y,r , ξi+ζ⟩ ≤ 1/C2.

Then, based on the scale that 1
m

∑m
r=1(ρ

(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

) ≥
Cϵ, we can show P(yf(W(t∗),x) < 0) ≥ 0.5τ+ if y = 1
and P(yf(W(t∗),x) < 0) ≥ 0.5τ− if y = −1.

5.2. Feature Learning Process without Label Noise

The analysis of feature learning without label noise follows a
similar two-stage framework as the analysis with label noise.
Our analysis without label noise relies on Lemma 5.3, where
we show that under Condition 4.1, the loss derivatives are
balanced across all samples, and both the noise coefficients
and signal coefficients are of the same order.

Lemma 5.3. Under Condition 4.1, for any 0 ≤ t ≤ T ∗,
there exists constants κ, C̃ℓ > 0 such that

1. 1
m

∑m
r=1(ρ

(s)
yi,r,i

+ γ
(s)
yi,r − ρ

(s)
yk,r,k

− γ
(s)
yk,r) ≤ κ for all

i, k ∈ [n].

2. ℓ
′(s)
i /ℓ

′(s)
k ≤ C̃ℓ for all i, k ∈ [n].

Lemma 5.3 allows us to establish Proposition 5.2 for all
training iterations. Initially, we can demonstrate that both
signal and noise coefficients reach a constant order during
Stage I, as in Section 5.1. In Stage II, we can show that
the scales of the signal and noise coefficients remain on the
same order, i.e., γ(t)

j,r/
∑n

i=1 ρ
(t)
j,r,i = Θ(SNR2). Finally, by

carefully analyzing the test error, we can upper bound the
test error in terms of n ·SNR2 (see details in Appendix D.2).

6. Experiments
In this section, we provide empirical evidence under both
synthetic and real-world setups to support our theory.

6.1. Synthetic Experiments

First, we conduct experiments under the synthetic setup.

Synthetic Setup with Label Noise. We follow precisely
the problem setup introduced in Section 3:

• SNR. The fixed signal vector is set to be µ =
[yµ, 0, · · · , 0] ∈ Rd, where µ = 20 and d = 2000, and
the random noise vector ξ is sampled fromN (0, Id). This
setting corresponds to n · SNR2 = 20.

• Label noise. The n = 100 training samples is generated
with balanced class labels and each sample’s label is
flipped with a probability of 0.1.

A
cc

u
ra

cy
C

o
ef

fi
ci

en
ts

w/ label noise w/o label noise

Iteration 𝑡 Iteration 𝑡

Figure 1: Experimental validation under the synthetic
setup, with label noise (left) and without label noise
(right). (Top) The change in maxj,r γj,r (signal learning)
and maxj,r ρj,r,i (noise memorization) on noisy (i.e., when
yi ̸= ỹi) and clean samples (i.e., when yi = ỹi) w.r.t the
training iteration t. (Bottom) The change in overall train-
ing accuracy AccDtrain , as well as the accuracy on clean
AccDtrain, clean and noisy samples AccDtrain, noisy , w.r.t the train-
ing iteration t for models under different settings. Note
that there are no noisy samples when training without label
noise; thus we only plot noise memorization on clean sam-
ples and the overall training accuracy. The gray dashed line
separates the two stages for training with label noise. More
experimental results are in Appendix F.

• Model and training settings. A two-layer CNN (as
defined in Section 3) is trained using gradient descent,
with a total of T = 200 iterations and a learning rate of
η = 0.1.

The Two-Stage Picture Emerges in the Feature Learning
Process with Label Noise. Specifically, we demonstrate the
signal learning process in the two-layer CNN by showing
how maxj,r γj,r changes during training. We also present
the noise memorization process by illustrating the evolution
of maxj,r ρj,r,i. In Figure 1 (left), a clear two-stage pattern
is observed in the learning process:

• Stage I. The values of maxj,r γj,r are significantly larger
than those of maxj,r ρj,r,i, indicating that the signal learn-
ing initially dominates;

• Stage II. The values of maxj,r ρj,r,i on noisy sam-
ples (i.e., when yi ̸= ỹi) increasingly surpass those of
maxj,r γj,r, implying that the noise memorization pro-
cess, particularly for noisy samples, gradually takes over.

Additionally, we provide the training accuracy curves. In
Figure 1 (bottom, left), the accuracy on noisy samples ini-
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Feature Learning Process w/ Label NoiseAccuracy curves 

Epoch 𝑡

Figure 2: Experimental validation in real-world scenarios. Two VGG nets are trained on the first two categories of
CIFAR-10 under nearly identical settings. One is trained with label noise and the other without. (Left) The accuracy curves
for the two models. Here, AccDtrain and AccDtest represent the accuracy on the entire training and test sets, respectively, while
AccDtrain, clean and AccDtrain, noisy specifically denote the accuracy on clean and noisy samples from the training set. (Right)
Visualization of model predictions (via SHAP (Lundberg & Lee, 2017)) for noisy samples across multiple epochs. Red
regions indicate positive contributions to model predictions, while blue regions denote negative contributions, with darker
regions signifying greater contributions. More experimental results are in Appendix F.

tially drops to 0 during the early stage and then gradually
increases, as predicted by our theory in Section 4.1

Synthetic Setup without Label Noise. For comparison, we
also train a baseline model under nearly identical settings
but without label flipping.

Signal Learning Dominates in the Feature Learning Pro-
cess without Label Noise. Similarly, we focus on the evo-
lution of signal and noise coefficients. In Figure 1 (top,
right), the values of maxj,r γj,r are larger than those of
maxj,r ρj,r,i throughout the training, suggesting that the
signal learning dominates the feature learning process. Fur-
thermore, in Figure 1 (bottom, right), the training accuracy
remains consistently high along the training. These results
closely align with our theory in Section 4.3.

6.2. Real-World Experiments

Taking a step further, we also validate our theoretical anal-
ysis in the real-world scenario. The code for replicat-
ing the results is available on https://github.com/
zzp1012/label-noise-theory.

Real-World Setup with and without Label Noise. We
perform experiments on the commonly used image classi-
fication dataset CIFAR-10 (Krizhevsky et al., 2009), using
the standard network architecture VGG net (Simonyan &
Zisserman, 2015). Specifically, we train the VGG net with

stochastic gradient descent (SGD) on samples from the first
two categories of CIFAR-10, where each sample’s label is
flipped with a probability of 0.2. Similar to the synthetic
experiment, for comparison, we also train another VGG net
under the same settings but without label flipping.

The Two Stage Picture: Accuracy. Accuracy curves
demonstrate the two-stage picture with label noise in real-
world scenarios. In Figure 2 (left), when training with label
noise, the accuracy on noisy samples follows a similar two-
stage pattern to the synthetic experiments — an initial drop
followed by a gradual increase to 1 — while the test set
accuracy remains consistently lower than when training
without label noise. In comparison, when training without
label noise, the accuracies on both training and test sets
consistently increase during the training.

The Two Stage Picture: Visualization of the Feature
Learning Process. As deep models are black-boxes, we
visualize their feature learning process using post-hoc inter-
pretability methods. Specifically, we choose SHAP (Lund-
berg & Lee, 2017) , which interprets model predictions by
attributing the contribution of each input variable (e.g., pix-
els for image inputs). In Figure 2 (right), it is evident that a
two-stage behavior emerges. In the first stage (reflected by
Epoch 1 and 41), clear patterns are observed in the interpre-
tations, such as the wings of “airplane” class and contours of
“automobile” class, implying the model relies on the general-
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izable features for predictions. However, in the second stage
(reflected by Epoch 81 and 121), the interpretations appear
messy, and the model overfits to the spurious features, such
as the noise in backgrounds.

7. Conclusion and Limitations
In conclusion, our work offers an exact learning dynamics
analysis of training neural networks with label noise, We
identify two distinct stages in the feature learning process,
offering a solid explanation for the effectiveness of tech-
niques such as early stopping and sample selection. Our
theoretical results, along with sufficient practical insights,
are significant contributions that have been largely absent
from the deep learning theory literature. In addition, experi-
ments under both synthetic and real-world setups back up
our theory.

Limitations. Our current analysis is limited to random la-
bel noise and does not account for data-dependent label
noise, where mislabeling probability varies based on sample
characteristics. Extending our framework to structured or
adversarial noise remains an important direction for future
research. Additionally, our theoretical results are derived for
a two-layer CNN, which, while analytically tractable, may
not fully capture the complexities of deeper architectures.
Investigating whether our two-stage learning dynamics per-
sist in deeper networks with advanced components (e.g.,
residual connections, normalization) is crucial for improv-
ing robustness.
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A. Comparison of Technical Quantities to (Kou et al., 2023)
Among the various differences in conditions compared to (Kou et al., 2023), the most critical distinction lies in the scale of
the SNR. Because we aim to characterize the two-stage behaviors induced by label noise, we require the SNR to satisfy
n · SNR2 = Θ(1). This enables the signal learning to dominate the noise learning in the first stage while noise learning
dominates signal learning in the second stage. Such a distinct two-stage dynamics cannot be captured by (Kou et al., 2023)
due to n · SNR2 = o(1).

More specifically, in the following, we explicitly compares the key differences in the analysis techniques compared to (Kou
et al., 2023):

• Non-Time-invariant coefficients: One of the key techniques (Key Technique 1 in (Kou et al., 2023)) is the derivation
of time-invariant order of the coefficient ratio: γ(t)

j,r/
∑n

i=1 ρ
(t)
j,r,i = Θ(SNR2), which is critical for their generalization

analysis. However, in our case, due to the setting of constant order n · SNR2, the noisy samples exhibit different
behaviors as the clean samples (which is the main goal we wish to show), such time-invariance may not hold for all
iterations.

• Non-balancing of the updates: Another key technique employed in (Kou et al., 2023) is the automatic balancing of
coefficient updates, which requires to show ℓ

′(t)
i /ℓ

′(t)
k ≤ C for all i, k ∈ [n]. That is, the loss derivatives across all

samples are approximately balanced, which is critical for their convergence analysis. Because in our case n · SNR2,
the loss derivatives of noisy samples may be significantly larger than that of clean samples, we cannot guarantee the
balance of updates across all samples.

Without the above two results in our case, the convergence and generalization analysis becomes challenging. To address
the challenges, we require developing novel techniques via refined analysis on clean and noisy samples, which cannot be
addressed in the prior works.

To better comprehend the differences to the analysis of (Kou et al., 2023), we present the following tables that compare the
different quantities at each training stage. These differences require non-trivial analysis.

First Stage Second Stage

Monotonicity of signal
(Kou et al., 2023) Monotonic increase

Our work Monotonic increase No monotonicity

Signal-noise magnitude
(Kou et al., 2023) Noise dominates

Our work Signal dominates Noise dominates

Determining factors of
ỹif(W

(t),xi)

(Kou et al., 2023) 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

± o(1)

Our work

{
1
m

∑m
r=1(γ

(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)± o(1), for i ∈ St
1
m

∑m
r=1(ρ

(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)± o(1), for i ∈ Sf

Prediction
(Kou et al., 2023) ỹif(W

(t),xi) ≥ 0,∀i ∈ [n]

Our work

{
ỹif(W

(t),xi) ≥ 0, i ∈ St
ỹif(W

(t),xi) ≤ 0, i ∈ Sf
ỹif(W

(t),xi) ≥ 0,∀i ∈ [n]

Test error L0−1
D (W(T1))

(Kou et al., 2023)

{
o(1), if n∥µ∥42 > C − 1σ4

ξd

Ω(1), if n∥µ∥42 ≤ C3σ
4
ξd

Our work o(1) Ω(1)

Table 2: Comparisons of key quantities in the analysis at each stage.

B. Preliminary Lemmas
This section introduces a few lemmas that are critical to bound the parameters at initialization.

Lemma B.1 ((Cao et al., 2022; Kou et al., 2023)). Suppose d = Ω(log(6n/δ)). Then with probability at least 1− δ,

σ2
ξd/2 ≤ ∥ξi∥22 ≤ 3σ2

ξd/2,
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|⟨ξi, ξi′⟩| ≤ 2σ2
ξ

√
d log(6n2/δ),

|⟨ξi,µ⟩| ≤ ∥µ∥2σξ

√
2 log(6n/δ).

Lemma B.2 ((Cao et al., 2022; Kou et al., 2023)). Suppose that d = Ω(log(nm/δ)), m = Ω(log(1/δ)). Then with
probability at least 1− δ,

σ2
0d/2 ≤ ∥w0

j,r∥22 ≤ 3σ2
0d/2

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(12m/δ) · σ0∥µ∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(12mn/δ) · σ0σξ

√
d.

Lemma B.3 ((Kou et al., 2023)). Let S(t)i := {r ∈ [m] : ⟨w(t)
ỹi,r

, ξi⟩ > 0} and S(t)j,r := {i ∈ [n] : j = ỹi, ⟨w(t)
j,r, ξi⟩ > 0}.

Then for any δ > 0, and m ≥ 50 log(4n/δ), n ≥ 32 log(8m/δ), we have with probability at least 1− δ,

|S(0)i | ≥ 0.4m, ∀i ∈ [n]

|S(0)j,r | ≥ n/8, ∀j = ±1, r ∈ [m].

C. Analysis with label noise

Without loss of generality, for the subsequent analysis, we assume |S1 ∩ St| = (1−τ+)n
2 , |S1 ∩ Sf | = τ+n

2 , |S−1 ∩ St| =
(1−τ−)n

2 , |S−1 ∩ Sf | = τ−n
2 .

C.1. Coefficients Decomposition Iteration

Lemma C.1. The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

in decomposition (3) satisfy γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0 and admit the following
iterative update rule:

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)yiỹi∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(ỹi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(ỹi = −j).

Proof of Lemma C.1. By iterating the gradient descent update, we can show

w
(t)
j,r = w

(0)
j,r −

η

nm

t−1∑
s=0

n∑
i=1

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)jỹiξi −
η

nm

t−1∑
s=0

n∑
i=1

ℓ
′(s)
i σ′(⟨w(s)

j,r , yiµ⟩)jyiỹiµ

Because ξi,µ are linearly independent almost surely for all i ∈ [n]. Then from the definition:

w
(t)
j,r = w

(0)
j,r + jγ

(t)
j,r∥µ∥

−2
2 µ+

n∑
i=1

ρ
(t)
j,r,i∥ξi∥

−2
2 ξi

there exists a unique decomposition as

γ
(t)
j,r = − η

nm

t−1∑
s=0

n∑
i=1

ℓ
′(s)
i σ′(⟨w(s)

j,r , yiµ⟩)yiỹi∥µ∥
2
2

ρ
(t)
j,r,i = −

η

mn

t−1∑
s=0

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)jỹi∥ξi∥
2
2.
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By definition of ρ(t)j,r,i, ρ
(t)
j,r,i

, and the fact that ℓ′i ≤ 0,

ρ
(t)
j,r,i = −

η

nm

t−1∑
s=0

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)∥ξi∥
2
21(ỹi = j)

ρ(t)
j,r,i

=
η

nm

t−1∑
s=0

ℓ
′(s)
i σ′(⟨w(s)

j,r , ξi⟩)∥ξi∥
2
21(ỹi = −j)

Then the iterative updates of the coefficients follow directly.

C.2. Scale of Coefficients

Here we start to provide a global bound for the decomposition coefficients. We show for a sufficiently large number of
iterations T ∗ = Θ̃(η−1ϵ−1nmd−1σ−2

ξ ), the scale of the coefficients can be upper bounded up to some logarithmic factors.

We consider the following definition:

β = 2max
i,j,r
{|⟨w(0)

j,r ,µ⟩|, |⟨w
(0)
j,r , ξi⟩|}, SNR =

∥µ∥
σξ

√
d
, α = Ct log(T

∗)

for some constant Ct > 0 to be determined later. Then by Lemma B.2, we can bound as β ≤
σ0 max

{√
2 log(12m/δ)∥µ∥2, 2

√
log(12mn/δ)σξ

√
d}.

We next provide the main proposition that bounds the scale of coefficients.

Proposition C.2 (Restatement of Proposition 5.2). Under Condition 4.1, for any 0 ≤ t ≤ T ∗

0 ≤ ρ
(t)
j,r,i ≤ α, (4)

0 ≥ ρ(t)
j,r,i
≥ −β − 10

√
log(6n2/δ)

d
nα ≥ −α, (5)

0 ≤ γ
(t)
j,r ≤ Cγα (6)

for some constant Cγ > 0.

We aim to prove Proposition C.2 using induction. This requires several intermediate lemmas through the induction process.

Lemma C.3. Under Condition 4.1, suppose (4), (5), (6) hold at iteration t. Then for all r ∈ [m], j ∈ {±1}, i ∈ [n],

|⟨w(t)
j,r −w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | ≤ SNR

√
8 log(6n/δ)

d
nα,

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i| ≤ 5

√
log(6n2/δ)

d
nα, ỹi = j

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ(t)

j,r,i
| ≤ 5

√
log(6n2/δ)

d
nα, ỹi = −j

Proof of Lemma C.3. From signal-noise decomposition (3),

|⟨w(t)
j,r −w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | =
∣∣∣ n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ⟨ξi,µ⟩+

n∑
i=1

ρ(t)
j,r,i
· ∥ξi∥−2

2 · ⟨ξi,µ⟩
∣∣∣

≤
n∑

i=1

(
|ρ(t)j,r,i|+ |ρ

(t)
j,r,i
|
)
∥ξi∥−2

2 · |⟨ξi,µ⟩|

≤ SNR

√
8 log(6n/δ)

d

n∑
i=1

(
|ρ(t)j,r,i|+ |ρ

(t)
j,r,i
|
)

≤ SNR

√
8 log(6n/δ)

d
nα
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where the second inequality is due to Lemma B.1 and the last inequality is by (4), (5). The second inequality follows
similarly.

Then, for ỹi = j, we have ρ(t)
j,r,i

= 0, ∀t ≥ 0 and hence

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i|

=
∣∣∣j · γ(t)

j,r · ∥µ∥
−2
2 ⟨µ, ξi⟩+

∑
i′ ̸=i

ρ
(t)
j,r,i′ · ∥ξi′∥

−2
2 · ⟨ξi, ξi′⟩+

∑
i′ ̸=i

ρ(t)
j,r,i′
· ∥ξi′∥−2

2 · ⟨ξi, ξi′⟩
∣∣∣

≤ ∥µ∥−2
2 · |⟨µ, ξi⟩| · |γ

(t)
j,r |+

n∑
i′ ̸=i

(
|ρ(t)j,r,i′ |+ |ρ

(t)
j,r,i′
|
)
∥ξi′∥−2

2 · |⟨ξi′ , ξi⟩|

≤ SNR

√
2 log(6n/δ)

d
Cγnα+ 4

√
log(6n2/δ)

d
nα

≤ (2CγSNR + 4)

√
log(6n2/δ)

d
nα

≤ 5

√
log(6n2/δ)

d
nα

where we use Lemma B.1 and (6) in the second inequality. In the third inequality, we use 2 log(6n/δ) ≤ 4 log(6n2/δ). In
the fourth inequality, we note that the condition on SNR ensures that SNR = Θ(1/

√
n).

For ỹi ̸= j, the proof follow exactly the same strategy as for ỹi = j and hence is omitted.

Lemma C.4. Under Condition 4.1 and suppose (4), (5), (6) hold at time t, then there exists a sufficiently large constant
C1 > 0 such that

1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤
1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1 when i ∈ St

1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
− 1/C1 ≤ ỹif(W

(t),xi) ≤
1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
+ 1/C1 when i ∈ Sf

Proof of Lemma C.4. We first see

ỹif(W
(t),xi) =

1

m

∑
j,r

ỹi · j ·
(
σ(⟨w(t)

j,r, yiµ⟩) + σ(⟨w(t)
j,r, ξi⟩)

)
=

1

m

m∑
r=1

(
σ(⟨w(t)

ỹi,r
, yiµ⟩) + σ(⟨w(t)

ỹi,r
, ξi⟩)

)
− 1

m

m∑
r=1

(
σ(⟨w(t)

−ỹi,r
, yiµ⟩) + σ(⟨w(t)

−ỹi,r
, ξi⟩)

)
.

Recall from the gradient descent update and Lemma C.3,

|⟨w(t)
j,r,µ⟩ − ⟨w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | = SNR

√
8 log(6n/δ)

d
nα

Then it can be verified that when ỹi = yi,

⟨w(t)
ỹi,r

, yiµ⟩ ≤ |⟨w(0)
ỹi,r

,µ⟩|+ γ
(t)
ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
ỹi,r

,−yiµ⟩ ≤ |⟨w(0)
ỹi,r

,µ⟩| − γ
(t)
ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα

≤ |⟨w(0)
ỹi,r

,µ⟩|+ SNR

√
8 log(6n/δ)

d
nα
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⟨w(t)
ỹi,r

, ξi⟩ ≤ |⟨w(0)
ỹi,r

, ξi⟩|+ ρ
(t)
ỹi,r,i

+ 5

√
log(6n2/δ)

d
nα

⟨w(t)
−ỹi,r

,−yiµ⟩ ≥ γ
(t)
−ỹi,r

− |w(0)
−ỹi,r

,µ| − SNR

√
8 log(6n/δ)

d
nα

Using these inequalities, we can upper bound when ỹi = yi, i.e., i ∈ St,

ỹif(W
(t),xi) ≤

1

m

m∑
r=1

(
σ(⟨w(t)

ỹi,r
, yiµ⟩) + σ(⟨w(t)

ỹi,r
, ξi⟩)

)
≤ 1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 2β + Õ(nα/

√
d)

≤ 1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1

where we use Lemma C.3 and the Condition 4.1 where we choose a sufficiently large C1.

Similarly, we can lower bound

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1

On the other hand, when ỹi ̸= yi, it can be shown that

⟨w(t)
ỹi,r

, yiµ⟩ ≤ |⟨w(0)
ỹi,r

,µ⟩| − γ
(t)
ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα ≤ |⟨w(0)

ỹi,r
,µ⟩|+ SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
−ỹi,r

, yiµ⟩ ≤ |⟨w(0)
−ỹi,r

,µ⟩|+ γ
(t)
−ỹi,r

+ SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
−ỹi,r

, yiµ⟩ ≥ γ
(t)
−ỹi,r

− |⟨w(0)
−ỹi,r

,µ⟩| − SNR

√
8 log(6n/δ)

d
nα

⟨w(t)
ỹi,r

, ξi⟩ ≤ ρ
(t)
ỹi,r,i

+ |⟨w(0)
ỹi,r

, ξi⟩|+ 5

√
log(6n2/δ)

d
nα

where we notice γ
(t)
j,r ≥ 0.

Then we can upper bound when ỹi ̸= yi as

ỹif(W
(t),xi) ≤

1

m

m∑
r=1

(
σ(⟨w(t)

ỹi,r
, yiµ⟩) + σ(⟨w(t)

ỹi,r
, ξi⟩)

)
− 1

m

m∑
r=1

σ(⟨w(t)
−ỹi,r

, yiµ⟩)

≤ β + SNR

√
8 log(6n/δ)

d
Cρn+

1

m

m∑
r=1

ρ
(t)
ỹi,r,i

+ 5

√
log(6n2/δ)

d
Cρn

− 1

m

m∑
r=1

γ
(t)
−ỹi,r

+
1

m

m∑
r=1

|⟨w(0)
−ỹi,r

, yiµ⟩|+ SNR

√
8 log(6n/δ)

d
Cρn

≤ 1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)
+ 1/C1

where the second inequality uses Lemma C.3 and last inequality is by the Condition 4.1.

Similarly, we can lower bound ỹif(W
(t),xi) as

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

σ(⟨w(t)
ỹi,r

, ξi⟩)−
1

m

m∑
r=1

(
σ(⟨w(t)

−ỹi,r
, yiµ⟩) + σ(⟨w(t)

−ỹi,r
, ξi⟩)

)
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≥ 1

m

m∑
r=1

(
ρ
(t)
ỹi,r,i

− γ
(t)
ỹi,r

)
− 1/C1

where we use Lemma C.3.

Lemma C.5. Under Condition 4.1 and suppose (4), (5), (6) hold at time t. If maxj,r,i{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we have

ỹif(W
(t),xi) = O(1) and ℓ

′(t)
i = Ω(1) for all i ∈ [n].

Proof of Lemma C.5. The proof trivially from Lemma C.4 and the definition of loss. Specifically, we denote the upper
bound as C ′′. For i ∈ St, by Lemma C.4,

|ℓ′(t)i | =
1

1 + exp(ỹif(W(t),xi))
≥ 1

1 + exp
(

1
m

∑m
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1

)
≥ 1

1 + exp(2C ′′ + 1/C1)

For i ∈ Sf , by Lemma C.4,

|ℓ′(t)i | =
1

1 + exp(ỹif(W(t),xi))
≥ 1

1 + exp
(

1
m

∑m
r=1

(
− γ

(t)
−ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1

)
≥ 1

1 + exp(C ′′ + 1/C1)
>

1

1 + exp(2C ′′ + 1/C1)

where the second inequality is by γ
(t)
−ỹi,r

≥ 0. Thus for all i ∈ [n], we can show that |ℓ′(t)i | ≥ (1+exp(2C ′′+C−1
1 ))−1.

Recall S(s)i := {r ∈ [m] : ⟨w(s)
ỹi,r

, ξi⟩ > 0} and S(s)j,r := {i ∈ [n] : yi = j, ⟨w(s)
j,r , ξi⟩ > 0}.

The next lemma shows that in the first stage where the loss derivatives can be lower bounded, the inner product between
weights and noise is increasing.

Lemma C.6. Under Condition 4.1 and suppose for any t ≤ T ∗, (4), (5), (6) hold for all s ≤ t. Then we can show

S(0)i ⊆ S(s)i , S(0)j,r ⊆ S
(s)
j,r .

for any s ≤ t.

Proof of Lemma C.6. The proof is by induction where we separately consider two stages. First at t = 0, it is trivial to verify
that both claims hold. In the first stage where maxj,r,i{γ(t)

j,r , ρ
(t)
j,r,i} = O(1), we can lower bound the loss derivatives by a

constant according to Lemma C.5, i.e., |ℓ′(t)i | ≥ Cℓ for all i ∈ [n]. Let T1 be the termination time of the first stage. Suppose
there exists a time t̃ ≤ T1 such that the claims hold for all s ≤ t̃− 1, we now prove it also holds at t̃.

By the gradient descent update, for any r ∈ S(0)i , we have r ∈ S(t̃−1)
i and thus

⟨w(t̃)
ỹi,r

, ξi⟩ = ⟨w(t̃−1)
ỹi,r

, ξi⟩ −
η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩

= ⟨w(t̃−1)
ỹi,r

, ξi⟩−
η

nm
ℓ
′(t̃−1)
i ∥ξi∥22︸ ︷︷ ︸
A1

− η

nm

∑
i′ ̸=i

ℓ
′(t̃−1)
i′ σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩︸ ︷︷ ︸

A2

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩︸ ︷︷ ︸

A3

.
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We can respectively bound each term as follows.

A1 ≥
η∥ξi∥22
nm

· min
i∈[n]
|ℓ′(t̃−1)
i | ≥

ησ2
ξdCℓ

2nm

where the last inequality is by Lemma B.1.

For A2, we can upper bound its magnitude as

|A2| ≤
η

m
· |⟨ξi, ξi′⟩|

≤ 2η

m
· σ2

ξ

√
d log(6n2/δ)

where the first inequality is by |ℓ′(t)i | ≤ 1 for all t and the second inequality is by Lemma B.1.

For A3, similarly, we can bound

|A3| ≤
η

m
· |⟨µ, ξi⟩| ≤

η∥µ∥2σξ

√
2 log(6n/δ)

m

where the second inequality is again by Lemma B.1. By requiring d ≥
max{32C−2

ℓ n2 log(6n2/δ), 4C−1
ℓ n∥µ∥2σ−1

ξ

√
2 log(6n/δ)}, we can show A1 ≥ max{|A2|/2, |A3|/2} and thus

⟨w(t̃)
ỹi,r

, ξi⟩ = ⟨w(t̃−1)
ỹi,r

, ξi⟩ ≥ ⟨w(t̃−1)
ỹi,r

, ξi⟩+A1 − |A2| − |A3| > ⟨w(t̃−1)
ỹi,r

, ξi⟩ > 0

for all r ∈ S(t̃−1)
i . Thus, r ∈ S(t̃)i and S(0)i ⊆ S(t̃−1)

i ⊆ S(t̃)i .

For the other claim, we follow a similar strategy as above. For i ∈ S(0)j,r , we have by induction condition that i ∈ S(t̃−1)
j,r and

thus for j = ỹi

⟨w(t̃)
j,r, ξi⟩ = ⟨w

(t̃−1)
j,r , ξi⟩ −

η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

j,r , ξi′⟩) · ⟨ξi, ξi′⟩

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

j,r , yi′µ⟩) · ⟨yi′µ, ξi⟩

Following the same analysis, we can show ⟨w(t̃)
j,r, ξi⟩ ≥ ⟨w

(t̃−1)
j,r , ξi⟩ > 0 and thus i ∈ S(t̃)j,r and S(0)j,r ⊆ S

(t̃−1)
j,r ⊆ S(t̃)j,r .

Now at the end of the first stage where ρ
(T1)
j,r,i = Ω(1) for all j = ỹi, r ∈ S(0)i . Then we continue the proof by induction.

Suppose there exists a time t̃ ≥ T1 such that for all T1 ≤ s ≤ t̃− 1, ρ(s)j,r,i ≥ Cρ for some constant Cρ > 0. Then by the

update of ρ(t)j,r,i, we can show for j = ỹi, r ∈ S(0)i ,

ρ
(t̃)
j,r,i = ρ

(t̃−1)
j,r,i −

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2 ≥ ρ

(t̃−1)
j,r,i ≥ Cρ

where we notice that −ℓ′(t)i ≥ 0. Then we can show from Lemma C.3

⟨w(t̃)
j,r, ξi⟩ ≥ ρ

(t̃)
j,r,i − |⟨w

(0)
j,r , ξi⟩| − 5

√
log(6n2/δ)

d
nα ≥ Cρ − 1/C ′ > 0

where we use the condition on d to be sufficiently large and choose C ′ > 1/Cρ. Thus we have for r ∈ S(t̃)i and thus
S(0)i ⊆ S(t̃−1)

i ⊆ S(t̃)i . For the other claim, we can use the same argument.

Next, we proceed to prove Proposition C.2.
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Proof of Proposition C.2. We prove the claims by induction. It is clear that at t = 0, all the claims are satisfied trivially
given γ

(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0 for all j, r, i. Suppose there exists T̃ ≤ T ∗ such that the results in Proposition C.2 hold for all

time t ≤ T̃ − 1. Then we have Lemma C.3, C.4, Lemma C.6 hold for all t ≤ T̃ − 1.

Now we show that the results in Proposition C.2 also hold for t = T̃ .

(1) We first show ρ(t)
j,r,i
≥ −β − 10

√
log(6n2/δ)

d nα. When ρ(T̃−1)
j,r,i

≤ −0.5β − 5
√

log(6n2/δ)
d nα, by Lemma C.3, we have

⟨w(T̃−1)
j,r , ξi⟩ ≤ ρ(T̃−1)

j,r,i
+ |⟨w(0)

j,r , ξi⟩|+ 5

√
log(6n2/δ)

d
nα < 0

and this suggests

ρ(T̃ )
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , ξi⟩)∥ξi∥22

= ρ(T̃−1)
j,r,i

≥ −β − 10

√
log(6n2/δ)

d
nα

On the other hand, when ρ(T̃−1)
j,r,i

≥ −0.5β − 5
√

log(6n2/δ)
d nα,

ρ(T̃ )
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , ξi⟩)∥ξi∥22

≥ −0.5β − 5

√
log(6n2/δ)

d
Cρn−

3ησ2
ξd

2nm

≥ −0.5β − 10

√
log(6n2/δ)

d
Cρn

≥ −β − 10

√
log(6n2/δ)

d
Cρn

where we use Lemma B.1 in the first inequality. The second inequality is by the condition on η such that 5
√

log(6n2/δ)
d Cρn ≥

3ησ2
ξd/(2nm). This completes the induction for the result on ρ(t)

j,r,i
.

(2) We next prove γ
(T̃ )
j,r ≥ 0. Towards this end, we separate the analysis in two stages. In the first stage, the loss derivatives

can be lower bounded by a constant, i.e., |ℓ′(t)i | ≥ Cℓ for all i ∈ [n]. Recall the update rule for γ(t)
j,r is

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

n∑
i=1

ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , yiµ⟩)yiỹi∥µ∥22.

When ⟨w(T̃−1)
j,r ,µ⟩ ≥ 0, we can show

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

( ∑
i∈St∩S1

ℓ
′(T̃−1)
i −

∑
i∈Sf∩S1

ℓ
′(T̃−1)
i

)
∥µ∥22

≥ γ
(T̃−1)
j,r +

η

nm

(1− τ+
2

Cℓ −
τ+
2

)
∥µ∥22

≥ γ
(T̃−1)
j,r

≥ 0

where in the first inequality, we uses Cℓ ≤ |ℓ′(t)i | ≤ 1. The second inequality is by the choice τ+ ≤ Cℓ

Cℓ+1 .

Similarly, when ⟨w(T̃−1)
j,r ,µ⟩ ≤ 0, we have

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

( ∑
i∈St∩S−1

ℓ
′(T̃−1)
i −

∑
i∈Sf∩S−1

ℓ
′(T̃−1)
i

)
∥µ∥22
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≥ γ
(T̃−1)
j,r +

η

nm

(1− τ−
2

Cℓ −
τ−
2

)
∥µ∥22

≥ γ
(T̃−1)
j,r

≥ 0

where we choose τ− ≤ Cℓ

Cℓ+1 .

In the second stage, we prove the claim by contradiction. First, without loss of generality that ⟨w(t)
j,r,µ⟩ ≥ 0, and we write

the update as

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

( ∑
i∈St∩S1

ℓ
′(t)
i −

∑
i∈Sf∩S1

ℓ
′(t)
i

)
∥µ∥22

= γ
(t)
j,r +

η

nm

( ∑
i∈St∩S1

1

1 + exp
(
ỹif(W(t),xi)

) − ∑
i∈Sf∩S1

1

1 + exp
(
ỹif(W(t),xi)

)
︸ ︷︷ ︸

A4

)
∥µ∥22

Suppose at an iteration t, A4 < 0, which leads to a decrease in the γ
(t)
j,r . Then by Lemma C.4

A4 ≥
∑

i∈St∩S1

1

1 + exp
(

1
m

∑m
r=1(ρ

(t)
ỹi,r,i

+ γ
(t)
ỹi,r

) + 1/C1

)
−

∑
i∈Sf∩S1

1

1 + exp
(

1
m

∑m
r=1(ρ

(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)− 1/C1

)
Then we can see the gap between loss derivatives of St and Sf becomes progressively smaller such that for a given τ+ (or
τ− when ⟨w(t)

j,r,µ⟩ ≤ 0) which is sufficiently small, A4 > 0 and γ
(t)
j,r starts to increase.

(3) Next we show upper bound for ρ(t)ỹi,r,i
. Recall the update rule for ρ(t)j,r,i is

ρ
(t+1)
ỹi,r,i

= ρ
(t)
ỹi,r,i

− η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
2

Now suppose tr,i be the last time t < T ∗ such that ρ(t)ỹi,r,i
≤ 0.5α. Then

ρ
(T̃ )
ỹi,r,i

= ρ
(tr,i)
ỹi,r,i

− η

nm
ℓ
′(t)
i σ′(⟨w(tr,i)

ỹi,r
, ξi⟩)∥ξi∥22 −

η

nm

∑
tr,i<t<T̃

ℓ
′(t)
i σ′(⟨w(t)

ỹi,r
, ξi⟩)∥ξi∥22

≤ ρ
(tr,i)
ỹi,r,i

+
3ησ2

ξd

2nm
− η

nm

∑
tr,i<t<T̃

ℓ
′(t)
i σ′(⟨w(t)

ỹi,r
, ξi⟩)∥ξi∥22

≤ 0.5α+ 0.25α− η

nm

∑
tr,i<t<T̃

ℓ
′(t)
i σ′(⟨w(t)

ỹi,r
, ξi⟩)∥ξi∥22 (7)

where we apply Lemma B.1 for the first inequality and choose η ≤ C−1nσ−2
ξ d−1 for the last inequality. Then we bound

the last term for t ∈ (tr,i, T̃ ) as

−ℓ′(t)i =
1

1 + exp(ỹif(W(t),xi))
≤ exp(−ỹif(W(t),xi))

Next we consider two cases depending on whether i ∈ St or i ∈ Sf .

• When i ∈ St, we can bound by Lemma C.4

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)− 1/C1 ≥
1

m

m∑
r=1

ρ
(t)
ỹi,r,i

− 1/C1 ≥ 0.5α− 0.1.
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where the second inequality is by γ
(t)
ỹi,r
≥ 0 and the last inequality is by choosing C1 ≥ 10. Then this suggests

−ℓ′(t)i ≤ exp(−ỹif(W(t),xi)) ≤ 2 exp(−0.5α) ≤ 2/T ∗

where the last inequality is by choosing Ct ≥ 2.

• When i ∈ Sf , we can bound by Lemma C.4

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(ρ
(t)
ỹi,r,i

− γ
(t)
−ỹi,r

)− 1/C1 ≥
1

m

m∑
r=1

ρ
(t)
ỹi,r,i

− 1/C1 ≥ 0.5α− 0.1.

Here we only consider the case when 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

> 1
m

∑m
r=1 γ

(t)
−ỹi,r

when deriving the upper bound for
1
m

∑m
r=1 ρ

(t)
ỹi,r,i

because otherwise, the loss cannot converge to arbitrarily small as we show later. To see this,

we suppose 1
m

∑m
r=1 ρ

(T∗)
ỹi,r,i

≤ 1
m

∑m
r=1 γ

(T∗)
−ỹi,r

at termination time. Then for such sample, ỹif(W
(t),xi) ≤

1
m

∑m
r=1(ρ

(T∗)
ỹi,r,i
−γ(T∗)

−ỹi,r
)+1/C1 ≤ 0.1 the loss can be lower bounded as ℓ(T

∗)
i = log(1+exp(−ỹif(W(T∗),xi))) ≥

log(1 + exp(−0.1)) ≥ 0.6.

Hence we let c′ := ( 1
m

∑m
r=1 ρ

(t)
ỹi,r,i

)/( 1
m

∑m
r=1 γ

(t)
−ỹi,r

) > 1. Then

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(1− 1/c′)ρ
(t)
ỹi,r,i

− 1/C1 ≥ (1− 1/c′)0.5α− 0.1.

Then we have

−ℓ′(t)i ≤ exp(−ỹif(W(t),xi)) ≤ 2 exp
(
− (1− 1/c′)0.5α

)
≤ 2/T ∗

where the last inequality is by choosing Ct sufficiently large.

In both cases, (7) can be further bounded as

ρ
(T̃ )
ỹi,r,i

≤ 0.75α+
3ησ2

ξdT
∗

2nm
· 2

T ∗ ≤ α

where the first inequality is by upper bound on the loss derivatives and the last inequality is by the condition on Condition 4.1
where η ≤ C−1nσ−2

ξ d−1 ≤ nmσ−2
ξ d−1/3.

(4) Finally for the upper bound on γ
(t)
j,r , we can verify that by the update of γ(t)

j,r

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

(∑
i∈St

ℓ
′(t)
i 1(⟨w(t)

j,r, yiµ⟩ ≥ 0)−
∑
i∈Sf

ℓ
′(t)
i 1(⟨w(t)

j,r, yiµ⟩ ≥ 0)
)
∥µ∥22

≤ γ
(t)
j,r +

η

nm

∑
i∈St

|ℓ′(t)i |∥µ∥
2
2

≤ γ
(t)
j,r +

η∥µ∥22
nm

∑
i∈St

1

1 + exp
(

1
m

∑m
r=1(ρ

(t)
ỹi,r,i

+ γ
(t)
ỹi,r

)− 1/C1

)
Suppose tj,r be the last time t < T ∗ such that γ(t)

j,r ≤ 0.5Cγα. Then

γ
(T̃ )
j,r ≤ γ

(tj,r)
j,r +

η(2− τ+ − τ−)∥µ∥22
2m

T ∗ 1

1 + exp(0.5CγCt log(T ∗)− 0.1)

≤ γ
(tj,r)
j,r +

η(2− τ+ − τ−)∥µ∥22
2m

T ∗ · 2 exp(−0.5CγCt log(T
∗))

≤ γ
(tj,r)
j,r +

η(2− τ+ − τ−)∥µ∥22
m

≤ Cγα

where we notice ρ
(t)
j,r,i ≥ 0 and we let C1 ≥ 10, Cγ ≥ 1. The last inequality follows from Condition 4.1 where

η ≤ C−1nσ−2
ξ d−1 ≤ 0.5(2 − τ+ − τ−)

−1m∥µ∥−2
2 , where the last inequality is by condition on ∥µ∥22 and d. Thus the

proof is now complete.
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C.3. First Stage

Next we consider first stage of the training dynamics. In this stage, before the coefficients γ(t)
j,r , ρ

(t)
j,r,i reach a constant order,

we can both lower and upper bound the loss derivatives by an absolute constant, i.e., Cℓ ≤ |ℓ
′(t)
i | ≤ Cℓ. Here we suggests

Cℓ = 0.49 and Cℓ = 0.51 is sufficient to show the desired result.

Before we proceed to prove Theorem 4.1, we provide a tighter bound on ∥ξi∥22 and |S(0)i | compared to Lemma B.1 and
Lemma B.3 respectively.

Lemma C.7. With probability at least 1− δ, we can bound

σ2
ξd(1− Õ(1/

√
d)) ≤ ∥ξi∥22 ≤ σ2

ξd(1 + Õ(1/
√
d))

Proof. By Bernstein inequality, with probability at least 1− δ/n, we have
∣∣∥ξi∥22 − σ2

pd
∣∣ = O

(
σ2
p ·
√
d log (6n/δ)

)
. Then

taking the union bound gives the desired result.

Lemma C.8. With probability at least 1− δ, we can bound

m

2

(
1− Õ(1/

√
m)
)
≤ |S(0)i | ≤

m

2

(
1 + Õ(1/

√
m)
)

Proof. Because P(⟨w(0)
ỹi,r

, ξi⟩ > 0) = 0.5, by Hoeffding inequality, with probability at least 1 − δ/n, we can bound

| |S
(0)
i |
m − 1

2 | ≤
√

log(2n/δ)
2m . Then taking union bound gives the desired result.

Theorem C.9 (Restatement of Theorem 4.1). Under Condition 4.1, there exists T1 = Θ
(
η−1nmσ−2

ξ d−1
)

such that

1. ρ
(T1)
ỹi,r,i

= Θ(1) for all i ∈ [n], r ∈ [m] such that ⟨w(0)
ỹi,r

,xi⟩ ≥ 0.

2. γ
(T1)
j,r = Θ(1) for all j = ±1, r ∈ [m].

3. γ
(T1)
j,r > ρ

(T1)
ỹi,r,i

for all j = ±1, r ∈ [m], i ∈ [n].

4. All clean samples i ∈ St satisfy that ỹif(W(T1),xi) ≥ 0.

5. All noisy samples i ∈ Sf satisfy that ỹif(W(T1),xi) ≤ 0.

Proof of Theorem C.9. We first show the lower and upper bound for noise dynamics. For any i ∈ [n] and r ∈ S(0)i , by
Lemma C.6, we know that r ∈ S(t)i for all t ≤ T1. Hence, by the update of noise coefficients,

ρ
(t)
ỹi,r,i

= ρ
(t−1)
ỹi,r,i

− η

nm
ℓ
′(t−1)
i ∥ξi∥22 ≥ ρ

(t−1)
ỹi,r,i

+ 0.99 ·
ηCℓσ

2
ξd

nm
= 0.99 ·

ηCℓσ
2
ξd

nm
t

where the first inequality is by Lemma C.7 where we choose d = Ω(log(n/δ)) sufficiently large and the loss derivative
lower bound in this stage. The second inequality is by iterating the first inequality to t = 0 and by noticing ρ

(0)
ỹi,r,i

= 0.

For the upper bound, for i ∈ [n],

ρ
(t)
ỹi,r,i

= ρ
(t−1)
ỹi,r,i

+
η

nm
|ℓ′(t−1)
i |∥ξi∥22 ≤ ρ

(t−1)
ỹi,r,i

+ 1.01 ·
ησ2

ξd

nm
≤ 1.01 ·

ησ2
ξd

nm
t

where we use Lemma C.7 and |ℓ′(t)i | ≤ 1.

Next, we lower and upper bound the signal dynamics. Recall the update rule for γ(t)
j,r as

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)yiỹi∥µ∥22
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= γ
(t−1)
j,r − η

nm

(∑
i∈St

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)−
∑
i∈Sf

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)
)
∥µ∥22

When ⟨w(t−1)
j,r ,µ⟩ ≥ 0,

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

( ∑
i∈St∩S1

ℓ
′(t−1)
i −

∑
i∈Sf∩S1

ℓ
′(t−1)
i

)
∥µ∥22

≥ γ
(t−1)
j,r +

η

nm

( (1− τ+)nCℓ

2
− τ+n

2

)
∥µ∥22

≥ γ
(t−1)
j,r + 0.49 · η∥µ∥

2
2Cℓ

m

where the first inequality uses the lower bound and upper bound on loss derivatives, i.e., Cℓ ≤ |ℓ′(t)i | ≤ 1. The second
inequality follows by letting τ+ ≤ 0.02Cℓ

1+Cℓ
.

Similarly, when ⟨w(t−1)
j,r ,µ⟩ < 0,

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

( ∑
i∈St∩S−1

ℓ
′(t−1)
i −

∑
i∈Sf∩S−1

ℓ
′(t−1)
i

)
∥µ∥22

≥ γ
(t−1)
j,r +

η

nm

( (1− τ−)nCℓ

2
− τ−n

2

)
∥µ∥22

≥ γ
(t−1)
j,r + 0.49 · η∥µ∥

2
2Cℓ

m

where we let τ− ≤ 0.02Cℓ

1+Cℓ
. Combining both cases, we can iterate the inequality, which gives

γ
(t)
j,r ≥ γ

(0)
j,r +

η∥µ∥22Cℓ

4m
t = 0.49 · η∥µ∥

2
2Cℓ

m
t

We first show the claim that ỹif(W(T1),xi) ≥ 0 for i ∈ St. By the update of signal and noise coefficients, we have for all
any i ∈ St, and r ∈ S(0)i , by , we have r ∈ S(t)i and thus for all t ≤ T1,

For the upper bound, we obtain from the signal dynamics that

γ
(t)
j,r = γ

(t−1)
j,r − η

nm

(∑
i∈St

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)−
∑
i∈Sf

ℓ
′(t)
i σ′(⟨w(t−1)

j,r , yiµ⟩)
)
∥µ∥22

≤ γ
(t−1)
j,r +

η∥µ∥22
m

1− τ±
2

≤ γ
(t−1)
j,r +

η∥µ∥22
2m

≤ η∥µ∥22
2m

t

where we use the upper bound on loss derivative in the first inequality.

Now we verify the conditions such that the claims are satisfied. First, we set a termination time for the first stage as T1,
where

T1 = C2η
−1C−1

ℓ nmσ−2
ξ d−1

for some constant C2 > 0 to be chosen later. This suggests at the end of first stage, we have

• ρ
(T1)
ỹi,r,i

≥ 0.99 · C2, for all i ∈ [n] and r ∈ S(0)i
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• ρ
(T1)
ỹi,r,i

≤ 1.01 · C2C
−1
ℓ for all i ∈ [n].

• γ
(T1)
j,r ≥ 0.49C2n · SNR2 for all j = ±1, r ∈ [m].

• γ
(T1)
j,r ≤ 0.5C2n · SNR2 for all j = ±1, r ∈ [m].

Then for all i ∈ St, we have by Lemma C.4,

ỹif(W
(t),xi) ≥

1

m

m∑
r=1

(
γ
(t)
ỹi,r

+ ρ
(t)
ỹi,r,i

)
− 1/C1 ≥ 0.49C2n · SNR2 + 0.99C2 − 1/C1 > 0

where the last inequality is by choosing C1 sufficiently large, e.g., C1 ≥ (0.99C2)
−1. This verifies the first claim of

Theorem 4.1.

Second, for all i ∈ Sf , we have by Lemma C.4,

ỹif(W
(t),xi) ≤

1

m

m∑
r=1

(
− γ

(t)
−ỹi,r

+ ρ
(t)
ỹi,r,i

)
+ 1/C1 ≤ −0.49C2n · SNR2 + 1.01C2C

−1
ℓ + 1/C1

< 0

where the last inequality is by the choice that C1 ≥ 1000 and

n · SNR2 ≥ 2.07C−1
ℓ + 0.002C−1

2 (8)

Under such condition, we also verify the third claim of Theorem C.9.

It remains to analyze the condition under which the loss derivative is lower bounded by Cℓ. In particular, we require
mini∈[n],t≤T1

|ℓ′(t)i | ≥ Cℓ, where

min
i∈[n],t≤T1

|ℓ′(t)i | = min
i∈St

|ℓ′(T1)
i | = 1

1 + exp(maxi∈St
ỹif(W(T1),xi))

≥ 1

1 + exp
(

1
m

∑m
r=1(γ

(T1)
ỹi∗ ,r

+ ρ
(T1)
ỹi∗ ,r,i∗

) + 1/C1

)
≥ 1

1 + exp
(
1.01C2C

−1
ℓ + 0.5C2n · SNR2 + 1/C1

)
where we denote i∗ = argmaxi∈St

ỹif(W
(T1),xi) and apply Lemma C.4.

Thus to ensure mini∈[n],t≤T1
|ℓ′(t)i | ≥ Cℓ, we require 1.01C2C

−1
ℓ + 0.5C2n · SNR2 + 1/C1 ≤ log(C−1

ℓ − 1), which
translates to

n · SNR2 ≤ 2 log(C−1
ℓ − 1)C−1

2 − 2.02C−1
ℓ − 0.002C−1

2 (9)

where we choose C1 ≥ 1000.

The final step is to show there exists a combination of C2, n · SNR2 and Cℓ such that conditions (8) and (9) are satisfied.
For this, we can fix Cℓ = 0.4 for example and thus

5.175 + 0.002C−1
2 ≤ n · SNR2 ≤ 0.34C−1

2 − 5.05

Then let C2 = 1/31, we have 5.237 ≤ n · SNR2 ≤ 5.49. Thus the proof is complete.

C.4. Second Stage

The second stage aims to show convergence of the training dynamics. By the end of the first stage, without loss of generality,
we set C2 = 2.1 and we can see

25



On the Role of Label Noise in the Feature Learning Process

• For all i ∈ [n], r ∈ S(0)i , we have ρ
(T1)
ỹi,r,i

≥ 2;

• For all j = ±1, r ∈ [m], we have γ
(t)
j,r = Ω(n · SNR2), where n · SNR2 = Θ(1).

• maxj,r,i |ρ(T1)
j,r,i
| ≤ 1/C for some sufficiently large constant C > 0.

In the second stage, we show that in order to achieve convergence in loss to arbitrary tolerance, noise coefficients for noisy
samples would first surpass signal coefficients by a large margin. To this end, we first show convergence in the loss function.

First, we let w∗
j,r = w

(0)
j,r + 5 log(2/ϵ)

∑n
i=1

ξi

∥ξi∥2
2
1(ỹi = j).

Lemma C.10. Under Condition 4.1, we can show ∥W(T1) −W∗∥F ≤ Õ(m1/2n1/2σ−1
ξ d−1/2).

Proof of Lemma C.10. From the decomposition at T1, we can show

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W∗ −W(0)∥F

≤ O(
√
m)max

j,r
γ
(T1)
j,r ∥µ∥

−1
2 +O(

√
m)max

j,r
∥

n∑
i=1

ρ
(T1)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

ρ(T1)
j,r,i
· ξi
∥ξi∥22

∥2

+O(m1/2n1/2 log(1/ϵ)σ−1
ξ d−1/2)

= O(m1/2n · SNR2∥µ∥−1
2 ) + Õ(m1/2n1/2σ−1

ξ d−1/2)

= Õ(m1/2n1/2σ−1
ξ d−1/2)

where the last inequality is by n · SNR2 = Θ(1).

Lemma C.11. Under Condition 4.1, we can show that for all T1 ≤ t ≤ T ∗,

ỹi⟨∇f(W(t)),W∗⟩ ≥ log(2/ϵ)

Proof of Lemma C.11. By the gradient decomposition, we can write

ỹi⟨∇f(W(t),xi),W
∗⟩

=
1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)⟨µ, j ·w

∗
j,r⟩+

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, j ·w

∗
j,r⟩

≥ 1

m

∑
j=ỹi,r

σ′(⟨w(t)
j,r, ξi⟩)5 log(2/ϵ)−

1

m

∑
j,r

∑
i′ ̸=i

σ′(⟨w(t)
j,r, ξi⟩)5 log(2/ϵ)Õ(d−1/2)

− 1

m

∑
j,r

n∑
i′=1

σ′(⟨w(t)
j,r, yiµ⟩)5 log(2/ϵ)Õ(n−1∥µ∥−1

2 )− 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)Õ (σ0∥µ∥2)

− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)Õ

(
σ0σξ

√
d
)

≥ 2 log(2/ϵ)− log(2/ϵ)

= log(2/ϵ)

where in the first inequality, we use the expression of w∗
j,r and Lemma B.1. The second inequality is by

1

m

∑
j=ỹi,r

σ′(⟨w(t)
j,r, ξi⟩)5 log(2/ϵ) ≥

1

m
|S(t)i |5 log(2/ϵ) ≥ 2 log(2/ϵ)

where we use Lemma C.6 and Lemma C.8 that |S(t)i | ≥ 0.4m. Further the other terms can be bounded by arbitrarily small
constant. This completes the proof.
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Theorem C.12 (Restatement of Theorem 4.2). Under Condition 4.1, for arbitrary ϵ > 0, there exists t∗ ∈ [T1, T
∗], where

T ∗ = Θ̃(η−1ϵ−1nmσ−2
ξ d−1), such that

1. Training loss converges, i.e., LS(W
(t∗)) ≤ ϵ

2. All clean samples, i.e., i ∈ St, it holds that ỹif(W(t∗),xi) ≥ 0

3. There exists a constant 0 < τ ′ ≤ τ++τ−
2 such that there are τ ′n noisy samples, i.e., i ∈ Sf satisfy ỹif(W(t∗),xi) ≥ 0.

4. The test error L0−1
D (W(t∗)) ≥ 0.5min{τ+, τ−}.

Proof of Theorem C.12. (1) First, we prove that the loss converges to arbitrarily small tolerance. Specifically, we use Lemma
D.4 of (Kou et al., 2023) to bound for all t ≤ T ∗, we have

∥∇LS(W
(t))∥2F = O(max{∥µ∥22, σ2

ξd})LS(W
(t)) (10)

Then we bound the difference in the distance to optimal solution as

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇LS(W

(t)),W(t) −W∗⟩ − η2∥∇LS(W
(t))∥2F

=
2η

n

n∑
i=1

ℓ
′(t)
i

[
ỹif(W

(t),xi)− ⟨∇f(W(t),xi),W
∗⟩
]
− η2∥∇LS(W

(t))∥2F

≥ 2η

n

n∑
i=1

ℓ
′(t)
i

[
ỹif(W

(t),xi)− log(2/ϵ)
]
− η2∥∇LS(W

(t))∥2F

≥ 2η

n

n∑
i=1

[
ℓ
(
f(W(t),xi), ỹi

)
− ϵ/2

]
− η2∥∇LS(W

(t))∥2F

≥ 2ηLS(W
(t))− ηϵ− η2O(max{∥µ∥22, σ2

ξd})LS(W
(t))

≥ ηLS(W
(t))− ηϵ

where the first inequality is due to Lemma C.11 and the second inequality is by convexity of cross entropy function. The
third inequality is by (10) and the last inequality is by choosing η ≤ C−1 max{∥µ∥22, σ2

ξd}−1 to be sufficiently small.

Finally, we telescope the inequality from t = T1 to t = T ∗, which yields

1

T ∗ − T1 + 1

T∗∑
s=T1

LS(W
(s)) ≤ ∥W

(T1) −W∗∥2F
η(T ∗ − T1 + 1)

+ ϵ ≤ 2ϵ

where the last inequality is due to the choice of T ∗ = T1 + ⌊η−1ϵ−1∥W(T1) −W∗∥2F ⌋ = T1 + Õ(η−1ϵ−1mnd−1σ−2
ξ ).

This suggests there exists an iteration t∗ ∈ [T1, T
∗] where LS(W

(t∗)) ≤ 2ϵ for any ϵ < 0. By setting ϵ← 2ϵ, we verify the
first claim.

(2) For the second claim, it is easy to see by Lemma C.4, for all i ∈ St

ỹif(W
(t∗),xi) ≥

1

m

m∑
r=1

(
ρ
(t∗)
ỹi,r,i

+ γ
(t∗)
ỹi,r

)
− 1/C1 ≥ 0

where the second inequality is by γỹi,r ≥ 0 and ρ
(t∗)
ỹi,r,i

≥ ρ
(T1)
ỹi,r,i

= Ω(1) for i ∈ [n], r ∈ S(0)i .

(3) For the third claim, we prove by contradiction that there exists a sufficiently large gap Cϵ > 0 such that for noisy samples
i ∈ Sf , there exists a constant fraction that satisfies 1

m

∑m
r=1

(
ρ
(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

)
≥ Cϵ.
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We prove this claim by contradiction. Suppose the claim does not hold. Then there must exist a constant fraction of samples
such that 1

m

∑m
r=1

(
ρ
(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

)
≤ Cϵ. Formally, We denote the set of such samples as

I ′ :=

{
i ∈ Sf :

1

m

m∑
r=1

(
ρ
(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

)
≤ Cϵ

}

with |I ′| = τ ′n for some constant τ ′ > 0 that satisfies τ ′ ≤ τ++τ−
2 , i.e., upper bounded by the number of noisy samples in

the dataset. Then we have

LS(W
(t∗)) =

1

n

n∑
i=1

ℓ(f(W(t∗),xi), ỹi) ≥
1

n

∑
i∈I′

log(1 + exp(−ỹif(W(t∗),xi)))

≥ 1

n

∑
i∈I′

log

(
1 + exp

( 1

m

m∑
r=1

(
γ
(t∗)
−ỹi,r

− ρ
(t∗)
ỹi,r,i

)
− 1/C1

))
≥ τ ′ log(1 + exp(−Cϵ − 0.001)) > τ ′ log(2)

where we use Lemma C.4 in the second inequality. The third inequality is by the definition of I ′ and C1 ≥ 1000. Thus
this raises a contradiction given that LS(W

(t∗)) ≤ 2ϵ for any ϵ > 0. This suggests there exists a constant fraction of noisy
samples satisfy 1

m

∑m
r=1

(
ρ
(t∗)
ỹi,r,i

− γ
(t∗)
−ỹi,r

)
≥ Cϵ. This further indicates by Lemma C.4, for these samples

ỹif(W
(t∗),xi) ≥ Cϵ − 1/C1 > 0.

(4) For the test error, we first derive the probability P(yf(W(t∗),x) < 0) as

P(yf(W(T∗),x) < 0)

= P
( m∑

r=1

σ(⟨w(t∗)
−y,r, ξ + ζ⟩)−

m∑
r=1

σ(⟨w(t∗)
y,r , ξ + ζ⟩) ≥

m∑
r=1

σ(⟨w(t∗)
y,r , yµ⟩)−

m∑
r=1

σ(⟨w(t∗)
−y,r, yµ⟩)

)
≥ P

( 1

m

m∑
r=1

σ(⟨w(t∗)
−y,r, ξ + ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
y,r , ξ + ζ⟩) ≥ 1

m

m∑
r=1

γ(t∗)
y,r + 1/C ′

)
=

1

n

n∑
i=1

P
( 1

m

m∑
r=1

σ(⟨w(t∗)
−y,r, ξi + ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
y,r , ξi + ζ⟩) ≥ 1

m

m∑
r=1

γ(t∗)
y,r + 1/C ′

)
(11)

for some sufficiently large constant C ′ > 0 and the second equality is by uniform distribution of ξ.

Next, we consider the following two cases separately, i.e., (a) When y = 1 and (b) when y = −1. When y = 1, (11) can be
further bounded as

P(yf(W(t∗),x) < 0)

≥ 0.5τ+P
( 1

m

m∑
r=1

σ(⟨w(t∗)
−1,r, ξi:i∈Sf∩S1

+ ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
1,r , ξi:i∈Sf∩S1

+ ζ⟩) ≥ 1

m

m∑
r=1

γ
(t∗)
1,r + 1/C ′

)
where we use the sample size of |Sf ∩ S1| = τ+n

2 .

Now we analyze the the magnitude of each term. Based on the decomposition, we obtain for any i ∈ Sf , j = ±1 and any
r ∈ [m]

⟨w(t∗)
j,r , ξi + ζ⟩ =

〈
w

(0)
j,r − γ

(t∗)
j,r ∥µ∥

−2
2 µ+

n∑
i′=1

ρ
(t∗)
j,r,i∥ξi′∥

−2
2 ξi′ +

n∑
i′=1

ρ(t
∗)

j,r,i
∥ξi′∥−2

2 ξi′ , ξi + ζ

〉
= ρ

(t∗)
j,r,i + ρ(t

∗)
j,r,i

+ ⟨w(0)
j,r , ξi + ζ⟩ − ⟨γ(t∗)

j,r ∥µ∥
−2
2 µ, ξi + ζ⟩

+
∑
i′ ̸=i

ρ
(t∗)
j,r,i′
⟨ξi′ , ξi + ζ⟩
∥ξi′∥22

+
∑
i′ ̸=i

ρ(t
∗)

j,r,i′

⟨ξi′ , ξi + ζ⟩
∥ξi′∥22
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Then we can bound particularly for i ∈ Sf ∩ S1, i.e., ỹi = −1

⟨w(t∗)
−1,r, ξi + ζ⟩ ≥ ρ

(t∗)
−1,r,i − Õ(σ0σξ

√
d)− Õ(∥µ∥−1

2 σξ)− Õ(nd−1/2)

≥ ρ
(t∗)
−1,r,i − 1/C3

where we use Lemma B.1, B.2 and the upper bound on ρ
(t∗)
j,r,i, γ

(t∗)
j,r = Õ(1) for the first inequality. The second inequality is

by Condition 4.1 on ∥µ∥2 and d for some sufficiently large constant C3.

In addition, we can similarly show

⟨w(t∗)
1,r , ξi + ζ⟩ ≤ ρ(t

∗)
1,r,i

+ Õ(σ0σξ

√
d) + Õ(∥µ∥−1

2 σξ) + Õ(nd−1/2) ≤ 1/C3

Then can show for any i ∈ Sf ∩ S1, i.e., ỹi = −1

1

m

m∑
r=1

σ(⟨w(t∗)
−1,r, ξi + ζ⟩)− 1

m

m∑
r=1

σ(⟨w(t∗)
1,r , ξi + ζ⟩) ≥ 1

m

m∑
r=1

ρ
(t∗)
−1,r,i − 2/C3

≥ 1

m

m∑
r=1

γ
(t∗)
1,r + Cϵ − 2/C3

>
1

m

m∑
r=1

γ
(t∗)
1,r + 1/C ′

where we choose C3, C
′ such that Cϵ − 2/C3 > 1/C ′. This suggests when y = 1, we have

P(yf(W(T∗),x) < 0) ≥ 0.5τ+

Similarly, we use the same argument to show when y = −1,

P(yf(W(T∗),x) < 0) ≥ 0.5τ−.

This completes the proof that P(yf(W(T∗),x) < 0) ≥ 0.5min{τ−, τ+}.

D. Analysis without Label Noise
For the case of no label noise, i.e., τ+, τ− = 0. We still require the same assumption as in Condition 4.1. We reiterate the
assumption for completeness here.

Condition D.1. We let T ∗ = Θ̃(η−1ϵ−1nmσ−2
ξ d−1) to be the maximum number of iterations considered. Suppose that

there exists a sufficiently large constant C such that the following hold:

1. The signal-to-noise ratio is bounded by constants n · SNR2 = Θ(1).

2. The dimension d is sufficiently large, d ≥ Cmax
{
n2 log(nm/δ) log(T ∗)2, n∥µ∥2σ−1

ξ

√
log(n/δ)

}
.

3. The standard deviation of the Gaussian initialization σ0 is chosen such that σ0 ≤
C−1 min

{√
nσ−1

ξ d−1, ∥µ∥−1
2 log(m/δ)−1/2

}
.

4. The size of training sample n and width m adhere to m ≥ C log(n/δ), n ≥ C log(m/δ).

5. The signal strength satisfies ∥µ∥22 ≥ Cσ2
ξ log(n/δ).

6. The learning rate η satisfies η ≤ C−1 min
{
σ−2
ξ d−3/2n2m

√
log(n/δ), σ−2

ξ d−1n
}

.

With the label noise, the coefficient update equations are given by

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0,
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γ
(t+1)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, yiµ⟩)∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
ℓ
′(t)
i σ′(⟨w(t)

j,r, ξi⟩)∥ξi∥
2
21(yi = −j).

where we highlight that for all i ∈ [n], ỹi = yi.

Proposition D.1. Under Assumption 4.1 and the same definition as for the label noise case, for 0 ≤ t ≤ T ∗, we have

0 ≤ ρ
(t)
j,r,i ≤ α, (12)

0 ≥ ρ(t)
j,r,i
≥ −β − 10

√
log(6n2/δ)

d
nα ≥ −α, (13)

0 ≤ γ
(t)
j,r ≤ Cγα (14)

In order to prove such results, we use the same induction strategy as for the label noise case. We first notice that if (12), (13),
(14) hold at iteration t, then bounds in Lemma C.3 and Lemma C.4 hold at iteration t. We include the results here for the
purpose of completeness.

Lemma D.2. Under Condition D.1, suppose (12), (13), (14) hold at iteration t,

|⟨w(t)
j,r −w

(0)
j,r ,µ⟩ − j · γ(t)

j,r | ≤ SNR

√
8 log(6n/δ)

d
nα,

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ

(t)
j,r,i| ≤ 5

√
log(6n2/δ)

d
nα, yi = j

|⟨w(t)
j,r −w

(0)
j,r , ξi⟩ − ρ(t)

j,r,i
| ≤ 5

√
log(6n2/δ)

d
nα, yi = −j

for all r ∈ [m], j = ±1, i ∈ [n]. Further, there exists a sufficiently large constant C1 such that

1

m

m∑
r=1

(
γ(t)
yi,r + ρ

(t)
yi,r,i

)
− 1/C1 ≤ yif(W

(t),xi) ≤
1

m

m∑
r=1

(
γ(t)
yi,r + ρ

(t)
yi,r,i

)
+ 1/C1

for all i ∈ [n].

Proof of Lemma D.2. The proof follows directly from Lemma C.3 and Lemma C.4.

Next we prove a stronger lemma that only holds under the condition n · SNR2 = Θ(1) and without the presence of label
noise.

First we require a lemma that allows us to bound the loss derivative ratios.

Lemma D.3 ((Kou et al., 2023)). Let g(z) = −1/(1 + exp(z)), then for all z2 − c ≥ z1 ≥ −1, for c ≥ 0, we have

exp(c)

4
≤ g(z1)

g(z2)
≤ exp(c)

Lemma D.4. Under Condition D.1, and for any given t ≤ T ∗, suppose (12), (13), (14) hold for all iterations s ≤ t. Then
we can prove for some constant κ ≥ 0

(1) 1
m

∑m
r=1(ρ

(s)
yi,r,i

+ γ
(s)
yi,r − ρ

(s)
yk,r,k

− γ
(s)
yk,r) ≤ κ for all i, k ∈ [n].

(2) ℓ
′(s)
i /ℓ

′(s)
k ≤ C̃ℓ for all i, k ∈ [n].

(3) S(0)i ⊆ S(s)i ,S(0)j,r ⊆ S
(s)
j,r , for all i ∈ [n] and j = ±1, r ∈ [m].
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Proof of Lemma D.4. We prove the results by induction. It is clear at s = 0, claims (1) and (3) are satisfied trivially. Then
for claim (2), we use Lemma D.3 to bound

ℓ
′(0)
i

ℓ
′(0)
k

≤ exp(ykf(W
(0),xk)− yif(W

(0),xi))

≤ exp
( 1

m

m∑
r=1

(
ρ
(0)
yk,r,k

+ γ(0)
yk,r

)
− 1

m

m∑
r=1

(
ρ
(0)
yi,r,i

+ γ(0)
yi,r

)
+ 2/C1

)
= exp(2/C1),

which shows a constant upper bound.

Next suppose at t = t̃, (1)-(3) hold for all s ≤ t̃− 1, then we show they also hold at t̃. For (1), according to the update rule
of the coefficients,

1

m

m∑
r=1

(
ρ
(t̃)
yi,r,i

− ρ
(t̃)
yk,r,k

)
=

1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

)

− η

nm2

 ∑
r∈S(t̃−1)

i

ℓ
′(t̃−1)
i ∥ξi∥22 −

∑
r∈S(t̃−1)

k

ℓ
′(t̃−1)
k ∥ξk∥22

 (15)

1

m

m∑
r=1

(
γ(t̃)
yi,r − γ(t̃)

yk,r

)
=

1

m

m∑
r=1

(
γ(t̃−1)
yi,r − γ(t̃−1)

yk,r

)
− η∥µ∥22

nm2

m∑
r=1

(
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yi,r , yi′µ⟩)−
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yk,r
, yi′µ⟩)

)
︸ ︷︷ ︸

A5

(16)

We first analyze A5 depending on the following four cases.

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≥ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≥ 0, we have A5 =
∑

i′∈S1
ℓ
′(t−1)
i′ −

∑
i′∈S1

ℓ
′(t−1)
i′ = 0.

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≤ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≤ 0, we have A5 =
∑

i′∈S−1
ℓ
′(t−1)
i′ −

∑
i′∈S−1

ℓ
′(t−1)
i′ = 0.

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≥ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≤ 0, we have A5 =
∑

i′∈S1
ℓ
′(t−1)
i′ −

∑
i′∈S−1

ℓ
′(t−1)
i′ .

• When ⟨w(t̃−1)
yi,r ,µ⟩ ≤ 0, ⟨w(t̃−1)

yk,r ,µ⟩ ≥ 0, we have A5 =
∑

i′∈S−1
ℓ
′(t−1)
i′ −

∑
i′∈S1

ℓ
′(t−1)
i′ .

Now we would like to bound the combination of (15) and (16).

When 1
m

∑m
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ
(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ
(t̃−1)
yk,r

)
≤ 0.5κ, then (15) can be bounded as

1

m

m∑
r=1

(
ρ
(t̃)
yi,r,i

+ γ(t̃)
yi,r − ρ

(t̃)
yk,r,k

− γ(t̃)
yk,r

)

≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
− η

nm2

 ∑
r∈S(t̃−1)

i

ℓ
′(t̃−1)
i ∥ξi∥22 −

∑
r∈S(t̃−1)

k

ℓ
′(t̃−1)
k ∥ξk∥22


− η∥µ∥22

nm2

m∑
r=1

(
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yi,r , yi′µ⟩)−
n∑

i′=1

ℓ
′(t−1)
i′ 1(⟨w(t̃−1)

yk,r
, yi′µ⟩)

)

≤ 0.5κ− η

nm
|S(t̃−1)

i |ℓ′(t̃−1)
i ∥ξi∥22 −

η

nm

n∑
i′=1

ℓ
′(t̃)
i ∥µ∥

2
2

31



On the Role of Label Noise in the Feature Learning Process

≤ 0.5κ+ 1.01
ησ2

ξd

n
+

η∥µ∥22
m

≤ κ

where the second inequality is by ℓ
′(t)
i ≤ 0 for all i, t. The third inequality is by |S(t̃−1)

i | ≤ m, |ℓ′(t̃−1)
i | ≤ 1 and Lemma

C.7. The last inequality us by Condition D.1 for sufficiently small stepsize η.

When 1
m

∑m
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ
(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ
(t̃−1)
yk,r

)
≥ 0.5κ, then by Lemma D.2,

yif(W
(t̃−1),xi)− ykf(W

(t̃−1),xk) ≥
1

m

m∑
r=1

(
γ(t̃−1)
yi,r + ρ

(t̃−1)
yi,r,i

− γ(t̃−1)
yk,r

− ρ
(t̃−1)
yk,r,k

)
− 2/C1

≥ 0.5κ− 2/C1

≥ 0.4κ

where we choose C1 ≥ 20/κ. Then by Lemma D.3

ℓ
′(t̃−1)
i

ℓ
′(t̃−1)
k

≤ exp(ykf(W
(t̃−1),xk)− yif(W

(t̃−1),xi)) ≤ exp(−0.4κ).

Then we can show

|S(t̃−1)
i | · |ℓ′(t̃−1)

i | · ∥ξi∥22
|S(t̃−1)

k | · |ℓ′(t̃−1)
k | · ∥ξk∥22

≤ 1.01 · exp(−0.4κ) (17)

where we use Lemma C.7 and C.8 by choosing sufficiently large d and m.

Then we obtain

1

m

m∑
r=1

(
ρ
(t̃)
yi,r,i

+ γ(t̃)
yi,r − ρ

(t̃)
yk,r,k

− γ(t̃)
yk,r

)
≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
− η

nm2

(
|S(t̃−1)

i |ℓ′(t̃−1)
i ∥ξi∥22 − |S

(t̃−1)
k |ℓ′(t̃−1)

k ∥ξk∥22
)

− η

nm

( ∑
i′∈S±1

ℓ
′(t̃−1)
i′ −

∑
i′∈S∓1

ℓ
′(t̃−1)
i′

)
∥µ∥22

≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
+

η

nm2

(
1.01 exp(−0.4κ)− 1

)
|S(t̃−1)

k ||ℓ′(t̃−1)
k | · ∥ξi∥22

+
η

2m
(C̃ℓ − 1) min

i∈[n]
|ℓ′(t̃−1)
i |∥µ∥22

≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
+

η

nm

((
0.49 exp(−0.4κ)− 0.48

)
|ℓ′(t̃−1)
k |σ2

ξd

+ 0.5n(C̃ℓ − 1)C̃ℓ|ℓ′(t̃−1)
k |∥µ∥22

)
≤ 1

m

m∑
r=1

(
ρ
(t̃−1)
yi,r,i

+ γ(t̃−1)
yi,r − ρ

(t̃−1)
yk,r,k

− γ(t̃−1)
yk,r

)
≤ κ

where the second inequality is by applying (17) and also
∑

i′∈S±1
ℓ
′(t̃−1)
i′ −

∑
i′∈S∓1

ℓ
′(t̃−1)
i′ ≤ n

2 (maxi∈[n] |ℓ
′(t̃−1)
i | −

mini∈[n] |ℓ
′(t̃−1)
i |) ≤ n

2 (C̃ℓ − 1)mini∈[n] |ℓ
′(t̃−1)
i |) by induction. The third inequality is by κ ≥ 1 and Lemma C.7, Lemma

C.8. The fourth inequality follows from the conditions on n · SNR2 ≤ 2(0.48−0.49 exp(−0.4κ))

(C̃ℓ−1)C̃ℓ
= O(1). This verifies the

claim (1) for t = t̃.
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Now by Lemma D.3 and Lemma D.2, we can show

ℓ
′(t̃)
i

ℓ
′(t̃)
k

≤ exp(ykf(W
(t̃),xk)− yif(W

(t̃),xi))

≤ exp

(
1

m

m∑
r=1

(
ρ
(t̃)
yk,r,i

+ γ(t̃)
yk,r
− ρ

(t̃)
yi,r,k

− γ(t̃)
yi,r

)
+ 2/C1

)
≤ exp(κ+ 2/C1)

Hence for a given κ, we can take C̃ℓ = exp(κ+ 2/C1). This verifies that claim (2) is satisfied.

To verify the claim (3), we can show

⟨w(t̃)
ỹi,r

, ξi⟩ = ⟨w(t̃−1)
ỹi,r

, ξi⟩ −
η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩

= ⟨w(t̃−1)
ỹi,r

, ξi⟩−
η

nm
ℓ
′(t̃−1)
i ∥ξi∥22︸ ︷︷ ︸
A6

− η

nm

∑
i′ ̸=i

ℓ
′(t̃−1)
i′ σ′(⟨w(t̃−1)

ỹi,r
, ξi′⟩) · ⟨ξi, ξi′⟩︸ ︷︷ ︸

A7

− η

nm

n∑
i′=1

ℓ
′(t̃−1)
i′ · σ′(⟨w(t̃−1)

ỹi,r
, yi′µ⟩) · ⟨yi′µ, ξi⟩︸ ︷︷ ︸

A8

.

We respectively bound the three terms as

A6 ≥ 0.99
σ2
ξdη

nm
|ℓ′(t̃−1)
i |,

where we use C.7. For A7, we can bound

|A7| ≤ 2nC̃ℓ|ℓ′(t̃−1)
i |σ2

ξ

√
d log(6n2/δ),

where we use Lemma B.1 and claim (2). Similarly,

|A8| ≤ nC̃ℓ|ℓ′(t̃−1)
i |∥µ∥2σξ

√
2 log(6n/δ)

where we use Lemma B.1 and claim (2). By the Condition D.1 where d ≥
Cmax{C̃2

ℓ n
2 log(6n2/δ), C̃ℓn∥µ∥2σ−1

ξ

√
2 log(6n/δ)} for sufficiently large C. This ensures A6 ≥ |A7| + |A8|,

which leads to ⟨w(t̃)
ỹi,r

, ξi⟩ ≥ ⟨w(t̃−1)
ỹi,r

, ξi⟩ > 0 and thus S(0)i ⊆ S(t̃−1)
i ⊆ S(t̃)i . Similarly, we can use the same argument to

prove S(0)j,r ⊆ S
(t̃−1)
j,r ⊆ S(t̃)j,r .

Proof of Proposition D.1. We prove the results by induction. At t = 0, it is clear that the claims hold trivially. Suppose
there exists T̃ ≤ T ∗ such that the the claims hold for all t ≤ T̃ − 1. We aim to show they also hold at t = T̃ . By Lemma
D.4, we know for all t ≤ T̃ − 1, we have ℓ

′(t)
i /ℓ

′(t)
k ≤ C̃ℓ for all i, k ∈ [n] and S(0)i ⊆ S(t)i , S(0)j,r ⊆ S

(t)
j,r .

First, we follow the same proof strategy to show 0 ≥ ρ(T̃ )
j,r,i
≥ −β − 10

√
log(6n2/δ)/d.

Next we show the upper bound for ρ(T̃ )
j,r,i. Let tr,i be the last time t < T ∗ such that ρ(t)j,r,i ≤ 0.5α. Then

ρ
(T̃ )
yi,r,i

= ρ
(tr,i)
yi,r,i

− η

nm
ℓ
′(tr,i)
i 1(⟨w(tr,i)

yi,r , ξi⟩ ≥ 0)∥ξi∥22 −
∑

t∈(tr,i,T̃ )

η

nm
ℓ
′(t)
i 1(⟨w(t)

yi,r, ξi⟩ ≥ 0)∥ξi∥22
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≤ 0.5α+ 1.01
ησ2

ξd

nm
+ 1.01

ησ2
ξd

nm

∑
t∈(tr,i,T̃ )

1

1 + exp( 1
m

∑m
r=1(ρ

(t)
yi,r,i

+ γ
(t)
yi,r)− 1/C1)

≤ 0.75α+ 2.02
ησ2

ξd

nm
≤ α

where the first inequality is by Lemma C.7, Lemma D.2 and |ℓ′(tr,i)i | ≤ 1. The second and third inequality is by choosing
η ≤ C−1nmσ−2

ξ d−1 for sufficiently large C.

Then we proceed to show upper bound for γ(T̃ )
j,r . From the update rule, it is clear that γ(T̃ )

j,r ≥ γ
(T̃−1)
j,r ≥ 0. To prove the

upper bound on γ
(T̃ )
j,r , we aim to show there exists i∗ ∈ [n] such that for all t ≤ T ∗ that

γ
(t)
j,r

ρ
(t)
yi∗ ,r,i∗

≤ Cγn · SNR2.

where we take Cγ = 1.1C̃ℓ. We prove the claim by induction. We first lower bound ρ
(T̃ )
yi,r,i

. In particular, we can lower

bound for any i∗ ∈ [n], r ∈ S(0)i that

ρ
(T̃ )
yi∗ ,r,i∗

= ρ
(T̃−1)
yi∗ ,r,i∗

− η

nm
ℓ
′(T̃−1)
i∗ ∥ξi∗∥22 ≥ ρ

(T̃−1)
yi∗ ,r,i∗

+ 0.49
ησ2

ξd

nm
|ℓ′(T̃−1)
i∗ |,

where we use Lemma C.7 and Lemma D.2. Then for γ(T̃ )
j,r , we have

γ
(T̃ )
j,r = γ

(T̃−1)
j,r − η

nm

n∑
i=1

ℓ
′(T̃−1)
i σ′(⟨w(T̃−1)

j,r , yiµ⟩)∥µ∥22 ≤ γ
(T̃−1)
j,r +

η∥µ∥22C̃ℓ|ℓ′(T̃−1)
i∗ |

m

where we use the second claim of Lemma D.4.

Then at iteration t = 1, we can show

γ
(1)
j,r

ρ
(1)
yi∗ ,r,i∗

≤ n∥µ∥22C̃ℓ

0.49σ2
ξd
≤ 1.1C̃ℓn · SNR2 = Cγn · SNR2.

Now suppose for all t ≤ T̃ − 1, we have γ
(t)
j,r/ρ

(t)
yi∗ ,r,i∗

≤ Cγn · SNR2, then we

Then we can bound

γ
(T̃ )
j,r

ρ
(T̃ )
yi∗ ,r,i∗

≤ max

 γ
(T̃−1)
j,r

ρ
(T̃−1)
yi∗ ,r,i∗

,
n∥µ∥22C̃ℓ

0.49σ2
ξd

 ≤ Cγn · SNR2.

This shows γ(T̃ )
j,r ≤ Cγn · SNR2ρ

(T̃−1)
yi∗ ,r,i∗

≤ Cγα.

D.1. First Stage

In the first stage, we can lower bound the loss derivatives by a constant Cℓ (by Lemma C.5) and we show both ρ
(t)
yi,r,i

,

r ∈ S(0)i and γ
(t)
j,r can grow to a constant order.

Theorem D.5. Under Condition D.1, there exists T1 = Θ(η−1nmσ−2
ξ d−1) such that

• ρ
(T1)
yi,r,i

= Θ(1) for all i ∈ [n] and r ∈ S(0)i .
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• γ
(T1)
j,r = Θ(n · SNR2) = Θ(1) for all j = ±1, r ∈ [m].

• yif(W
(T1),xi) ≥ 0, for all i ∈ [n].

Proof. By the update rule of the coefficients, for r ∈ S(0)i ,

ρ
(t)
yi,r,i

= ρ
(t−1)
yi,r,i

− η

nm
ℓ
′(t−1)
i ∥ξi∥22 ≥ ρ

(t−1)
yi,r,i

+ 0.99
ηCℓσ

2
ξd

nm
≥ 0.99

ηCℓσ
2
ξd

nm
t,

where we use the lower bound on loss derivatives and Lemma C.7.

Then with

T1 = 2.1η−1nmC−1
ℓ σ−2

ξ d−1

we can show ρ
(t)
yi,r,i

≥ 2. Further we can obtain the upper bound as for all i ∈ [n], r ∈ [m], j = ±1

ρ
(t)
j,r,i = ρ
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ℓ
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i ∥ξi∥22 ≤ ρ
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ησ2
ξd

nm
≤ 1.01

ησ2
ξd

nm
t

where we use the upper bound on loss derivatives and Lemma C.7. Under the definition of T1, for all i, r, j, we upper bound
ρ
(t)
j,r,i ≤ 3C−1

ℓ .

Next for lower and upper bound for γ(t)
j,r , we first recall the update as for any j = ±1, r ∈ [m],

γ
(t)
j,r = γ

(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t−1)
i σ′(⟨w(t−1)

j,r , yiµ⟩)∥µ∥22.

When ⟨w(t−1)
j,r ,µ⟩ ≥ 0,

γ
(t)
j,r = γ
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η

nm

∑
i∈S1

|ℓ′(t−1)
i |∥µ∥22 ≥ γ
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j,r +

ηCℓ∥µ∥22
2m

≥ ηCℓ∥µ∥22
2m

t

where we use the lower bound on |ℓ′(t−1)
i |. Similarly, when ⟨w(t−1)

j,r ,µ⟩ ≤ 0, we can obtain the same lower bound as

γ
(t)
j,r ≥

ηCℓ∥µ∥2
2

2m .

Then at t = T1, we can bound for all j = ±1, r ∈ [m] as

γ
(t)
j,r ≥

n∥µ∥22
σ2
ξd

= n · SNR2 = Ω(1)

The upper bound follows from

γ
(t)
j,r ≤ γ

(t−1)
j,r +

η∥µ∥22
2m

≤ η∥µ∥22
2m

t

where we apply the upper bound on |γ(t−1)
j,r | ≤ 1. This verifies that at t = T1,

γ
(t)
j,r ≤ 1.1C−1

ℓ n · SNR2 = O(1),

which shows at t = T1, both ρ
(T1)
yi,r,i

, γ
(T1)
j,r = Θ(1).

For all samples, by Lemma D.2,

yif(W
(T1),xi) ≥

1

m

m∑
r=1

(
ρ
(T1)
yi,r,i

+ γ
(T1)
j,r

)
− 1/C1 ≥ 0,

where we let C1 to be sufficiently large.
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D.2. Second Stage

In the second stage, we show the loss converges and under constant signal-to-noise ratio, we can show the test error can be
arbitrarily small at convergence, while for all T1 ≤ t ≤ T ∗, yif(W(t),xi) ≥ 0, for all i ∈ [n].

Theorem D.6. Under Condition D.1, there exists a time t∗ ∈ [T1, T
∗] where T ∗ = Θ̃(η−1ϵ−1nmσ−2

ξ d−1) such that

• Training loss converges, i.e., LS(W
(t∗)) ≤ ϵ.

• For all samples, i.e., i ∈ [n], it satisfies yif(W(t),xi) ≥ 0.

• Test error is small, i.e., L0−1
D (W(t∗)) ≤ exp

(
d
n −

n∥µ∥4
2

CDσ4
ξd

)
.

Proof of Theorem D.6. The proof of convergence is exactly the same as for the case with label noise, and thus we omit it
here. The second claim is also easy to verify given that both γ

(t)
j,r , ρ

(t)
yi,r,i

are monotonically increasing. By Lemma D.2, we
can obtain the desired result.

Now we prove the third claim regarding the test error. To this end, we first show for all T1 ≤ t ≤ T ∗ γ
(t)
j,r/

∑n
i=1 ρ

(t)
j,r,i =

Θ(SNR2) for all j = ±1, r ∈ [m]. We prove such a claim by induction. It is clear at t = T1, we have
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and γ
(T1)
j,r = Θ(n · SNR2) for all j = ±1, r ∈ [m]. Thus, we can verify the γ
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j,r,i = Θ(SNR2). Now suppose

for a given T̃ ∈ [T1, T
∗] such that γ(t)
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update,

n∑
i=1

ρ
(T̃ )
j,r,i =

n∑
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∑
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where the second inequality is by S(0)j,r ⊆ S
(T̃−1)
j,r and Lemma B.3, Lemma C.7. Similarly, we can upper bound

n∑
i=1

ρ
(T̃ )
j,r,i ≤

n∑
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|ℓ′(T̃−1)
i |

where we Lemma C.7.

On the other hand, we can lower and upper bound

γ
(T̃ )
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This suggests
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i | by second claim of Lemma D.4. Similarly,

γ
(T̃ )
j,r∑n

i=1 ρ
(T̃ )
j,r,i

≤ max

 γ
(T̃−1)
j,r∑n

i=1 ρ
(T̃−1)
j,r,i

,
C̃ℓSNR2

0.24

 = O(SNR2).

36



On the Role of Label Noise in the Feature Learning Process

This verifies for all T1 ≤ t ≤ T ∗,

γ
(t)
j,r/

n∑
i=1

ρ
(t)
j,r,i = Θ(SNR2). (18)

Finally, we prove the test error can be upper bounded. We first write for a test sample (x, y) ∼ Dtest,

yf(W(t∗),x) =
1

m
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where we use Lemma B.1 and Lemma B.2 and (18) in the second inequality. The last inequality follows from Condition D.1.
With an similar argument, we can show
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where the expectation is taken with respect to ζ and the last equality is due to (Beauchamp, 2018) on expectation of truncated
Gaussian. The first inequality is by taking ξ = ξi∗ where i∗ = argmaxi∈[n],r ρ
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−y,r,i and use Condition D.1 to remove the

leading constant.
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where the first inequality is by Lemma C.7 and Lemma B.1 and the last inequality is by the coefficient orders at t∗. Thus,
we can bound
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where we denote gi(ζ) =
∑m

r=1 σ(⟨w
(t∗)
−y,r, ζ + ξi⟩). The third and fourth inequalities are by (s− t)2 ≥ s2/2− t2.

E. Early Stopping and Sample Selection

Proof of Proposition 4.3. The proof follows the same idea as for Theorem D.6, with the difference that both
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ỹi,r,i

for all j = ±1 and i ∈ [n] (from the results of
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where the second inequality follows from
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where
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i=1 ρ
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j,r,i ≤ Θ(n). The last inequality is by choosing a sufficiently large constant Ce > 0.

The claim on sample selection follows easily from Theorem 4.1.

F. Additional Experiments
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(a) µ = 20, τ = 0.1. (b) µ = 20, τ = 0.15. (c) µ = 20, τ = 0.2.

(d) µ = 20, τ = 0.25. (e) µ = 15, τ = 0.2. (f) µ = 25, τ = 0.2.

Figure 3: Experiments on synthetic data with varying problem settings, including varying signal strength µ and label noise
ratio τ . We shade the area before noise learning overtakes signal learning of noisy samples in blue. This corresponds to the
Stage I in our analysis, where early stopping is beneficial. We shade the area where signal learning exceeds noise learning
for noisy samples in orange, which corresponds to Stage II in our analysis.
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(a) τ = 0.1. (b) τ = 0.15.

(c) τ = 0.2. (d) τ = 0.25.

Figure 4: Experiments on CIFAR-10 dataset with varying label noise ratio τ . Across different label noise ratios, we observe
a similar pattern that there exist an initial decrease in the training accuracy on noisy samples before an increase to perfect
classification. This validates our theoretical findings in real-world settings under various label noise ratios.
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