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Abstract

Sortition is an age-old democratic paradigm, widely manifested today through the
random selection of citizens’ assemblies. Recently-deployed algorithms select as-
semblies maximally fairly, meaning that subject to demographic quotas, they give
all potential participants as equal a chance as possible of being chosen. While
these fairness gains can bolster the legitimacy of citizens’ assemblies and facili-
tate their uptake, existing algorithms remain limited by their lack of transparency.
To overcome this hurdle, in this work we focus on panel selection by uniform
lottery, which is easy to realize in an observable way. By this approach, the final
assembly is selected by uniformly sampling some pre-selected set of m possible
assemblies. We provide theoretical guarantees on the fairness attainable via this
type of uniform lottery, as compared to the existing maximally fair but opaque al-
gorithms, for two different fairness objectives. We complement these results with
experiments on real-world instances that demonstrate the viability of the uniform
lottery approach as a method of selecting assemblies both fairly and transparently.

1 Introduction

In a citizens’ assembly, a panel of randomly chosen citizens is convened to deliberate and ulti-
mately make recommendations on a policy issue. The defining aspect of citizens’ assemblies is
the randomness of the process, sortition, by which participants are chosen. In practice, the sorti-
tion process works as follows: first, volunteers are solicited via thousands of letters or phone calls,
which target individuals chosen uniformly at random. Those who respond affirmatively form the
pool of volunteers, from which a final panel will be chosen. Finally, a selection algorithm is used
to randomly select some pre-specified number k of pool members for the panel. To ensure adequate
representation of demographic groups, the chosen panel is often constrained to satisfy some upper
and lower quotas on feature categories such as age, gender, and ethnicity. We call a quota-satisfying
panel of size k a feasible panel. As this process illustrates, citizens’ assemblies offer a way to in-
volve the public in informed decision-making. This potential for civic participation has recently
spurred a global resurgence in the popularity of citizens assemblies; they have been commissioned
by governments and led to policy changes at the national level [19, 23, 12].

Prompted by the growing impact of citizens’ assemblies, there has been a recent flurry of computer
scientific research on sortition, and in particular, on the fairness of the procedure by which partici-
pants are chosen [2, 13, 12]. The most practicable result to date is a family of selection algorithms
proposed by Flanigan et al. [12], which are distinguished from their predecessors by their use of
randomness toward the goal of fairness: while previously-used algorithms selected pool members in
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a random but ad-hoc fashion, these new algorithms are maximally fair, ensuring that pool members
have as equal probability as possible of being chosen for the panel, subject to the quotas.1 To en-
compass the many interpretations of “as equal as possible,” these algorithms permit the optimization
of any fairness objective with certain convexity properties. There is now a publicly available imple-
mentation of the techniques of Flanigan et al. [12], called Panelot, which optimizes the egalitarian
notion that no pool member has too little selection probability via the Leximin objective from fair
division [21, 14]. This algorithm has already been deployed by several groups of panel organizers,
and has been used to select dozens of panels worldwide.

Fairness gains in the panel selection process can lend legitimacy to citizens’ assemblies and poten-
tially increase their adoption, but only insofar as the public trusts that these gains are truly realized.
Currently, the potential for public trust in the panel selection process is limited by multiple factors.
First, the latest panel selection algorithms select the final panel via behind-the-scenes computation.
When panels are selected in this manner, observers cannot even verify that any given pool mem-
ber has any chance of being chosen for the panel. A second and more fundamental hurdle is that
randomness and probability, which are central to the sortition process, have been shown in many
contexts to be difficult for people to understand and reason about [24, 20, 28]. Aiming to address
these shortcomings, we propose and pursue the following notion of transparency in panel selection:

Transparency: Observers should be able to, without reasoning in-depth about
probability, (1) understand the probabilities with which each individual will be
chosen for the panel in theory, and (2) verify that individuals are actually selected
with these probabilities in practice.

In this paper, we aim to achieve transparency and fairness simultaneously: this means advancing
the defined goal of transparency, while preserving the fairness gains obtained by maximally fair
selection algorithms. Although this task is reminiscent of existing AI research on trade-offs between
fairness or transparency with other desirable objectives [4, 11, 3, 27], to our knowledge, this is the
first investigation of the trade-off between fairness and transparency.

Setting aside for a moment the goal of fairness, we consider a method of random decision-making
that is already common in the public sphere: the uniform lottery. To satisfy quotas, a uniform lottery
for sortition must randomize not over individuals, but over entire feasible panels. In fact, this ap-
proach has been suggested by practitioners, and was even used in 2020 to select a citizens’ assembly
in Michigan. The following example, which closely mirrors that real-world pilot,2 illustrates that
panel selection via uniform lottery is naturally consistent with the transparency notion we pursue.

Suppose we construct 1000 feasible panels from a pool (possibly with duplicates), numbered 000-
999, and publish an (anonymized) list of which pool members are on each panel. We then inform
spectators that we will choose each panel with equal probability. This satisfies criterion (1): specta-
tors can easily understand that all panels will be chosen with the same probability of 1/1000, and can
easily determine each individual’s selection probability by counting the number of panels containing
the individual. To satisfy criterion (2), we enact the lottery by drawing each of the three digits of
the final panel number individually from lottery machines. Lottery spectators can confirm that each
ball is drawn with equal probability; this provides confirmation that panels are indeed being chosen
with uniform probabilities, thus confirming the enactment of the proposed individual selection prob-
abilities. In addition to its conventionality as a source of randomness, decision-making via drawing
lottery balls invites an exciting spectacle, which can promote engagement with citizens’ assemblies.

This simple method neatly satisfies our transparency criteria, but it has one obvious downside: a
uniform lottery over an arbitrary set of feasible panels does not guarantee any measure of equal
probabilities to individuals. In fact, it is not even clear that the fairest possible uniform lottery
over m panels, where m is a number conducive to selection by physical lottery (e.g. m =1000),
would not be significantly less fair than maximally fair algorithms, which sample the fairest possible
unconstrained distribution over panels. For example, if m is too small, there may be no uniform
lottery which gives all individuals non-zero selection probability, even if each individual appears

1Quotas can preclude giving individuals exactly equal probabilities: if the panel must be 1/2 men, 1/2
women but the pool is split 3/4 men, 1/4 women, then some women must be chosen more often than some men.

2Of By For’s pilot of live panel selection via lottery can be viewed at https://vimeo.com/458304880#
t=17m59s from 17:59 to 21:23. For a more detailed description, see Figure 3 and surrounding text in [12].
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on some feasible panel (and so can attain a non-zero selection probability under an unconstrained
distribution).

Fortunately, empirical evidence suggests that there is hope: in the 2020 pilot mentioned above, a
uniform lottery over m =1000 panels was found that nearly matched the fairness of the maximally
fair distribution generated by Panelot. Motivated by this anecdotal evidence, we aim to understand
whether such a fair uniform lottery is guaranteed to exist in general, and if it does, how to find it.
We summarize this goal in the following research questions:

Does there exist a uniform lottery overm panels that nearly preserves the fairness
of the maximally fair unconstrained distribution over panels? And,
Algorithmically, how do we compute such a uniform lottery?

Results and Contributions. After describing the model in Section 2, in Section 3 we prove that
it is possible to round an (essentially) arbitrary distribution over panels to a uniform lottery while
preserving all individuals’ selection probabilities up to only a small bounded deviation. These results
use tools from discrepancy theory and randomized rounding. Intuitively, this bounded change in
selection probabilities implies bounded losses in fairness; we formalize this intuition in Section 4,
showing that there exists in general a uniform lottery that is nearly maximally fair, with respect
to multiple choices of fairness objective. Although we would ideally like to give such bounds for
the Leximin fairness objective, due to its use practice, we cannot succinctly represent bounds for
this objective because it is not scalar valued. We therefore give bounds for Maximin, a closely
related egalitarian objective which only considers the minimum selection probability given to any
pool member [7]. We discuss in Section 4 why bounds on loss in Maximin fairness are, in the
most meaningful sense, also bounds on loss in Leximin fairness. We additionally give upper bounds
on the loss in Nash Welfare [21], a similarly well-established fairness objective that has also been
implemented in panel selection tools [18].

Finally, in Section 5, we consider the algorithmic question in practice: given a maximally fair dis-
tribution over panels, can we actually find nearly maximally fair uniform lotteries that match our
theoretical guarantees? To answer this question, we implement two standard rounding algorithms,
along with near-optimal (but more computationally intensive) integer programming methods, for
finding uniform lotteries. We then evaluate the performance of these algorithms in 11 real-world
panel selection instances. We find that in all instances, we can compute uniform lotteries that nearly
exactly preserve not only fairness with respect to both objectives, but entire sets of Leximin-optimal
marginals, meaning that from the perspective of individuals, there is essentially no difference be-
tween using a uniform lottery versus the optimal unconstrained distribution sampled by the latest
algorithms. We discuss these results, their implications, and how they can be deployed directly into
the existing panel selection pipeline in Section 6.

2 Model

Panel Selection Problem. First, we formally define the task of panel selection for citizens’ as-
semblies. Let N = [n] be the pool of volunteers for the panel—individuals from the population
who have indicated their willingness to participate in response to an invitation. Let F = {ft}t
denote a fixed set of features of interest. Each feature ft : N → Ωt maps each pool member to
their value of that feature, where Ωt is the set of ft’s possible values. For example, for feature ft =
“gender”, we might have Ωt = {“male”,“female”, “non-binary”}. We define individual i’s feature
vector F (i) = (ft(i))t ∈

∏
t Ωt to be the vector encoding their values for all features in F .

As is done in practice and in previous research [13, 12], we impose that the chosen panel P must be a
subset of the pool of size k, and must be representative of the broader population with respect to the
features in F . This representativeness is imposed via quotas: for each feature f and corresponding
value v ∈ Ω, we may have lower and upper quotas lf,v and uf,v. These quotas require that the panel
contain between lf,v and uf,v individuals i such that f(i) = v.

In terms of these parameters, we define an instance of the panel selection problem as: given
(N, k, F, l, u)—a pool, panel size, set of features, and sets of lower and upper quotas—randomly
select a feasible panel, where a feasible panel is any set of individuals P from the collection K:

K :=
{
P ∈ (N

k) : lf,v ≤ |{i ∈ P : f(i) = v}| ≤ uf,v for all f, v
}
.
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Maximally Fair Selection Algorithms. A selection algorithm is a procedure that solves instances
of the panel selection problem. A selection algorithm’s level of fairness on a given instance is
determined by its panel distribution p, the (possibly implicit) distribution over K from which it
draws the final panel. Because we care about fairness to individual pool members, we evaluate the
fairness of p in terms of the fairness of selection probabilities, or marginals, that p implies for all
pool members.3 We denote the vector of marginals implied by p as π, and we will sometimes specify
a panel distribution as p, π to explicitly denote this pair. We say that π is realizable if it is implied
by some distribution p over the feasible panels K.

Maximally fair selection algorithms are those which solve the panel selection problem by sampling
a specifically chosen p: one which implies marginals π that allocate probability as fairly as possible
across pool members. The fairness of p, π is measured by a fairness objective F , which maps an
allocation—in this case, of selection probability to pool members—to a real number measuring
the allocation’s fairness. Fixing an instance, a fairness objective F , and a panel distribution p, we
express the fairness of p as F(p). Existing maximally fair selection algorithms can maximize a wide
range of fairness objectives, including those considered in this paper.

Leximin, Maximin, and Nash Welfare. Of the three fairness objectives we consider in this paper,
Maximin and Nash Welfare (NW) have succinct formulae. For p, π they are defined as follows,
where πi is the marginal of individual i:

Maximin(p) := min
i∈N

πi, NW(p) :=

(∏

i

πi

)1/n

.

Intuitively, NW maximizes the geometric mean, prioritizing the marginal πi of each individual i in
proportion to π−1

i . Maximin maximizes the marginal probability of the individual least likely to be
selected. Finally, Leximin is a refinement of Maximin, and is defined by the following algorithm:
first, optimize Maximin; then, fixing the minimum marginal as a lower bound on any marginal,
maximize the second-lowest marginal; and so on.

Our task: quantize a maximally fair panel distribution with minimal fairness loss. We define
a 1/m-quantized panel distribution as a distribution over all feasible panels K in which all prob-
abilities are integer multiples of 1/m. We use p̄ to denote a panel distribution with this property.
Formally, while an (unconstrained) panel distribution p lies in D := {p ∈ R|K|+ : ‖p‖1 = 1}, a
1/m-quantized panel distribution in p̄ lies in D := {p̄ ∈ (Z+/m)|K| : ‖p̄‖1 = 1}. Note that a
1/m-quantized distribution p̄ immediately translates to a physical uniform lottery of over m panels
(with duplicates): if p̄ assigns probability `/m to panel P , then the corresponding physical uniform
lottery would contain ` duplicates of P . Thus, if we can compute a 1/m-quantized panel distribu-
tion p̄ with fairness F(p̄), then we have designed a physical uniform lottery over m panels with that
same level of fairness.

Our goal follows directly from this observation: we want to show that given an instance and desired
lottery size m, we can compute a 1/m-quantized distribution p̄ that is nearly as fair, with respect to
a fairness notion F , as the maximally fair panel distribution in this instance p∗ ∈ arg maxp∈D F(p).
We define the fairness loss in this quantization process to be the difference F(p∗) − F(p̄). We
are aided in this task by the existence of practical algorithms for computing p∗ Flanigan et al. [12],
which allows us to use p∗ as an input to the quantization procedure we hope to design. For intu-
ition, we illustrate this quantization task in Figure 1, where π∗, π̄ are the marginals implied by p∗, p̄,
respectively. Since the fairness of p∗, p̄ are computed in terms of π∗, π̄, it is intuitive that a quan-
tization process that results in small marginal discrepancy, defined as the maximum change in any
marginal ‖π− π̄‖∞, should also have small fairness loss. This idea motivates the upcoming section,
in which we give quantization procedures with provably bounded marginal discrepancy, forming the
foundation for our later bounds on fairness loss.

3A panel distribution p implies a unique vector of marginals π as follows: fixing p, π, a pool member i’s
marginal selection probability πi is equal to the probability of drawing a panel from p containing that pool
member. For a more detailed introduction to the connection between panel distributions and marginals, we
refer readers to Flanigan et al. [12].
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of the maximally fair unconstrained distribution over panels? And,
Algorithmically, how do we compute such a uniform lottery?

Results and contributions. After describing the model in Section 2, in Section 3 we prove that it
is possible to round an (essentially) arbitrary distribution over panels to a uniform lottery while pre-
serving all individuals’ selection probabilities up to only a small bounded deviation. These results
use tools from discrepancy theory and randomized rounding. Intuitively, this bounded change in
selection probabilities implies bounded losses in fairness; we formalize this intuition in Section 4,
showing that there exists in general a uniform lottery that is nearly maximally fair, with respect to
multiple fairness objectives. Although we would ideally like to give such bounds for the Leximin
fairness objective due to its use practice, this objective cannot be summarized by a single expres-
sion. Thus, we give bounds for the closely-related egalitarian objective, Maximin [CELM07]. We
additionally give upper bounds on the loss in Nash Welfare [Mou03], a similarly well-established
fairness objective that has also been implemented in panel selection tools [HG20].

Finally, in Section 5, we consider the algorithmic question: given a maximally fair distribution over
panels, can we find a near-maximally fair uniform lottery, as our bounds suggest should exist? To
answer this question, we implement two standard rounding algorithms, along with near-optimal (but
more computationally-intensive) integer programming methods, for finding uniform lotteries. We
then evaluate the performance of these algorithms in 11 real-world panel selection instances. We find
that in all instances, we can compute uniform lotteries that nearly exactly preserve not only fairness
with respect to both objectives, but entire sets of Leximin-optimal marginals, meaning that from the
perspective of individuals, there is essentially no difference between using a uniform lottery versus
the optimal distribution used by the latest algorithms. We discuss these results, their implications,
and how they can be deployed directly into the existing panel selection pipeline in Section 6.

2 Model

Panel Selection Problem. First, we formally define the task of panel selection for citizens’ assem-
blies. Let N = [n] be the pool of volunteers for the panel—individuals from the population who
have indicated their willingness to participate in response to an invitation. Let F = {ft}t denote a
fixed set of features of interest. Each feature ft : N ! ⌦t maps each pool member to their value
of that feature, where ⌦t is the set of ft’s possible values. For example, for feature ft = “gender”,
we might have ⌦t = {“male”,“female”, “non-binary”}. We define individual i’s feature vector
F (i) = (ft(i))t 2

Q
t ⌦t to be the vector encoding their values for all features in F .

As is done in practice and in previous research [FGGP20, FGG+21], we impose that the chosen
panel P must be a subset of the pool of size k, and must be representative of the broader population
with respect to the features in F . This representativeness is imposed via quotas: for each feature f
and corresponding value v 2 ⌦, we may have lower and upper quotas lf,v and uf,v . These quotas
require that the panel contain between lf,v and uf,v individuals i such that f(i) = v.

In terms of these parameters, we define an instance of the panel selection problem as: given
(N, k, F, l, u)—a pool, panel size, set of features, and sets of lower and upper quotas—randomly
select a feasible panel, where a feasible panel is any set of individuals P from the collection K:

K :=
�
P 2 (N

k) : lf,v  |{i 2 P : f(i) = v}|  uf,v for all f, v
 

.

Maximally Fair Selection Algorithms. A selection algorithm is a procedure that solves instances
of the panel selection problem. A selection algorithm’s level of fairness on a given instance is
determined by its panel distribution p, the (possibly implicit) distribution over K from which it
draws the final panel. Because we care about fairness to individuals, we evaluate the fairness of p in
terms of the individual selection probabilities, or marginals, that p implies.3 We denote the vector of
marginals implied by p as ⇡, and we will sometimes specify a panel distribution as p, ⇡ to explicitly
denote this pair. We say that ⇡ is realizable if it is implied by some valid panel distribution p.

Maximally fair selection algorithms are those which solve the panel selection problem by sampling
a specifically chosen p: one which implies marginals ⇡ that allocate probability as fairly as possible

3Any distribution over panels p implies a selection probability for each pool members: A pool member’s
selection probability, per p, is equal to the probability of drawing a panel from p containing that pool member.
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Figure 1: The quantization task takes as input a maximally fair panel distribution p∗ (implying
marginals π∗), and outputs a 1/m-quantized panel distribution p̄ (implying marginals π̄).

3 Theoretical Bounds on Marginal Discrepancy

Here we prove that for a fixed panel distribution p, π, there exists a uniform lottery p̄, π̄ such that
‖π − π̄‖∞ is bounded. Preliminarily, we note that it is intuitive that bounds on this discrepancy
should approach 0 as m becomes large with respect to n and k. To see why, begin by fixing some
distribution p, π over panels: as m becomes large, we approach the scenario in which a uniform
lottery p̄ can assign panels arbitrary probabilities, providing increasingly close approximations to p.
Since the marginals πi are continuous with respect to p, as p̄→ p we have that π̄i → πi for all i.

While this argument demonstrates convergence, it provides neither efficient algorithms nor tight
bounds on the rate of convergence. In this section, our task is therefore to bound the rate of this
convergence as a function of m and the other parameters of the instance. All omitted proofs of
results from this section are included in Appendix B.

3.1 Worst-Case Upper Bounds

Our first set of upper bounds result from rounding STANDARD LP, the LP that most directly arises
from our problem. This LP is defined in terms of a panel distribution p, π, and M , an n × |K|
matrix describing which individuals are on which feasible panels: Mi,P = 1 if i ∈ P and Mi,P = 0
otherwise.

STANDARD LP Mp = π (3.1)
‖p‖1 = 1 (3.2)

p ≥ 0.

Here, (3.1) specifies n total constraints. Our goal is to round p to a uniform lottery p̄ over m panels
(so the entries p̄ are multiples of 1/m) such that (3.2) is maintained exactly, and no constraint in
(3.1) is relaxed by too much, i.e., ‖Mp−Mp̄‖∞ = ‖π − π̄‖∞ remains small.

Randomized rounding is a natural first approach. Any randomized rounding scheme satisfying neg-
ative association (which includes several that respect (3.2)) yields the following bound:
Theorem 3.1. For any realizable π, we may efficiently randomly generate p̄ such that its marginals
π̄ satisfy

‖π − π̄‖∞ = O

(√
n log n

m

)
.

Fortunately, there is potential for improvement: randomized rounding does not make full use of the
fact that M is k-column sparse, due to each panel in K containing exactly k individuals. We use this
sparsity to get a stronger bound when n � k2, which is a practically significant parameter regime.
The proof applies a dependent rounding algorithm based on a theorem of Beck and Fiala [1], to
which a modification ensures the exact satisfaction of constraint (3.2).
Theorem 3.2. For any realizable π, we may efficiently construct p̄ such that its marginals π̄ satisfy

‖π − π̄‖∞ ≤ k/m.

This bound is already meaningful in practice, where k � m is insured by the fact that m is pre-
chosen along with k prior to panel selection. Note also that k is typically on the order of 100
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(Table 1), whereas a uniform lottery can in practice be easily made orders of magnitude larger, as
each additional factor of 10 in the size of the uniform lottery requires drawing only one more ball
(and there is no fairness cost to drawing a larger lottery, since increasing m allows for uniform
lotteries which better approximate the unconstrained optimal distribution).

3.2 Beyond-Worst-Case Upper Bounds

As we will demonstrate in Section 3.3, we cannot hope for a better worst-case upper bound than
poly(k)/m. We thus shift our consideration to instances which are “simple” in their feature struc-
ture, having a small number of features (Theorem B.7), a limited number of unique feature vectors
in the pool (Theorem 3.3), or multiple individuals that share each feature vector present (Theo-
rem B.8). The beyond-worst-case bounds given by Theorem 3.3 and Theorem B.8 asymptotically
dominate our worst-case bounds in Theorem 3.1 and Theorem 3.2, respectively. Moreover, Theo-
rem 3.3 dominates all other upper bounds in 10 of the 11 practical instances studied in Section 5.

We note that while our worst-case upper bounds implied the near-preservation of any realizable
set of marginals π, some of our beyond-worst-case results apply to only realizable π which are
anonymous, meaning that πi are equal for all i with equal feature vectors. We contend that any
reasonable set of marginals should have this property,4 and furthermore that the “anonymization” of
any realizable π is also realizable (Claim B.6); hence this restriction is insignificant. Our beyond-
worst-case bounds also differ from our worst-case bounds in that they depart from the paradigm of
rounding p, instead randomizing over panels that may fall outside the support of p.

The main beyond-worst-case bound we give, stated below, is parameterized by |C|, where C is the
set of unique feature vectors that appear in the pool. All omitted proofs and other beyond worst-case
results are stated and proven in Appendix B.

Theorem 3.3. If π is anonymous and realizable, then we may efficiently construct p̄ such that its
marginals π̄ satisfy

‖π − π̄‖∞ = O

(√
|C| log |C|
m

)
.

|C| is at most n, so this bound dominates Theorem 3.1. In 10 of the 11 real-world instances we study,
|C| is also smaller than k2 (Appendix A), in which case this bound also dominates Theorem 3.2.

At a high level, our beyond-worst-case upper bounds are obtained not by directly rounding p, but
instead using the structure of the sortition instance to abstract the problem into one about “types.”
For this bound we then solve an LP in terms of “types,” round that LP, and then reconstruct a rounded
panel distribution p̄, π̄ from the “type” solution. In particular, the types of individuals are the feature
vectors which appear in the pool, and types of panels are the multisets of k feature vectors that
satisfy the instance quotas. Fixing an instance, we project some p into type space by viewing it as a
distribution p over types of panels K, inducing marginals τc for each type individuals c ∈ C.

To begin, we define the TYPE LP, which is analogous to Eq. (3.1). We let Q be the type analog
of M , so that entry Qcj is the number of individuals i with F (i) = c contained in panels of type
j ∈ K.5 Then,

TYPE LP Q p = τ (3.3)
‖p‖1 = 1 (3.4)

p ≥ 0.

We round p in this LP to a panel type distribution p̄ while preserving (3.4). All that remains, then, is
to construct some p̄, π̄ such that p is consistent with p̄ and ‖π − π̄‖∞ is small. This p̄ is in general
supported by panels outside of supp(p), unlike the p̄ obtained by Theorem 3.1. It is the anonymity
of π which allows us to construct these new panels and prove that they are feasible for the instance.

4The class of all anonymous marginals π includes the maximizers π∗ of all reasonable fairness objectives,
and second, this condition is satisfied by all existing selection algorithms used in practice, to our knowledge.

5Completing the analogy, C,K, Q, p, p̄, τ are the “type” versions of N,K,M, p, p̄, π from the original LP.
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3.3 Lower Bounds

This method of using bounded discrepancy to derive nearly fairness-optimal uniform lotteries has
its limits, since there are even sparse M and fractional x for which no integer x̄ yields nearby Mx̄.
In the worst case, we establish lower bounds by modifying those of Beck and Fiala [25]:
Theorem 3.4. There exist p, π for which for all uniform lotteries p̄, π̄,

min
p̄∈D
‖π − π̄‖∞ = Ω

(√
k

m

)
.

Our k-dependent upper and lower bounds are separated by a factor of
√
k, matching the current

upper and lower bounds of the Beck-Fiala conjecture as applied to linear discrepancy (also known
as the lattice approximation problem [26]). The respective gaps are incomparable, however, since
for a given x ∈ [0, 1]n, the former problem aims to minimize ‖M(x− x̄)‖∞ over x̄ ∈ {0, 1}n, while
we aim to do the same over a subset of the x̄ ∈ Zn for which

∑
j xj =

∑
j x̄j (see Lemma B.4).

4 Theoretical Bounds on Fairness Loss

Since the fairness of a distribution p is determined by its marginals π, it is intuitive that if uniform
lotteries incur only small marginal discrepancy (per Section 3), then they should also incur only
small fairness losses. This should hold for any fairness notion that is sufficiently “smooth” (i.e.,
doesn’t change too quickly with changing marginals) in the vicinity of p, π.

Although our bounds from Section 3 apply to any reasonable initial distribution p, we are particu-
larly concerned with bounding fairness loss from maximally fair initial distributions p∗. Here, we
specifically consider such p∗ that are optimal with respect to Maximin and NW. We note that, since
there exist anonymous p∗, π∗ that maximize these objectives, we can apply any upper bound from
Section 3 to upper bound ‖π∗ − π̄‖∞. We defer omitted proofs to Appendix C.

4.1 Maximin

Since Leximin is the fairness objective optimized by the maximally fair algorithm used in practice,
it would be most natural to start with a p∗ that is Leximin-optimal and bound fairness loss with
respect to this objective. However, the fact that Leximin fairness cannot be represented by a single
scalar value prevents us from formulating such an approximation guarantee. Instead, we first pursue
bounds on the closely-related objective, Maximin. We argue that in the most meaningful sense, a
worst-case Maximin guarantee is a Leximin guarantee: such a bound would show limited loss in the
minimum marginal, and it is Leximin’s lexicographically first priority to maximize the minimum
marginal.

First, we show there exists some p̄, π̄ that gives bounded Maximin loss from p∗, π∗, the Maximin-
optimal unconstrained distribution. This bound follows from Theorems 3.3 and B.8, using the simple
observation that p̄ can decrease the lowest marginal given by p∗ by no more than ‖π∗ − π̄‖∞. Here
nmin := minc nc denotes the smallest number of individuals which share any feature vector c ∈ C.
Corollary 4.1. By Theorem 3.3 and B.8, for Maximin-optimal p∗, there exists a uniform lottery p̄
that satisfies

Maximin(p∗)−Maximin(p̄) =
1

m
·O
(

min

{√
|C| log |C|, k

nmin
+ 1

})
.

Theorem 3.4 demonstrates that we cannot get an upper bound on Maxmin loss stronger than
O(
√
k/m) using a uniform bound on changes in all πi. However, since Maximin is concerned

only with the smallest πi, it seems plausible that better upper bounds on Maximin loss could re-
sult from rounding π while tightly controlling only losses in the smallest πi’s, while giving freer
reign to larger marginals. We show that this is not the case by further modifying the instances from
Theorem 3.4 to obtain the following lower bound on the Maximin loss:
Theorem 4.1. There exists a Maximin-optimal p∗ such that, for all uniform lotteries p̄,

Maximin(p∗)−Maximin(p̄) = Ω

(√
k

m

)
.
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4.2 Nash Welfare

As NW has also garnered interest by practitioners and is applicable in practice [18], we upper-bound
the NW fairness loss. Unlike Maximin loss, an upper bound on NW loss does not immediately
follow from one on ‖π − π̄‖∞, because decreases in smaller marginals have larger negative impact
on the NW. As a result, the upper bound on NW resulting from Section 3 is slightly weaker than
that on Maximin:

Theorem 4.2. For NW-optimal p∗, there exists a uniform lottery p̄ that satisfies

NW(p∗)−NW(p̄) =
k

m
·O
(

min

{√
|C| log |C|, k

nmin
+ 1

})
.

We give an overview of the proof of Theorem 4.2. To begin, fix a NW-optimizing panel distribution
p∗, π∗. Before applying our upper bounds on marginal discrepancy from Section 3, we must contend
with the fact that if this bounded loss is suffered by already-tiny marginals, the NW may decrease
substantially or even go to 0. Thus, we first prove Lemmas 4.1 and 4.2, which together imply that
no marginal in π∗ is smaller than 1/n.

Lemma 4.1. For NW-optimal p∗ over a support of panels supp(p∗), there exists a constant λ ∈ R+

such that, for all P ∈ supp(p∗),
∑
i∈P 1/π∗i = λ.

Lemma 4.2. For NW-optimal p∗, π∗, we have that π∗i ≥ 1/n for all i ∈ N .

Lemma 4.1 follows from the fact that the partial derivative of NW with respect to the probability it
assigns a given panel must be the same as that with respect to any other panel at p∗ (otherwise, mass
in the distribution could be shifted to increase the NW). Lemma 4.2 then follows by the additional
observation that EP∼p∗

[∑
i∈P 1/π∗i

]
= n.

Finally Lemma 4.3 follows from the fact that Lemma 4.2 limits the potential multiplicative, and
therefore additive, impact on the NW of decreasing any marginal by ‖π − π̄‖∞:

Lemma 4.3. For NW-optimal p∗, π∗, there exists a uniform lottery p̄, π̄ that satisfies NW(p∗) −
NW(p̄) ≤ k ‖π∗ − π̄‖∞.

As the NW-optimal marginals π∗ are anonymous, we can apply the upper bounds given by Theo-
rem 3.3 and Theorem B.8 to show the existence of a p̄, π̄ satisfying the claim of the theorem.

5 Practical Algorithms for Computing Fair Uniform Lotteries

Algorithms. First, we implement versions of two existing rounding algorithms, which are implicit in
our worst-case upper bounds.6 The first is Pipage rounding [16], or PIPAGE, a randomized rounding
scheme satisfying negative association [10]. The second is BECK-FIALA, the dependent rounding
scheme used in the proof of Theorem 3.2. To benchmark these algorithms against the highest level
of fairness they could possibly achieve, we use integer programming (IP) to compute the fairest
possible uniform lotteries over supp(p∗), the panels over which p∗ randomizes.7 We define IP-
MAXIMIN and IP-NW to find uniform lotteries over supp(p∗) maximizing Maximin and NW,
respectively. We remark that the performance of these IPs is still subject to our theoretical upper and
lower bounds. We provide implementation details in Appendix D.1.

One question is whether we should prefer the IPs or the rounding algorithms for real-world ap-
plications. Although IP-MAXIMIN appears to find good solutions at practicable speeds, IP-NW
converges to optimality prohibitively slowly in some instances (see Appendix D.2 for runtimes).
At the same time, we find that our simpler rounding algorithms give near-optimal uniform lotter-
ies with respect to both fairness objectives. Also in favor of simpler rounding algorithms, many
randomized rounding procedures (including Pipage rounding) have the advantage that they exactly

6We do not implement the algorithm implicit in Theorem 3.3 because our results already present sufficient
alternatives for finding excellent uniform lotteries in practice.

7Note that these lotteries are not necessarily universally optimal, as they can randomize over only supp(p∗);
conceivably, one could find a fairer uniform lottery by also randomizing over panels not in supp(p∗). However,
PIPAGE and BECK-FIALA are also restricted in this way, and thus must be weakly dominated by the IP.
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Figure 2: m = 1000. Shaded regions extend from Maximin(p∗), the fairness of the optimal uncon-
strained distribution, down to the minimum fairness implied by the tightest theoretical upper bound
in that instance (in all instances but “obf” Theorem 3.3 is tightest). Each algorithm or bound’s loss
relative to Maximin(p∗) is written above in the corresponding color. We show a representative run
of PIPAGE, a randomized algorithm.

preserve marginals over the combined steps of randomly rounding to a uniform lottery and then
randomly sampling it—a guarantee that is much more challenging to achieve with IPs.

Uniform lotteries nearly exactly preserve Maximin, Nash Welfare fairness. We first measure the
fairness of uniform lotteries produced by these algorithms in 11 real-world panel selection instances
from 7 different organizations worldwide (instance details in Appendix A). In all experiments, we
generate a lottery of sizem = 1000. This is fairly small; it requires drawing only 3 balls from lottery
machines, and in one instance we have that m < n. We nevertheless see excellent performance of
all algorithms, and note that this performance will only improve with larger m.

Figure 2 shows the Maximin fairness of the uniform lottery computed by PIPAGE, BECK-FIALA,
and IP-MAXIMIN for each instance. For intuition, recall that the level of Maximin fairness given
by any lottery is exactly the minimum marginal assigned to any individual by that lottery. The
upper edges of the gray boxes in Fig. 2 correspond to the optimal fairness attained by an uncon-
strained distribution p∗. These experiments reveal that the cost of transparency to Maximin-fairness
is practically non-existent: across instances, the quantized distributions computed by IP-MAXIMIN
decrease the minimum marginal by at most 2.1/m, amounting to a loss of no more than 0.0021 in
the minimum marginal probability in any instance. Visually, we can see that this loss is negligible
relative to the original magnitude of even the smallest marginals given by p∗. Surprisingly, though
PIPAGE and BECK-FIALA do not aim to optimize any fairness objective, they achieve only slightly
larger losses in Maximin fairness, with PIPAGE outperforming BECK-FIALA. Finally, the heights
of the gray boxes indicate that our theoretical bounds are often meaningful in practice, giving lower
bounds on Maximin fairness well above zero in nine out of eleven instances. We note these bounds
only tighten with larger m. We present similarly encouraging results on NW loss in Appendix D.3.

Uniform lotteries nearly preserve all Leximin marginals. We still remain one step away from
practice: our examination of Maximin does not address whether uniform lotteries can attain the
finer-tuned fairness properties of the Leximin-optimal distributions currently used in practice. For-
tunately, our results from Section 3 imply the existence of a quantized p̄ that closely approximates
all marginals given by the Leximin-optimal distribution p∗, π∗. We evaluate the extent to which
PIPAGE and BECK-FIALA preserve these marginals in Fig. 3. They are benchmarked against a new
IP, IP-MARGINALS, which computes the uniform lottery over supp(p∗) minimizing ‖π∗ − π̄‖∞.
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Figure 3: Instance = sf(a), m = 1000. Line plot shows the Leximin-optimal marginals π∗ (implied
by panel distribution p∗), along with marginals given by all algorithms sorted according to π∗. Note
that each x coordinate then corresponds to an individual. The zoomed box shows the magnitude
of marginal discrepancy around π∗. The surrounding shaded region shows the tightest theoretical
bound on the marginal discrepancy, in this case from Theorem 3.3, around the optimal marginals.
We show a representative run of PIPAGE, a randomized algorithm.

Figure 3 demonstrates that in the instance “sf(a)”, all algorithms produce marginals that deviate neg-
ligibly from those given by π∗. Analogous results on remaining instances appear in Appendix D.4
and show similar results. As was the case for Maximin, we see that our theoretical bounds are
meaningful, but that we can consistently outperform them in real-world instances.

6 Discussion

Our aim was to show that uniform lotteries can preserve fairness, and our results ultimately suggest
this, along with something stronger: that in practical instances, uniform lotteries can reliably almost
exactly replicate the entire set of marginals given by the optimal unconstrained panel distribution.
Our rounding algorithms can thus be plugged directly into the existing panel selection pipeline with
essentially no impact on individuals’ selection probabilities, thus enabling translation of the output
of Panelot (and other maximally fair algorithms) to a nearly maximally fair and transparent panel
selection procedure. We note that our methods are not just compatible with ball-drawing lotteries,
but any form of uniform physical randomness (e.g. dice, wheel-spinning, etc.).

Although we achieve our stated notion of transparency, a limitation of this notion is that it focuses on
the final stage of the panel selection process. A more holistic notion of transparency might require
that onlookers can verify that the panel is not being intentionally stacked with certain individuals.
This work does not fully enable such verification: although onlookers can now observe individuals’
marginals, they still cannot verify that these marginals are actually maximally fair without verifying
the underlying optimization algorithms. In particular, in the common case where quotas require even
maximally fair panel distributions to select certain individuals with probability near one, onlookers
cannot distinguish those from unfair distributions engineered such that one or more pool members
are chosen with probability near one.

In research on economics, fair division, and other areas of AI, randomness is often proposed as a
tool to make real-world systems fairer [17, 6, 15]. Nonetheless, in practice, these systems (with a
few exceptions, such as school choice [22]) remain stubbornly deterministic. Among the hurdles
to bringing the theoretical benefits of randomness into practice is that allocation mechanisms fare
best when they can be readily understood, and that randomness can be perceived as undesirable
or suspect. Sortition is a rather unique paradigm at the heart of this tension: it relies centrally on
randomness, while in the public sphere it is attaining increasing political influence. It is therefore a
uniquely high-impact domain in which to study how to combine the benefits of randomness, such
as fairness, with transparency. We hope that this work and its potential for impact will inspire the
investigation of fairness-transparency tradeoffs in other AI applications.
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[5] Petter Brändén and Johan Jonasson. Negative dependence in sampling. Scandinavian Journal
of Statistics, 39(4):830–838, 2012.

[6] Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom. Designing random allocation
mechanisms: theory and applications. American Economic Review, 103(2):585–623, 2013.
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