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ABSTRACT

Graph Neural Networks (GNNs) have shown great success in leveraging complex
relationships in data but face significant computational challenges when dealing
with large-scale graphs. To tackle this issue, graph condensation methods aim to
compress large graphs into smaller, synthetic ones that can be efficiently used for
GNN training. Recent approaches, particularly those based on trajectory match-
ing, have achieved state-of-the-art (SOTA) performance in graph condensation
tasks. Trajectory-based techniques match the training behavior on a condensed
graph closely with that on the original graph, typically by guiding the trajectory
of model parameters during training. However, these methods require repetitive
re-training of GNNs during the condensation process, making them impractical
for large graphs due to their high computational cost, e.g., taking up to 22 days
to condense million-node graphs. In this paper, we propose a novel Precompute-
then-Adapt graph condensation framework that overcomes this limitation by sep-
arating the condensation process into a one-time precomputation stage and a one-
time adaptation learning stage. Remarkably, even with only the precomputation
stage, which typically takes seconds, our method surpasses or matches SOTA re-
sults on 3 out of 7 benchmark datasets. Extensive experiments demonstrate that
our approach achieves better or comparable accuracy while being 96× to 2,455×
faster in condensation time compared to SOTA methods, significantly enhancing
the practicality of GNNs for large-scale graph applications. Our code and data are
available at https://anonymous.4open.science/r/GCPA-F6F9/.

1 INTRODUCTION

Graph learning through Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hamilton et al.,
2017) has significantly advanced graph data analysis, providing insights into complex structures
in social networks (Fan et al., 2019; Zhang et al., 2022), molecular structures (Guo et al., 2021;
Gasteiger et al., 2021), and beyond (Dong et al., 2023; Li & Zhu, 2021; Liu et al., 2020).

Graph Condensation. Large-scale graphs in real-world applications, often with millions of nodes
and edges, pose significant computational challenges for training GNNs (Huang et al., 2021; Gao
et al., 2024). Graph Condensation (GC) (Jin et al., 2021) generates a condensed graph (synthetic
graph) from a large original graph, enabling models trained on the condensed graph to be directly
applied to the original graph, achieving comparable performance on both graphs. GC enhances
training efficiency by reducing computational costs associated with large-scale graphs. Recent stud-
ies demonstrate that GC facilitates efficient GNN training with minor performance loss (Gao et al.,
2024; Jin et al., 2022; Yang et al., 2024; Liu et al., 2022; Zheng et al., 2024; Zhang et al., 2024).

Structure-Free (SF) Condensation. Structure-free methods have recently achieved state-of-the-art
(SOTA) performance in node classification tasks (Zheng et al., 2024; Zhang et al., 2024). These
methods condense the original graph into a new graph with only node features and labels, but with
no edges. As illustrated in Figure 1a, the condensed graphs are structure-free, with nodes only con-
nected to themselves. While it may be surprising that structure-free condensation can provide an
effective summary of the original graph, these methods obtain SOTA performance and also simplify
the optimization objectives compared to alternatives. Hence, we focus on structure-free condensa-
tion in our work.
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Figure 1: Efficiency issue of trajectory-based methods. (a) Trajectory-based methods require repet-
itive GNN re-training during the trajectory collection stage, which can be highly time-consuming.
(b) The trajectory collection stage takes the majority of running time in trajectory-based methods.
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Figure 2: Performance vs. total condensation time on Ogbn-products dataset using GCN backbone.
Our Precompute-then-Adapt framework employs a one-time precomputation and one-time adapta-
tion learning stage, bypassing the time-intensive trajectory collection stage and achieving 96× to
2,455× condensation speed. Besides, our framework achieves superior performance compared to
SOTA trajectory-based methods like GEOM and SFGC (SF: structure-free condensation methods).

Trajectory-based Methods. Trajectory matching has emerged as a key technique in recent advance-
ments of graph condensation, as presented in methods SFGC (Zheng et al., 2024) and GEOM (Zhang
et al., 2024). This approach assumes that the training trajectories, i.e., the sequence of model pa-
rameters obtained by model training steps, should closely match for both the original and condensed
graphs. The process starts by collecting training trajectories on the original graph. Then, the col-
lected trajectories are used to set up the model on the condensed graph, aiming to keep the subse-
quent training steps consistent across both versions of the graph. This matching process ensures that
the training is effective even on the condensed graph.

Efficiency Issue of Trajectory-based Methods. Trajectory-based methods require a substantial
number of trajectories to achieve advanced performance, where each collected trajectory requires
a complete training process that restarts from random parameter initialization. As depicted in Fig-
ure 1a, trajectory-based condensation requires repeating the model training process multiple times
(e.g., 200 times), each time re-initializing the parameters and training the model for multiple epochs,
taking a remarkably long time (e.g., 452 hours) on million-node graphs. As presented in Figure 1b,
this stage takes up the majority of the total condensation time. This repetitive model re-training is a
key limitation as it is highly time-consuming, resulting in extended running time, as shown in Fig-
ure 2. This inefficiency poses a significant barrier to applying these methods in practice, which can
lead to missed opportunities in critical applications like social network analysis and fraud detection.

Our Precompute-then-Adapt Method. To address the inefficiencies of trajectory-based meth-
ods, we propose a novel Graph Condensation framework via a Precompute-then-Adapt approach
(GCPA). Our method employs a one-time precomputation stage and one-time adaptation learn-
ing stage, eliminating the need for repetitive re-training with different random initializations. The
precomputation stage involves extracting structural and semantic information from the original
graph, achieving competitive performance within a short time. The adaptation stage further refines
the precomputed features (representations) to improve performance with minor additional costs. As
a result, we achieve competitive accuracy (-0.1% to +2.1%) on node classification tasks with sub-
stantially faster training time (96× to 2,455×) compared to SOTA trajectory-based methods.
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Our two-stage precompute-then-adapt framework differs fundamentally from existing methods.
With the help of precomputation of node features and adaptation of synthetic features, we achieve
a level of computational efficiency that was previously unattainable. This framework significantly
reduces training time while maintaining competitive performance, thereby opening opportunities for
deploying graph condensation on resource-constrained devices.

We summarize the key contributions of our work as follows:

• We propose a new framework, GCPA, for graph condensation. It is efficient, consisting only of
a one-time precomputation stage and a one-time adaptation learning stage. Compared to SOTA
methods, our framework avoids costly repetitive re-training of models, achieving significant effi-
ciency improvements.

• Our framework is also effective. With just the one-time precomputation stage, which extracts
structural and semantic information from the original graph, our method can already surpass or
match the performance of best baselines on 3 out of 7 benchmark datasets. With the one-time
adaptation learning stage, we can further enhance performance via class-wise feature alignment,
achieving SOTA results across all datasets.

• Through extensive experiments on benchmark datasets, we demonstrate that our method achieves
better or comparable accuracy with up to 2,455× faster training time than existing methods, mak-
ing it more suitable for practical applications.

2 METHODOLOGY

In this section, we introduce the components and the implementation details of our framework.

2.1 PRELIMINARIES

Let G = {X,A,Y} denotes a graph, where X ∈ RN×d denotes the node features matrix with N
nodes with d-dimensional features, A ∈ {0, 1}N×N represents the adjacency matrix encoding the
graph structure, Y ∈ RN×C denotes ground truth one-hot node labels on C classes, while y ∈ RN

is the label in vector form. Graph condensation aims at generating a synthetic graph corresponding
to an existing graph such that a model trained on the synthetic graph is effective when applied to the
original graph. Given an original graph T = {X,A,Y} with N nodes, the objective is to generate
a smaller synthetic graph S = {X′,A′,Y′} with N ′ nodes such that a GNN trained on S achieves
similar performance on T as another GNN trained directly on T for specific tasks. In particular,
structure-free graph condensation emerges as a storage-efficient graph condensation approach where
the adjacency matrix is set to an identity matrix, A′ = I, so the synthetic graph does not contain
structural information.

Node classification is a prevalent task simplified by graph condensation. This task involves assigning
labels to nodes based on their features and structures. Formally, given a graph G = {X,A}, and
a subset of nodes NL ⊆ N with known labels YL ∈ RNL×C , the transductive semi-supervised
node classification task involves predicting labels YU ∈ RNU×C for an unlabeled subset of nodes
NU ⊆ N . The corresponding optimization goal can be formulated as a bi-level problem,

min
S

L(GNNθS (X,A),Y)

s.t. θS = argmin
θ

L(GNNθ(X
′,A′),Y′),

(1)

where θ denotes the learnable parameters of a GNN model, θS represents the optimal GNN param-
eters learned on the synthetic graph, L is a loss function evaluating the node classification perfor-
mance. Existing graph condensation approaches optimize this bi-level problem to learn an optimal
synthetic graph S such that a trained GNN with parameters θS yields optimal performance on T .
However, the bi-level optimization problem is computationally intensive as it involves nested opti-
mization loops. To mitigate this issue, we introduce our framework that directly optimizes synthetic
node features for improved efficiency.
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Figure 3: Overall pipeline of the proposed GCPA condensation framework.

2.2 OVERVIEW OF GCPA FRAMEWORK

The overall pipeline of the proposed precompute-then-adapt graph condensation framework is pro-
vided in Figure 3. We introduce two stages, i.e., a precomputation stage and a representation
adaptation learning stage to produce structure-free synthetic data. The precomputation stage in-
volves structure-based neighbor aggregation and semantic-based merging on the original graph,
which achieves competitive performance within a relatively short time. The representation adap-
tation learning stage further refines the precomputed features using a class-wise feature alignment
objective to improve performance with minor additional costs.

2.3 STRUCTURE-BASED PRECOMPUTATION

In the context of graph-based learning models, neighbor information aggregation refers to the pro-
cess by which node features are enriched with the structural information from neighboring nodes.
This process allows a node’s feature vector to incorporate not just its own information but also that
of its surrounding neighborhood. This aggregation is critical for capturing relationships and depen-
dencies in graph-structured data.

Drawing inspiration from the graph diffusion process (Gasteiger et al., 2019), we leverage neighbor
structural information to pre-process the original node features. The goal of graph diffusion is to
smooth node features based on the underlying graph’s topology, facilitating the effective propagation
of information across nodes. The structure-based precomputed features H with K-hop neighbor
aggregation can be recursively computed as:

H(k) = (1− α)ÂH(k−1) + αH(0), for k = 1, 2, . . . ,K,

with Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A+ IN ,
(2)

where H(0) = X represents the node feature matrix, K denotes the number of aggregation hops,
H = H(K) is the output of the last layer, coefficient α controls the contribution of raw features to
each hop. Having processed the structural information, we omit the edges in the follow-up semantic-
based precomputation as shown in Figure 3, focusing on processing semantic information.

2.4 SEMANTIC-BASED PRECOMPUTATION

To condense a set of N aggregated features into N ′ synthetic node features, we perform semantic-
based precomputation by merging uniformly sampled original nodes within each class. This ap-
proach ensures that each synthetic node represents the core semantic characteristics of its class in
the synthetic dataset.

Specifically, for each synthetic node vi with class label c ∈ {1, 2, . . . , C}, we uniformly sample a
subset of original nodes in the same class. Then, we compute the semantic-based features by taking
the mean of the aggregated features of the sampled nodes:

X̂′
i =

1

M

∑
j∈Si

Hj , for i = 1, 2, . . . , N ′,

s.t. Si ⊆ Iyi
, |Si| = M, Ic = {i | yi = c},

(3)

where Si is the set of sampled original nodes for synthetic node i, Ic denotes the indices of original
nodes belonging to class c, M is the number of sampled nodes for each synthetic node.
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This semantic-based precomputation process effectively condenses the semantic information of mul-
tiple nodes within the same class into a single synthetic node. Furthermore, by maintaining the class
distribution in Y through proportional sampling, we fix the synthetic labels Y′ to preserve the origi-
nal class proportions. Consequently, we obtain the precomputed condensed dataset {X̂′,Y′}, where
X̂′ ∈ RN ′×d and Y′ ∈ RN ′×C .

2.5 REPRESENTATION ADAPTATION LEARNING

Given the limited number of condensed nodes, it is crucial that these nodes ideally depict the overall
representations of their respective classes (depicted by the background color in Figure 3). Although
the precomputation stage focuses on capturing the structural and semantic information of the original
graph, its non-learning process could lead to sub-optimal representations to depict the class-wise
overall representations, as illustrated in Figure 3.

To address this limitation, we introduce a representation adaptation learning stage to further refine
the precomputed representations. We notice that representation contrastive loss can be considered
to enhance node embeddings for improved classification utility (Joshi et al., 2022). In the context
of graph condensation, we propose to align the condensed features with the original precomputed
features using a class-wise representation adaptation objective.

Specifically, we introduce an adaptation module fadapt : RN ′×d → RN ′×d, implemented as a Multi-
Layer Perceptron (MLP), to adapt the synthetic features to better depict the overall representations:

Z′ = βX̂′ + (1− β)fadapt(X̂
′)

= βX̂′ + (1− β)MLP(X̂′),
(4)

where β is a hyperparameter controlling the contribution of precomputed representations, Z′ repre-
sents the adapted synthetic representations. We adopt X′ = Z′ after the learning process.

We further construct the contrastive samples by first sampling a sufficient number of nodes as an-
chors from the precomputed representations, from which the adaptation module learns to refine the
synthetic representations. For each anchor node on the original graph, we sample a synthetic node
belonging to the same class as a positive sample and a set of arbitrary synthetic nodes as nega-
tive samples. With the sampled contrastive pairs, we optimize the cross entropy loss to distinguish
between the adapted positive and negative samples:

L = −E{i,j|yi=y′
j}

(
log σ

(
⟨Hi,Z

′
j⟩
)
+

1

S

S∑
s=1

Et∼Uniform{1,...,N ′} log σ
(
− ⟨Hi,Z

′
t⟩
))

(5)

where ⟨Hi,Z
′
j⟩ computes the inner product between i-th anchor node’s representation Hi and j-th

synthetic node’s adapted representation Z′
j , S denotes the number of negative samples for an anchor

node, t is the index of a random negative sample on the synthetic dataset, σ(x) = 1/(1+exp(−x)) is
the sigmoid function. The adaptation module fadapt refines the precomputed representations, achiev-
ing better alignment of the overall representations between the synthetic and original graphs, and
improving the generalization of the condensed features.

3 EXPERIMENTS

In this section, we conduct experiments to validate the effectiveness of the proposed framework.

3.1 EXPERIMENTAL SETUP

Datasets. Following GCondenser (Liu et al., 2024), a comprehensive graph condensation bench-
mark, our experiments are conducted on seven benchmark datasets including three smaller networks:
CiteSeer, Cora, and PubMed (Kipf & Welling, 2016), and four larger graphs: Ogbn-arxiv, Ogbn-
products (Hu et al., 2020), Flickr (Zeng et al., 2019), and Reddit (Hamilton et al., 2017). We use
the public data splits for fair comparisons. The dataset statistics and settings are detailed in Table 1.
For CiteSeer, Cora, and PubMed datasets, row feature normalization is applied to prepare the data.
For Ogbn-arxiv, Flickr, and Reddit datasets, we apply feature standardization. The Ogbn-products
dataset retains its feature processing as defined by OGB (Hu et al., 2020).

5
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Table 1: Dataset statistics. (Trans.: transductive. Ind.: inductive. #Feat.: number of features. #Cls.:
number of classes.)

Setting Dataset #Train/Val/Test Nodes #Nodes #Edges #Feat. #Cls.

Trans. Citeseer 120/500/1,000 3,327 4,732 3,703 6
Cora 140/500/1,000 2,708 5,429 1,433 7

PubMed 60/500/1,000 19,717 88,648 500 3
Ogbn-arxiv 90,941/29,799/48,603 169,343 1,166,243 128 40

Ogbn-products 196,615/39,323/2,213,091 2,449,029 61,859,140 100 47

Ind. Flickr 44,625/22,312/22,313 89,250 899,756 500 7
Reddit 153,431/23,831/55,703 232,965 57,307,946 602 41

Baselines. We compare our proposed framework to the baselines in the following categories:
(i) Coreset approach: K-Center (Sener & Savarese, 2017). (ii) Gradient matching approaches:
GCond (Jin et al., 2021) and SGDD (Yang et al., 2024). (iii) Distribution matching approach:
GCDM (Liu et al., 2022). (iv) Trajectory matching approaches: SFGC (Zheng et al., 2024) and
GEOM (Zhang et al., 2024). We use the implementations provided by GCondenser (Liu et al.,
2024) for fair comparisons between our method and the baselines.

Backbone Models. We use GCN (Kipf & Welling, 2016) and SGC (Wu et al., 2019) as backbone
models during condensation and evaluation for fair comparisons. In the cross-architecture evalua-
tion, we use more backbones including GAT (Veličković et al., 2018), ChebNet (Defferrard et al.,
2016), GraphSAGE (Hamilton et al., 2017), and APPNP (Gasteiger et al., 2018).

Evaluation. Following GCondenser (Liu et al., 2024), we evaluate all methods using three different
condensation ratios (r) for each dataset. Specifically, the condensation ratio r is defined as the
fraction of condensed nodes rN to the total number of original nodes N , where 0 < r < 1. In the
transductive setting, N denotes the total node count in the entire large-scale graph, whereas in the
inductive setting, N refers to the node count within the training sub-graph of the complete large-
scale graph. The evaluation has two phases: (i) the condensation phase: synthesizes the condensed
graph from the original graph, and (ii) the evaluation phase: the GNN is trained on the condensed
graph, and the performance is evaluated on the original test nodes. We repeat the experiments five
times and report the average node classification accuracy with standard deviation. The experiments
are conducted on a single NVIDIA H100 GPU (80GB).

Hyper-parameter Settings. We tune the strcuture-based precomputation hops K ∈ {1, 2, 3, 4},
damping factor α ∈ {0, 0.25, 0.5, 0.75}, residual coefficient β ∈ {0, 0.25, 0.5, 0.75}, semantic-
based aggregation size M ∈ {1, 10, 50, 100}, number of negative samples S ∈ {1, 5, 10, 50},
number of adaptation layers {1, 2, 3}, hidden dimension of the adaptation module {128, 256, 512}.
We tune all hyper-parameter on the validation set. To ensure fair comparisons, we follow GCon-
denser (Liu et al., 2024) to set the number of backbone model layers to 2, hidden dimension to 256,
weight decay to 0.0005, dropout rate to 0.5, and learning rate to 0.01.

3.2 PERFORMANCE COMPARISON

We present the performance of different graph condensation approaches using the GCN backbone
in Table 2. Additionally, the performance of these approaches with the SGC backbone is shown in
Table 6, located in the Appendix. Based on these results, we make the following observations:

• The coreset approach, K-Center, which typically employs conventional machine learning tech-
niques, fails to provide good condensation results on all datasets. This highlights the non-trivial
nature of graph condensation tasks, which necessitate substantial effort.

• Two distinct categories of graph condensation methods, including gradient matching with GCond
and SGDD, and distribution matching with GCDM, have both shown fair performance on different
datasets. It is worth noting that neither category consistently outperforms the other across all
datasets. This variation in performance suggests that multiple frameworks might be applicable for
the task of graph condensation, without a universally superior approach.

• Recent advancements in trajectory matching, especially the SFGC and GEOM approaches, have
demonstrated superior performance on most datasets, affirming the efficacy of trajectory-based
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Table 2: Node classification performance comparison using GCN backbone (mean±std). The
best and second-best results are marked in bold and underlined, respectively. Ours (Pre.) is our
precomputation-only variant. The Whole column represents the performance obtained by training
on the whole dataset.

Dataset Ratio K-Cen. GCond SGDD GCDM SFGC GEOM Ours (Pre.) Ours Whole

Citeseer
0.9% 65.0±0.0 46.3±7.0 70.6±1.5 71.2±0.8 69.7±0.3 69.6±0.6 72.1±0.2 72.4±0.4

71.4±0.51.8% 67.8±0.0 54.2±3.9 71.5±0.7 71.9±0.7 69.4±0.0 67.5±0.9 72.1±0.1 72.9±0.3

3.6% 69.4±0.0 70.7±0.7 71.0±0.7 72.3±1.3 69.8±0.5 72.1±1.0 72.7±0.5 72.8±0.1

Cora
1.3% 66.5±0.0 80.5±0.4 80.5±0.4 78.9±0.8 79.6±0.2 80.3±1.1 80.3±0.5 81.4±0.6

81.7±0.92.6% 71.6±0.0 78.1±3.6 81.2±0.6 79.4±0.6 79.5±0.1 81.5±0.8 80.6±0.5 81.9±1.0

5.2% 76.6±0.0 80.2±1.7 79.9±1.6 79.9±0.2 80.1±0.6 82.2±0.4 80.8±0.3 82.4±0.7

PubMed
0.08% 72.1±0.1 67.6±0.4 76.7±1.1 75.9±0.6 78.4±0.1 80.1±0.3 79.5±1.3 80.2±1.9

79.3±0.30.15% 76.4±0.0 74.6±0.8 78.5±0.4 77.4±0.4 78.1±0.4 79.7±0.3 79.7±0.3 80.5±0.8

0.3% 78.2±0.0 77.2±0.7 78.0±1.1 77.6±0.4 78.5±0.5 79.5±0.4 79.3±0.3 81.6±2.4

Arxiv
0.05% 54.5±0.0 53.7±1.6 55.9±5.8 63.3±0.3 66.1±0.4 65.5±1.0 60.5±0.9 67.2±0.3

71.1±0.00.25% 60.3±0.0 64.2±0.2 63.2±0.3 66.4±0.1 67.2±0.4 65.8±0.4 64.6±0.4 67.7±0.2

0.5% 62.1±0.0 65.1±0.4 66.8±0.3 67.6±0.0 67.8±0.2 66.2±0.5 65.5±0.3 68.1±0.3

Products
0.025% 55.4±0.8 63.7±0.3 64.0±0.4 66.5±0.1 67.1±0.2 68.5±0.3 64.1±0.9 69.3±0.2

73.1±0.10.05% 57.6±0.7 67.0±0.2 65.9±0.2 68.4±0.4 67.9±0.3 69.8±0.3 65.9±0.9 69.9±0.7

0.1% 59.1±0.5 68.0±0.2 66.1±0.3 68.4±0.3 70.1±0.3 71.1±0.3 67.7±0.3 71.3±0.7

Flickr
0.1% 40.7±0.0 43.3±0.3 42.4±0.2 44.5±0.4 46.9±0.3 44.6±0.5 44.4±0.4 47.0±0.3

46.8±0.20.5% 41.4±0.0 44.6±0.4 44.9±0.3 45.0±0.2 47.0±0.1 45.2±0.9 45.4±0.1 47.1±0.1

1% 41.4±0.0 44.4±0.1 45.2±0.2 44.6±0.3 47.2±0.1 45.5±0.1 45.4±0.1 47.1±0.1

Reddit
0.05% 58.6±0.1 56.8±2.1 72.9±4.9 88.9±1.2 89.2±0.5 90.0±0.5 90.5±0.3 90.5±0.3

94.2±0.00.1% 81.7±0.0 87.4±0.4 89.6±2.5 91.8±0.3 90.9±0.3 89.4±0.5 91.3±0.2 92.4±0.1

0.2% 86.9±0.0 91.4±0.4 91.2±0.3 92.2±0.1 92.4±0.1 91.2±0.1 91.4±0.1 92.9±0.2

Table 3: Efficiency comparison using GCN backbone (total condensation time in seconds).

Dataset K-Center GCond SGDD GCDM SFGC GEOM Ours (Pre.) Ours

Citeseer (r=1.8%) 7 71 70 57 2,165 10,890 6 45
Cora (r=2.6%) 5 70 70 54 2,578 10,144 4 44

PubMed (r=0.15%) 5 59 223 48 8,060 26,432 5 39
Arxiv (r=0.25%) 18 389 759 555 86,553 104,905 20 247

Products (r=0.05%) 91 13,554 21,821 11,485 1,509,397 1,912,105 104 2,985

Flickr (r=0.5%) 16 187 1,178 165 96,350 21,061 23 219
Reddit (r=0.1%) 51 2,665 12,126 1563 379,974 128,642 55 505

methods. Notably, both SFGC and GEOM employ structure-free condensation, indicating that for
node classification tasks, providing edges in condensed graphs may not always be necessary.

• Our proposed framework achieves state-of-the-art performance in 40 out of 42 condensation set-
tings using GCN and SGC backbones, underscoring the effectiveness of our precompute-then-
adapt approach, which is a novel graph condensation framework different from existing methods.

3.3 EFFICIENCY COMPARISON

We present a comprehensive efficiency comparison of different methods using the GCN backbone
in Table 3 and the SGC backbone in Table 7 (located in the Appendix). Additionally, Figure 4 illus-
trates a joint analysis of both accuracy and efficiency. Based on the results, we make the following
observations on the efficiencies of different approaches:

• As depicted in Figure 4, trajectory-based methods including SFGC and GEOM exhibit leading
performance but suffer from poor efficiency. The primary efficiency bottleneck lies in the need for
repetitive re-training, which, while effective, leads to severe efficiency issues.

• As shown in Figure 4, our framework achieves state-of-the-art performance across all presented
datasets. Notably, the framework is significantly more efficient than trajectory-based methods,
achieving speedups ranging from 96× to 2,455× compared to the trajectory-based approaches.

• Our method is not only more efficient than the time-intensive trajectory-based methods but also
faster than the majority of other baseline methods on most datasets. These results underscore the
superior condensation efficiency of our precompute-then-adapt framework.

• A variant of our method containing only the precomputation stage (Pre.), typically taking under
60 seconds to complete, matches or surpasses the performance of 3 out of 7 datasets, as detailed
in Table 2. The presented results illustrate the capability of the precomputation stage to achieve
competitive results in a fraction of the time compared to learning-based baselines.
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Figure 4: Evaluation accuracy vs. total condensation time using GCN backbone.

Table 4: Ablation study on components in the precomputation stage including strcuture-based and
semantic-based aggregation phases. The best results are marked in bold.

Dataset Full w/o Structural w/o Semantic w/o Both

Citeseer (r=1.80%) 72.9 69.3 67.8 62.1
Cora (r=2.60%) 81.9 74.4 79.1 72.2

PubMed (r=0.15%) 80.5 77.9 78.8 76.1
Arxiv (r=0.25%) 67.7 64.2 67.3 63.9

Products (r=0.05%) 69.9 64.6 65.7 62.2

Flickr (r=0.5%) 47.1 46.9 47.0 46.9
Reddit (r=0.10%) 92.4 92.4 92.2 92.2

These observations demonstrate that our method not only achieves competitive performance but
does so with markedly higher efficiency, addressing one of the key challenges in scalable graph
learning applications.

3.4 ABLATION

Table 4 evaluates the impact of structure-based and semantic-based phases of the precomputation
stage. The results show that both the structural and semantic components contribute to the per-
formance of the framework, particularly on transductive datasets, which reflects the importance of
precomputation on transductive datasets where the complete graph structure is available. We also
observe that the removal of structural components typically results in a larger performance drop
compared to the removal of semantic components. This indicates the critical role of structure-based
aggregation in capturing representative features in the original graph. In conclusion, the structural
and semantic components are both pivotal to achieving optimal performance in our framework, but
their impact varies with the nature of the datasets.

3.5 CROSS-ARCHITECTURE TRANSFERABILITY

Table 5 presents the cross-architecture transferability results of condensed graphs across different
models. Our method consistently outperforms or matches the top performance across all datasets,
underscoring the robustness and generalization of our framework. The ability to transfer across dif-
ferent architectures may be attrbuted to the similar filtering behaviors of popular GNNs, as reported
in existing literature (Jin et al., 2021; Zheng et al., 2024). In particular, our framework demonstrates
outstanding transferability, which may be attributed to our direct alignment between original and
synthetic features, without relying on specific GNN models for performance matching.

3.6 VISUALIZATION

Figure 5 displays visualization results between SFGC condensed features and ours. Our condensed
graphs exhibit clear clustering patterns on all presented datasets with minimal inter-class mixing, in

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Cross-architecture transferability of condensed graphs using GCN backbone. The best and
second-best results are marked in bold and underlined, respectively.

Dataset Method MLP SGC GCN GAT ChebNet SAGE APPNP Avg. Std.

Citeseer
(r = 0.90%)

GCond 41.8 34.8 46.3 39.2 57.4 61.2 47.0 46.8 8.8
GCDM 62.3 69.6 72.7 58.3 60.2 67.1 71.4 65.9 5.3
SFGC 64.4 64.9 70.4 70.0 69.1 69.5 70.8 68.4 2.5
Ours 66.5 70.9 73.4 73.4 72.8 72.6 72.1 71.7 2.3

Cora
(r = 1.30%)

GCond 67.7 72.6 79.5 80.7 60.0 78.6 79.0 74.0 7.2
GCDM 65.3 78.5 80.2 80.1 58.4 77.5 79.3 74.2 8.1
SFGC 68.2 76.2 80.4 79.8 62.1 77.6 81.6 75.1 6.7
Ours 70.5 79.9 81.3 79.1 82.1 78.9 76.2 78.3 3.6

Pubmed
(r = 0.08%)

GCond 75.1 55.6 75.0 77.0 74.3 77.2 78.0 73.2 7.3
GCDM 73.8 72.9 75.0 73.7 70.5 75.3 76.9 74.0 1.9
SFGC 73.6 76.8 78.5 76.6 77.2 76.7 78.9 76.9 1.6
Ours 74.2 76.6 76.1 76.3 77.3 77.5 76.7 76.4 1.0

Arxiv
(r = 0.05%)

GCond 39.2 58.0 57.0 47.7 36.4 33.5 54.3 46.6 9.5
GCDM 41.6 59.8 60.7 46.5 52.6 55.3 60.3 53.8 6.9
SFGC 45.3 62.2 63.3 60.5 50.7 55.4 62.4 57.1 6.4
Ours 46.7 61.6 65.0 64.4 63.3 58.4 53.9 59.0 6.2

Products
(r = 0.025%)

GCond 36.4 45.7 60.7 48.4 45.2 49.8 60.3 49.5 8.0
GCDM 45.7 60.0 66.6 67.9 61.2 63.6 66.2 61.6 7.0
SFGC 46.7 55.1 66.7 69.4 61.4 63.4 64.8 61.1 7.2
Ours 46.3 65.9 65.9 67.6 67.8 62.2 62.1 62.5 7.0

Flickr
(r = 0.1%)

GCond 40.8 36.5 44.9 40.8 43.0 43.2 44.9 42.0 2.7
GCDM 41.7 27.3 40.7 37.7 41.5 43.0 43.8 39.4 5.3
SFGC 44.9 38.7 46.2 45.3 43.6 44.9 46.2 44.3 2.4
Ours 44.1 45.1 45.3 45.1 42.4 43.6 45.4 44.4 1.0

Reddit
(r = 0.05%)

GCond 38.7 82.2 79.9 31.2 38.7 41.5 69.8 54.6 20.2
GCDM 43.1 87.1 88.1 37.5 55.6 66.2 68.9 63.8 18.3
SFGC 47.5 82.8 87.0 84.4 53.6 71.9 67.5 70.7 14.4
Ours 39.3 91.1 90.9 90.5 61.8 79.1 66.4 74.1 18.1

contrast to the SFGC graphs which show less distinct class separation. The comparison is more evi-
dent on larger datasets such as Ogbn-arxiv and Flickr, where SFGC fails to produce clear clustering
patterns. To quantify these clustering patterns, we follow previous work (Zhang et al., 2024) to uti-
lize clustering metrics including the Silhouette Coefficient (Rousseeuw, 1987), the Davies-Bouldin
Index (Davies & Bouldin, 1979), and the Calinski-Harabasz Index (Caliński & Harabasz, 1974), all
of which indicate that our condensed graphs demonstrate better clustering patterns. The visualiza-
tion results show that our framework effectively optimizes the condensed features, forming robust
representations to preserve the original graph’s classification capabilities.

4 RELATED WORK

Graph Condensation. Graph condensation (Jin et al., 2021; 2022; Yang et al., 2023; Liu et al.,
2022; Xu et al., 2024), derived from dataset distillation, is a technique aimed at producing a much
smaller version of a graph while retaining as much information as possible from the original. Its op-
timization goal is for GNNs trained on the condensed graph to perform similarly to those trained on
the original. Graph condensation methods are typically categorized into two types: structured graph
condensation, which generates both node features and graph structure, and structure-free methods,
which only focus on synthesizing node features without explicitly constructing graph structures.

Structured Graph Condensation. These methods synthesize graph structures using a neural net-
work that generates links between nodes based on their features. GCond (Jin et al., 2021) is the
first such method, using a gradient matching loss between the original and condensed graphs, but
its nested optimization loop limits efficiency. DosCond (Jin et al., 2022) introduced a more efficient
one-step gradient match and a Bernoulli distribution for structure sampling. GCDM (Liu et al.,
2022) generates smaller graphs with a distribution similar to the original graph, using a distribution
matching loss measured by maximum mean discrepancy. SGDC reduces a graph set into a smaller
set with fewer graphs via self-supervised representation matching. SGDD (Yang et al., 2024) incor-
porates the original graph structure through optimal transport. GDEM (Liu et al., 2023) aligns the
eigenbasis of the condensed and original graphs to facilitate structure learning.
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Figure 5: The t-SNE visualization of synthetic node features using GCN backbone. The node classes
are represented by colors. The clustering metrics including Silhouette Coefficient (SC↑), Davies-
Bouldin Index (DB↓), and Calinski-Harabasz Index (CH↑) are reported for each plot. The arrows
↑ and ↓ denote that a higher value indicates better clustering pattern for SC and CH, while a lower
value indicates better clustering for DB.

Structure-Free Graph Condensation. These methods assume that structural information can be
embedded directly into the synthetic node features, bypassing the need to generate graph structures.
GCondX (Jin et al., 2021), a variant of GCond, focuses solely on feature learning via gradient
matching without the inner loop. SFGC (Zheng et al., 2024) matches training trajectories with
expert guidance, and GEOM (Zhang et al., 2024) adjusts the matching range for different node
difficulties. To improve efficiency, GC-SNTK (Wang et al., 2024) replaces the inner loop using a
kernel-based approach to synthesize a smaller graph efficiently.

Graph Coarsening. Graph coarsening methods (Cai et al., 2021; Loukas & Vandergheynst, 2018;
Huang et al., 2021; Deng et al., 2019) reduce the graph’s size by clustering nodes into super-nodes.

Coreset Selection. Coreset selection methods (Sener & Savarese, 2017; Welling, 2009; Wolf, 2011)
condense the graph by selecting a subset of the original nodes and retaining the edges between
them. K-Center (Sener & Savarese, 2017) trains a Graph Convolutional Network (GCN) (Kipf &
Welling, 2016) on the original graph to generate embeddings, from which the k-nearest nodes are
then sampled to form a subgraph.

Different from existing methods, our GCPA framework introduces a novel approach for graph con-
densation, simplifying the training process while enhancing performance. Our framework employs
a streamlined, one-time precomputation and adaptation process that extracts and aligns features ef-
ficiently, avoiding the computationally expensive re-training phases seen in SOTA methods.

5 CONCLUSION

In this paper, we propose a new framework, GCPA, for graph condensation. It is efficient, consist-
ing only of a one-time precomputation stage and a one-time adaptation learning stage. Compared to
SOTA methods, our framework avoids costly repetitive re-training of models, achieving up to 1,890x
faster training time than existing methods. Our framework is also effective, surpassing or match-
ing the performance of the best baselines on 3 out of 7 benchmark datasets with just the one-time
precomputation stage, and achieving SOTA results across all datasets with a further one-time adap-
tation learning stage. Our framework demonstrates that precomputation is a promising solution for
efficient graph condensation, which is also flexible as it can be further enhanced through adaptation
learning. In the future, we plan to explore more precomputation techniques for graph condensation.
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A APPENDIX

A.1 PERFORMANCE AND EFFICIENCY USING SGC BACKBONE

Figure 6 and 7 present node classification performance and efficiency comparison using SGC back-
bone, respectively.

Table 6: Node classification performance comparison using SGC backbone (mean±std). The
best and second-best results are marked in bold and underlined, respectively. Ours (Pre.) is our
precomputation-only variant. The Whole column represents the performance obtained by training
on the whole dataset.

Dataset Ratio K-Cen. GCond SGDD GCDM SFGC GEOM Ours Whole

Citeseer
0.9% 52.7±0.0 71.9±0.6 71.1±0.1 66.0±2.2 65.2±0.3 60.1±0.2 72.3±0.5

70.3±1.01.8% 66.8±0.0 71.0±0.6 69.9±0.1 66.7±0.0 67.0±0.8 65.2±0.2 72.7±0.3

3.6% 68.1±0.0 72.5±1.2 70.8±0.8 69.1±1.2 68.8±0.2 67.7±0.3 72.7±0.6

Cora
1.3% 63.8±0.0 80.6±0.1 62.4±5.5 77.0±0.4 73.8±1.5 69.2±1.2 80.9±0.7

79.2±0.62.6% 70.3±0.0 81.0±0.2 80.8±0.4 78.9±1.0 77.5±0.1 69.6±1.5 81.5±0.6

5.2% 77.1±0.0 80.9±0.4 81.4±0.4 77.9±0.7 79.2±0.1 77.3±0.1 81.9±0.6

PubMed
0.08% 70.5±0.1 75.9±0.7 76.4±0.9 73.3±1.2 73.9±0.5 73.8±0.3 76.6±0.5

76.9±0.10.15% 75.8±0.0 75.2±0.0 78.0±0.3 74.7±0.6 75.8±0.2 77.4±0.4 76.9±0.6

0.3% 75.7±0.0 75.7±0.0 76.1±0.1 76.5±1.1 75.8±0.0 75.8±0.4 76.8±0.4

Arxiv
0.05% 51.8±0.2 65.5±0.0 64.5±0.9 60.8±0.1 66.1±0.2 62.0±0.5 67.2±0.4

68.8±0.00.25% 58.2±0.0 66.5±0.5 66.4±0.3 62.7±0.9 66.7±0.3 62.8±0.7 67.3±0.2

0.5% 60.3±0.0 67.2±0.1 66.9±0.3 62.4±0.2 66.4±0.3 63.6±0.3 67.3±0.1

Products
0.025% 48.6±0.6 64.0±0.2 64.9±0.1 57.7±0.2 62.2±0.1 61.1±0.4 65.0±0.5

64.7±0.10.05% 52.2±0.7 64.0±0.1 62.3±0.2 58.2±0.3 62.2±0.2 62.4±0.2 65.1±0.4

0.1% 55.4±0.4 64.4±0.4 64.3±0.3 60.8±0.2 61.9±0.2 63.1±0.2 65.0±0.4

Flickr
0.1% 34.5±0.1 43.7±0.5 43.6±0.3 40.3±0.0 45.3±0.7 33.6±0.4 45.6±0.3

44.2±0.00.5% 36.1±0.0 42.2±0.2 41.6±1.6 40.8±0.1 45.7±0.4 37.4±0.2 46.5±0.2

1% 36.5±0.0 41.1±0.8 43.2±0.4 42.7±0.4 46.1±0.5 38.1±0.2 46.8±0.2

Reddit
0.05% 54.0±0.1 89.7±0.6 90.5±0.3 90.3±0.8 90.9±0.2 59.4±1.5 91.5±0.7

93.2±0.00.1% 78.6±0.0 91.8±0.2 91.9±0.0 88.1±2.8 92.6±0.2 81.7±0.7 92.6±0.1

0.2% 83.8±0.0 92.1±0.3 86.3±5.6 91.7±0.2 92.6±0.3 86.7±0.1 92.7±0.2

Table 7: Efficiency comparison using SGC backbone (total condensation time in seconds).

Dataset K-Center GCond SGDD GCDM SFGC GEOM Ours (Pre.) Ours

Citeseer (r=1.8%) 5 42 51 47 1,652 6,920 6 26
Cora (r=2.6%) 4 42 48 47 2,011 6,031 4 21

PubMed (r=0.15%) 4 34 204 42 7,555 22,201 5 40
Arxiv (r=0.25%) 6 283 1,485 242 78,586 84,356 20 71

Products (r=0.05%) 44 2,011 2,007 1,545 1,357,845 1,687,718 104 586

Flickr (r=0.5%) 5 177 300 258 99,254 19,202 23 56
Reddit (r=0.1%) 7 508 9,203 505 360,327 100,354 55 91

A.2 IMPACT OF ADAPTATION LEARNING
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Figure 6: Impact of adaptation learning - performance after different number of adaptation learning
epochs.

We demonstrate the impact of adaptation learning stage in Figure 6. On the presented large datasets,
the precomputation stage (Epoch 0) produces condensed representations with sub-optimal perfor-
mance. The adaptation learning further improves the representations by aligning them with the orig-
inal node representations, achieving state-of-the-art performance after sufficient training epochs.
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Table 8: Ablation study on the precomputation stage where we use randomly initialized features
instead of precomputed features.

Scheme GCPA with Random Initialization GCPA

Citeseer 68.9 72.9
Cora 80.0 81.9

PubMed 73.5 80.5
Arxiv 66.0 67.7

Products 61.5 69.9
Flickr 43.8 47.1
Reddit 91.6 92.4

Table 9: Ablation study on the adaptation stage. We evaluate the precomputed features without
adaptation and compare with the full framework.

Dataset SFGC GEOM GCPA w/o Adaptation GCPA

Citeseer 69.4 67.5 72.1 72.9
Cora 79.5 81.5 80.6 81.9

PubMed 78.1 79.7 79.7 80.5
Arxiv 67.2 65.8 64.6 67.7

Products 67.9 69.8 65.9 69.9
Flickr 47.0 45.2 45.4 47.1
Reddit 90.9 89.4 91.3 92.4

A.3 ABLATION STUDY ON PRECOMPUTATION STAGE

We conduct an ablation study on the precomputation stage and present the results in Table 8. Specif-
ically, we use randomly initialized synthetic features instead of sampled precomputed features. We
detail the steps on aligning the labels of the condensed graph with the actual classes when features
are initialized randomly. (1) Initialization: We map the randomly initialized features to the actual
classes by assigning labels based on the original class distribution. The synthetic nodes are divided
among the classes proportionally to their distribution on the original graph. This ensures that nodes
associated with the same class are identified from the beginning. (2) Adaptation: In the adaptation
stage, the synthetic nodes are optimized using a class-wise alignment loss to refine their features.
This ensures that the synthetic features represent their respective classes more distinctly. The re-
sults illustrate the importance of the precomputation stage, which provides precomputed features
that achieve better performance than randomly initialized features during the adaptation stage.

A.4 ABLATION ON ADAPTATION STAGE

We conduct an ablation study concerning the feature adaptation module and present the results in
Table 9. The presented results illustrate that while the precomputation stage yields competitive
results on 4 out of 7 datasets (Citeseer, Cora, PubMed, and Reddit), the adaptation stage is crucial
for further enhancing these precomputed representations, achieving superior results on the evaluated
datasets.

A.5 OBTAINING STRUCTURE-FREE FEATURES VIA PRECOMPUTATION

During the precomputation stage, we transform the raw features to structure-free features via pre-
computation. We use the derivations below to show that when using SGC as the backbone GNN, the
precomputed features coupled with an identity adjacency matrix are equivalent to the raw features
coupled with the original graph structures. We start by defining SGC network on the original graph:

SGC(X,A;Θ) =
(
D̃− 1

2 ÃD̃− 1
2

)K
XΘ, (6)
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where X is the raw node features, Ã = A + I represents the adjacency matrix with self-loops, D̃
denotes the degree matrix of Ã, K is the number of propagation layers, and Θ is the weight matrix.

Then, we revisit the feature precomputation introduced in Equation 2 when α = 0:

X′ =
(
D̃− 1

2 ÃD̃− 1
2

)K
X, (7)

where X′ denotes the precomputed features, which is the result of applying the same transformation
as in the SGC but isolated from the learning weights Θ.

As a result, SGC with precomputed features and identity adjacency matrix becomes:

SGC(X′, I;Θ) =
(
D̃− 1

2 ĨD̃− 1
2

)K
X′Θ = X′Θ =

(
D̃− 1

2 ÃD̃− 1
2

)K
XΘ, (8)

Therefore, we draw the equivalence between SGC computation on the original graph and the
structure-free precomputed features:

SGC(X′, I;Θ) = SGC(X,A;Θ) (9)

The equivalence shows that although the original features and condensed features are differently
distributed, they perform equivalently when coupled with their corresponding structures using the
SGC backbone. Drawing inspiration from this equivalence under the SGC backbone, our framework
focuses on initializing and refining features in the precomputed feature space, enabling effective
training of message-passing GNNs on the structure-free condensed graphs.
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